
Computing Motifs in Hypergraphs

Duarte Nóbrega1 and Pedro Ribeiro1,2

1 DCC-FCUP, Universidade do Porto, Portugal
2 CRACS & INESC-TEC, Portugal

up202005727@edu.fc.up.pt, pribeiro@dcc.fc.up.pt

Abstract. Motifs are overrepresented and statistically significant sub-
patterns in a network, whose identification is relevant to uncover its un-
derlying functional units. Recently, its extraction has been performed on
higher-order networks, but due to the complexity arising from polyadic
interactions, and the similarity with known computationally hard prob-
lems, its practical application is limited. Our main contribution is a novel
approach for hyper-subgraph census and higher-order motif discovery, al-
lowing for motifs with sizes 3 or 4 to be found efficiently, in real-world
scenarios. It is consistently an order of magnitude faster than a baseline
state-of-art method, while using less memory and supporting a wider
range of base algorithms.

Keywords: Hypergraphs, Hyper-Subgraphs, Motifs, Subgraph Census

1 Introduction

Graphs are a valuable modelling tool of real-world systems, having applications
in a broad set of scientific fields. The generated complex networks exhibit non-
trivial topological features and many insightful metrics have been proposed to
mine information and to characterise its properties [15,21].

In particular, a motif is defined as an overrepresented and statistically signifi-
cant sub-pattern, whose number of occurrences deviates from its expected value,
when compared to other similar networks [12]. Motif discovery has multiple prac-
tical applications such as creating early cancer diagnosis systems [2], extracting
fingerprints from social networks [6] or characterising the reliability of critical
infrastructures [5]. However, it is a difficult computational task, closely related
to the subgraph isomorphism problem, which is known to be NP-complete [4].

Most research done is focused on dyadic relationships, a relation between two
entities, but many real-world interactions are intrinsically polyadic, involving
more than two entities [3]. In order to directly encode these relations, the usual
graph definition was modified to allow edges to connect any subset of vertices.
This mathematical structure is formally known as a hypergraph.

Motif discovery has also been characterised in this model and different al-
gorithms for it begin to emerge [7,9]. These algorithms are typically limited to
sub-structures with small size, due to the exponential growth of the search space.
However, even with this restriction, it is still possible to extract meaningful in-
formation [10].

2 Duarte Nóbrega, Pedro Ribeiro.

In this paper, we present a novel approach for extracting motifs of sizes 3
and 4 in hypergraphs. Our method works by successively counting the structures
having a relation with a given size, and then by removing them, until only dyadic
relations are left, after which a subgraph counting algorithm is used, similarly
to the work in [9]. However, it improves upon the O(E2) auxiliary memory it
requires, and removes the need for an enumeration based counting algorithm.
Our approach uses O(E) additional memory, and is independent of the method
used. We also show how different methods may be used to attain considerable
speedups, when compared to generic ones, like ESU, by taking explicit advantage
of the imposed size restriction.

2 Preliminaries

2.1 Terminology

A simple hypergraph H is defined as H = (V,E) where V is a finite set of hy-
pervertices (or vertices, if there is no ambiguity) and E = {ei | ei ⊆ V, |ei| ≥ 2}
is a finite set of hyperedges. Let n = |V | be the hypergraph’s size and m = |E|.
A hyperedge ei has size k if |ei| = k. If a hyperedge has size greater than 2, it
is a higher-order interaction. The k-th order degree of a hypervertex v ∈ V is
defined as the number of hyperedges ei such that v ∈ ei and |ei| = k. The degree
of a hypervertex is a multiset having all of its order degrees.

The simple hypergraphs H = (V,E) and H′ = (V ′, E′) are isomorphic if
there is a function f : V → V ′ such that ∀v ∈ V : v ∈ V ⇔ f(v) ∈ V ′ and
∀ei = {v1, ..., vk} ∈ E : ei ∈ E ⇔ {f(v1), ..., f(vk)} ∈ E′. A hyper-subgraph
(or sub-hypergraph) S of H = (V,E) is a hypergraph S = (V ′, E′) where
V ′ ⊆ V and E′ = {ei | ei ⊆ V ′, |ei| ≥ 2} ⊆ E. S is an induced hyper-subgraph
if ∀ei ∈ E : ei ⊆ V ′ ⇒ ei ∈ E′. A sub-hypergraph is two-connected if, after re-
moving all hyperedges with size greater than 2, there is a path between any pair
of remaining vertices. A path is a sequence of vertices (u1, u2, ... , uk) such that
{uk−1, uk} ∈ E, ∀k ≥ 2.

A graph G = (V ′, E′) is a vertex projection graph of a hypergraph H = (V,E)
if V ′ = V and E′ = {(u, v) | (u, v) ⊆ ek, for some ek ∈ E}. A graph G = (V ′, E′)
is an edge projection graph of a hypergraph H = (V,E) if V ′ = {1, 2, ..., |E|} and
E′ = {(i, j) | ei ∩ ej 6= ∅, ei ∈ E, ej ∈ E}.

An example hypergraphH = ({1, 2, 3, 4, 5, 6, 7}, {{3, 5}, {1, 2, 3}, {1, 4, 6, 7}})
is shown in Figure 1.

Fig. 1: Hypergraph with 7 hypervertices with 3 hyperedges.a

a All the hypergraph images were created using [8].

Computing Motifs in Hypergraphs 3

2.2 Problem Definition

We propose a method for the following problem:

Definition 1. Hyper-subgraph Census Given an integer k and a hypergraph
H, count the number of distinct occurrences of each connected hypergraph of size
k as an induced hyper-subgraph of H. Two occurrences are distinct if they do not
have the exact same vertex set.

For the purposes of this paper we restrict our analysis to k = 3 and k = 4.
The procedure used to solve this problem can then be used as the base counting
algorithm to find motifs.

3 Literature Overview

Motif discovery is typically performed in three steps. Initially, a collection of
similar networks is created, then a hyper-subgraph counting technique is utilised,
and finally some metric is used to detect over (or under) occurring structures.

It is necessary to detect if two hypergraphs are isomorphic to update their
counts correctly. In practice, there are methods that can solve instances with
thousands of vertices and edges - one of them is nauty [11].

The subgraph census (sc) problem is similarly defined to its higher-order
counterpart. Initially, mfinder appeared as the result of the work by Milo et
at. [12]. It is an enumeration based recursive algorithm and a proof of concept of
motif discovery. In order to guarantee the same subgraph is not counted twice,
an identifier of each occurrence is kept in memory.

A more efficient algorithm called ESU was later proposed [22]. It greatly
improved upon mfinder by reducing the memory consumption and search space,
by only iterating through each subgraph once.

However, more sophisticated techniques were created since: a g-trie, a mod-
ified trie specifically designed to work with graphs [20], and FaSE, a state-of-art
network-centric approach, that uses the g-trie’s topology aware structure to avoid
redundant isomorphism tests, along with additional low-level optimisations [17].

If the subgraph size is small, specific methods exist. For example, in order to
find subgraphs of size 3, the triangle enumeration algorithm proposed in [16] has
a O(m1.5) time and O(m) space complexity, and works particularly well in real-
world instances. It improves upon the brute-force approach by several orders of
magnitude. We refer the reader to [19] for a comprehensive overview about the
existing state-of-art methods for sc.

The authors of [9] described how these algorithms could be adapted to solve
our main problem: either the input hypergraph is converted to a projection
graph, where then a sc algorithm is used, or multiple intermediate representa-
tions are created, by successively removing hyperedges with a given size, and
then a single sc method is used at the end, when only dyadic relations are left.

The first approach, although simple, will find induced subgraphs that will
not have a corresponding sub-hypergraph.

4 Duarte Nóbrega, Pedro Ribeiro.

Fig. 2: Hypergraph conversion to projection graphs.

In Figure 2, when the blue-dotted triangle in G is found, it cannot be mapped
to an existing sub-hypergraph, since those 3 nodes are a strict subset of the
hyperedge of size 4. However, this problem is not inherent to the algorithm
chosen, but to the transformation used.

It is possible to replace G by G’, an edge projection graph, and although
fixing the previous issue, this representation is harder to manipulate, as it is
more resource demanding to know how many vertices are already included in a
corresponding sub-hypergraph during execution.

The second approach successively modifies the original hypergraph in order
to simplify its structure and to speedup the usage of a sc algorithm. In Figure
3, an example is shown where this approach is executed in H1, with the goal of
finding all hyper-subgraphs of size 3.

Fig. 3: Hypergraph conversion to intermediate forms.H1 andH2 are intermediate
forms.

Firstly, any induced hyper-subgraph of size k will never have a hyperedge of
size greater than k. In fact, it may only have one hyperedge with said size. In
this case, the algorithm begins by removing all hyperedges of H1 with excessive
size, and H2 is obtained. The search space can be further divided into two: the
hyper-subgraph has a hyperedge of size 3, or it does not.

If it does, it can be induced by the vertex set of one of the two hyperedges of
size 3, so each of them can be checked independently. If it does not, it implies it
only contains hyperedges of size 2, so we can remove the others, and we obtain
H3, a graph with only dyadic relations where any sc algorithm can be used. All
the subgraphs found have a valid corresponding sub-hypergraph. There are only
two of size 3 in H1, and they would have been found in the first step.

In both approaches, the same hyper-subgraph could be found multiple times.
However, the total number of duplicates is bounded by O(E), if the size is 3,

Computing Motifs in Hypergraphs 5

and O(E2), if it is 4. The authors of the method in [9], from now on referred as
baseline, use an auxiliary data structure to keep track of these duplicates.

In [9] an efficient technique to induce a sub-hypergraph with a vertex set V
is described. The authors hash every hyperedge of size smaller or equal to 4, and
then iterate over the subsets of V in order to verify if a given polyadic relation
exists. The lookup takes O(1) amortised time and since |V| ≤ 4, in the worst-
case, only 24 = 16 subsets are checked, which can be regarded as a constant
factor.

Finally, in order to identify an unexpected number of occurrences, a suf-
ficiently large set of random similar networks is obtained by a configuration
model [3,14], the zscore is calculated for each desired subgraph, as shown in
Equation 1. Alternatively, Equation 2 can be used, with ε = 4, following [13].

zscore(Si) =
Forig(Si)− F random(Si)

σrandom(Si)
(1)

∆(Si) =
Forig(Si)− F random(Si)

Forig(Si) + F random(Si) + ε
(2)

Forig(Si) denotes the frequency of the hyper-subgraph Si in the original
network. F random(Si) its average number of occurrences, and σrandom(Si) the
standard deviation of its frequency, both calculated in the sample set.

4 Contribution

The methodology proposed in [9] requires an additional data structure to store
all hyper-subgraphs found at every intermediate form, and uses ESU, when more
efficient alternatives exist. Moreover, counting algorithms are incompatible with
that approach, and enumeration ones require changes, as duplicate occurrences
must be disregarded.

Our contribution builds upon this work, by entirely removing the dependence
on this auxiliary data structure. With our method, any algorithm, counting based
or not, may be used without any modification. This implies every existing sc
algorithm may be swiftly integrated. Additionally, the memory overhead and a
vast number of lookup calls are avoided, resulting in a performance improvement.

Similarly to baseline, we independently optimise our tool for the two sizes.
Our tool also makes use of the same intermediate forms of the work in [9], since
the authors concluded the usage of sc algorithms on projection graphs, depicted
in Figure 2, is significantly slower. However, we avoid duplicates differently.

We introduce the notion of two-connectivity and modify the algorithms in [9]
to attain the benefits mentioned, while maintaining correctness. Our proposed
methods proceed similarly, following the procedure illustrated in Figure 3. The
method for k = 4 implements an additional step, when compared to the version
for k = 3. The same technique could theoretically be used for higher values of k,
however implementing and maintaining a low memory usage is more difficult.

6 Duarte Nóbrega, Pedro Ribeiro.

4.1 Hyper-subgraphs of size 3

The procedure for this size is shown in Algorithm 1.

Algorithm 1 Counting hyper-subgraphs of size 3

Require: A hypergraph H = (V,E).
Ensure: Frequency distribution of hyper-subgraphs with size 3.
1: Let M be a frequency hash map
2: Let H2 ← remove all hyperedges with size greater than 2 from H
3: for each hyperedge e of size 3 in E do
4: motif ← hyper-subgraph induced by e on H
5: if twoConnected(motif) then
6: motif2 ← hyper-subgraph induced by e on H2

7: M[isomorphicClass(motif2)] -= 1 . Will be found again later
8: end if
9: M[isomorphicClass(motif)] += 1

10: end for
11: S ← ClassicalAlgorithm(H2, 3)
12: returnM+ S . Add new occurrences to hash map and return

The correctness lies on the fact the only case a duplicate may be found is
when a vertex set in S induces on H a structure having a hyperedge of size 3.
However, if a sub-hypergraph ofH has a hyperedge of size 3 and is two-connected,
its vertex set will be in S, but its induced occurrence on H2 is invalid, because
it lacks the hyperedge of that size.

This suggests two different approaches: We either discard from S an occur-
rence that was already seen, by keeping track of each of them using an auxiliary
data structure, or we preemptively subtract 1 to the counter of each invalid pat-
tern, a two-connected hyper-subgraph that will be in S. We chose the latter,
contrary to the baseline method, as it allows us not to keep track of occur-
rences, while keeping the sc algorithm independent of the rest of the code.

This independence allows the counting method in line 11 to be enumera-
tion based or not, exact or approximate, as long as it tackles the sc problem.
Minimal changes must be made to accommodate different methods. The num-
ber of duplicate occurrences is bounded by the number of hyperedges of size 3,
and in the worst-case, we enumerate them twice, which does not affect the time
complexity. In line 9 we count sub-hypergraphs with a hyperedge of size 3, and
without in line 11. The only particular case was handled, as described, in line 7.
Any induced hyper-subgraph may be efficiently extracted from H, using a hash
table and applying the subset approach described previously.

Comparing with the method in [9], we do not maintain any data structure
that keeps track of each individual occurrence, as we allow the algorithm to
iterate through them at most two times. With this change, we save memory
and achieve independence from the specific counting method used. The auxiliary
space used is bounded by the number of isomorphic classes, instead of the number
of occurrences, and an extra copy of H.

Computing Motifs in Hypergraphs 7

4.2 Hyper-subgraphs of size 4

Our approach for this size extends the previous and is shown in Algorithm 2.

Algorithm 2 Counting hyper-subgraphs of size 4

Require: A hypergraph H = (V,E).
Ensure: Frequency distribution of hyper-subgraphs with size 4.
1: Let M be a frequency hash map
2: Let H2 ← remove all hyperedges with size greater than 2 from H
3: for each hyperedge e of size 4 in E do
4: motif ← hyper-subgraph induced by e on H
5: if twoConnected(motif) then
6: motif2 ← hyper-subgraph induced by e on H2

7: M[isomorphicClass(motif2)] -= 1 . Will be found again later
8: end if
9: M[isomorphicClass(motif)] += 1

10: end for
11: for each hyperedge e of size 3 in E do
12: Let V be a hash table
13: for each hyperedge ei adjacent to e do
14: motif ← hyper-subgraph induced by e on H
15: Let sizee be the size of the biggest hyperedge in motif
16: Let elex be the lexicographical greater hyperedge of size 3 in motif
17: Let node = (e ∪ ei) \ e
18: if |e ∪ ei| = 4 and e = elex and sizee = 3 and node not in V then
19: if twoConnected(motif) then
20: motif2 ← hyper-subgraph induced by e on H2

21: M[isomorphicClass(motif2)] -= 1 . Will be found again later
22: end if
23: M[isomorphicClass(motif)] += 1
24: V.insert(node)
25: end if
26: end for
27: end for
28: S ← ClassicalAlgorithm(H2, 4)
29: returnM+ S . Add new occurrences to hash map and return

Duplicates are avoided by generalising the previous idea, although the imple-
mentation is slightly more convoluted, as additional cases exist. We utilise the
same concept of two-connectivity to deal with invalid structures in S.

The algorithm begins by considering hyper-subgraphs having a hyperedge of
size 4, similarly to how Algorithm 1 dealt with those of size 3.

The additional step, between lines 11 and 27, counts those having a hyperedge
of size at most 3. This is done by fixing one with said size, and then pairing it
with an adjacent one, ei, in order to obtain a 4-node structure. The condition in
line 18 guarantees each of them is only counted once, by skipping those having
hyperedges with size greater than 3, and only counting when its lexicographically
greater hyperedge is selected as value of e (line 11).

8 Duarte Nóbrega, Pedro Ribeiro.

However, even when the greatest hyperedge is selected, different values of ei
may yield the same structure, so these duplicates must also be avoided. For this
purpose, we use the data structure V, which requires, in the worst case, O(|V |)
additional memory, and keeps track of which nodes have been added. In total,
we use O(|E|) extra space, since a copy of H is required. This improves over the
baseline method, which needs O(|E|2), because it would keep in memory every
structure found until line 27.

5 Experimental Results

We implemented the methodology described and made the code publicly avail-
ableb. We tested our algorithm with 3 different sc methods: triangle [16],
FaSE [17] and ESU’ [22]. ESU’ is similar to ESU, but replaces the costly isomor-
phism tests during execution by a query to a hash table, which contains the
pre-calculated labels by nauty. We compared their performance against the ex-
act baseline approach [9]. All the methods were implemented in C++ and ran
in a common framework. A summary of each dataset used is shown in Table 1.

Dataset Source Domain Nodes
∑

H H2 H3 H4

ps [9] proximity 242 12695 7748 4600 347

hs [9] proximity 327 7811 5498 2091 222

EU [9] e-mail 956 19985 12753 4938 2294

history [9] co-auth 371883 227428 160885 47423 19120

geology [9] co-auth 754196 663195 275736 227950 159509

dblp [9] co-auth 1433153 1780083 693364 667301 419418

random own synthetic 9999997 49999996 16671458 16659802 16668736

clique own synthetic 500 124750 124750 0 0

Table 1: Dataset description, after an initial pre-processing step, in order to
satisfy our input restrictions. Hi denotes the number of hyperedges with size i.

A complete description of the first 6 datasets can be found in [9]. The clique
dataset is a complete graph with 500 nodes. The random dataset was produced
by the generator providedb, using the number 5 as a seed, and with 5 × 107

random hyperedges. All the tests where performed in a similar environment,
using an i9-13900KF Intel CPU, 32GB of RAM, and running Ubuntu 20.04.1
LTS. Our program used the number 10001 as a seed, to ensure reproducibility.

The results in Table 2 and Table 3 were obtained by executing each cor-
responding algorithm four times. The first result was ignored, and the average
value of the remaining 3 was used. All the values were rounded to the nearest
integer. The values shown only regard the time taken by the sc method, using
the steady clock implementation from the c++ stl, between the appropri-
ate portions of code. The exact code used during testing is providedb. The time
is in seconds, and the speedup measures how many times a given method was
relatively faster than baseline.

b https://github.com/ComplexNetworks-DCC-FCUP/hypermotifs

https://github.com/ComplexNetworks-DCC-FCUP/hypermotifs

Computing Motifs in Hypergraphs 9

Dataset
Subgraphs triangle FaSE ESU’ baseline

Types Frequency Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s)

ps 6 387846 < 0.005 - 0.035 8.143x 0.131 2.176x 0.285

hs 5 145829 < 0.005 - 0.010 9.600x 0.036 2.667x 0.096

EU 6 670087 < 0.005 - 0.054 9.037x 0.207 2.357x 0.488

history 6 531561 0.011 32.455x 0.101 3.535x 0.139 2.568x 0.357

geology 6 1159160 0.022 46.500x 0.268 3.817x 0.379 2.699x 1.023

dblp 6 4561470 0.089 54.596x 0.888 5.472x 1.925 2.524x 4.859

random 4 72234343 3.156 31.412x 20.724 4.784x 46.551 2.13x 99.137

clique 1 20708500 0.510 39.298x 3.576 5.605x 11.003 1.822x 20.042

Table 2: Results obtained, for each dataset, with k = 3.

Dataset
Subgraphs FaSE ESU’ baseline

Types Occurrences Time(s) Speedup Time(s) Speedup Time(s)

ps 76 20409856 2.988 9.136x 8.188 3.334x 27.299

hs 68 4586917 0.498 11.116x 1.487 3.723x 5.536

EU 109 46710311 6.075 10.766x 18.377 3.559x 65.405

history 72 11382822 0.413 33.201x 2.929 4.681x 13.712

geology 130 11055083 0.671 22.398x 3.219 4.669x 15.029

dblp 167 61722014 3.832 23.448x 22.628 3.971x 89.853

random 11 430323276 53.052 - 215.055 - -c

clique 1 2573031125 535.62d 7.893x 1615.79 2.616x 4227.71

Table 3: Results obtained, for each dataset, with k = 4.

Dataset
Time(s), K = 3 Time(s), K = 4

modified baseline modified baseline

ps 0.006 0.005 1.270 0.959

hs < 0.005 < 0.005 0.318 0.230

EU 0.007 0.006 1.514 1.183

history 0.057 0.065 0.490 0.492

geology 0.390 0.448 5.088 5.465

dblp 1.323 1.514 27.656 29.366

random 39.480 49.298 601.137 −c

clique < 0.005 < 0.005 0.034 0.032

(a) Processing time of intermediate forms.

Dataset K = 3 K = 4

ps 4600 549505

hs 2091 134767

EU 4938 704704

history 47423 248545

geology 227950 2232716

dblp 667301 11603771

random 16659802 > 138000000c

clique 0 0

(b) Hyper-subgraphs stored.

Table 4: Hash table impact on performance.

c Memory limit exceeded and execution killed.
d FaSE uses a 32-bit integer for subgraph occurrence counting, resulting in overflow.

10 Duarte Nóbrega, Pedro Ribeiro.

In Table 2, a comparison between the execution time of the methods triangle,
FaSE, ESU’ and baseline is provided, for k = 3. In Table 3, with k = 4, but
without the method triangle, as it is not compatible with this parameter.

Table 4 illustrates the hash table impact on performance, by showing: the dif-
ference in processing time of intermediate forms, when compared to our method,
and the maximum number of hyper-subgraphs simultaneously stored.

As a proof of concept, we implemented a simple configuration model that ran-
domly swaps nodes between different hyperedges, while maintaining the original
degree sequence. The values given by Equations 1 and 2 are shown in Figure 4,
for the 3 datasets in the co-auth domain. For comparison purposes, we included
the dataset EU, which is from another domain.

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

Hyper-subgraphs

∆

dblp

history

geology

EU

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

Hyper-subgraphs

z s
co
re

dblp

history

geology

EU

Fig. 4: On the left, ∆(Si), on the right, zscore(Si), for each existing hypergraph
of size 3.

6 Results Analysis

Only the median value of the three runs was shown, but the results did not
significantly fluctuate.

The difference in processing time of intermediate forms was not significant,
because our method did not specifically try to improve it. However, it still per-
formed better, even though sharing the same underling idea, because our version
avoids hash table insertions, saving time and memory, which is increasingly no-
ticeable as the number of stored hyper-subgraphs increases.

When executing any sc method, we are also able to induce a hyper-subgraph
faster, because we only have to process dyadic relations. This improvement is
more apparent when k = 4.

Computing Motifs in Hypergraphs 11

6.1 Hyper-subgraphs of size 3

In terms of execution time, all the 3 proposed methods were faster than baseline.
In particular, the ESU’ method was consistently 2x faster. This result indicates
the usage of our approach made each proposed algorithm (at least) 2x faster.
The other gains may be attributed to the inner workings of each algorithm. The
smallest speedup was registered in the clique dataset, because the auxiliary
hash table was empty, so no lookup overhead existed in any method.

FaSE outperformed both versions of ESU. This was expected, and is in accor-
dance with its author’s claims. However, the difference was not very expressive,
in part due to the small value of k, where this approach is not able to fully show
its potential. Moreover, the isomorphic classes were pre-calculated, already re-
placing isomorphism tests by hash table lookups.

The method triangle clearly stood out from the rest. It was almost in-
stantaneous in the datasets ps, hs and EU, so we did not include its time. Its
performance may be explained by the low overhead, and because the largest
networks were sparse, which is ideal for this method.

The number of structures baseline keeps in memory is exactly equal to the
number of hyperedges of size 3, a linear overhead our method avoids, albeit not
a significant one.

6.2 Hyper-subgraphs of size 4

As before, the two proposed algorithms were faster than baseline. ESU’ was
roughly 4x faster, double the speedup of its k = 3 counterpart, indicating the
overhead increased. This was expected, as many more sub-structures are stored
in the hash table, making both insertions and lookups slower. Additionally, the
procedure to induce hyper-subgraphs takes longer. The smallest speedup was in
the clique dataset, for similar reasons as aforementioned. In this dataset, FasE
overflowed, since the occurrence counters are stored as integers. This maybe be
fixed by adapting the original source code.

Overall, FaSE proved to be an order of magnitude faster, improving upon its
previous results.

The random dataset and all dense datasets, apart from clique, required
baseline to use substantially more memory when compared to its size 3 coun-
terpart. In particular, in random, baseline used all the system’s memory, and
the execution was killed. This is explained by the approximate number of sub-
hypergraphs which were stored just before it being stopped, 1.4× 108. However,
our method did not encounter any memory issues, showing how the difference
between O(|E|) and O(|E|2) is relevant in practice.

6.3 Motif Discovery

The results reported in Figure 4 allows us to exemplify the kind of information
motif discovery may provide. Graphs from the same domain have a similar fin-
gerprint, and the 3 datasets from the co-authorship domain generated similar

12 Duarte Nóbrega, Pedro Ribeiro.

graphs. However, here we see this result also holds for higher-order interactions.
The difference between those 3 and the EU dataset (from a different domain) is
very clear, as the graphs are completely different.

If comparing both formulas, we see both classify the same sub-structures as
over or under represented, but the zscore produced a wider range of values. Our
results are in line with the ones from the work in [10].

7 Conclusion

In this paper, we explored motif discovery in a general graph model, known
as a hypergraph, which is capable of handling higher-order interactions. We
introduced a novel way to perform motif discovery, tailored for sub-structures
with size 3 or 4.

Our method was consistently an order of magnitude faster, and used less
memory, when compared to a state-of-art method. Additionally, it may be swiftly
paired with any existing algorithm for the subgraph counting problem. In certain
scenarios, it was up to 55x faster, and able to solve instances the reference method
could not, as it exhausted the available resources.

We also developed a command line tool that integrates all of our improve-
ments, allowing for the use of different pre-existing methods, and offering cus-
tomisation to the user. Our recommended choice, among the tested procedures,
is the method triangle, for size 3, and FaSE, for size 4.

As for future work, support for greater hyper-subgraph sizes could be ex-
plored. We focused and tested exact approaches for subgraph counting, but
approximate methods can also be used, using for instance sampling as it was
done with Rand-FaSE [18]. We did not attempt to parallelise our application or
any of the counting algorithms used, but it is possible, for instance with dy-
namic load balancing as it was shown with a shared memory multicore version
of FaSE [1]. Additionally, we can further optimise our code, if the input instances
are known to be small, to support O(1) node connectivity using an adjacency
matrix. Finally, we intend to apply our approach to real data sets and to exper-
iment with more complex and robust nulls models that are specific for random
hypergraphs [3].

References

1. David Aparicio, Pedro Paredes, and Pedro Ribeiro. A scalable parallel approach for
subgraph census computation. In Euro-Par 2014: Parallel Processing Workshops,
Revised Selected Papers, pages 194–205, 2014.

2. Lina Chen, Xiaoli Qu, Mushui Cao, Yanyan Zhou, Wan Li, Binhua Liang, Weiguo
Li, Weiming He, Chenchen Feng, Xu Jia, and Yuehan He. Identification of breast
cancer patients based on human signaling network motifs. Scientific reports, 3(1):1–
7, 2013.

3. Philip S Chodrow. Configuration models of random hypergraphs. Journal of
Complex Networks, 8(3):cnaa018, 2020.

Computing Motifs in Hypergraphs 13

4. Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages
151–158, 1971.

5. Asim K. Dey, Yulia R. Gel, and H. Vincent Poor. What network motifs tell us
about resilience and reliability of complex networks. Proceedings of the National
Academy of Sciences, 116(39):19368–19373, 2019.

6. Xu Hong-Lin, Yan Han-Bing, Gao Cui-Fang, and Zhu Ping. Social network analysis
based on network motifs. Journal of Applied Mathematics, 2014, 2014.

7. Geon Lee, Jihoon Ko, and Kijung Shin. Hypergraph motifs: Concepts, algorithms,
and discoveries. Proceedings of the VLDB Endowment, 13(12):2256–2269, 2020.

8. Quintino Francesco Lotito, Martina Contisciani, Caterina De Bacco, Leonardo
Di Gaetano, Luca Gallo, Alberto Montresor, Federico Musciotto, Nicolò Ruggeri,
and Federico Battiston. Hypergraphx: a library for higher-order network analysis.
Journal of Complex Networks, 11(3):cnad019, 2023.

9. Quintino Francesco Lotito, Federico Musciotto, Federico Battiston, and Alberto
Montresor. Exact and sampling methods for mining higher-order motifs in large
hypergraphs. Computing, pages 1–20, 2023.

10. Quintino Francesco Lotito, Federico Musciotto, Alberto Montresor, and Federico
Battiston. Higher-order motif analysis in hypergraphs. Communications Physics,
5(1):79, 2022.

11. Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal
of Symbolic Computation, 60:94–112, 2014.

12. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Net-
work motifs: Simple building blocks of complex networks. Science, 298(5594):824–
827, 2002.

13. Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal
Ayzenshtat, Michal Sheffer, and Uri Alon. Superfamilies of evolved and designed
networks. Science, 303(5663):1538–1542, 2004.

14. Michael Molloy and Bruce Reed. A critical point for random graphs with a given
degree sequence. Random Structures & Algorithms, 6(2-3):161–180, 1995.

15. David F Nettleton. Data mining of social networks represented as graphs. Com-
puter Science Review, 7:1–34, 2013.

16. Daniel J. Nordman, Jonathan W. Berry, Cynthia A. Phillips, Luke A. Fostvedt,
Alyson G. Wilson, and C. Seshadhri. Why do simple algorithms for triangle enu-
meration work in the real world? Internet Mathematics, 11(6), 11 2015.

17. Pedro Paredes and Pedro Ribeiro. Towards a faster network-centric subgraph cen-
sus. In 2013 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2013), pages 264–271, 2013.

18. Pedro Paredes and Pedro Ribeiro. Rand-fase: fast approximate subgraph census.
Social Network Analysis and Mining, 5(1):17, 2015.

19. Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando
Silva. A survey on subgraph counting: concepts, algorithms, and applications to
network motifs and graphlets. ACM Computing Surveys (CSUR), 54(2):1–36, 2021.

20. Pedro Ribeiro and Fernando Silva. G-tries: an efficient data structure for discov-
ering network motifs. In Proceedings of the 2010 ACM Symposium on Applied
Computing, pages 1559–1566, 2010.

21. Takashi Washio and Hiroshi Motoda. State of the art of graph-based data mining.
ACM SIGKDD Explorations Newsletter, 5(1):59–68, 2003.

22. Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 3(4):347–359, 2006.

	Computing Motifs in Hypergraphs

