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Abstract. A Subgraph Census (determining the frequency of smaller
subgraphs in a network) is an important computational task at the heart
of several graph mining algorithms. Recently, several efficient algorithms
have been described. We focus on the g-tries, a data structure that en-
capsulates the topology of the smaller subgraphs in order to speed up
the overall computation. Its algorithm makes extensive use of the graph
primitive that checks if a certain edge exists. The original implemen-
tation used adjacency matrices in order to make this operation as fast
as possible, as is the case with most past approaches. This representa-
tion is however very expensive in memory usage, obviously limiting the
scale of the networks being analyzed. In this paper we study a number
of possible approaches that scale linearly with the number of edges. We
make an extensive empirical study of these alternatives in order to find
an efficient hybrid approach that combines the best representations. We
achieve a performance that is less than 50% slower than the adjacency
matrix on average (almost 3 times more efficient than a naive binary
search implementation), while being memory efficient and tunable for
different memory restrictions.
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1 Introduction

The use of complex networks to model real-life systems and problems has been
more than established in the past few years. To characterize and compare these
networks, numerous metrics have been proposed and studied. One important
example are network motifs [16]. These are over-represented substructures of
a network, that is, subgraphs that appear in a higher number than expected
in random networks with similar topological traits. Network motif analysis has
been successfully applied in several domains and problems, to name a few, on
biological systems, such as brain networks [29], protein-protein interactions [1]
or even gene regulation [7], on social networks [11] and more.

To perform a network motif analysis, one needs to compute one or poten-
tially more subgraph census. A subgraph census is an operation that finds the
frequencies of all or a subset of subgraphs of a network. This is a computa-
tionally hard task since it is related to the subgraph isomorphism problem, a



known NP-Complete problem [6]. Furthermore, this is the main bottleneck in
the calculation of network motifs and thus is the problem we address in this
paper.

Previously proposed approaches range in the way they tackle the problem,
in either a network-centric fashion [20,13], meaning they enumerate all existing
subgraphs and classify them, a subgraph-centric fashion [10], where a single sub-
graph frequency is computed and finally a set-centric [24], where the frequency
of a set of subgraphs is computed.

In this paper we address a more specific question, namely large scale repre-
sentations of networks that can be quickly queried for information by subgraph
census algorithms. By large scale representations we mean data structures that
have a memory complexity less than the square of the number of nodes (forbid-
ding the use of adjacency matrices), potentially proportional to the number of
edges (since most real data sets are sparse networks). The current works either
only briefly discuss this issue or gloss over it. Also, the current established im-
plementations either use adjacency matrices as the base representation or simple
adjacency lists.

We will expand on a previous work of ours, specifically the g-tries [24], a
state-of-art set-centric data structure. We start by discussing the problem and
its details, as well as the g-tries approach. We then enumerate the graph repre-
sentation primitives that the algorithm requires and then pinpoint the bottleneck
one. Based on that, we discuss several approaches to the problem as well as pos-
sible optimizations. Finally, we test and compare the different approaches and
discuss our discoveries with the goal of obtaining the best representation.

The remainder of the paper is organized as follows. In Section 2 we start by
introducing some terminology, discuss the problem the paper addresses and also
briefly go through some of the existing techniques that tackle the problem. Sec-
tion 3 describes the g-trie data structure and its subgraph counting algorithm.
Section 4 starts by describing and justifying our definition of large scale in this
context, we then pinpoint the bottleneck primitives of the representation, fol-
lowed by presenting several possible alternatives and concludes with a discussion
of different optimizations. We follow this with Section 5 by presenting the de-
tailed experimental analysis. Finally, we close with Section 6, where we present
some concluding remarks.

2 Preliminaries

2.1 Graph terminology

To be consistent in the used terminology, we will go over the notation used.
A graph G is composed by the set of vertices V (G) (abbreviated, when there
is no ambiguity, to simply V ) and the set of edges E(G) (abbreviated to E),
represented by pairs (a, b) : a, b ∈ V (G). The size of a graph, denoted by |V (G)|,
is the number of vertices in the graph. A k-graph has size k. All vertices are
assigned consecutive integers starting from 0.



A subgraph Gk of a graph G is a k-graph where V (Gk) ⊆ V (G) and E(Gk) ⊆
E(G). This subgraph is said to be induced when ∀u, v ∈ V (Gk) : (v, u) ∈ E(G)↔
(v, u) ∈ E(Gk) and is said to be connected when all pairs of vertices have a
sequence of edges connecting them.

Two graphs G and H are isomorphic, denoted as G ∼ H, if there is a bijection
between V (G) and V (H) such that two vertices are adjacent in G if and only if
their corresponding vertices in H are adjacent.

2.2 Problem definition

The base problem we are addressing in this paper is the Subgraph Census Prob-
lem (also known as Subgraph Counting Problem). Here we define it precisely.

Definition 1 Given an integer k and a graph G, determine the frequency of a
set S of connected induced k-subgraphs of G. Two occurrences of a subgraph are
considered different if they have at least one node that they do not share.

It should be noted that we are focusing on this particular frequency concept
because it is a widely studied one and the one our base algorithm uses. There
are, however, other studied frequency concepts, but this particular one is pre-
dominant in the literature since it is related to the standard definition for the
network motif discovery problem [25].

Furthermore, our goal is to find an efficient scalable graph representation
that is applicable to large scale networks, in order to increase the applicability
of Subgraph Census algorithms to larger networks. We note that it is important
that the representation is efficient in the context of Subgraph Census algorithms,
which means that we are not concerned with the complexity or efficiency of any
one operation in a particular graph, but the full weight it induces on the subgraph
census algorithm execution.

Finally, another important aspect to note is that our representation is static,
besides some pre computing, it is not necessary to account for insertion or re-
moval of edges or vertices.

2.3 Current work on Subgraph Census

As far as we know, there are no current works on large scale representations
for subgraph census algorithms. Some papers describing established approaches
briefly mention this issue, but none goes into detail or performs any studies on
different representations. Thus in this subsection we present the previous works
on the area and justify our choice of base algorithm.

For network-centric approaches, the two more efficient algorithms for exact
computations are FaSE [20] and QuateXelero [13]. These are two similar con-
temporaneous algorithms that use as a base enumeration previously established
algorithms like ESU [30] and Kavosh [12], but try to avoid performing an iso-
morphism test per found subgraph, like the latter two did. Instead, FaSE uses



a modified g-trie to store intermediate classes of subgraphs as it performs the
enumeration, while QuateXelero uses a kind of quadtree to achieve the same.

The most prominent subgraph-centric algorithm is the work by Grochow and
Kellis [10], that uses symmetry-breaking conditions to prune the enumeration
tree and only find the relevant subgraphs. Building on this work is the set-centric
approach of g-tries [24], the work how focus on.

There have been other research directions like approximation algorithms
[22,21] and parallel approaches [26,27,18] that increase the applicability of sub-
graph census algorithms (and increase the need of efficient large scale represen-
tations), albeit we focus on sequential exact algorithms.

3 G-trie Based Subgraph Census

3.1 The g-trie data structure

The g-trie data structure is an application of the concept of prefix-trees to graphs.
By identifying common topologies and substructures, a g-trie represents a set
of graphs, much like a classic string prefix-tree does with string prefixes. It is a
multiway tree where each node represents a single subgraph and each descendant
node represents a node that shares a common topology with its parent. Thus
each node stores information about a single vertex and its connections to the
vertices stored in ancestor nodes, resulting in a path from root to each node
defining a single subgraph. In Figure 1 we show an example of a g-trie with all
undirected 4-subgraphs. Note that this concept can be generalized to directed
subgraphs or even colored subgraphs [23].

Fig. 1. A g-trie representing all undirected 4-subgraphs

The goal of the g-trie data structure is to efficiently compress a set of sub-
graphs in order to guide the enumeration to only consider the given subgraphs.
To do so, a customized canonical form is employed, with the aim of reducing the
number of nodes in the g-trie by using the most common topologies possible.



This is important since the least number of nodes the least number of paths to
explore and wasted computation time.

Another important issue is the symmetries exhibited by the subgraphs, caused
by automorphisms, which could lead to redundant paths and repeated occurrence
finding. To solve this problem, symmetry breaking conditions of the form X < Y
(where X and Y are labels of two vertices) are inserted in order to only consider
each symmetry once. Due to space constraints, we direct the reader to works
like [24] that further explain these topics.

3.2 Subgraph counting with g-tries

In order to avoid ambiguities in the description, from now on we will use the term
node to refer to the g-trie tree nodes, and vertex to refer to node in the graphs.
Algorithm 1 details the how to use an already built g-trie to count subgraphs

Algorithm 1 The g-trie subgraph counting algorithm

Input: A graph G and a set of subgraphs S (described by a g-trie T )
Result: Frequencies of all elements of S

1: procedure CountAll(T,G)
2: for all vertex v in G do
3: for all children c in T.root do
4: Count(c, {v})
5: procedure Count(T, Vused)
6: V ← MatchVertices(T, Vused)
7: for all vertex v in V do
8: if T.isLeaf then
9: T.frequency += 1

10: else
11: for all children c in T do
12: Count(c, Vused ∪ {v})
13: procedure MatchVertices(T, Vused)
14: Vconn ← vertices in Vused connected to the vertex being added
15: m← vertex of Vconn with smallest neighborhood
16: Vcand ← neighbors of m that respect connections to ancestors

and symmetry breaking conditions
17: return Vcand

The algorithm uses the information stored in the g-trie to guide the search
by constraining it. Initially all vertices are considered potential occurrences,
since they all match the g-trie root (lines 2 to 4). Afterwards, all valid following
vertices are found and for each of them, if we are at a g-trie leaf (which means
we have just found an occurrence of a desired subgraph) then we increment its
frequency, otherwise continue recursively to match the next g-trie nodes (lines 6
to 12). A valid following vertex is a vertex that matches the current g-trie node.
To find these, we start from the current partial match and find a vertex with a
connection to the vertex being added and has a minimal number of neighbors



(lines 14 and 15). Then we look for the neighbors of this node that have the same
set of connections to the partially matched vertices and respect each symmetry
condition given by the current g-trie node (line 16). Again, we refer to [24] for
more information.

4 Graph Representations

4.1 Large scale representations

In the context of this paper and, in general, the context of Subgraph Census and
related metrics (like network motif analysis) we define a large scale representation
as a representation which has a memory usage that scales with the number of
edges or the number of nodes of the network. This forbids classic representations
like adjacency matrices that, as we shall see in the next subsection, allow for more
efficient primitives required by the base algorithm.

The reason for this restriction is based on the applicability of Subgraph
Census algorithms. All of the state of the art algorithms have a complexity that is
super exponential (excluding specific applications like triangle counting), which
is based on the natural combinatoric explosion of the number of subgraphs, even
of the smallest sizes, as the networks grow larger. Even though there is a lot of
space for improvement, this trend will most likely go on. Thus, for most networks
with a number of nodes in the order of 100 thousand, the calculations start to
last several hours or days, even for a k = 3 computation. For larger values of k
this is even worse, as expected. These numbers are based on the results obtained
by several established algorithms like [24,20,13], which are omitted for briefness.

With the development of different techniques, like efficient parallel algorithms
[27,18] or algorithms that approximate the results, for example, by obtaining a
sample of the total subgraphs [22], it is possible to increase the applicability and
run calculation on networks with up to a million or 10 million nodes in feasible
time.

Thus, even though it is not feasible to apply the state of the art algorithms
to the largest networks available, it is possible to apply it to networks of around
a million nodes. If one were to use an adjacency matrix, or any representation
with memory complexity proportional to the square of the number of nodes, this
would take about one terabyte of memory, which is too much for most machines.

4.2 Role of edge verification

Having described the base algorithm, it is easy to observe that there are two
primitives that the graph representation needs to handle: generating the list of
neighbors of a given node in order to generate the node for the candidate list,
which is easily achievable with an adjacency list representation; determining if
two given nodes are connected, which is needed in order to do match the partially
enumerated subgraph with the current g-trie node.

The latter operation is obvious if we have an adjacency matrix, but since the
goal of this paper is to be able to scale to larger networks, that is not feasible.



So a representation like an adjacency list is required. However, the question then
arises: how much weight does this operation have on the full computation? To
answer it, we performed a series of tests described in the following paragraphs.

The obvious first thing to do is to profile the code using any profiler. We
did so on the original g-tries code from [24] (with small modifications to remove
hard coded uses of an adjacency matrix, which were initially used to increase
efficiency), which uses an adjacency matrix as the base representation, using
kcachegrind [17] a tool from valgrind (we chose it because it is reliable and
simple to use). We ran it on some of the data sets described in Section 5 with
small parameters, since the profiler slows down the computation in order to
examine memory calls and the program state. Table 1 shows the obtained results.

Table 1. Percentage of time spent in edge verification primitive

Network Jazz Foldoc Metabolic
(k) (4) (3) (4)

% of total time 35.76 28.43 38.97

Table 1 clearly shows that this graph primitive has a relevant weight in the
run time of the whole algorithm, ranging from 30 to 40% of the computation.
However, even though the previous results seem to indicate it is a heavy opera-
tion, it would not mean that there was a lot of space for optimizations, that is,
it is possible that a naive representation would only be a small fraction slower
than the adjacency matrix representation. Thus we ran the original code against
a modified code that used an adjacency list with sorted lists in order to perform
simple binary searches in connectivity lookups. Again, we did so on the same
data sets as in the previous test. The results obtained are summarized in Table 2.

Table 2. Slow down factor of binary search in relation to the adjacency matrix

Network Jazz Foldoc Metabolic
(k) (5) (4) (5)

Slow down 4.41 2.99 4.31

This shows that a naive representation can be much slower than the base
adjacency matrix one and, indeed, this tendency was followed in most of the
other datasets, as can be observed in Section 5.

To end this subsection, we will discuss yet another important detail of this
operation that will be important to the rest of the paper. As Table 1 showed, the
operation of determining if two nodes are connected in the graph has a consid-
erable weight in relation to the total computation time, however the operation
itself is a very light one (constant for adjacency matrices). This indicates the
reason why it has a considerable weight is because the operation is performed a
huge number of times. This is confirmed by counting the number of operations
done in different datasets, which yielded huge values in relation to the number
of times most other operations are performed. We omit these tests for brevity.



4.3 Proposed representations

Now that we have established the need for efficient representations and the re-
quirements and target of those, we will describe a set of possible representations
that we will then study and compare on different data sets. The goal of each
method is to perform an operation of checking if two nodes are connected, since
this is the bottleneck primitive. The following list details all the studied rep-
resentations and labels them with simple three letter names (like BNS). These
labels will be used in further discussions and on the results section. All of these
methods are built on top of an augmented simple adjacency list representation.

Linear search [LIN] A simple linear search through the elements of each list
(O(|V |)). It is a trivial and very inefficient method (unless the list size is
very tiny), but it is included for completeness and comparison purposes.

Binary search [BNS] The classic divide and conquer approach to finding el-
ements in sets (O(log |V |)). It requires the neighbor list of each node to be
sorted in the pre computation step.

Interpolation search [IPS] The well-known adaptation of binary search that
assumes the data is uniformly distributed or close to that [2] (O(log log |V |)).
It also requires a sorted neighbor list for each node.

Hash table node based [HSN] Each node has a simple hash table with size
|E|
|V | , where the hash table is simply the mod of its size (O(1)). To sort out

collisions it uses a simple linked list. Requires a pre computation step of
creating and filling the hash tables.

Hash table edge based [HSE] A different hash table setup where each node
has a hash table of a constant number times its original neighbor list size
(O(1)). The constant used in the implementation was 2.5, where this value
was fined tuned after several manual experiments in order to balance time
and memory efficiency.

Trie [TRI] A prefix-tree of digits of the individual elements of the original
adjacency list (O(log |V |)). Requires a pre computation step of creating the
prefix-tree.

Hybrid [HBR] A hybrid approach that combines three of the previously men-
tioned approaches to apply them in the best possible way. For an adjacency

list of size less than 2, a simple linear search is used; for the |E|
|V | nodes with

highest degree, a line from the adjacency matrix is stored; finally for the rest,
the edge based hash table method is used. It requires the pre computation
of the hash table.

Most of these techniques have an extra constant factor of memory required,
with exception to the binary search and interpolation search methods. Even
though these methods in practice require some more memory to work, they
usually pay off in terms of running time (as we will see on Section 5). Also,
most networks where this method is applicable have a number of edges where a
constant factor is feasible (this stems from the discussion of the beginning of the
section). However, a benefit of some of the representation is that the extra usage



of memory is tunable. For example, if there is some tighter memory restriction,
the HSE method can use a lower constant (we used 2.5, as mentioned) in order to
save memory. Likewise, if there is a loosened memory restriction, this constant
can be increased in order to obtain better results (we justified our choice in the
method definition above).

Before heading for the next section, a quick note about the hybrid method.
We tried different possible hybrid methods, for example, combining the differ-
ent hash table methods with the trie method, using an heuristic method that
estimated the average required number of accesses in the linked list of the hash
table and the trie nodes. However, the overhead of choosing which method to
apply (the actual choosing step is pre computed, but the access to the pre com-
puted result) did not pay off against the fastest methods. The specified hybrid
method had better results and thus was chosen as the preferred one. We also
tested different set ups to use more lines of the adjacency matrix instead of only
|E|
|V | , but this particular value, besides ensuring a memory complexity of O(|E|),
balanced the overhead of choosing the method to use with its benefits, which
was obtained by running several alternatives with the datasets of Section 5.

4.4 Optimizations

To complement the methods described in the previous subsection, several opti-
mizations where tried, some with success and others without. We will list them
here in the same fashion.

Optimal operators Based on the tests performed in the beginning of this sec-
tion and on some of the results of Section 5, it is noticeable that small
changes in one method lead to a large impact on the overall run time. For
example, if one method only requires doing a couple of sums (like BNS), but
another has to perform one or two division operations (like IPS), the latter
is usually a lot slower. This is due to the large number of times the primitive
of edge verification is called.
Thus, in all methods where an operation of a mod b (where a, b are arbitrary
integers) was required, instead the closest power of two of b was determined,
that is min(p|2p ≥ b), and the modular operation was performed as a more
efficient bitwise and operation (& in C++) with 2p − 1 (which is equivalent
to a a mod (2p − 1) operation). For example, this was done to the hash
table sizes of methods HSN and HSE. It was also done in method TRI, by
considering the numeric representation of each element in base 16 (where a
mod operation is a bitwise and with 15).

Simple Node Cache For each node, a simple cache was built that keeps the
last found node on the cache. Each cache is divided into log(|V |) levels,
meaning there are log(|V |) small caches per node. When a node u is found to
be connected to v in a primitive call, u is stored on the u mod log(|V |) small
cache of v and replaces the previous value. In practice, the same optimization
as in the last item is performed and the mod operation is avoided.



The goal of this type of cache is to make use of some inherent locality and
redundancies that the base algorithm has in its pattern of calls to the prim-
itive. This was found by analyzing the spectrum of calls in different data
sets, but we omit the results for briefness.

Bloom Filter Another common trick for the kind of primitive we are address-
ing is a bloom filter [5]. This data structure has a bit array of m bits and
uses h hash functions to map each integer to h of the m bits. There are
different possibilities for an implementation of a bloom filter, we opted to
try the simplest ones, because the described heavy number of calls would
turn a more complex implementation too inefficient. Hence, we used simple
hash functions of the kind ai × x mod m, where we fix h different integers
ai. As in the previous sections, we used m as a power of two minus one two
improve the mod .
We tried to hand-tune the values of m and h, unfortunately, we could not
find a good balance. If h is too big, the actual calculation of all the hash
functions is too inefficient, if it is too small the effects of using a bloom
filter are unnoticeable. Thus, we cold not reach an efficient implementation
of a bloom filter. We also considered similar data structures, like a quotient
filter [4], but did not implement them since they might have similar problems.
For this reason, we omit our results using a bloom filter from Section 5.

5 Experimental Results

We now turn to the experimental evaluation. We implemented 1 these approaches
in C++ on top of the already existing code of the g-tries [24]. We ran all tests on
a Linux machine with an AMD Opteron 6376 (2.3GHz) and 4GB of memory.

In order to compare with the adjacency matrix approach (which we will
denote as AMT in a similar fashion to what was done in the previous section),
we ran our implementations on data sets feasible for that approach. We list
the data sets used in Table 3. Note that we included a wide range of networks,
directed and undirected, ranging from social to biological to geographic networks
in source, with different orders of magnitude. This is important to establish the
generalness of the results.

We started by testing all the methods on all the data sets. To simplify the
implementation, we implemented them all and choose dynamically (in the input)
the method used, using a series of if instructions. To ensure the order of the
if instructions does not interfere with the accuracy of the results, we permuted
them regularly on different runs and averaged the results. Table 4 lists these
results. The highlighted cells indicate the fastest time for each dataset.

Note first that there is a lot of fluctuation in the relative results between
the various methods, for example, the BNS outperforms IPS in some datasets
but is outperformed in others, the same thing happens with TRI and HSN. This
indicates that different types of graphs prefer different representations, which

1 The initial version of the implemented code can be found at https://github.com/

ComplexNetworks-DCC-FCUP/gtrieScanner/tree/DynamicGraph

https://github.com/ComplexNetworks-DCC-FCUP/gtrieScanner/tree/DynamicGraph
https://github.com/ComplexNetworks-DCC-FCUP/gtrieScanner/tree/DynamicGraph


Table 3. Datasets used in the experiments

Network Directed Nodes Edges Avg. Degree Type Source

Jazz No 198 2,742 13.85 Social Arenas [9]

Facebook No 4,039 88,234 21.85 Social SNAP [15]

Wordnet No 146,005 656,999 9.00 Semantic KONECT [8]

Enron No 36,692 367,662 10.02 Social SNAP [14]

Foldoc Yes 13,356 120,700 9.04 Semantic Pajek [3]

Metabolic Yes 453 2,025 4.47 Biological Arenas [9]

Flights Yes 2,939 30,501 20.76 Geometric KONECT [19]

Epinions Yes 75,879 508,837 13.41 Social KONECT [28]

Table 4. Detailed experimental results for the 8 datasets used (times in seconds)

Method Jazz Facebook Wordnet Enron Foldoc Metabolic Flights Epinions

(k) (6) (4) (4) (4) (4) (5) (4) (3)

AMT 198.03 68.39 - - 28.12 21.20 20.74 -

BNS 1,129.39 320.08 767.09 1,034.71 88.40 107.02 109.25 36.51

IPS 1,104.48 404.25 847.18 1,549.16 81.99 86.55 161.27 69.59

HSN 488.22 159.46 522.81 877.59 65.67 80.77 63.88 50.09

TRI 691.49 223.43 658.89 749.46 65.19 60.91 54.45 28.19

LIN 1,234.37 513.35 917.26 1,380.28 171.06 151.81 181.16 118.38

HSE 461.08 135.14 438.78 557.50 51.39 49.98 43.91 18.58

HBR 289.31 125.83 480.83 586.49 50.67 45.80 39.34 20.77

(-) For these networks the adjacency matrix method requires too much memory

means there is space for hybrid methods to use the best methods for different
graph sources. It is also important to note how the results show that this is a
very heavy operation, meaning it is called a massive number of times. For exam-
ple, even though the IPS method has a better time complexity (O(log log |V |))
than BNS (O(log |V |)) it is outperformed in about half the networks. Moreover,
it is outperformed in the networks with highest average degree, where it should
have a bigger theoretical advantage, however, since the operation is so massively
called, the requirement of performing several division and multiplication opera-
tions drags down the overall performance. There could be different explanations,
like the neighbor distribution is not close to uniform, but further testing like in-
cluding dummy division operations in the BNS implementation seem to confirm
the previous intuition.

The most important conclusion to take from Table 4 is that HSE and HBR

(that uses the former) consistently outperform the rest. Intuitively, this is related
to the fact that HSE only requires very light operations in most cases, except
when there are collisions (where it is necessary to follow pointers to iterate the
linked list), but the number of collisions is generally small since the neighbor
distribution is well behaved and the size of the hash table is, in the case the
chosen parameters of our implementation, over double the size of the element
set. The HBR seems to capture the best of HSE since it has similar results for most
networks, outperforming it on most. The most relevant example is the one of the
Jazz dataset, where HBR takes almost 50% less time than HSE, indicating that



there are some graph types where bypassing the hash map pays off. However,
HBR seems to be mostly on par with HSE. One of the reasons of such is that HSE
has a high constant in the implementation, thus if the memory restrictions are
tighter, the benefits of using an hybrid method are greater.

Overall, we seem to achieve a method that ranges from almost one to two
times slower than the base AMT method. Further tests indicate that reducing
the constant for HSE (saving more memory) can yield similar results (including
hybrid approaches) in most networks (due to cache and similar effects, using
more memory does not yield a linear time benefit, it has more of a threshold
effect).

Adding to these results, we will also briefly show the benefits of adding a cache
as described in the previous section. Not all methods benefit from the cache, for
example, the TRI has a slow down in most networks due to the overhead of filling
the cache (it is most likely a implementation issue, but it is hard to avoid). Thus,
we chose to only show the results of the cache on 3 of the methods with better
results: HSN, HSE, HBR. We also tested our cache with the other methods, but the
results are not so relevant and hence were omitted. We will denote a method
using the small cache by adding a +CH in its abbreviation (for example HSN+CH).
Table 5 depicts these results, we included the results of the AMT method obtained
previously to serve as a baseline.

Table 5. Experimental results for the small cache behavior (times in seconds)

Method Jazz Facebook Wordnet Enron Foldoc Metabolic Flights Epinions

(k) (6) (4) (4) (4) (4) (5) (4) (3)

AMT 198.03 68.39 - - 28.12 21.20 20.74 -

HSN 488.22 159.46 522.81 877.59 65.67 80.77 63.88 50.09

HSN+CH 406.57 110.02 481.06 695.62 75.97 78.06 56.50 44.44

HSE 461.08 135.14 438.78 557.50 51.39 49.98 43.91 18.58

HSE+CH 392.50 100.22 439.77 534.67 45.51 46.42 40.27 18.93

HBR 289.31 125.83 480.83 586.49 50.67 45.80 39.34 20.77

HBR+CH 334.32 114.45 453.24 569.73 45.76 53.33 33.12 19.05

(-) For these networks the adjacency matrix method requires too much memory

We can observe minor benefits in a lot of the networks. This showcases how
it is possible to take advantage of the regularity of the distribution of neighbors
with little extra memory spent. Unfortunately, the small cache seems to clash
with the hybrid part of HBR, meaning the small cache had higher benefits in
certain nodes with higher degree and thus more queries to the edge verification
primitive, and part of those nodes do not use the small cache since they have
the full adjacency matrix on HBR.

We conclude this section by drawing a small conclusion on our findings in
order to select the best approach possible. Our results and analysis clearly show
that the HBR and the HSE+CH worked the best on our datasets. Intuitively, this
makes sense since both methods only use very light operations and can mimic
fairly well the behavior of an adjacency matrix. We stripped the previous im-



plementation2 of all other methods and kept only HBR and ran it with the same
datasets. These results are described in Table 6.

Table 6. Experimental results for the final implementation (times in seconds)

Method Jazz Facebook Wordnet Enron Foldoc Metabolic Flights Epinions

(k) (6) (4) (4) (4) (4) (5) (4) (3)

AMT 198.03 68.39 - - 28.12 21.20 20.74 -

Final run time 235.02 102.33 397.68 495.56 35.02 30.19 27.78 15.76

Slow down 1.19 1.50 - - 1.25 1.42 1.34 -

(-) For these networks the adjacency matrix method requires too much memory

These show a slow down factor improvement from about 4 of the initial naive
binary search, to a factor of less than 1.5 on average.

6 Conclusion

In this paper we studied a number of alternative graph representations that scale
with the number of edges or the number of nodes of the network memory-wise,
in order to extend the applicability of current algorithms to larger networks.
The goal was to find an efficient representation to be used by subgraph census
algorithms, more specifically, our study was tailored to a previous work of ours,
a state-of-the-art data structure called g-tries.

We studied different methods with several optimizations and additional im-
provement strategies. In the end, they converged in a hybrid method that tries
to apply some of the best methods in their preferred situations. The described
method is easily tuned to be used with different memory restricted environments.
In the end, it improved the slow down factor of the naive binary search method
in relation to the adjacency matrix from 4 to around 1.5.

This work did not have any parallel considerations, but a possible further
work would be to do this type of analysis in parallel versions of the subgraph cen-
sus algorithms, considering different effects that can harm the computation (like
cache hierarchies) and even distributing the graph by different machines. An-
other different progression would be applying the methods to different datasets
and obtaining relevant results on those.
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