
Fast streaming small graph canonization

Pedro Paredes, Pedro Ribeiro

CRACS & INESC-TEC
DCC-FCUP, Universidade do Porto, Portugal

pparedes@dcc.fc.up.pt, pribeiro@dcc.fc.up.pt

Abstract. In this paper we introduce the streaming graph canonization problem.
Its goal is finding a canonical representation of a sequence of graphs in a stream.
Our model of a stream fixes the graph’s vertices and allows for fully dynamic
edge changes, meaning it permits both addition and removal of edges. Our focus
is on small graphs, since small graph isomorphism is an important primitive of
many subgraph based metrics, like motif analysis or frequent subgraph mining.
We present an efficient data-structure to approach this problem, namely a graph
isomorphism discrete finite automaton and showcase its efficiency when com-
pared to a non-streaming-aware method that simply recomputes the isomorphism
information from scratch in each iteration.

1 Introduction

The Graph Isomorphism problem (GI) consists in finding a bijection between the vertex
sets of two graphs that preserves the vertex adjacency or state that one does not exist. It
is a widely studied problem in several domains. Its theoretical interest arises from the
fact that GI is trivially in NP but is still unknown whether it is NP-COMPLETE or in
P, even though it is considered unlikely that GI is NP-COMPLETE [5]. Recently, the
upper bound on the complexity was improved to quasipolynomial time [2].

From a practical point of view, it is used as a primitive for several methods that
tackle different problems, like frequent subgraph discovery [11], network motif analy-
sis [16] and graph matching [6]. As such, efficient practical methods that compute iso-
morphism information were developed [9, 14] based on several heuristics. One of the
most well-known algorithms is called nauty, an exponential algorithm that performs
exceptionally well in most inputs.

The Graph Canonization problem (GC) is a variant of GI that consists of finding
a canonical labelling (also called a canon) for a graph such that all isomorphic graphs
have the same canon and that if two graphs are not isomorphic they have different
canons. Solving GC implies solving GI, since after knowing the canonical labels of
two graphs determining if they are isomorphic is simply checking if the two labels are
equal. However, in general, GI is not known to be equivalent to GC [1]. The most
common practical approach to GI is by solving GC [14], since it is better suited for
most applications where a set of graphs needs to be partitioned in isomorphic classes.

The previous discussion focus on algorithms and problems which are static, mean-
ing the input graph or structure is fixed. However, there is an interest in studying graph
problems on a dynamic or streaming environment, that is, where the input graph is
changing. There are multiple models of streaming graphs [13], that allow for either

edge addition, deletion or both. Particularly in the graph mining realm, there has been
an increasing interest in studying dynamic graphs problems, namely, by introducing or
altering known metrics to suit temporal graphs (graphs where edges have timestamps
that represent intervals of time where they are active) [7, 10, 15].

In this paper we present a new problem that approaches the graph isomorphism
problem in a dynamic environment. This formulation considers a streamed graph as a
set of operations that add or remove edges in each iteration and it is required to cal-
culate a canonical representation for each intermediate graph. Additionally, we focus
on solving this problem for small graphs, that is, undirected graphs that have around
10 vertices or directed graphs that have around 6 vertices. Even though this apparently
reduces the applicability of the introduced problem, it is important to note that many
graph mining techniques focus on small graphs, like network motif analysis [16] or fre-
quent subgraph mining [11]. In Section 4.3 we present a small case study that shows
the applicability of the problem and apply it to practical complex networks.

Our main contribution is an algorithm that solves this problem in an efficient way,
when compared to a simpler non-streaming-aware approach that fully recomputes iso-
morphism in each iteration. This algorithm is based on a data structure that resembles a
discrete finite automaton that represents the full isomorphism class space. The method
is agnostic in terms of the type of graph, meaning it generic to work with multiple graph
types (undirected, directed, vertex and edge coloured, multigraphs, and more), however,
in this paper, we only focus on simple undirected and directed graphs.

2 Preliminaries

A network or graph G is a pair (V (G), E(G)), where V (G) is a set of vertices and
E(G) a set of edges, represented by pairs (a, b) where a, b ∈ V (G). We assume that
the graph is simple (no multiple edges or self-loops) an labelled so that every vertex
of a graph G is assigned a distinct integer from 1 to |V (G)|. We denote the label of
a vertex v by L(v). For a given graph G we write V (G) = {v1, v2, . . . , v|V (G)|} to
denote a vertex set where L(vi) = i. Graph equality between two graphs G and H is
observed if, assuming both L(gi) = i, gi ∈ V (G) and L(hi) = i, hi ∈ V (H), we have
(gi, gj) ∈ E(G)⇔ (hi, hj) ∈ E(H).

A permutation π is an element of the symmetric group Sn, with its usual composi-
tion operation ◦. We denote the image of an integer x under the permutation π by πx.
For a permutation π, we denote by π the inverse of π, such that π ◦ π = 1, where 1
is the identity permutation. A transposition is a permutation that only swaps two ele-
ments and fixes all others. Given a graph G with vertex set V (G) = {v1, v2, . . .} and
a permutation π, we denote by Gπ the graph with vertex set V (Gπ) = {vπ1 , vπ2 , . . .},
meaning we permute the labels. To simplify notation, for a vertex v of a graph G with
label i and a permutation π, we write πv to denote the vertex in Gπ with label πi.

Two graphs G1 and G2 are said isomorphic if there is a permutation π such that
Gπ1 = G2, we denote this by G1

∼= G2. The isomorphism graph class of a graph G is
the equivalence class of G in the relation of isomorphism of graphs. An automorphism
of a graph G is a permutation π such that Gπ = G. We define Aut(G) as the set of
automorphisms of G. The orbits of a graph G are the equivalence classes of vertices of
G under the action of automorphisms, this means two vertices u, v have the same orbit

if there is π ∈ Aut(G) such that πu = v or πv = u. A canonical function is a function
C that, given a graphG, C(G) ∼= G and for any π ∈ Aut(G) we have C(Gπ) = C(G).

A graph changing operation of cardinality n is a pair (x1, x2), where x1 and x2
are integers between 1 and n. The application of a graph changing operation ∆ =
(x1, x2) of cardinality n over a graph G with |V (G)| = n is the graph G′ = G∆
with the same vertex set of G, where, if v, u ∈ V (G) are such that L(v) = x1 and
L(u) = x2: if (v, u) /∈ E(G) then E(G′) = E(G) ∪ {(v, u)}; if (v, u) ∈ E(G) then
E(G′) = E(G)\{(v, u)}. Thus, the application of a graph changing operation (x1, x2)
is equivalent to toggling on or off the edge between the two vertices with labels x1 and
x2. A graph stream S of cardinality n is a sequence of graph changing operations with
the same cardinality. We call the size of a stream |S| to the number of elements in S.
The application of a graph stream S = [∆1, ∆2, . . .] with cardinality n over a graph
G with |V (G)| = n is a sequence of graphs [G,G∆1, G∆1∆2, . . .], denoted by S(G).
For a given stream S over a graph G, if we are only interested in every other k graph,
meaning S(G)1, S(G)1+k, S(G)1+2k, . . . , we say the stream S has step k.

2.1 Problem definition

Now that we are armed with the appropriate set of tools, we can define the problem we
aim to solve in this paper. We first define the static version of our problem in Defini-
tion 1. This problem is essentially providing a graph canonization function C.

Definition 1. In the static canonization problem we are given a graph G and are asked
to provide a canonical representation of G, such that for any π ∈ Aut(G), Gπ has the
same representation.

This problem is a known problem and will be used as a primitive in this paper. We
use nauty [14] in our method as the solver of this problem. However, note that any
method that returns the canon of a graph could be used instead.

We now give the dynamic version of the above problem, which is the focus of this
paper, and is included in Definition 2.

Definition 2. In the dynamic canonization problem we are given a graph G with n
vertices and a graph stream S of cardinality n, and we are asked to provide a canonical
representation for each graph in S(G).

Note that, with this formulation, we fix the number of vertices and only vary the
edge set. It is also important to note that we focus on small graphs, as stated in the
introduction.

3 Proposed method

Our method explores the dimension of the total number of graphs of a certain size to
build a data structure that compresses the relationship between their topologies. This
data structure is analogous to a deterministic finite automaton (a finite-state machine),

1

2 3

1

2 3
(1,2)(1,3)(2,3)

(1,2)

(1,3)

1

2 3

1

2 3
(1,3)(2,3)

(1,2)(2,3) (1,2)(1,3)(2,3)

Fig. 1: An automaton representing undirected size 3 graphs

where each node represents a different graph and transitions represent additions or dele-
tions of edges. The result is an algorithm which solves the dynamic canonization prob-
lem in an online fashion. We will first describe how the automaton works and how to
use it, then we follow up with how to build the automaton efficiently. To avoid ambigui-
ties, we use “node” and “transition” to refer to properties of the automaton and “vertex”
and “edge” to refer to properties of the graphs represented by the automaton.

3.1 The automaton

As mentioned above, we use a data structure that is analogous to an automaton to sup-
port our algorithm. This will be used as we iterate through each graph in S(G) to follow
the isomorphism graph class.

The node set of the automaton represents the different isomorphism graph classes
of a fixed number of vertices n. For each different class, we fix one label function and
associate to it a single node of the automaton. This equates to fixing a permutation per
isomorphism class and using it as a canonical labelling. For each node, there is one
transition coming out of it per possible pair of two vertices of the underlying graph.
Each one of this transitions represents an edge toggle, meaning an addition or removal
of an edge to the represented graph, which depend on whether the two vertices of this
transition are connected or not on the represented graph. Thus, the destination of each
transition is the node whose isomorphism graph class is the one of the altered graph.
We portray a pictorial representation of this object in Figure 1.

Since every change between two consequent graphs in S(G) is described by a single
pair of vertices it is natural to use the described automaton to follow the isomorphism
graph class of each graph by walking through the automaton. On each step, we use the
transition which is associated with the pair of vertices on the current graph changing op-
eration. Initially, the automaton starts on the node that represents the empty graph with
n vertices. To find the node that represents G, we build G by following all transitions
that represent the pairs of vertices on each edge of the graph, in any order. Subsequently,
each graph changing operation results in following one transition.

However, this is not enough to actually apply the automaton, since the order of
vertices that was fixed on a certain node may not be the same as the one the current
graph we are considering from S(G). Thus, we keep a permutation πp that tells us how
to change the order of vertices of the current graph in order to have the same graph as
the one the current node represents. If we think about labels, letGc be the current graph
and Gn be the graph represented by the current node (by definition we have Gc ∼= Gn),
πp has the following property: L(Gc)◦πp = L(Gn), since the label function works like
a permutation from vertices to indices and taking ◦ as regular permutation composition.

To accommodate this change, we also need to update how the transitions work, since
after following a transition the relation between the current graph and the graph repre-
sented by the current node may change. Thus, we associate a permutation with each
transition that informs on how to update πp. If the permutation for a certain transition
is P , then the new π′

p is obtained by π′
p = πp ◦ P . Initially, πp is set to the identity per-

mutation, since the initial node represents the empty graph (where every permutation is
valid). Note that in Figure 1 the permutations were omitted for brevity.

The resulting automaton represents all different graphs of size n and can be used
to keep track of the canonical representation of a graph after a vertex pair change by
following a transition and composing a permutation. If we are applying a change of
vertex pair (a, b), we follow the transition related to (πap , π

b
p), since we always work on

top of the representation the automaton gives.

3.2 Building the automaton

Now that we have described how the automaton works and how to use it, we will specify
how to build it. There are two important aspects here that heavily influence the com-
plexity of the building process, but also the complexity of using the automaton. The first
is how to fix the graph each node represents. The second is when to build the automaton,
since we can pre-build it or build it as we process the graph stream. We will answer the
first question through the following explanation and also point out why it is a relevant
question. Regarding the second, we will first describe an on-the-fly method and then a
method that pre-builds the automaton but leads to a more efficient automaton.

On-the-fly method In order to fix a canonical order for each node, we use the repre-
sentation nauty provides. Our method to dynamically build the automaton is based on
following the supposed transitions as the stream is processed. Whenever we find our-
selves on a non existing node, we run nauty to know where we should be and either
create a new node or point the transition to the correct destination. Additionally, we fill
the transition permutations accordingly.

The only node we pre-build is the node that represents the empty graph. Afterwards,
we will process each new vertex pair (a, b). Let ap = πap and bp = πbp. On processing
a new pair, we first check if the transition of (ap, bp) was already created. If not, we
first run nauty on the transformed graph, that is, if G is the current graph after adding
or removing the edge induced by (a, b), we do so on G′ where L(G′) = L(G) ◦ πp,
meaning the graph from the current node altered by the pair (ap, bp). We do so because
nauty not only returns the canonical adjacency matrix that we will use to represent
the automaton node, but also a permutation P that transforms the graph represented by
the canonical adjacency matrix into G′. We can then create a new transition by (ap, bp)
from the current node C to the new node N (found with nauty) with permutation P ,
since this permutation transforms the graph on C with added vertex pair (ap, bp) into
the graph on N , which is the same that nauty returns.

This was implicit in the previous paragraph, but we also need a bookkeeping mecha-
nism to store the node representations, so as to avert having a duplicated node represent-
ing the same graph class. This can be done using a dictionary data structure that maps

canonical representations, as obtained through nauty, to automaton nodes (if they ex-
ist). Since the graph representation is fixed by the nauty canonical representation, the
method described in the previous paragraph is exactly the same whether the destination
node (N , in the previous paragraph’s notation) has to be created or not. If the node is
missing, we simply create a new node and feed it to the bookkeeping dictionary.

When processing a change (a, b), let P be the permutation nauty returns, C be the
initial automaton node and N the destination node. Since P transforms graphs in the C
representation to the N representation, the converse is also true, that is, P transforms
graphs in the N representation to the C. Thus, we can use this information to right away
fill another transition, P , from N to C. However, since the representation changed, the
vertex edge associated with this transition is not (ap, bp) but rather (P

ap
, P

bp
), since

this is the corresponding edge pair in N .
It is important to note that the real temporal bottleneck of using this automaton lies

on the application step rather than the building step, as we will observe in Section 4.
This means that the advantage of using a dynamic building method is only observable
if the full automaton is impossible to be generated. For example, if we are applying the
method in an instance graph with a high number of vertices, but where we know the
total number of different graph types in the stream is low, using the dynamic building
method we only build a partial automaton, according to the input.

Consequently, it is useful to optimise the automaton underlying representation and
methodology if this improves the runtime of applying, even if it worsens the building
procedure. With this in mind, we can compress the permutations associated with each
transition in order to avoid iterating n integers. By observing the different canonical
representations given by nauty, one can observe that they are fairly regular, meaning
that often if two graphs differ by a single edge, their adjacency matrix only differ in one
(or two, in the undirected case) entries. This implies that the permutation associated
with the transition between the two is simple, often either the identity or a single trans-
position. Thus, we can compress these cases to a special representation that instead of
composing a permutation with πp, either does nothing or simply swaps two entries of
πp. We will see a detailed analysis of the effect of this in Section 4, but theoretically
this would lower the complexity of following a transition.

Pre-building method There are not many points to improve related to the on-the-
fly building process, since this method does the bare minimum to know where each
transition leads to. Consequently, our pre-building method works very similarly, but
it does a depth-first search on the automaton in the beginning, generating all possible
nodes and transitions. However, the advantage of doing a method that pre-computes the
automaton is that it is easier to fix a different representation of graphs per node, since
there is no need to follow the canonical representation given by nauty (or to have one
that works regardless of the order with which we build the automaton). This is important
since changing the underlying representation changes the permutations associated with
each edge and this has a direct effect on their compressibility and thusly on the runtime.

It easy to prove that composing a permutation to the graph of each node does not
change the correctness of the algorithm, as long as we update the transitions accord-
ingly, since we are simply projecting the automaton to a different space. Hence, it is
easy to change the underlying representation of each node by composing a permutation

to the permutation nauty returns during the create new transition procedure, as long
as we compose the same permutation to each transition coming into the same node. In
practice, we are simply changing the representation to one that better suits our goals.

All that is left is to choose which permutations to compose with. Instead of focusing
on individual permutations, one can determine the underlying representation and choose
the permutation that generates this representation. To choose a representation, we can
choose the order under which we initially traverse the automaton to pre-build it and
use the first graph to touch a each node as its representation. To implement this, the
permutation we compose with each node is simply P (borrowing from the previous
subsection’s notation), where we fix the permutation P obtained on the first time we
visit that node (which is when we actually create the node). This results in choosing the
identity permutation as the permutation from C to N on the first visit to the node.

Different orders were tested, with the goal of increasing the percentage of transi-
tions whose permutation was either the identity permutation or a single transposition.
It would be possible to implement an optimisation algorithm here, like a local search
algorithm, that would repeatedly perturb the traversal order. Although, this would be
computationally heavy and would probably not yield much better results than a simply
greedy approach. Consequently, we chose an altered edge lexicographical order, that is,
we first follow all pairs that create edges before any pair that removes edges and we
break ties choosing the lexicographical first transition vertex pairs. We tested different
approaches, but this one yielded the better results.

Note that, for graphs with 4 or more vertices, it is impossible to build an automaton
where each transition permutation is either the identity permutation or a single transpo-
sition. This is equivalent to saying that the graphs in two adjacent aumaton nodes differs
by at most one edge. To prove the impossibility premise, we will assume that it is pos-
sible to build an automaton for 4 vertex undirected graphs. Consider Figure 2, which
represents a partially constructed automaton for 4 vertex graphs. We omit the multiple
transitions between nodes and simply fix each node’s graph representation and show the
relationships between nodes (where one or more transitions would be present). In this
example, there is a mismatch between node G and H , since their graph’s adjacency
matrices differs by more than an edge. We can show that this example is “canonical”,
meaning that all possible automata for 4 vertex graphs are equivalent to this example,
but here we omit the formal proof because of space constraints.

1

3

2

4

1

3

2

4

1

3

2

4

1

3

2

4

1

3

2

4

1

3

2

4

1

3

2

4

1

3

2

4

A

F

E

DCB

G

H

Mismatch

Fig. 2: A partial automaton representing undirected size 4 graphs

On-the-fly Pre-build
Undirected Directed Undirected Directed
C0 C1 C0 C1 C0 C1 C0 C1

3 25% 75% 31% 73% 33% 78% 34% 69%
4 18% 52% 25% 62% 24% 53% 29% 56%
5 14% 39% 20% 53% 20% 44% 26% 46%
6 12% 29% - - 15% 30% - -
7 9% 21% - - 11% 22% - -
8 6% 15% - - 11% 19% - -

Table 1: Values of C0 and C1 for different automata and build methods

4 Analysis
4.1 Theoretical analysis
First of all, a note on the automaton’s general behaviour. Let Gn denote the set of dif-
ferent graphs with n vertices (note this is an agnostic analysis, since it works for both
undirected and directed graphs). Let En be the maximum number of edges for a graph
with n vertices, that is,En = n2 for directed graphs andEn = n(n+1) 12 for undirected
graphs. Since the automaton has one node per different isomorphic graph and each node
has a transition per possible pair of vertices, it has |Gn| nodes and |Gn|En transitions.
These pose as the main bottleneck of the automaton method, since they are directly re-
lated with memory usage, where each node holds a canonical label and each transition
a permutation and destination node. Since Gn grows rapidly with n, this method is only
appropriate to small graphs, depending on the available memory.

For the base building on-the-fly method, we run nauty once per transition pair
(since we build a transition and its reverse per nauty call), thus we call it |Gn|En 1

2
times. To follow a transition of the automaton, if it exists, it is necessary to compose
a permutation, which takes at most O(n) time for a graph with n vertices. This is
true if we have the default representation, if the permutation to compose with can be
compressed, then the time needed is only O(1).

4.2 Empirical analysis
This analysis is based on our implementation of the described method in C++, which is
publicly available 1. Our C++ code is compiled with GCC 4.8.3, and runs on a single
core of an AMD Opteron(tm) with 2.30 GHz under Fedora 20, with 4GB of RAM. Here
we focus on two main themes: namely the compressibility of the transition permutations
and the runtime of using the automaton versus using a simpler base approach, namely
recalculating the isomorphism class for every instance using nauty.

We define two notions of compressibility: C0 is the zero compressibility of an au-
tomaton, meaning the percentage of transition permutations that are the identity per-
mutation; C1 is the one compressibility of an automaton, meaning the percentage of
transition permutations that are either a single transposition or the identity permutation.
In Table 1 we show the C0 and C1 values for some automata of different sizes, both
undirected and directed, for the two building methods. We omit the results pertaining to
automata that were too memory intensive to compute (directed sizes 6, 7 and 8).

1 https://github.com/ComplexNetworks-DCC-FCUP/streaming-small-isomorphism

Designation Direction |V (G)| Origin Step
ER-6, ER-7, ER-8 Undirected 6, 7, 8 ER Model 1
PR-6, PR-7, PR-8 Undirected 6, 7, 8 PR Model 1
SW-5, SW-6, SW-7 Undirected 5, 6, 7 SWAP Model 4
dER-4, dER-5 Directed 4, 5 D-ER Model 1
dPR-4, dPR-5 Directed 4, 5 D-PR Model 1

Table 2: Graphs used for the experimental analysis

It is clear that the pre-build method achieves better compressibilities, specially C0

compressibilities, which are more critical in terms of runtime. If we discount the build-
ing time, which is slightly higher for the pre-build method (but constant), in general,
this results in a speedup of up to 2 times, for most input graph streams. However, the
increased building time means that for higher vertex numbers (from 8 up) the runtime
advantage only becomes noticeable for larger stream sizes. This result was obtained
empirically using the graph streams used in the analysis of the following paragraphs.

To compare the temporal behaviour of our method with the base nauty recomputa-
tion method we generated several synthetic networks, with different goals and variants.
Here we use the version using the on-the-fly building method. We selected 13 graph
streams descriptions with different properties and for each one studied the runtime of
our method and of the base recomputation method for several stream sizes. We sum-
marise them in Table 2, where the step k is the number of graph changing operations
between each canonization request, that is, we are only interested on the canonization
of every other k element of S(G), as we defined previously.

The following list summarises each model used to generate graph streams:

– ER Model, is based on the Erdos-Rényi [4] random graph model, where each graph
changing operation is chosen uniformly at random from all the possible vertex
pairs. Its directed version, the D-ER Model is analogous.

– PR Model, is based on a preferential attachment rule for networks [3] where each
vertex pair is chosen as a graph changing operation depending on the degree of
each of its vertices. Its directed version, the D-PR Model is analogous.

– SWAP Model, simulates edge swapping operations, each 4 contiguous graph chang-
ing operation represent swapping two edges (chosen uniformly at random). It has a
step of 4 because we are only interested in the graphs after each swap.

To study each one we generated multiple streams with increasing sizes, from 104 to
107 and observed the runtime of both methods. We plot the results of that analysis in
Figure 3 (note that the X axis is in logarithmic scale). The top left figure pertains to the
undirected models, the top right figure directed models, the bottom left figure contains
all streams based on the SWAP model and the bottom right figure represents a growing
step experiment that will be further explained bellow.

It is noticeable that our method greatly outperforms the base method on all streams.
Furthermore, the asymptotic behaviour of our method suggests that for even greater
stream sizes the benefit will increase. The same applies to the speedups obtained. For
the unit step streams, the speedup grew approximately linearly from about 1 up to 15
times. For the SWAP model the speedup was more stable, varying between 2.7 and 3.1.
It is also interesting to note that our method had very similar results for different stream

10
4

10
5

10
6

10
7

Stream size (|S|)

0

10

20

30

40

50

R
u

n
ti

m
e

(s
e
c
o
n

d
s
)

B-ER-6

O-ER-6

B-ER-7

O-ER-7

B-ER-8

O-ER-8

B-PR-6

O-PR-6

B-PR-7

O-PR-7

B-PR-8

O-PR-8

10
4

10
5

10
6

10
7

Stream size (|S|)

0

5

10

15

20

25

R
u

n
ti

m
e

(s
e
c
o
n

d
s
) B-dER-4

O-dER-4

B-dER-5

O-dER-5

B-dPR-4

O-dPR-4

B-dPR-5

O-dPR-5

10
4

10
5

10
6

10
7

Stream size (|S|)

0

5

10

15

20

25

30

35

R
u

n
ti

m
e

(s
e
c
o
n

d
s
)

B-SW-5

O-SW-5

B-SW-6

O-SW-6

B-SW-7

O-SW-7

10
4

10
5

10
6

10
7

Stream size (|S|)

0

1

2

3

4

5

6

7

8

9

R
u

n
ti

m
e

(s
e
c
o
n

d
s
)

B-ERs-1

O-ERs-1

B-ERs-2

O-ERs-2

B-ERs-3

O-ERs-3

B-ERs-4

O-ERs-4

B-ERs-5

O-ERs-5

B-ERs-6

O-ERs-6

Fig. 3: Comparison of our method (solid lines and prefix O-) versus the base method
(dashed lines and prefix B-) for multiple streams.

models with the same number of vertices, whereas the base method was much more
input dependant, which shows that our method is agnostic to the input source.

In the bottom left figure, regarding the SWAP model, it is interesting to note that,
even though there is a step of 4, our method still maintains a good speedup when com-
paring to the base method. Note that the higher the step the worse is the benefit of our
method, since the base method only performs computation when it is required to return
a canonical label whereas our method has to update the automaton after each change.

There is a clear tipping point observable in the data, which represents the minimum
stream size for which it is more beneficial to use our method instead of the base method.
For the top left figure, it appears to be around 105. This value is related to the automaton
size and with the number of times that the method needs to run nauty in the building
time. We can extrapolate from here and estimate for different streams sizes and different
inputs (even with a number of vertices higher than memory restrictions would allow)
and estimate how good our method is going to be in relation to the base method.

Building on this tipping point argument, the bottom right figure shows a growing
step experiment. We used the ER model to generate various networks with 6 vertices
and artificially vary the step from 1 to 6 (each integer in the figure legend indicates the
step of that measure). It is important to point out that for all different steps, our method
outperformed the base method, with decreasing speedups. Additionally, as we increase
the step, the mentioned tipping point of efficiency also increases. Further similar experi-
ments indicate that there is always a tipping point when the step is of the order ofO(n),
which means our method is useful as long as the average number of edge modifications
between required canonical labels is in the order of the number of vertices.

4.3 Case study

To further show the usefulness of our method, we present a brief case study problem and
present a solution based on our method. Recently, there have been many contributions

Designation Name Direction |V (G)| |S(G)| Origin
email email-eu-core Directed 986 332,334 Communication [12]
college college-msg Directed 1,899 20,296 Communication [12]
infectious infectious Undirected 410 17,298 Social [8]
arxiv arxiv-hep-th Undirected 22,908 2,673,133 Coauthorship [12]

Table 3: Graphs used for the case study

Using the base method Using our method
email college infectious arxiv email college infectious arxiv

3 10.86 8.81 8.33 32.81 6.62 5.08 3.19 31.52
4 22.55 17.12 17.81 66.72 10.73 8.62 4.98 60.48
5 34.45 30.01 34.36 113.95 16.24 13.34 8.56 98.74

Table 4: Runtimes, in seconds, for the case study analysis

to the study of network motif and subgraph counting analysis in temporal graphs, as
stated in Section 1. Here we present a problem formulation that is inserted in this trend.

Let a G be a temporal graph with edges changing. We want to analyse how patterns
evolve in this network and for that we will focus on how a determined induced subgraph
of G in a certain timestamp evolves through time. Thus, given two graph types H1 and
H2 (with the same number of vertices, and possibly the same), we want to know the
percentage of times that a set of nodes in a certain timestamp in G is isomorphic to H1

and in a future timestamp isomorphic to H2. If we do this for all possible graphs H1

andH2 of a certain size n, then we get a Markov chain of temporal subgraph transitions
that can be used as a fingerprint of the network and be further used for multiple graph
mining tasks This technique is similar to what was done in [7], but here only patterns
of at most 3 vertices were studied, and to what was done in [15], but here this was done
in a edge oriented fashion and with a slightly different formulation.

Doing a complete search of all possible patterns and transitions is possible, but very
heavy, even for a relatively small network. Because of that, we only consider connected
induced subgraphs and we propose an approximated approach to this problem. We will
first sample a single connected induced subgraph H from G in any timestamp. We then
follow the vertex set of H through time in G. To do so, we use our automaton to first
representH and then follow the edge changes We fix a time step δ, such that whenever δ
units of time have passed, we record the current isomorphism class and add a transition
on the Markov chain table from the previous class to the current one. By doing so,
we can follow the isomorphism information of that particular vertex set throughout the
whole life time of G. If we repeat this procedure enough times, we have effectively
sampled a portion of the temporal transition space.

Since our goal is not to provide a graph mining method to the stated problem but
to showcase a possible usage of our automaton, here we will not discuss this method
much further. We implemented a basic version of this approach and ran it using both the
base method and our method as the underlying isomorphism tool. To compare their run-
times, we ran them on a small set of complex networks with 1,000,000 samples, which
we list in Table 3. The runtimes obtained for multiple subgraph size n are shown in
Table 4. These runtimes include the time for sampling and performing other supporting
computation, which lowers the speedup in relation to what was seen in Section 4.

5 Conclusion
In this paper we introduced a new problem consisting on computing graph isomorphism
on a fully dynamic streaming environment, supporting edge insertion and deletion. We
presented an efficient algorithm that tackles this problem using a data structure simi-
lar to a discrete finite automaton to represent the full space of different isomorphism
classes. Compared to a simple non-streaming-aware approach of recomputing the solu-
tion for each iteration of the stream, the automaton method and its variations obtained
a much better performance, with speedups increasing with the stream size. We also
briefly studied the applicability of our method, studying how the stream parameters (ex:
the stream size and the stream step) vary while keeping the usefulness of our method in
relation to the simpler approach, and he have shown a possible application.
Acknowledgments: This work is partly financed by ERDF within project “POCI-01-0145-FEDER-
006961”, by FCT as part of project “UID/EEA/50014/2013”, and by FourEyes, a research line
within “TEC4Growth/NORTE-01-0145-FEDER-000020” financed by NORTE2020 through ERDF.

References
1. Arvind, V., Das, B., Köbler, J.: The space complexity of k-tree isomorphism. In: Int. Sym-

posium on Algorithms and Computation. pp. 822–833. Springer (2007)
2. Babai, L.: Graph isomorphism in quasipolynomial time [extended abstract]. In: 48th Annual

ACM SIGACT Symposium on Theory of Computing. pp. 684–697. ACM (2016)
3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),

509–512 (1999)
4. Erdos, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci

5(1), 17–60 (1960)
5. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all

languages in np have zero-knowledge proof systems. Journal of the ACM (JACM) 38(3),
690–728 (1991)

6. Gori, M., Maggini, M., Sarti, L.: Exact and approximate graph matching using random walks.
IEEE Transactions on Pattern Analysis and Machine Intelligence 27(7), 1100–1111 (2005)

7. Huang, H., Tang, J., Liu, L., Luo, J., Fu, X.: Triadic closure pattern analysis and prediction
in social networks. IEEE Trans. on Knowledge and Data Eng. 27(12), 3374–3389 (2015)

8. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a
crowd? analysis of face-to-face behavioral networks. Journal of Theoretical Biology 271(1),
166–180 (2011)

9. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse
graphs. In: 9th Workshop on Algorithm Engineering and Experiments. pp. 135–149 (2007)

10. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-
dependent networks. J. Stat. Mechanics: Theory and Experiment 2011(11), P11005 (2011)

11. Kuramochi, M., Karypis, G.: An efficient algorithm for discovering frequent subgraphs.
IEEE Transactions on Knowledge and Data Engineering 16(9), 1038–1051 (2004)

12. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data (Jun 2014)

13. McGregor, A.: Graph stream algorithms: a survey. ACM SIGMOD Rec. 43(1), 9–20 (2014)
14. McKay, B.D., Piperno, A.: Practical graph isomorphism, ii. Journal of Symbolic Computa-

tion 60, 94–112 (2014)
15. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: 10th ACM In-

ternational Conference on Web Search and Data Mining. pp. 601–610. ACM (2017)
16. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Transactions on Computa-

tional Biology and Bioinformatics 3(4) (2006)

