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Abstract—Habitat mapping is an important task to manage
ecosystems. This task becomes most challenging when it comes
to marine habitats as it is hard to get good images in underwater
conditions and to precisely locate them. In this paper we present
a novel technique for performing habitat mapping automating all
phases, from data collection to classification, lowering costs and
increasing efficiency throughout the process. For mapping habi-
tats in a vast coastal region, we use visible light cameras mounted
on autonomous underwater vehicles, capable of collecting and
geo-locating all acquired data. The optic images are enhanced
using Computer Vision techniques, to help specialists identify the
habitats they contain (during training phase). In a later stage, we
employ convolutional neural networks to automatically identify
habitats in all imagery. Habitats are classified according to the
European Nature Information System, an European classification
standard for habitats.

Index Terms—Convolutional Neural Networks, Computer Vi-
sion, Marine Habitat Mapping, European Nature Information
System, Autonomous Underwater Vehicles

I. INTRODUCTION

Many natural habitats and respective ecosystems all across
the globe are being subject to high risks of destruction due to
changing weather patterns, pollution, invasive species or over-
exploitation [1]. In order to understand how human behavior
impact these often fragile habitats one needs to quantify them
through habitat mapping. Two consecutive habitat maps of the
same region can help specialists assess the health of the region
and determine a course of action to improve it.

The Parque Natural do Litoral Norte is a natural reserve that
has recently been created in the coastal region of Esposende,
in the north of Portugal. The OMARE [2] project aims
to study the natural habitats as well as protect endangered
species in that reserve. As the region spans about 80 km2,
typical approaches (divers that collect images of the bottom
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or “underwater sledges”, i.e., camera recording while being
dragged from the surface) are not effective as they have low
location accuracy and require humans to characterize every
collected image.

In the context of the OMARE project, our approach is
to employ multiple Light Autonomous Underwater Vehicles
(LAUVs) [3] (see Figure 1) that use an advanced naviga-
tion package (DVL, INS) to collect a large amount of geo-
referenced photos of the bottom. The employed LAUVs can
be used from the coast all the way down to 100 meters while
carrying a camera and strobe light.

In this paper we propose a novel technique for performing
habitat mapping in submerged coastal areas using LAUVs
and Convolutional Neural Networks (CNNs). Our approach
consists in having multiple LAUVs traveling close to the
bottom to acquire geo-referenced photos. Habitats in the
photos are (partially) identified by marine biologists, using the
European Nature Information System (EUNIS), which makes
a supervised learning approach possible.

II. RELATED WORK

Looking at related work, Liu et al. [4] present a comparison
of CNNs against Random Forest, Support Vector Machines
and Fully Convolutional Networks (FCN) to classify 7 distinct
natural land cover types, concluding that CNNs and FCNs
performed better, although CNNs needed a large amount of
samples to train to achieve similar performance.

Berthold et al.’s [5] work on seabed sediment classification
using CNN and sidescan sonar imagery achieved an overall
accuracy of 56%. Gòmez-Rı̀os et al. [6] also designed a
solution to perform coral classification using CNNs.

Also, we were inspired to adapt the solution found by the
Guirado et al.’s work [7] to classify marine habitats. They used
a pre-trained CNN and fine-tuned the CNN to detect plant
species with data augmentation.

Overall, Deep Learning (DL) models, specifically CNNs,
are already being adopted to perform image classification in



underwater environments but, to our best knowledge, there
is no preceding work that uses CNNs to predict the EUNIS
habitat type of underwater images to perform automatic habitat
mapping according to EU standards.

III. APPROACH

Our approach can be described in 5 phases: 1) Image
retrieval and image enhancement; 2) Photo annotation by
marine biologists; 3) Data splitting into training, validation
and test sets (to diminish the chance of over-fitting [8]),
feeding the train and validation sets into a CNN with pre-
calculated weights (transfer-learning), training the CNN (fine-
tuning) and predicting the test set; 4) Validation of predictions
by marine biologists; 5) Assessing the performance of the
model on the test set. Phase 3 and later ones can be repeated
to increase performance by adding more (annotated) samples
to the training set.

Fig. 1: Employed LAUVs for image retrieval.

A. Image Enhancement

The performance of a CNN (or any machine learning model)
relies on the quality of the data fed into it [9]. To assure the
quality of the images and their correct annotation by humans,
we need to address the following problems:

1) The presence of a dominant color and absence of light;
2) Lack of contrast.
To handle problem 1, we performed a color correction

algorithm (white balance), designated by Max-White [10],
which resulted in brighter images and more natural colors. To
handle problem 2, we used the HSV color space and contrast
stretching to enhance the image:

Contrast stretching is a gray level transformation technique
that transforms the intensity of an image’s pixels changing
the contrast of a gray image. Gray pixel intensities values are
contained in the interval [0, L − 1], where L is the number
of possible gray levels of the image (typically 28 = 256, as
computers use 8 bits to represent a pixel intensity). We say
that a gray level transformation corresponds to:

s = T (r) (1)

where s is the output intensity level of applying the trans-
formation T to the gray intensity level of the pixel r. When
applying 2, we increase the dynamic range of the image

resulting in higher contrast and better perception to the human
eye [11].

s = (L− 1)
r − rmin

rmax − rmin
(2)

After converting RGB images to HSV, we applied 2 to the
Saturation and Value channels of the HSV image, merged back
these channels and converted again to the RGB color space.

B. Automatic Habitat Classification

A CNN is a supervised learning feed-forward model that
contains one or more convolution, maximum pooling and fully
connected layers [12], which currently is used, mostly, in
image classification and computer vision problems [12]–[14].

Training a CNN from scratch requires a vast number of
samples which were not available in our case. To counter this,
we used a similar design of Guirado’s et al. [7] CNN: using an
already existing and pre-trained CNN (the VGG16 [15] CNN,
in our case) together with data augmentation.

Data augmentation is used to introduce distortions in the
training set and synthetically increase its number of samples,
making it a powerful method when training set is relatively
small, as it is in our case.

Originally, the VGG CNN was developed in the ImageNet
Large-Scale Visual Recognition Challenge [15], which goal
was to recognize 1000 different objects of images available in
the ImageNet image database [16].

We used the weights computed for the ImageNet image
database and, additionally, added Dropout [17] to the fully-
connected layers to prevent the model from overfitting. We
also adapted the last fully-connected layer to classify the
habitats instead of the 1000 classes available on ImageNet
and, finally, retrained the whole CNN.

The VGG16 CNN is composed with 16 layers: 13 convolu-
tion layers and 3 fully-connected layers which get, as input, a
224×224 RGB image and ending with 7×7 feature maps (after
5 max pooling operations) to be flattened to the first fully-
connected layer. This procedure analyses about 138 million
parameters [15].

To deploy the VGG16 CNN, we used the Keras and Tensor-
Flow Python libraries. Keras serves as a high-level abstraction
to TensorFlow (a machine learning framework) to build neural
networks in an easy and fast way [18], [19].

The presented procedure allowed us to transfer learning
from the VGG16 and update the weights to serve our cause.

IV. TESTS AND RESULTS

In scope of the OMARE project, image retrieval missions
were made with LAUVs: Noptilus 1, 2 and 3 (see Figure 1), in
order to map the habitats of the coastal area of Esposende, after
ensuring good weather conditions, including sea state and wa-
ter turbidity. According to these conditions, the retrieved data
quality may vary and, consequently, affect the performance of
the CNN model.

The LAUVs were deployed using Neptus, the command
and control software tool used to plan, execute and monitor the



LAUVs’ missions (see Figure 2). Through Neptus, operators
could also preview on the field the mission’s outcome and
analyze the quality of the data retrieved before beginning to
enhance the images.

Fig. 2: Neptus console as used in Esposende, configured for
habitat mapping applications.

After exporting the images from Neptus, we applied the
methods described in Section III-A to enhance the images.
Figure 3 contains each step of this enhancement process and
the image’s histogram transformations. Figure 4 provides an
example of this enhancement process applied to a low-light
image.

In this campaign, LAUV vehicles captured a total of 6871
images, from which marine biologists annotated 2169 images
(about 32%) with, at least, an EUNIS level 3 habitat classifi-
cation. The first 3 levels of an habitat classification represents
the physical (energy, soil and light) properties of the habitat
while the following 3 levels represent the communities and
species associated to that habitat.

TABLE I: Comparison of the classification distribution and
the median.

EUNIS Class #
A4.1 - Atlantic and Mediterranean high energy circalittoral rock 1207
A3.1 - Atlantic and Mediterranean high energy infralittoral rock 388
A5.1 - Sublittoral coarse sediment 181
A4.7 - Features of circalittoral rock 178
A3.7 - Features of infralittoral rock 96
A5.2 - Sublittoral mud 85
A5.4 - Sublittoral mixed sediments 34
Median 178

Upon observing the images’ classification distribution (see
Table I), we have encountered an enormous discrepancy: the
class A4.1 has more samples than the sum of the rest of the
classifications. Also, classes A3.1 and A4.1 (related to Atlantic
and Mediterranean high energy rock) differ only in the depth of
the sea bottom whereas A3.1 represents the infralittoral area
(with depth lower than 15 meters) and A4.1 represents the
circalittoral area (with depth greater or equal than 15 meters).
In the same way, A3.7 and A4.7 also share this property and
since depth cannot be perceived by an image, the CNN cannot
make this distinction. Therefore, we grouped classifications
A3.1 with A4.1 and A3.7 with A4.7 and undersampled the
data set by randomly selecting the median number of samples
for each classification to balance the number of samples per
classification in the dataset (see Figure 5).

After undersampling, the training set contained 654 photos
(from the initial 2169 annotated images) and had 5 distinct
EUNIS level 3 habitat types. The training of the CNN model
was made using a Nvidia GeForce GTX 1050Ti GPU system
and habitats were classified with the first 3 levels of the
EUNIS. The training data was randomly split into train and
validation sets (with 30% for validation) to prevent overfitting.

After 63 epochs, the model achieved a maximum validation
accuracy of 92.39% in the 53th epoch (see Fig. 6). The weights
were saved at this stage preventing it from overfitting, given
the model did not improve the validation set accuracy for the
following 10 epochs.

In any ML model, the training phase (or fitting phase) can
start overfitting as the model tries to represent as much as
possible the data that is being trained. This process deeply
downgrades the model to perform accurate predictions on new
data.

Although we are already using techniques to prevent the
model to overfit (train-test split, dropout, early stopping, data
augmentation), DL models require a vast amount of samples in
the training phase to get good results [4]. In order to evaluate
the model, we sampled a separate set of 751 images chosen
randomly from the data that was not labeled, asked the marine
biologists to annotate this set and predicted this set.

Afterwards, we used the confusion matrix evaluation metrics
(accuracy, precision, recall and F1-score) on the predictions
of the test set regarding to true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) of both
level 2 and level 3 of the EUNIS taxonomy:

• Accuracy: TP+TN
TP+FP+TN+FN measures the overall success

rate of the prediction;
• Precision: TP

TP+FP measures the rating of the selected
observations were correct;

• Recall: TP
TP+FN measures the rating of the observations

that should have been selected actually were selected;
• F1-score: 2 × precision×recall

precision+recall measures the harmonic
average of the precision and recall.

When analyzing the accuracy of the model in the test set,
we found out that the model is scoring lower than anticipated
in comparison with the training (lower 22.8% at level 3), as
we can see in Table II.

TABLE II: Overall accuracy percentage of the model.

EUNIS Level 2 Level 3
Accuracy 85.1 69.6

As the test set contains unbalanced data (with respect
to number of samples per habitat classification), we should
analyze other metrics.

Tables III and IV contain the precision, recall and F1-
score metrics of the predictions to the levels 2 and 3 (support
corresponds to the number of samples per class). The classes
(in both tables) with lower precision score than recall score
are A3-A4, for level 2, and A3.1-A4.1, for level 3, as they
are, coincidentally, the classes with more samples of the test
set. All the remaining classes have higher precision score



Fig. 3: Histogram analysis after transforming the original image (on the left) with the Max-White algorithm (center image)
and the HSV contrast stretch (rightmost image).

(a) Retrieved image (b) Enhanced image

Fig. 4: Max-White and HSV contrast stretching enhancement to an image retrieved by the LAUV.

Fig. 5: Habitat classification distribution of the retrieved logs. Fig. 6: Plot of the training of the CNN.



than recall score, which may indicate that classes A3-A4 and
A3.1-A4.1 may have key features that are more generic and
therefore the model may be overfitting for these classes.

TABLE III: Classification report on predictions of the level 2
of EUNIS.

Class precision recall f1-score support
A3-A4 0.84 0.98 0.90 536

A5 0.91 0.53 0.67 215
avg / total 0.86 0.85 0.84 751

TABLE IV: Classification report on predictions of the level 3
of EUNIS.

Class precision recall f1-score support
A3.1-A4.1 0.69 0.90 0.78 408
A3.7-A4.7 0.60 0.44 0.50 128

A5.1 0.77 0.60 0.68 125
A5.2 0.75 0.24 0.37 49
A5.4 0.86 0.29 0.44 41

avg / total 0.70 0.70 0.67 751

These results are mostly due to the absence of enough
samples of all classifications to train the CNN effectively (see
Figure 5) as the model is clearly overfitting as the class with
more predictions is A3.1-A4.1 (see Figure 7).

Fig. 7: Distribution of inaccurate predictions per class.

V. CONCLUSIONS AND FUTURE WORK

We have successfully validated the use of AUVs for habitat
mapping, by using both optic and/or sidescan sonar images
collected autonomously, at a fraction of the cost of using divers
or large hydrographic vessels.

The image enhancement applied to underwater optic images
handled the problem associated to the lack of light in un-
derwater environments, helping scientists to correctly classify
thousands of images.

In comparison with the approaches presented in Section II
(see Table V), our system performs complete habitat mapping
over a vast region (80 km2 in the case of OMARE) by using
a fully autonomous system (from collection to classification).
Moreover, our classification metric uses the EUNIS conven-
tion, a habitat classification scheme imposed by the European

Union that aims to unify the types of identified habitats all
across the world and is of practical application to both city
council staff and specialists.

TABLE V: Overall accuracy comparison of related work
prediction models.

Author Best Model Accuracy
Berthold et al. [5] 56.0%

Liu et al. [4] 76.9%
Guirado et al. [7] 91.8%1

Gòmez-Rı̀os et al. [6] 98.2%2

Our proposal 85.1%

We believe that the results from CNNs are currently strug-
gling due to the low amount of data samples currently anno-
tated, although as per different authors in related work they
tend to scale very quickly when given a significant amount
of images. Also, the fact that they do not require feature
engineering makes them easy to implement (using libraries
such as Keras) and available to ML beginners in the scientific
community of habitat mapping.

In spite of the lower prediction score of our model on the
test set in comparison with the training phase score, our results
are promising and, according to the results in [4], the model
is expected to perform better when adding more images to the
training phase.

In regards to the enhancement of underwater optic images,
specialists have benefited from a color correction transforma-
tion in order to perceive key features in underwater optic
images. This statement comes from their positive feedback
during the annotation phase.

In the future, we intend to include more images to train
the existing model, in order to make a new evaluation of the
model. After that, we want to transfer the learning of the model
described in this paper and proceed to classify sidescan sonar
images. We also intend to predict higher levels of the EUNIS
taxonomy.
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