
Pedro Manuel Pinto Ribeiro

Efficient and Scalable Algorithms

for Network Motifs Discovery

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto
2011





Pedro Manuel Pinto Ribeiro

Efficient and Scalable Algorithms

for Network Motifs Discovery
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They have always been there when I needed them, providing guidance, support and

a lot of patience over the last years. Their collaboration was essential and we always

had fruitful discussions on the emerging ideas on this subject.

I would like to thank the financial support of FCT that was allowed me to dedicate

the initial 4 years pursuing this research (PhD grant SFRH/BD/19753/2004). I would

also like to thank CRACS/INESC-Porto L.A. for support on the fifth year, allowing

me to further improve my work and finish my PhD.

I would like to thank Paul Watson and particularly Marcus Kaiser for receiving me

so well in Newcastle University for 3 months. This stay provided me with some of

the initial motivation for entering the motif discovery and complex network analysis

world.

I would also like to thank all persons that helped in providing me the computational

infrastructures that I used during my work. In particular Hugo Ribeiro, my brother

and local computer science department network administrator, and Enrico Pontelli,

for the use of Inter Cluster in the New Mexico State University.

I also thank all other researchers from the CRACS research center for providing a very

good environment for research and all my office colleagues during these years, which

were too many to nominate them all.

Finally, I would like to thank all my friends and family, that have always supported me.

In particular, my parents, my parents-in-law, my wife, Liliana, and my son, Samuel,

which was born when I was beginning my work.

5



6



Abstract

Networks are a powerful representation for a multitude of natural and artificial sys-

tems. They are ubiquitous in real-world systems, presenting substantial non-trivial

topological features. These are called complex networks and have received increasing

attention in recent years. In order to understand their design principles, the concept

of network motifs emerged. These are recurrent over-represented patterns of inter-

connections, conjectured to have some significance, that can be seen as basic building

blocks of networks. Algorithmically, discovering network motifs is a hard problem

related to graph isomorphism. The needed execution time grows exponentially as the

size of networks or motifs increases, thus limiting their applicability. Since motifs are a

fundamental concept, increasing the efficiency in its detection can lead to new insights

in several areas of knowledge. To develop efficient and scalable algorithms for motifs

discovery is precisely the main aim of this thesis.

We provide a thorough survey of existing methods, complete with an associated

chronology, taxonomy, algorithmic description and empirical evaluation and compari-

son. We propose a novel data-structure, g-tries, designed to represent a collection of

graphs. Akin to a prefix tree, it takes advantage of common substructures to both

reduce the memory needed to store the graphs, and to produce a new more efficient

sequential algorithm to compute their frequency as subgraphs of another larger graph.

We also introduce a sampling methodology for g-tries that successfully trades accuracy

for faster execution times. We identify opportunities for parallelism in motif discovery,

creating an associated taxonomy. We expose the whole motif computation as a tree

based search and devise a general methodology for parallel execution with dynamic

load balancing, including a novel strategy capable of efficiently stopping and dividing

computation on the fly. In particular we provide parallel algorithms for ESU and

g-tries.

Finally, we extensively evaluate our algorithms on a set of diversified complex net-

works. We show that we are able to outperform all existing sequential algorithms,

and are able to scale our parallel algorithms up to 128 processors almost linearly. By

combining the power of g-tries and parallelism, we speedup motif discovery by several

orders of magnitude, thus effectively pushing the limits in its applicability.
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Resumo

As redes são uma poderosa representação para uma grande variedade de sistemas

naturais e artificiais, sendo ub́ıquas em sistemas do mundo real. As redes complexas

apresentam uma quantidade substancial de caracteŕısticas topológicas não triviais e

têm recebido uma atenção crescente nos últimos anos. O conceito de network motifs

(padrões de rede) surgiu para ajudar a perceber como são estas redes desenhadas. Os

motifs são padrões de ligações frequentes sobre-representados que se conjectura que

possam ter algum significado e podem ser vistos como blocos básicos de construção

de redes. Em termos algoŕıtmicos, descobrir estes padrões é um problem dif́ıcil,

relacionado com o isomorfismo de grafos. O tempo de execução necessário cresce

à medida que o tamanho das redes e dos padrões aumenta. Como os motifs são

um conceito fundamental, aumentar a eficiência da sua detecção pode levar a novas

descobertas em várias áreas do conhecimento. Desenvolver algoritmos eficientes e

escaláveis para a descoberta de network motifs é precisamente o principal objectivo

desta tese.

Fornecemos um completo estudo do estado da arte das metodologias utilizadas, com

a cronologia e taxonomia associadas, uma descrição algoŕıtmica e uma avaliação e

comparação emṕırica. Propomos uma nova estrutura de dados, g-tries, desenhada

para representar colecções de grafos. Sendo aparentada a uma árvore de prefixos, tira

partido de subestruturas comuns para reduzir a memória necessária para guardar os

grafos e para criar um novo algoritmo sequencial mais eficiente para calcular as suas

frequências como subgrafos de um outro grafo maior. Também introduzimos uma

técnica de amostragem para as g-tries que troca com sucesso precisão por tempos de

execução mais rápidos. Expomos toda a computação de motifs como uma pesquisa em

árvore e desenhamos uma metodologia geral para a execução paralela com balancea-

mento dinâmico de carga, incluindo uma nova estratégia capaz de eficientemente parar

e dividir a computação durante a sua execução. Em particular, fornecemos algoritmos

paralelos para o ESU e para as g-tries.

Finalmente, fazemos uma avaliação extensiva dos nossos algoritmos num conjunto

de redes diversificadas. Mostramos que temos melhor desempenho que todos os

algoritmos sequenciais existentes e que somos capazes de escalar quase linearmente

9



os nossos algoritmos paralelos até 128 processadores. Combinando o potencial das

g-tries com o seu paralelismo, conseguimos tempos de execução para descoberta de

motifs várias ordens de magnitude mais rápidos, efectivamente aumentando os limites

da sua aplicabilidade.
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Résumé

Les réseaux sont une puissante représentation pour une variété de systèmes naturels

et artificiels. Ils sont ubiquité dans les systèmes du monde réel et présentent une

quantité substantielle de caractéristiques topologiques qui ne sont pas simples. Ces

réseaux sont pour cela appelés réseaux complexes et ont reçu dès quelques années

une reconnaissance croissante. Le concept de network motifs (patron de réseau) est

né de façon à les mieux comprendre. Ce sont des patrons de liaisons fréquentes sur-

représentés qui se conjecture pour avoir un sens quelconque et puisse être vu comme

des bloques basiques de construction de réseaux. Du point de vue algorithmique,

découvrir ces patrons est un problème difficile qui a rapport avec l’isomorphisme de

graphes. Le temps d’exécution grandie à la mesure que la grandeur des réseaux et

des patrons augmentent. Comme les motifs sont un concept essentiel, cela augmente

l’efficience de la détection qui mener à de nouvelles découvertes en plusieurs branches

de la connaissance. Le principal objectif de cette thèse est précisément développer des

algorithmiques efficients et extensibles pour la découverte de network motifs.

On fait une étude complète de l’état de l’art dans les méthodes utilisées, avec la

chronologie et la taxonomie, une description algorithmique et une évaluation et com-

paraison empiriques. On propose une nouvelle structure de données, g-tries, dessinée

pour représenté des collections de graphes. Cette structure est similaire à un arbre

préfixe et profite de sous-structures communes pour réduire la mémoire nécessaire

pour garder les graphes, et pour créer un nouveau algorithme séquentiel plus efficient

pour calculer ses fréquences comme sous-graphes d’un autre graphe plus grand. On

introduit une technique d’échantillonnage pour les g-tries qui échange, avec succès, la

précision du calcul pour un meilleur temps d’exécution. On montre que la découverte

de motifs avec g-tries peut être vu comme une recherche en arbre. On dessine une

méthode générale pour l’exécution parallèle avec répartition dynamique de charge,

on incluse une nouvelle stratégie capable d’efficacement arrêter et repartir le calcul

pendant l’exécution. En particulier, on fait des algorithmes parallèles pour ESU et

pour les g-tries.

Finalement, on fait une évaluation extensive de nos algorithmes dans un groupe de

plusieurs réseaux. On montre que notre algorithme a une meilleure performance

11



que tous les autres algorithmes séquentiels existants et que on est capable d’avoir

une extensibilité presque linéaire jusqu’à 128 processeurs. Mélangeant g-tries avec

son parallélisme, on réussit à avoir des temps d’exécution de plusieurs ordres de

grandeur plus rapide pour la découverte de motifs. Avec cela, on réussit effectivement

à augmenter les limites de son applicabilité.
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Awaken people’s curiosity. It is enough to

open minds, do not overload them. Put

there just a spark.

Anatole France

1
Introduction

While reading this thesis, the around 100 billion neurons in the reader’s brain are

working together to perform all the necessary cognitive functions, in order too see,

read and understand the meaning of this text [oSA99]. Each of these neurons, by

itself, is a relatively simple entity. However, as a whole, our neurons form an intricate

network of interactions that produce a really complex system, and we still are very far

from truly understanding it. Their collective behavior is much more than the simple

sum of the individual parts. As Craig Reynolds wisely expressed, “a flock is not a big

bird” [Ros06]. This is truth for a very wide variety of natural and artificial systems,

which are not only defined by their individual entities but also by the set of complex

interactions that occur between them.

Networks (or graphs) arise as simple yet powerful abstract models for trying to char-

acterize these types of structures. In the same way a map describes the geography of

a certain region, a network “maps” the set of entities and the relationships between

them.

Networks are virtually everywhere. The Internet is a network of computers and the

connections between them. The World Wide Web is a network of web pages and the

links between them. An ecosystem is a network of life forms and the relationships

between them. A transportation system can be seen as the actual physical location

nodes and their connections. Our own existence can be seen as being part of a complex

and intricate web of social relationships of many different kinds.
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CHAPTER 1. INTRODUCTION

Most of these real-world existing networks appear to have substantial non-trivial

topological features, with interconnections that are neither purely random nor purely

regular. These are what we call complex networks [AB02, DM02, New03, BLM+06]

and they recently received increased attention by the research community.

Figure 1.1 gives a graphical visualization of a real complex network, depicting the

neural network of the C. elegans, a very small nematode (roundworm) which has been

extensively used as a model organism for understanding biological networks.

Figure 1.1 – The neural network of C. elegans. Drawn with Gephi [BHJ] with

data from [WS98].

One way to analyze a complex network is to use a bottom-up approach, trying to
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understand first small topological substructures, and how they fit in the global overall

behavior. In an analogy with LEGO toys, we want to first identify the different bricks

that form the basic building blocks of the networks. We want to discover patterns of

interconnections and understand why they exist and what is their meaning.

Figure 1.2 shows an example of a pattern of connections between 3 nodes that appears

repeatedly in a real complex network of friendships between members of a karate club.

The pattern is represented by thick edges and represents a set of three friends that

know each other. For clarity, the figure shows only some of the occurrences of this

pattern.

Figure 1.2 – An example pattern of connections in a social network. Edges

represent friendship between members of a karate club. It was drawn with help

from Gephi [BHJ] and data from [Zac77].

The term network motifs appeared first in 2002 [MSOI+02], referring to recurring

subnetworks conjectured to have some significance. In particular, they are subnetworks

that appear with a higher frequency than it would be expected in similar random

networks (a more concise and formal definition can be seen in Section 2.2). This is a

fundamental concept that has been used as a very useful tool to uncover structural

design principles in networks from many different fields.

From a computer science point of view, discovering network motifs is a challenge.

Algorithmically, this is a hard problem, fundamentally connected to the graph isomor-

phism problem, for which no general polynomial time algorithm is known [McK81].

As the size of the motifs increases, the time needed to compute them with current

methodology grows exponentially. This effectively limits applicability to very small

sizes in order to obtain results in a reasonable amount of time.
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CHAPTER 1. INTRODUCTION

Being able to discover network motifs more efficiently would enable us to enlarge these

limits. This would allow practitioners of several scientific fields to discover new angles

in which to look at the networks of their respective areas. Pushing the limits in which

motif discovery is feasible, both in execution time and motif and network size, is the

main aim of this thesis.

1.1 Motivation

Studying and characterizing networks is an inherently interdisciplinary subject with

a potential to impact several areas. Work in this area was historically started by

Euler in 1735 with the famous problem of the Bridges of Königsberg1. This laid

out the foundations for graph theory, or the study of graphs. For more than two

centuries graph theory was essentially a mathematical subject, with a major milestone

in the random graphs concept, defined by Erdös and Rényi [ER59] in the late fifties.

Many fundamental questions were asked, but the absence of reliable large empirical

experimental data was a major hurdle.

It was only in the late nineties that complex network research really took off. The

emergence of many reliable data sets of real networks, together with the maturation of

the Internet as a powerful tool, the ever increasing computing power, and the breaking

down of barriers between scientific disciplines, all helped in giving the ingredients for

breakthroughs. It was now possible to empirically verify that real-world networks

exhibited properties that distinguished them from simple random networks. Two well

known classes of complex networks emerged as the canonical case studies: small world

networks [WS98], with short average path lengths and high clustering; and scale free

networks [BA99], in which the degree distribution (the number of connections of each

node) follows a power law distribution.

Figure 1.3 illustrates the original network models formed to present these characteris-

tics and compares them to the original random network model. All sub-figures have 24

nodes. Sub-figure (a), the random network, was generated using the model of Erdös

and Rényi [ER59], with 60 connections. Sub-figure (b), the small world network, has

all nodes connected to the first and second nearest neighbor in a ring, with 4 rewired

connections (probability of rewiring p = 0.08). In sub-figure (c), the scale free network,

the probability of a node having degree k is P (k) ∝ k−2.2.

1Four different landmasses in the city of Königsberg were connected by seven bridges and the

problem was to find out if there existed a path that would cross each bridge once and only once.
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1.1. MOTIVATION

(a) A random network (b) A small world network (c) A scale free network

Figure 1.3 – Three different models of networks. Adapted from [Ros06].

Applications of the concepts, models and techniques developed have spawn in many

different disciplines like sociology, biology, physics, mathematics and computer sci-

ence [dFCOT+07]. Scientists have now available a very large apparatus of different

measurements to mine interesting features from complex networks [ZKMW05, CF06,

dFCRTB07].

From the beginning, the typical properties studied were either related to individual

nodes of the network, like its degree (number of connections) or centrality (relative

importance); or to the global features of the network, like the average inter-node

distance or the global degree distribution. In order to go beyond these features one

would need to bridge that gap by looking for something in-between, bigger than a

single node, but smaller than the whole graph.

In 2002, Milo et al. [MSOI+02] were trying to discover basic structural elements that

were particular to a determined class of networks. In order to do that they noted that

some subnetworks appeared with a much higher frequency in the studied networks

than it would be expected in similar randomized networks (they used random networks

with the same degree sequence). They called network motifs to these over-represented

topological patterns, introducing a new concept in the network science field, and

presented it as a basic building block of complex networks.

Figure 1.4 exemplifies the concept of network motifs. The three random networks

present the exact same degree sequence as the original one, with each vertex preserving

its ingoing and outgoing degrees. The feed forward loop, indicated by thick black

edges, appears exactly three times in the original network ({0, 1, 2}, {2, 3, 5}, {3, 4, 5}),
but has at most one occurrence in each random network. Note that in the third
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CHAPTER 1. INTRODUCTION

random network, {2, 3, 5} is not an occurrence of the motif, since 2 and 3 have a

mutual connection, which does not happen in the feed forward loop.

Figure 1.4 – An example network motif of size 3.

The seminal paper fromMilo et al. gave origin to a multitude of definitions and studies.

Network motifs have since been extensively used in various areas. This is particularly

true for biological networks [AA03]. For example, it has been demonstrated that they

can have functional significance in transcriptional regulatory networks [SOMMA02]

or protein-protein interaction networks [AA04]. They have been applied in other

biological areas, like brain networks [SK04] or food webs [Kon08]. They are also

significant in networks from other domains, like electronic circuits [ILK+05] or software

architecture [VS05].

Finding network motifs is however a computationally hard task, closely related to

the graph isomorphism problem [McK81]. Current methods are almost all sequential

in nature and consist in finding the frequency of all subgraphs of a determined size

(that is, doing a subgraph census), both in the original network and in a random

ensemble of similar networks. The execution time increases exponentially when we

increase the motif or network size. Sampling has been introduced by Kashtan et

al. [KIMA04a] as a way to trade accuracy for time spent, but the process can still be

very time consuming. Analytical methods to estimate the significance of motifs are

now appearing [MSB+06, PDK+08]. These methods would be able to escape the need

for the ensemble of random networks and their respective census, but there is still a

long path to be accomplished in order for them to be general and practical enough
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to be used. In any case, we would still have to compute the subgraph census on the

original network.

Scientists that are using motifs to characterize their networks typically use very small

motif sizes for practical reasons: they want to obtain results in a reasonable amount

of time. They would be glad to extend their analysis for larger motifs and larger

networks if that would remain feasible for them. Indeed, even increasing the size of

computable motifs by only one node can potentially lead to the discovery of a new

structural motif that can have an important functional meaning. In a way, they are

acting as paleontologists trying to uncover functionality by analyzing the skeleton, the

backbone of the system. Increasing the scale in which the analysis is available can

lead to a breakthrough. For instance, little is still known about large motifs and their

relationship with smaller ones. Any contribution that can shed a light in this area has

the potential to impact several fields.

1.2 Goals and Contributions

The main goal of this thesis is to improve the efficiency of network motif detection.

This means much more than simply being able to speed up the discovery of the same

kind of motifs already known. This work aims to contribute to an increased size of

the networks which are feasible for computation in a reasonable time. It also aims to

allow the discovery of larger motifs. Being able to do both these two things means

that we pave the way for the discovery of new motifs that can uncover potential new

functional substructures that were previously unknown.

Our approach is twofold. First, we aim to improve the sequential algorithms by

exploring a specialized approach that relies on being able to use sets of subgraphs as

the basic input data. By contrast, current approaches either need to analyze the global

network and discover all subgraphs of a determined size, or they count the frequency

of individual subgraphs. Our proposed strategy falls in-between. Second, it aims to

exploit parallelism in the motif discovery process. The use of parallel algorithms for

this purpose is still very scarce, although it has the potential to give large gains in the

execution time.

The first contribution of this work is a thorough survey of the state of the art in the

motif discovery field. A formal definition of the problem at hand is given, as well as

the creation of an associated taxonomy, a time line and a quick overview table that
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highlights the differences between current strategies. Pseudo-code is also given for all

main strategies, allowing the reader to have a real grasp of the algorithmic inner works

of the most important approaches.

A second major contribution of this work is a novel data-structure called g-tries. It is

specially designed to deal with collections of subgraphs and its main conceptual idea

is akin to a prefix tree, in the sense that we take advantage of common topologies

by constructing a multiway tree where the descendants of a node share a common

substructure. Pseudo-code is given for creating a g-trie, for using it to count sets

of subgraphs at the same time and its role in motif discovery is defined. We also

propose a sampling strategy for g-tries, allowing for approximate discovery, in which

one can trade accuracy for quicker results. Compared to the previously best known

sequential methods, g-tries lead up to significant performance gains, at least an order

of magnitude faster.

A third major contribution is the identification of opportunities for parallelism in

the motif discovery process. We propose a master-worker and a distributed control

parallel strategy, providing dynamic load balancing capabilities. The previous best

general algorithm and our g-tries approach are parallelized in this way, and pseudo-

code with all algorithmic details is given. We obtain almost linear speedups up to 128

processors, showcasing the efficiency of our proposed parallel approach.

The fourth major contribution of this work is an extensive experimental evaluation

of our proposed strategies, in order to further verify our claim that indeed we are

improving the efficiency of motif discovery. The algorithms are implemented and

tested against a large set of representative complex networks from several scientific

domains.

Ultimately, by combining the power of the performance gains by using the g-tries and

by using parallelism we can speed up the network motifs computation by several orders

of magnitude. The possibility of deciding a trade-off between accuracy and execution

time adds an extra touch of flexibility and usability of our methods. All of this work

has a direct impact on the kind of motifs that are discoverable in a reasonable amount

of time and effectively pushes the boundaries in the network motifs problem.
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1.3. THESIS ORGANIZATION

1.3 Thesis Organization

This thesis is structured into seven major chapters. A brief description of each one of

them is now provided.

Chapter 1 - Introduction. Provides a brief introduction to the research area, the

main motivation, goals and contributions, as well as the organization of the thesis and

a bibliographic note.

Chapter 2 - The Network Motifs Problem. Introduces a common graph termi-

nology that will be used throughout the thesis and uses it to formalize the problem

being tackled. It also gives variations on the concept, application examples and

possible criticisms.

Chapter 3 - Algorithms for Motif Discovery. Gives a detailed depiction of the

state of the art, complete with a timeline, an overview table and pseudo-code for all

known main algorithmic strategies for discovering network motifs, both sequential,

parallel and also complete or approximate approaches.

Chapter 4 - The G-Trie Data Structure. Introduces the novel specialized g-trie

data-structure, by giving the motivation behind it and a formal definition. Explains

and gives pseudo-code for its associated methods, namely its creation, subgraph

counting, subgraph sampling and motif discovery.

Chapter 5 - Parallel Network Motif Discovery. Describes the opportunities for

parallelization on network motifs discovery and proposes different parallel strategies

with different underlying data-structures and sequential algorithms, focusing mainly

on g-tries. It details each step of the parallel strategy, explaining how the computation

is started, how dynamic load balancing is achieved and how the results are aggregated.

Chapter 6 - Experimental Evaluation. Gives a thorough experimental evaluation,

assessing the efficiency of the proposed g-tries sequential and parallel strategies on a

large set of representative complex networks.

Chapter 7 - Conclusions and Future Work. Discusses the research done, sum-

marizing the contributions made and gives directions for future work.
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1.4 Bibliographic Note
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Facts are the air of scientists.

Without them you can never fly.

Linus Pauling

2
The Network Motifs Problem

The main goal of this work is to improve the efficiency of network motif detection and

we begin by clearly defining a network motif and its usefulness. The purpose of this

chapter is therefore to introduce the reader to the motif discovery problem and give

examples of its applicability in real world problems. It is the basis for understanding

the remaining chapters.

2.1 Graph Terminology and Concepts

In order to establish a well defined and coherent network terminology throughout this

thesis, this section reviews the main concepts used. A network is modeled with the

mathematical object graph, and we will use these two terms interchangeably.

A graph G is composed of a set V (G) of vertices or nodes and a set E(G) of edges or

connections. The size of a graph is the number of vertices and is written as |V (G)|. A
k-graph is a graph of size k. Every edge is composed of a pair (u, v) of two endpoints

in the set of vertices. If the graph is directed, the order of the pair expresses direction,

while in undirected graphs there is no direction in edges.

The degree of a node is the number of connections it has to other nodes. In directed

nodes, we can also define the indegree of a node as the number of ingoing connections

to it, that is, the number of edges (u, v) in which v is that node. In similar fashion,

we can define the outdegree of a node as the number of outgoing connections it has.
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CHAPTER 2. THE NETWORK MOTIFS PROBLEM

A graph is classified as simple if it does not contain multiple edges (two or more edges

connecting the exact same pair of nodes) and it does not contain self-loops (an edge

connecting a node to itself). Unless otherwise explicitly stated, from now on we will

assume we are only dealing with simple graphs.

The neighbourhood of a vertex u ∈ V (G), denoted as N(u), is composed by the set

of vertices v ∈ V (G) such that v and u share an edge. In the context of this thesis,

all vertices are assigned consecutive integer numbers starting from 0. The comparison

v < u means that the index of v is lower than that of u. The adjacency matrix of a

graph G is denoted as GAdj, and GAdj[u][v] is 1 when (u, v) ∈ E(G) and is 0 otherwise.

This concept is illustrated in Figure 2.1.

Figure 2.1 – A directed graph and its correspondent adjacency matrix.

A subgraphGk of a graphG is a graph of size k in which V (Gk)⊆V (G) and E(Gk)⊆E(G).

This subgraph is said to be induced if ∀(u, v) ∈ E(Gk) if and only if (u, v) ∈ E(G). The

neighborhood of a subgraph Gk, denoted by N(Gk) is the union of N(u), ∀u ∈ V (Gk).

Figure 2.2 shows the difference between an induced and a non-induced subgraph. The

subgraphs are identified by the light vertices and thick black edges. (a) is not induced

because the edge (4, 5) does not belong to it.

(a) A non induced 3-subgraph (b) An induced 3-subgraph

Figure 2.2 – The concept of an induced subgraph.

A mapping of a graph is a bijection where each vertex is assigned a value. In the
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context of this thesis, since we label every node starting from 0 to |V (G)| − 1, a

mapping can be thought of as a permutation of the set of node labels.

Two graphs G and H are said to be isomorphic, denoted as G∼H, if there is a one-

to-one mapping between the vertices of both graphs and there is an edge between

two vertices of G if and only if their corresponding vertices in H also form an edge

(preserving direction in the case of directed graphs). More informally, isomorphism

captures the notion of two networks having the same edge structure, the same topology,

if we ignore distinction between individual nodes.

Figure 2.3 illustrates this concept. Despite looking different, the structure of the

graphs is the same, and they are isomorphic. The labels in the nodes illustrate

mappings that would satisfy the conditions given for isomorphism.

Figure 2.3 – Four isomorphic undirected graphs of size 6.

The set of isomorphisms of a graph into itself is called the group of automorphisms

and is denoted as Aut(G). Two vertices are said to be equivalent when there exists

some automorphism that maps one vertex into the other. This equivalence relation

partitions the vertices of a graph G into equivalence classes denoted as GE. Informally,

these concepts capture the notion of symmetry in the graph and are illustrated in

Figure 2.4, where colors represent the equivalence relation, that is, nodes of the same

color are in the same equivalence class.

Figure 2.4 – Three undirected graphs and their respective automorphisms.

A match of a graph H in a larger graph G is a set of nodes that induce the respective
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subgraph H. In other words, it is a subgraph Gk of G that is isomorphic to H. This

concept is illustrated in Figure 2.5.

Figure 2.5 – Two possible matchings of a graph H in another graph G.

A path is a sequence of vertices such that there is an edge connecting any adjacent

pair of vertices in the sequence. Two vertices are said to be connected if there is

a path between them. A connected graph is a graph in which every pair of nodes

is connected. An articulation point is a node from a connected graph that when

removed disconnects the graph and creates two or more separated subgraphs.

For the sake of simplicity, the term motifs will refer to network motifs, except when

another meaning is explicitly stated.

2.2 Network Motifs Problem

To define network motifs, we now overview existing definitions.

2.2.1 The Original Definition

Milo et al. [MSOI+02] first introduced in 2002 the terminology “network motifs” and

provided the first core informal definition:
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Definition 2.1 (Network Motifs - informal definition) Network motifs are pat-

terns of inter-connections occurring in complex networks in numbers that are signifi-

cantly higher than those in similar randomized networks.

The main initial motivation was to go beyond global features (such as the “small world”

or “scale free” properties described in section 1.1) and try to find basic structural

elements that were characteristic to each class of networks [ASBS00].

Their reasoning was also that the structural detection of motifs could give new in-

sight into their dynamical and functional behavior. A possible interpretation was

that the motifs appeared because of constraints in the way the network was devel-

oped [CHK+01], thus being related to the evolution of the whole complex system.

Definition 2.1 means that a motif is a subnetwork which is statistically over-represented.

We will now describe how the informal definition was put into practice in the original

paper [MSOI+02].

The key aspect to ensure statistical meaning is to be able to generate the random

networks as similar as possible to the original one. We want to be sure that the intrinsic

global and local properties of the network do not determine the motif appearance and

that the motif is indeed specific to this particular network. The original proposal was

therefore to maintain all single-node properties, namely the in and out degrees.

Figure 2.6 exemplifies this concept. Note that the number of incoming and outgoing

edges for any node remains the same in all networks. Note also that both the original

and randomized networks are simple graphs.

Figure 2.6 – Example of similar random networks preserving degree sequence.

39



CHAPTER 2. THE NETWORK MOTIFS PROBLEM

For the term patterns, Milo et al. [MSOI+02] used induced subgraphs. In order to

count them, overlapping between two occurrences (matches) of a specific subgraph is

allowed, that is, in order for two occurrences to be considered different it is a sufficient

condition that they present a different set of nodes (even if they share a subset of

nodes). Section 2.2.2 presents different possibilities for frequency counting.

Figure 2.7 presents an example of how to find the frequency of a subgraph, using the

Milo et al. [MSOI+02] definition. The subgraph of size 3 is matched 3 times in the

network: {0, 1, 4}, {0, 2, 4} and {1, 4, 5}.

Figure 2.7 – Example of frequency count.

Given this frequency definition, a motif would be classified as such when three different

properties hold at the same time.

Over-representation: The probability that the frequency of a motif in a randomized

network is greater than the frequency in the original network should be smaller than a

determined probability threshold P . This is empirically determined using an ensemble

of a large number of similar random networks as described before and will ensure that

the motif is over-represented in the original network. P is estimated by assuming a

random null hypothesis and z-scores (on a standard normal distribution). Let foriginal

be the frequency in the original network and frandom be the frequency in a random

network. We can then define the z-score as in equation 2.1 and use a pre-calculated

table to infer the desired probability (with σ being the standard deviation).

z-score(Gk) =
foriginal − f̄random

σ(frandom)
(2.1)
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Minimum frequency: The frequency of the motif on the original network should

be higher than an uniqueness threshold U . This ensures a quantitative minimum to

establish significance.

Minimum deviation: The third and last property is that the frequency of the motif

on the original network is significantly larger than its average frequency on the similar

random networks. This prevents the detection of motifs that have a small difference

between these two values but have a narrow distribution in the random networks. D

is a proportional deviation threshold that ensures the minimum difference between

foriginal and f̄random, as formalized next.

These three properties lead us finally to a more formal version of the definition of

motifs.

Definition 2.2 (Network Motifs - formal definition) An induced subgraph GK

of a graph G is called a network motif when for a given set of parameters {P,U,D,N}
and a random ensemble of N similar networks:

1. Prob(f̄random(GK) > foriginal(GK))≤P (Over-representation)

2. foriginal(GK)≥U (Minimum frequency)

3. foriginal(GK)− f̄random(GK) > D × f̄random(GK) (Minimum deviation)

The original paper from Milo et al. [MSOI+02] uses {0.01, 4, 0.1, 1000} as the set of

respective parameters {P,U,D,N}. This is the same as saying that they used 1000

similar random networks and considered a subgraph to be a motif if: the probability

that it appears more often in a random network than in the original network is less

than 1%; it appeared at least 4 times; the difference between its frequency in the

original network and the average frequency in random networks is at least 10% of that

average frequency.

Note that other values can be used for the parameters depending on what we want to

accomplish. Its usage in the definition, rather than narrowing the concept, introduces

extra flexibility. This definition constitutes the original complete formalization of

motifs that is still regarded as the canon, and is used on the vast majority of motif

related papers.
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2.2.2 Variations in the Definition

The definition given above is the standard for motifs detection and will be the one used

in this thesis. However, several related variations have been proposed and applied,

introducing different details and constraints. Next, we overview the existing variations

to give the reader a better grasp of the entire concept.

General Applicability

The first point to note is that the concept is very broad. It can be applied equally to

directed or undirected networks without changing its behavior and method of calcula-

tion.

One other possible application is to use the definition on colored networks, giving origin

to colored motifs [LFS06, FFHV07]. In these networks, nodes have associated with

it a label, the color, and therefore not all nodes are the same and indistinguishable.

Different labels can represent for example different chemical compounds on a metabolic

network [LFS06]. Two occurrences of the same motif must therefore not only preserve

the same edge structure, but the also the color structure of the nodes, as exemplified

in Figure 2.8. {0, 4, 5} is an occurrence of the subgraph but {3, 4, 5} is not, because

although edges have the same structure, colors in the nodes are not preserved.

Figure 2.8 – Counting the frequency of colored subgraphs.

The original definition was intended for simple graphs, but it is also applicable to

non-simple graphs. In that case, extra care should be taken on the generation of
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randomized networks, with additional constraints. For example, in a network with

self-loops but no multiple edges, one could determine that self loops must be preserved

in the randomized networks, effectively adding “colors” to the networks, in the sense

that nodes could be classified in two groups: with or without self-loops.

Frequency Concepts

The frequency of a subgraph is the number of different matches of that particular

subgraph in the network. As said in the previous section, the original definition allows

for arbitrary overlapping of edges and nodes on different matches of a motif. This

has an associated functional meaning as in, for example, biological applications. In

these networks it is possible for several different overlapping subgraphs to be active

and functioning at the same time, with the same motif assuming different functions

on each occurrence, as for example is the case of proteins in PPI networks [CG08].

Schreiber and Schwobbermeyer [SS04], however, introduce different concepts for the

frequency, allowing more constraints, particularly no sharing of edges and/or nodes.

This has the potential to drastically change the frequency of a motif, thus improving

the tractability of the motif discovery problem. By adding more constraints, the

number of matches is reduced. However, a new problem is introduced, as there are

several possibilities for choosing the correct matches.

Figure 2.9 and Table 2.1 illustrate the four different frequency concepts introduced

in [SS04]. F1 is the one used in the original definition. With F2 several possibilities

for the matching arise, and we have the new problem of deciding which ones should be

chosen (ambiguity in the set of matches found). Note that the number of matchings

under F2 is always smaller or equal than the ones under F1. F3 is even more restrictive

and potentially counts even less matches (at most it considers the same number of

matches of F2), and gives origin to cases with the same ambiguity problem of F2. Note

also that a fourth frequency concept, allowing overlapping of edges but not of nodes,

is not applicable because edges always connect nodes.

Under-Representation

If we consider over-represented subgraphs, we could also think of under-represented

ones, that is, subgraphs whose frequency in the original network is much smaller than

it would be expected in similar random networks. Such subgraphs are called anti-

motifs [MIK+04], and may be meaningful for certain applications.
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Figure 2.9 – Two graphs and all the possible matchings of one into the other.

.

Frequency Allow sharing Maximum Matches in

Concept Nodes Edges Figure 2.9

F1 yes yes {#1,#2,#3,#4,#5,#6}

F2 yes no
{#1,#4} or {#1,#5} or {#1,#6} or

{#2,#6} or {#3,#6}
F3 no no {#1,#6}

Table 2.1 – Different frequency concepts and respective maximum number of

matches in the graphs of Figure 2.9. Adapted from [SS04].
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Non-induced subgraphs

Some authors take into account subgraphs which are not induced [MZW05, CHLN06],

meaning that the total number of possible subnetworks would be much larger. This

is mainly because the same set of nodes could be a match for different motifs. In fact,

each match for a specific graph H of size k in G would also be a match for all of its

non-induced subgraphs Hk, as exemplified in Figure 2.10. Graphs H1, H2 and H3 are

non-induced subgraphs of H. Therefore, if non-induced matches should be considered,

any match for H would also be a match for H1, H2 and H3. In a way, this information

can be redundant because information about non-induced subgraphs is contained in

the induced subgraphs.

Figure 2.10 – Non-induced subgraph matches.

Statistical Significance

The notion of the statistic significance can have a different formulation. Instead of

using the z-score, some authors also use the so called abundance (∆) [MIK+04], as

defined in equation 2.2 (ǫ is a very small constant to ensure that when the frequency

is small the abundance will not be misleadingly large).

∆(GK) =
foriginal − f̄random

foriginal + f̄random + ǫ
(2.2)

Another approach is to sample some of the subgraphs and then estimate the con-

centrations of the studied motifs in the original network [KIMA04a], as detailed in

equation 2.3, where the denominator indicates the sum of the frequencies of all the k-

subgraphs (more about sampling can be seen in Section 3.3). Calculating the average

and standard deviation of the concentration in the random ensemble of networks will

then give an estimate of the z-score.
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C(GK) =
f(GK)∑
f(GK)

(2.3)

Similarity of Random Networks

Sometimes the generation of random networks can have more constraints than only

keeping the degree sequence of the original network.

The original paper [MSOI+02] tries to guarantee that when searching for k-motifs,

the frequency of (k − 1)-motifs stays the same, ensuring that the significance of a

particular pattern does not simply derive from its sub-patterns. This was however

only possible for very small motif sizes, due to computational reasons, and therefore

it is not a common practice to ensure this.

Other authors have also experimented with networks that follow specific connection

rules, such as lattices [SK04], that is, graphs whose layout follow a grid pattern.

They pursued the idea that the appearance of certain motifs could be favored by that

inherent topology or physical location of the nodes.

The general rule for creating the set of similar randomized networks is that we should

try to use a null model that best encapsulates what we know of the network. The

given solution of preserving the degree sequence is general enough to be applicable in

many situations, but in some cases other options may result in more accurate results.

Avoiding the Generation of Random Networks

The generation of a random ensemble of similar networks can be cumbersome and is

certainly time consuming. Analytical methods to derive the desired probability for a

subgraph to be over-represented would be most welcome. This would avoid the need

to explicitly generate all the random networks and count subgraphs in them.

Recent work pursues this line of research [MSB+06, Wer06, PDK+08, SLS08]. These

theoretical statistical approaches have an enormous potential, but they still require

further development in order to be used in the general case and to have the necessary

accuracy. Either they still take too much time to compute or they are still not able to

model general random networks with specific constraints, like preserving the degree

sequence.

In any case, even if we are able to analytically derive the significance of a particular

subgraph, we would still need to compute its frequency on the original network, and

therefore the core computational problem related to motifs calculation (as will be seen
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in Section 3.1) still remains.

We should also note that Birmelé presented an alternative motif definition, in which

significance is evaluated through local over-representation, instead of global over-

representation, and introduced a statistical method for computing this measure with-

out the generation of random networks [Bir11].

Weighted Networks

Application of the motifs concept to weighted networks is not straightforward. These

are networks where a value, a weight, is associated with each edge. A possible direct

adaptation would be to define a threshold and keep the edges with weights above that

value and discard the others. Another option is given by Saramäki et al. [SpOKK05],

that propose a way to fully incorporate weights in the computation of motifs. They

start by defining the intensity I(Gk) of a subgraph Gk as the geometric mean of its

weights:

I(Gk) = (
∏

e∈E(Gk)

weigth(e))1/|E(Gk)| (2.4)

Note that since weights are multiplied, if an edge has weight zero, then this will be

the intensity of the respective subgraph. Similarly, if one weight is small, it will

significantly reduce the respective intensity. The total intensity of a subgraph is then

defined as the sum of all of its subgraph intensities, and from that they derive the

statistical significance.

This approach does not discretize the frequency of subgraphs and instead creates a

continuum of possible total intensities of a subgraph.

Networks over Time

Some complex networks are not static and change over time. In this case, the network

motifs also change and they can help in understanding the dynamics of the networks.

With that in mind, Jin et al. [JMA07] proposed the notion of trend motifs, which are

basically recurring subgraphs that display similar dynamics over a predefined period,

and presented algorithms for their discovery.

Related Concepts

There exists a vast amount of work on graph mining. Particularly, the field of frequent

subgraph mining has been very prolific. Although related, this problem, which derives
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from the frequent itemset problem [PBTL99], is substantially different because its goal

is to find the most frequent subgraphs that appear in a set of graphs, while in the

network motifs we try to find the frequency of all subgraphs on a single graph.

Frequent subgraph mining has produced sequential algorithms like MOFA [BB02],

gSpan [YH02], FFSM [HWP03] or Gaston [NK04]. Because of their goal, these

algorithms differ substantially in concept to motif discovery approaches.

It should be noted that some authors use the term motif in the context of this related

problem for subgraphs which simply occur frequently, but are not necessarily over-

represented [WP04, HBP+06].

2.3 Applications of Network Motifs

This section gives a general overview of the types of possible applications using

the concept of network motifs. It does not aim to be complete, but instead to

show the purpose of the concept, demonstrating its usefulness, flexibility and general

applicability.

Its original application usage was to distinguish classes of networks based on the types

of motifs. The original paper [MSOI+02] found that the same small-sized motifs were

found on networks of the same type, as illustrated by Table 2.2. Nreal and Nrand

indicates respectively the frequency in the original network and the average frequency

in the random networks. Z-score is calculated as in Equation 2.1. The threshold values

for {P,U,D,N} (see Section 2.2 ) are {0.01, 4, 0.1, 1000}.

This approach was continued in [MIK+04], where superfamilies of networks were

identified based on motifs. In order to do that, a systematic study of similarity in

local structure was followed in which a significance profile (SP) of motifs was built.

Basically, the SP is a vector of the normalized z-scores of a set of subgraphs (normalized

in order to compare networks of different sizes). Figure 2.11 shows that different

networks displayed very similar SPs for the set of all 3-subgraphs (triads). They were

therefore grouped in similar families of networks.

In the figure, the normalized z-scores for the same set of 13 different directed subgraphs

were plotted with lines to help visualization. Complete details of the networks can

be seen in [MIK+04], but the names describe them in general terms. “TRANSC”

indicate transcription networks, “SIGNAL” indicates signal transduction networks,
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“NEURONS” indicate synaptic connections, “WWW” indicates hyperlinks between

web-pages, “BI-PARTITE” indicates a bi-partite model graph and the names of lan-

guages indicate word-adjacency networks of texts.

Network Nodes Edges Nreal Nrand Z-Score Nreal Nrand Z-Score Nreal Nrand Z-Score

Gene Regulation Feed- Bi-Fan

(transcription) forward

loop

E. coli 424 519 40 7±3 10 203 47±12 13

S. cerevisiae 685 1052 70 11±4 14 1812 300±40 41

Food Webs Three Bi-

chain Parallel

Little Rock 92 984 3219 3120±50 2.1 7295 2220±210 25

Ythan 83 391 1182 1020±20 7.2 1357 230±50 23

Electronic Circuits 3-node Bi-Fan 4-node

(digital fract. multipliers) loop loop

s208 122 189 10 1±1 9 4 1±1 3.8 5 1±1 5

s420 252 399 20 1±1 18 10 1±1 10 11 1±1 11

Table 2.2 – Network motifs found in different types of networks. Adapted from

[MSOI+02].

Figure 2.11 – Triad significance profiles. Adapted from [MIK+04].
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A measure similar to SPs, designated motif fingerprint, was also used to study brain

neural networks [SK04]. Figure 2.12 exemplifies this on some cortical areas of the

Macaque Visual Cortex. Numbers 1 to 12 are motif types, and the polar plots

indicates their frequency. Five of those (V1, V3, V4, MSTd and DP) present very

similar fingerprints, while other areas, such as V2, V4t and PIVt are different. These

fingerprints were then used to cluster cortical areas based on their similarity, as can

be seen of Figure 2.13.

Figure 2.12 – Polar plot of motif fingerprints in Macaque Visual Cortex. Taken

from [SK04].

Figure 2.13 – Clustering the Macaque Visual Cortex with motif fingerprints.

Taken from [SK04].
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Motifs can also present specific information processing functions in the network. Shen-

Orr et al. [SOMMA02] show that much of the network of transcriptional interactions

of the bacteria E. coli is composed by three different types of highly significant motifs:

feed-forward loops (FFL), single input modules (SIM) and dense overlapping regulons

(DOR). The respective subgraphs are shown in Figure 2.14 and together they compose

a large part of the network.

Explaining the biological meaning of these motifs is out of the scope of this thesis, but

it was demonstrated that each has “a specific function in determining gene expres-

sion, such as generating temporal expression programs and governing the responses to

fluctuating external signals” [SOMMA02].

Figure 2.14 – The three different types of motifs found on the transcriptional

regulation network of E. coli. Adapted from [SOMMA02].

Determining the function of motifs in information processing is recurrent in biological

networks analysis and has been extensively applied [LRR+02, Alo03, MA03, MZA03,

WOB03, MBV05],

The recurrence of motifs has also been applied graphically to represent the interactions

as a whole and give a more human interpretable visualization of the network[SOMMA02].

Instead of plotting the actual nodes and connections, one can use specific symbols for

determined motifs and simplify the visual depiction of the network, as exemplified

in Figure 2.15, where part of the regulation network of E. coli is represented using

symbols for specific motifs.

Motifs were also shown to be evolutionary conserved topological units [WOB03], in

the sense there seems to be evolutionary pressure to maintain those motifs. These

conservation property was in turn used to predict protein-protein interaction, by using

machine learning techniques that try precisely to conserve those motifs [AA04]. This

allows the generation of likely candidates for interaction.

Other work shows that in some networks the vast majority of motifs tend to overlap,

generating motif clusters [DBBO04]. An example can can be seen in Figure 2.16,
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Figure 2.15 – Using motifs as building blocks of the actual plotting of the

regulation network of E. coli. Adapted from [SOMMA02].

showing a cluster of feed forward loops. The dashed edges are only used by a single

occurrence of the motif, while continuous lines are shared by at least two occurrences.

The colors of the nodes denote the “role” of the node in the motif, that is, if it is

the node with two outgoing edges (the input), the node with one incoming and one

outgoing edge (the intermediate) or the node with two incoming edges (the output).

Figure 2.16 – Example of a motif cluster on the E. coli transcriptional regulatory

network. Adapted from [DBBO04].
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In order to better understand how motifs combine to form larger structures the

notion of motif generalizations was introduced and studied [KIMA04b]. Based on the

“roles” of each node, possible ways of combining into larger structures were defined,

as exemplified in Figure 2.17, where 4-node generalizations of the feed forward loop

are shown.

Figure 2.17 – Example 4-node generalizations of the feed forward loop. Adapted

from [KIMA04b].

Motifs have also been used in other varied contexts, like in the following three exam-

ples. They were crucial in a work with the goal of disambiguating the appearance

of personal names in the World Wide Web [YCLH06]. They were used to identify

patterns in object oriented pieces of software, where nodes are classes and edges

indicate static dependencies among them [VS05]. And finally, they were studied in

geometric networks (like grids), whose layout is constrained by the physical position

of the actual nodes [IA05].

2.4 Criticism

Even taking into account the general applicability of motifs, it should however be said

that its usage did not come without criticism. The first comments arrived as soon

as the original 2002 paper appeared, arguing that the original null hypothesis used

(random networks with the same degree node) may not be able to identify evolutionary

design principles in the appearance of the motifs [ARFBTS02, HJ05].

Other major point argued is that structure does not completely determine func-

tion [ISS06, KNS08]. The same motif may even have opposite functionality on a

different context, and additional information, which may be difficult to obtain, can be

necessary in order to evaluate the real function of some motif.
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Other work points out that global networks features, like the clustering coefficient,

may indeed have a crucial influence on local characteristics such as the frequency of a

determined type of subgraph [VDS+04, KL08].

This thesis does not try advocate any position on this matter, although it is made

having in mind that motif discovery is useful and has already been demonstrated to

be of practical usage. Instead we focus our attention on studying efficient strategies

for finding network motifs, with particular emphasis on subgraph frequency discovery,

which has an even larger applicability scope.

2.5 Summary

This chapter introduced the necessary graph concepts and established a terminology

that will be used coherently in the following chapters. With these tools at hand, the

network motif concept was formalized and concisely defined. A review of possible

variations on the motif definition was made and a large set of example applications

was given, in order to give the reader a better feel of the practical usability of the

concept. Finally, in order to put some perspective, some criticisms on motif usage

were presented.
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We are drowning in information but

starved for knowledge.

Rutherford D. Rogers

3
Algorithms for Motif Discovery

The purpose of this chapter is to provide a thorough survey of the state of the art in

algorithms for network motif discovery. We start with an historical perspective of the

field, giving a time line for the existing algorithms. Then follows an overview, with a

comparison table and an associated taxonomy. We continue by showing pseudo-code

for all main existing algorithms, organized by their functionality. Finally, we overview

the existing parallel approaches.

3.1 Algorithmic Approaches

Like many other subgraph problems (such as finding maximal independent or bipartite

sets), discovering network motifs is a computationally hard problem. Fundamentally,

we will be matching graph patterns with the desired motifs, which leads to the well

known Graph Isomorphism Problem:

Definition 3.1 (Graph Isomorphism Problem) Given two finite graphs G and

H, determine if they are isomorphic.

This problem is in the set of non-deterministic polynomial time (NP) problems, with

no known fast and general solution in polynomial time. It is also one of the few NP

problems that it is still not known to be NP-complete [McK81, KST93]. While it
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is true that for special cases of graphs and subgraphs more efficient solutions may

exist [KKM00], it remains the fact that the general case is still not easily tractable.

The problem can be generalized even more in the Subgraph Isomorphism Problem,

which is known to be NP-complete [Coo71], and therefore also computationally in-

tractable.

Definition 3.2 (Subgraph Isomorphism Problem) Given two finite graphs G and

H, determine if G contains a subgraph that is isomorphic to H.

We will later use these problem definitions to classify sub-problems of the motif

discovery process, in order to show that indeed it is a computationally hard problem.

3.1.1 The Motif Discovery Program Flow

In the general case we do not know a priori which motifs we will find. Because of

that, the typical motif discovery algorithmic pattern consists in choosing a subgraph

size k and then finding all motifs of that size, that is, with k vertices. In order to do

that, the typical program flow is the one depicted in Figure 3.1.

Algorithm 3.1 Typical program flow of motif discovery.

Require: Graph G and integers k and R

Ensure: Motifs of size k in graph G

1: subgraphCensus(k, G)

2: for i := 1 to R do

3: Ri := generateSimilarRandomNetwork(G)

4: subgraphCensus(k, Ri)

5: calculateSignificanceMotifs()

The algorithm first computes a k-subgraph census on the original network (line 1).

This results in a histogram with the frequency of all the existing classes of isomorphic

k-subgraphs. After that, an ensemble of R similar random networks is generated (line

3) and a k-subgraph census is applied to each of those networks (line 4). Finally,

after knowing the frequency of each existing isomorphic class of subgraphs on all

networks (original and randomized), its significance is calculated (line 5), with the

over-represented subgraphs being reported as motifs.
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Exemplifying, if k is 3, and if we were considering simple directed subgraphs, the 13

different classes of isomorphic 3-subgraphs depicted in Figure 3.1 would be counted in

the network (with the frequency of some of them being potentially zero). Note that if

non-simple graphs would be considered, the number of possible subgraphs would be

infinite, since for example there could be an arbitrary number of edges between any

pair of vertices.

Figure 3.1 – The 13 different classes of isomorphic subgraphs of size 3. Adapted

from [MSOI+02].

One problem with this approach is that the number of possible k-subgraphs grows

super exponentially as we increase the size k, as can be seen in Table 3.1. Naturally,

some of these subgraphs may not be found at all in the networks, but it remains that

they may all appear in the worst case scenario.

Size k 3 4 5 6 7 8 9 10

Number of

Undirected 2 6 21 112 853 ≈ 104 ≈ 105 ≈ 107

Subgraphs

Number of

Directed 13 199 9364 ≈ 106 ≈ 109 ≈ 1012 ≈ 1016 ≈ 1020

Subgraphs

Table 3.1 – Number of possible different connected directed and undirected

subgraphs with k vertices (up to 10).

3.1.2 Historical Overview

We first overview the algorithmic advances in motif discovery, and in the following

sections we give a more detailed analysis of specific algorithms. For an experimental
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comparison on the performance and execution times of the algorithms please refer to

Chapter 6.

Figure 3.2 gives an historical time line for the appearance of all the main motif

discovery algorithms. From a computer science point of view this is a relatively young

field, with the concept of motifs having only been originated in 2002 [MSOI+02].

However, it is a prolific research field, with several proposed approaches.

Figure 3.2 – Time line for motif discovery algorithms.

It is only natural that the motifs concept coincided with the first practical imple-

mentation of a sequential backtracking algorithm for finding motifs, in 2002, with

mfinder [MSOI+02]. In 2004 the first improvements appeared with the possibility of

trading accuracy for better execution times by sampling subgraphs (Kashtan [KIMA04a]).

In the same year different frequency concepts were introduced and the algorithms

were adapted accordingly (FPF [SS04]). In 2005 a breakthrough was reached, with the

appearance of the first specialized algorithm that could avoid symmetries (ESU [Wer05,

Wer06]), thus avoiding redundancy in computation. In 2006, the first algorithm able

to reach subgraph sizes bigger than 10 appeared, although it succeeded in doing

so by twisting a little bit the definition of motifs and only looking for a subset of

all possible candidates (NeMoFinder [CHLN06]). In 2007, capability of searching

and counting individual subgraphs was introduced, instead of being obliged to do a

complete subgraph census (Grochow [GK07]). In 2009, two new algorithms appeared,

similar in concept and asymptotical behavior to ESU (Kavosh [KAE+09]) and Grochow

(MODA [OSMN09]). Finally, 2010 was the year in which the core work of this thesis

was published, based around the notion of the new data-structure g-tries (refer to

Chapter 4).

All the above referenced algorithms were sequential in nature, with no known practical

and available parallel adaptations, with the exception of g-tries, which is part of

the contribution of this thesis. Parallel algorithms were indeed very scarce and
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only two approaches were published before parallel g-tries: in 2005 a single census

was parallelized statically (Wang [WTZ+05]) and in 2008 an initial sketch of the

parallelization of Grochow was provided (Schatz [SCBB08]).

3.1.3 Comparison of Existing Sequential Algorithms

In order to compare all the main present sequential algorithms, we now give a detailed

comparison table, and create an associated taxonomy, in order to give the reader a

better overall grasp of the whole set of algorithms available. This can be seen in

Table 3.2, which is followed by a description of its column fields.

Method
Strategy Symmetry Allows Sampling Graphical Public Motif

Type Breaking Sampling Bias Tool Source Size

Mfinder Network-centric no no — yes yes small

Kashtan Network-centric no yes yes yes yes large

FPF Network-centric no no — yes no small

ESU Network-centric yes yes no yes yes medium

NeMoFinder Network-centric yes no — no no large

Grochow Subgraph-centric yes no — no no1 large

Kavosh Network-centric yes no — no yes medium

MODA Subgraph-centric yes yes no no yes large

G-Tries Set-centric yes yes no no no2 large

Table 3.2 – Classification and comparison of sequential algorithmic strategies for

motifs discovery.

Method indicates the name of the algorithm, associated tool or the first author name

of the main reference. This will be the terminology used throughout this thesis when

we need to refer to a specific algorithm.

Strategy Type indicates how the algorithm approaches motif discovery, and here we

clearly divide and conceptually classify the algorithms in three large groups:

• Network-centric the method must be applied to the whole network, in order to

find all motifs. It basically consists in enumerating all subgraphs and then finding

which ones are isomorphic. The enumeration itself can be very time consuming

1Source code is available upon request, but it is not made publicly available on the web.
2Currently no, but it will soon be made publicly available.
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and afterwards we basically have several instances of the Graph Isomorphism

Problem, which is NP.

• Subgraph-centric the core of method is applicable to a single subgraph. It

basically consists in generating or choosing the candidate subgraphs (for exam-

ple, all subgraphs of a determined size) and then finding in turn all isomorphic

matchings of each individual subgraph. Each of these instances is at least as

hard as the NP-complete Subgraph Isomorphism Problem, since the subgraph

may not appear at all, and in that case we will be computing the same problem.

Moreover, if the graph exists, the given problem is even more difficult. It is not

enough to know that the subgraph appears at least once, and we also compute

its frequency.

• Set-centric the method is applied to a set of input subgraphs. It basically

consists in generating or choosing the candidate subgraphs as before, but then

it finds at the same time all isomorphic matchings of all the input subgraphs.

This is in a way a mix of the two previous approaches.

Symmetry Breaking indicates if the method only finds once each occurrence of the

motif. Since a subgraph can have several automorphisms, a careless approach could

end up finding the same subgraph following a different search path. It is therefore

desirable to find each instance only once, avoiding redundant calculations due to

symmetry.

Allows Sampling indicates if the method allows subgraph sampling in order to trade

accuracy for faster execution times. This consists in considering just a fraction of all

the subgraph occurrences, which will result in approximate results.

Sampling Bias, for the methods with sampling, indicates if this sampling is biased.

If it is the case, the method must provide a way to statically correct this bias at the

end of the computation.

Graphical Tool indicates whether the method has available a graphical production

software tool, ready to be used by anyone wishing to do so. By graphical we mean

that it has a graphical user interface and/or that it produces a visual depiction of the

results.

Public Source indicates if the source code of the respective method is publicly

available, ready to be compiled and run at the command line. All available sources

are written in C/C++, with the exception of Grochow, which is written in Java.

60



3.2. SEQUENTIAL EXACT CENSUS

Motif Size gives an indication of the size of the motifs that the respective algorithms

can process in a reasonable amount of time. We considered small for subgraph

sizes of around 4-7, medium for 6-8 and large for sizes >8. Note that the exact

maximum possible subgraph sizes depends on many factors, like the network, the

method parameters, etc. This only intends to give an approximation and let the

reader get a better feel of the algorithms. For a full evaluation of the performance of

the algorithms refer to Chapter 6.

3.2 Sequential Exact Census

As described before, one very important part of the algorithmic flow for motif discovery

is the computation of the subgraph census of a particular network. This section details

how the main algorithms do this part in an exact manner, meaning that the results

are completely accurate and not only an approximation.

We will only detail algorithms that are based upon the main standard definition of

motifs and that present a significant innovation from previous methods. This leaves

out FPF, because its focus is on using different frequency concepts, and NeMoFinder,

because it twists a little bit the definition (merging it with the frequent subgraphs

concept) in order to achieve larger subgraph sizes.

3.2.1 Original Algorithm - mfinder

The first algorithm dedicated to motif discovery appeared in 2002, and was described

in the auxiliary notes to the original paper on network motifs [MSOI+02]. As it was

shown before in Table 3.2, it is a network-centric algorithm, which means it works by

enumerating all subgraphs of a determined size. Algorithm 3.2 describes this method

using pseudo code.

The algorithm is basically a recursive backtracking search. Mfinder starts by choosing

an edge (line 1) and constructs the subgraph starting with its two constituent nodes

(line 2). Then it incrementally adds a new node that has an edge connected to the

already partially constructed subgraph (lines 9 to 12). Whenever the desired subgraph

size is achieved, the id of the corresponding isomorphism class is calculated and its

frequency is updated in an hash table (line 6). To make the search more efficient,

another hash table is maintained (in fact, one different hash table for each subgraph
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Algorithm 3.2 mfinder enumeration of subgraphs.

Require: Graph G and positive integer k

Ensure: k-subgraphs census of graph G

1: for all (i, j) ∈ E(G) do

2: searchSubset({i, j})

3: procedure searchSubset(S)

4: if |S| = k then

5: if unique(S) then

6: incrementCount(canonicalLabeling(S))

7: else

8: hash.insert(S)

9: for all i ∈ S do

10: for all (i, k) ∈ E(G) do

11: if (k /∈ S AND hash.notFound(S ∪ {k})) then
12: searchSubset(S ∪ {k})

size smaller than k) to determine all sets of vertices (subgraphs) already found. This

is used to avoid expanding again from a vertex set already explored (lines 8 and 11).

Even with these hash tables, the same subgraph can be found several times (due to

symmetries) and a test is made to certify that this is indeed a new uncounted motif

(line 5). Mfinder needs a lot of memory to maintain all the subgraphs explored (and

the associated hash tables), which hinders its capabilities to deal with large motifs.

Figure 3.3 depicts the search tree of mfinder algorithm when enumerating all sub-

graphs of size 3 of a graph with 5 vertices. Each internal node indicates the set passed

as a parameter to the searchSubet() recursive procedure. Note that several subsets

are repeated because of symmetries, which wastes computation time, although they

are not counted more than once because of the uniqueness test described above.

It should also be noted that mfinder uses a custom algorithm (not well documented)

in order to find isomorphisms. This is done in canonicalLabeling(), that computes

a canonical form of the subgraph, which is then comparable to already found occur-

rences, in the sense that if two graphs have the same canonical form, then it must

mean that they are isomorphic.
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Figure 3.3 – Search tree of mfinder algorithm looking for 3-subgraphs.

3.2.2 ESU Algorithm

ESU appeared later in 2005, and was innovative over existing algorithms because it was

able to avoid symmetries and to find all subgraphs only once. In this way, redundant

computations were avoided. Algorithm 3.3 describes ESU in pseudo-code.

Algorithm 3.3 ESU enumeration of subgraphs.

Require: Graph G and positive integer k

Ensure: k-subgraphs census of graph G

1: for all v ∈ V (G) do

2: VExt := {u ∈ N(v) : u > v}
3: extendSubgraph({v}, VExt, v)

4: procedure extendSubgraph(VSubg, VExt, v)

5: if |VSubg| = k then

6: incrementCount(canonicalLabeling(VSubg))

7: else

8: while VExt 6= ∅ do

9: remove random chosen w ∈ VExt

10: V ′
ext := Vext ∪ {u ∈ Nexcl(w, Vsubg) : u > v}

11: extendSubgraph(Vsubg ∪ {w}, V ′
ext, v)

Instead of starting with an edge, this method starts with a single “root” node and

expands from there. Its core idea is that when expanding the set of nodes, only the
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ones with an index greater than the initial spawning node are allowed (lines 2 and 10).

A list of possible vertices for extension is maintained (lines 2 and 10) and each time a

vertex is chosen for expansion it is removed from the possible extensions (line 9) and

its exclusive neighbours are added to the new possible extensions. The fact that they

are exclusive guarantees that each subgraph is enumerated exactly only once, because

the ones which are not exclusive will be added on another instance of the recursion.

In order to compute isomorphisms, ESU uses a highly efficient third-party algorithm

(nauty [McK81]).

Figure 3.4 exemplifies in detail how the algorithm enumerates all 3-subgraphs of a

graph with 5 vertices. Each internal search tree node indicates the sets passed as

parameters to the procedure extendSubgraph, respectively VSubg and VExt.

Figure 3.4 – Search tree of ESU algorithm looking for 3-subgraphs.

In 2007 another network-centric algorithm appeared claiming to be“optimal” and

faster than ESU [RI07]. This claim was, however, rebutted, and the execution times

were in fact worse than ESU [Wer10].

3.2.3 Grochow and Kellys’ Algorithm

The Grochow algorithm takes a very different approach. While the other methods

are network-centric in the sense that they discover motifs for the whole network and

only after do isomorphism tests, Grochow concentrates on counting the frequency of

a specific isomorphic class. Algorithm 3.4 describes how it counts the number of

occurrences of a single query graph.
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Algorithm 3.4 Grochow enumeration of an individual subgraph.

Require: Graph G,positive integer k and query graph H

Ensure: All occurrences of subgraph H in graph G

1: HE := equivalenceRepresentatives(H)

2: C := symmetryBreakingConditions(H)

3: Sort all g ∈ V (G) by increasing degree and then by neighbour degree sequence

4: for all g ∈ V (G) do

5: for all h ∈ HE do

6: if Supports(g, h) then

7: f := partial map associating f(h) = g

8: isomorphicExtensions(f,H,G,C)

9: Remove g from G.

10: procedure isomorphicExtensions(f,H,G,C)

11: D := domain of f

12: if D = H then

13: foundOccurrence()

14: else

15: m := most constrained neighbour of any d ∈ D

16: for all n ∈ N(f(D)), with d ∈ D do

17: if f(m) = n does not violate C AND

6 ∃d ∈ N(m) : n /∈ N(f(d)) AND

6 ∃d /∈ N(m) : n ∈ N(f(d)) then

18: f ′ = f on D and f ′(m) = n′

19: isomorphicExtensions(f ′, H,G,C)

The main idea is to progressively map the desired query subgraph H on the global

graph G, instead of enumerating, and only after check for isomorphism. The algorithm

starts by finding the equivalence classes of the query graph (line 1), in order to start

the mapping in only one representative of each class, thus avoiding unnecessary and

redundant searches. Then a series of symmetry conditions are found (line 2). The

idea is to avoid symmetries by adding constraints on the labeling of the vertices. This

is done by going through all equivalence classes and then imposing the condition that

the label of one of its vertices is smaller than the minimum label of the others. This

is done by successive calculations of the automorphisms of the graph (more details on

[GK07]).
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Figure 3.5 gives an example of the conditions found in a graph with 6 vertices. Vertices

in white are fixed by any automorphism preserving the indicated conditions. Other

vertices are coloured accordingly to their equivalence class.

Figure 3.5 – Finding symmetry conditions on a graph with 6 vertices. Adapted

from [GK07].

After doing all of this, the algorithm starts by trying to match every vertex g of the

graph G into one of the vertices h representing each equivalence class of the query

graph (lines 4 and 5). The vertices g are searched in order of their degree (line 3) to

impose more constraints on the possible candidates. When one of the h vertices is a

suitable candidate (line 6), that is, a possible match in what regards to its degree and

neighbour degrees, the algorithm continues recursively mapping more vertices to see

if the whole query graph can be mapped (line 8).

This recursion is handled by the isomorphicExtensions() procedure whose goal is to

find all isomorphic extensions of a partial map f :H → G, satisfying conditions C (line

10). In order to do this, the most constrained neighbour of g is tried (line 15), that is,

the one with theoretically fewest possible candidates (by degree, mapped neighbours,

etc). If a candidate vertex does not violate the already calculated symmetry conditions

and does not induce a contradictory neighbourhood (line 17) then we add it to the

mapping (line 18) and continue recursively (line 19) until the whole query graph is

found (line 12 and 13). When we reach this stage, we have already addressed the

isomorphism problem and we know that the found subgraph corresponds to the query

subgraph.

Figure 3.6 exemplifies the search tree of Grochow when looking for a specific 3-subgraph

in a network of size 3. The internal nodes indicate the current mapping of nodes to the

query subgraph. {v1, v2, v3} indicates a mapping of vertices v1, v2, v3 respectively to

the vertices {A,B,C}. The underscore ( ) identifies a subgraph node still not mapped.

In order to do an exhaustive census, Grochow uses McKay’s gtools package [McK98]

to generate all possible subgraphs of a determined size and then runs the single query

search to determine their frequency. Another way of using this algorithm is to include
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Figure 3.6 – Search tree of Grochow algorithm looking for a 3-subgraph.

a direct computation of whether a specific subgraph is a motif. This subgraph can

be a larger than normal randomly sampled subgraph, which would have a prohibitive

computational cost with the previous methods.

3.2.4 Kavosh Algorithm

Kavosh appeared in 2009 and, like some of the previous methods, it is network centric.

Its core idea is to find all subgraphs that include a particular vertex, then remove that

vertex and continue from there iteratively. It differs from other algorithms in that it

builds an implicit tree rooted at the chosen vertex, and then generates all combinations

with the desired number of nodes. Algorithm 3.5 details Kavosh.

Kavosh starts by choosing in turn all vertices as the root (line 3) and continues

by enumerating all subgraphs containing that vertex (line 4). This is done using

the recursive procedure enumerateVertex(), which starts by adding all unvisited

neighbors of the partially constructed subgraph (function neighbors) to list. Note

that if we are at the i-th call of enumerateVertex(), then this list contains vertices at

distance i of the root. After this step, Kavosh iterates trough all possible combinations

of this list that can give origin to a subgraph of the chosen size (lines 10 to 14). For

example, if there are 3 vertices in the list and the subgraph needs 3 more vertices,

then one can choose 1 vertex (and let the other 2 come after), or choose 2 vertices

(and let the other 1 come after) or choose all vertices (and the subgraph is complete).
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The combinations (functions initialComb() and nextComb()) are done using a “re-

volving door algorithm” [KS99]. As in ESU algorithm, the isomorphism detection is

done using nauty [McK81].

Figure 3.7 illustrates this combinatorial search. It shows how Kavosh finds all 4-

subgraphs with vertex 1 as root. The images show the constructed implicit tree and

the possible combinations of nodes at every level.

(a) The original network (b) 1-3 pattern (c) 1-1-1-1 pattern

(d) 1-2-1 pattern (e) 1-1-2 pattern

Figure 3.7 – Kavosh combinatorial search tree. Taken from [KAE+09].
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Algorithm 3.5 Kavosh enumeration of subgraphs.

Require: Graph G and positive integer k

Ensure: k-subgraphs census of graph G

1: for all u ∈ V (G) do

2: visited[u] := true

3: S0 := u

4: enumerateVertex(u, S, k − 1, 1)

5: visited[u] := false

6: procedure enumerateVertex(u, S, remainder, i)

7: if remainder = 0 then

8: incrementCount(canonicalLabeling(S))

9: else

10: list := neighbours(Si−1, u)

11: ni := minimum(|list|, remainder)

12: for ki = 1 to ni do

13: C := initialComb(list, ki)

14: repeat

15: Si := C

16: enumerateVertex(u, S, remainder − ki, i+ 1)

17: nextComb(list, ki)

18: until C = ∅
19: for all v ∈ list do

20: visited[v] := false

21: function neighbors(parents, u)

22: list = ∅
23: for all v ∈ parents do

24: for all w ∈ N(v) do

25: if u < w AND visited[w] = false then

26: visited[w] := true

27: list := list + w
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3.2.5 MODA Algorithm

MODA appeared in 2009 and is a subgraph-centric approach based on a pattern growth

methodology. Its core idea is to first query the frequency of subgraphs which are

trees, store the respective mapping in memory and then use those mappings in order

to speedup subsequent queries of non-tree subgraphs, by starting with the already

computed mappings.

In order to do this, MODA introduces the concept of expansion trees for a determined

graph size k, known as Tk. Each node of this tree is a graph that will be queried in the

original network. In the first depth level there are all possible trees with k vertices.

In the following level there are all possible expansions by adding one edge, that is, if

you remove an edge, you would get a tree. This continues iteratively by adding one

edge at a time for each increased tree depth, until a completely connected graph is

obtained. Figure 3.8 illustrates T4, the expansion tree of 4-graphs.

Figure 3.8 – The expansion tree of 4-graphs. Adapted from [OSMN09]

After computing this tree for the desired subgraph size (note that this is a statical

data structure, that can be computed once and reused for all future queries of that

size) MODA works by basically querying all subgraphs of level 1 using Grochow and

Kellis’ algorithm. Then, it follows by querying all subgraphs of level 2, using the

previous results to accelerate the search. It continues by increasing one level at a
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time, and assumes that the the mappings and frequencies of the previous level are

already computed. This algorithm is detailed in Figure 3.6.

Algorithm 3.6 MODA enumeration of undirected subgraphs.

Require: Graph G and positive integer k

Ensure: k-subgraphs census of graph G

1: Tk := expansion tree k-subgraphs

2: repeat

3: G′ := getNextBFS(Tk)

4: if ( then|E(G′)| = (k − 1)) ⊲ Is it a tree?

5: mappings(G’)

6: else

7: enumerate(G’)

8: until |E(G′)| = (k − 1)/2 ⊲ Is it a complete subgraph?

9: procedure enumerate(G′)

10: H := parent(G′,Tk)

11: FH := from memory

12: (u, v) := E(G′) - E(H)

13: for all f ∈ FH do

14: if (f(u), f(v)) ∈ G then

15: Add f into FG′

16: procedure mappings(G′)

17: grochowKellis(G′, G)

18: add found mappings to FG′

The algorithm starts by constructing the corresponding expansion tree (line 1) and

then traverses this tree in a breadth-first search way (line 3). At each step, if the

selected node of the expansion tree is a tree graph, it calls the grochowKellis procedure

(lines 4 and 5). If it is not, it calls a specialized procedure (enumerate() that

essentially loads all mappings of the parent node (lines 10 and 11) and then checks

if the new edge of the expansion tree is also present in the original network for all

possible mappings (lines 12 to 15)

One problem with this algorithm is the huge memory cost. Every possible instance

found in the network of all the k-subgraphs will eventually end up being stored in

memory. This algorithm could be adapted for directed graphs, which would exacerbate

even more the memory usage.
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3.3 Sequential Approximation Census

The problem with doing the complete census is that the number of existing subgraphs

grows super exponentially as we increase the size of the network or the size of the

subgraphs themselves. One way to cope with that growth is to sacrifice accuracy,

using a probabilistic approximation algorithm: instead of fully enumerating all the

subgraphs, we can sample a determined number of k-subgraphs in the original and in

the random networks. We can then use their concentration to obtain an approximated

z-score and therefore calculate an approximate significance, that will be more accurate

as we increase the number of samples.

3.3.1 Sampling Subgraphs - Kashtan algorithm

The first time sampling was used in the motifs realm was in 2004 [KIMA04a]. The

main idea is to have an algorithm for retrieving a sample subgraph. Then, we can

repeat the procedure as many times as we need in order to obtain a sample of the

whole set of existing subgraphs. The method for sampling one subgraph is detailed in

Figure 3.7.

Algorithm 3.7 Kashtan method for sampling one subgraph

Require: Graph G and positive integer k

Ensure: One sample k-subgraph of G and probability of obtaining it

1: Pick random edge (i, j) ∈ E(k)

2: S := {i, j}
3: while |S| 6= k do

4: Pick random v ∈ N(S) : v /∈ S

5: S := S ∪ v

6: P := Calculate probability to sample S

7: return S, P

To sample one subgraph, Kashtan chooses a random starting edge (line 1) and con-

tinues adding arbitrary new vertices that are on the neighbourhood of the partially

constructed subgraph (lines 4 to 5) until the desired subgraph size is achieved (line 3).

One problem is that this method is clearly biased because not all subgraphs have the

same probability of being sampled [KIMA04a]. To account for that, the sampling also

calculates the probability P of this graph being chosen and then assigns the sample a
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weight of W = P−1. With all this, an approximate census is a matter of calling the

algorithm the desired number of times.

3.3.2 Rand-ESU Algorithm

The ESU algorithm described in section 3.2.2 includes an option to take an uniform

sample of the whole subgraph census, as described in Figure 3.8.

Algorithm 3.8 Rand-ESU sampling of subgraphs

Require: Graph G, positive integer k and set of probabilities Pd

Ensure: Uniformly sampled k-subgraphs

1: for all v ∈ V (G) do

2: VExt := {u ∈ N(v) : u > v}
3: with probability P1 extendSubgraph({v}, VExt, v) ⊲ NEW CODE

4: procedure extendSubgraph(VSubg, VExt, v)

5: if |VSubg| = k then

6: incrementCount(canonicalLabeling(VSubg))

7: else

8: while VExt 6= ∅ do

9: remove random chosen w ∈ VExt

10: V ′
ext := Vext ∪ {u ∈ Nexcl(w, Vsubg) : u > v}

11: V ′
Subg := VSubg ∪ {w} ⊲ NEW CODE

12: with prob. P|V ′

Subg
| extendSubgraph(V

′
Subg}, V ′

Ext, v) ⊲ NEW CODE

This is essentially the same algorithm of ESU (Figure 3.3), with the exception of

the lines indicated with the NEW comment. Therefore, the same base algorithm to

enumerate all k-subgraphs is used, but each recursive call is made only with a certain

probability Pd, associated to the depth of the enumeration. Since each subgraph

appears once and only once in the search subtree, all the subgraphs have the exact

same probability of being called. More than that, we know that all subgraph samples

are different from each other, while in Kashtan there is no such guarantee. On the

other hand, we cannot exactly generate a fixed number of samples.

Since we are dealing with probabilities, we can only choose the values of Pd in order

to have an approximated number of sampled subgraphs: if we want to have a fraction

0 < q < 1 of the subgraphs samples, then we must guarantee that
∏

Pd = q. This

still leaves the open question of how to choose the individual Pd values. The general
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advice given in [Wer06] is to have larger values for small d, since if we discard an entire

search subtree near the root, a whole lot of subgraphs will not have the possibility

to be sampled. However, it must be noted that the larger these values are, then the

more time the sampling will take, since we will have to branch into more subtrees.

Note that using the value of 1 for all probabilities will result in an exact census being

computed.

An empirical comparison of the Rand-ESU and Kashtanmethods can be seen in [JHQ09].

3.3.3 MODA Sampling

In the MODA algorithm (described in Section 3.2.5), the grochowKellis() procedure

is used for a small portion of the subgraphs in the expansion tree (only level 1), but

even so this part is the bottleneck of the computation and takes a considerable amount

of time. In order to speed up this part of the algorithm, a sampling version of this

particular procedure was added to MODA, which is described in figure 3.9.

Algorithm 3.9 MODA sampling version of mapping procedure

Require: Graph G, Query tree subgraph G′

Ensure: Approximate frequency and mapping of G′

1: procedure mappingsSample(G′)

2: for i = 1 to number sample vertices do

3: v := select node from V (G) with probability proportional to degree(v)

4: for all u ∈ G′ do

5: if degree(v) ≥ degree(u) then grochowKellis(G′) with f(u) = v

6: remove v from V (G)

Instead of searching all possible mappings, this sampling procedure only finds those

which are based on sampled root vertices. Note that if number sample vertices is

equal to |V (G)| it would mean that we would have a complete and exact search.

Choosing vertices at random with a uniform distribution of V (G) did not empirically

produce reliable results, i.e., large fluctuations of the results were obtained. There-

fore, MODA uses a probability distribution proportional to the degree of the nodes,

based around the notion that subgraphs tend to aggregate around the higher degree

nodes [VDS+04]. This lead to more stable results.
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3.4 Determining the Significance

In order to determine the significance of a subgraph, an ensemble of networks similar

to the original network is created and a subgraph census is made on each of them, as

explained in Section 3.1. These networks should be simple and have the same degree

sequence as the original one, that is, all nodes should maintain the same in and out

degrees, as was exemplified in Figure 2.6.

The standard procedure is to use a Markov-Chain method, as detailed in Figure 3.10.

Starting with the original graph (line 1), a pair of edges a→b, c→d is repeatedly

swapped by a→d, b→c in order to preserve vertex in and out degree (lines 3 to 6).

The degree of randomness (line 2) is controlled by the user. Care is taken so that no

self-loops or multiple edges are introduced (line 4).

Algorithm 3.10 Markov-Chain for creating similar randomized graphs

Require: Graph G

Ensure: Random Graph similar to G

1: R := G

2: while notWellRandomized(R) do

3: Choose arbitrary (a, b), (c, d) ∈ E(R)

4: if (a, d) /∈ E(R) ∧ (c, b) /∈ E(R) ∧ a 6= d ∧ b 6= c then

5: Remove (a, b), (c, d) from E(G)

6: Add (a, d), (c, b) to E(G)
return R

Another not so common approach is to directly generate the random network from

scratch, which Milo et al. [MSOI+02] adapted from Newman et al. [NSW01]. Fig-

ure 3.11 details this procedure. It starts with an empty graph, represented by its

adjacency matrix (line 1) and repeatedly adds random connections with probabilities

related to the number of connections that still must be made on each vertex (lines 4

to 8). This continues until all vertices have the desired number of connections (line

3).

It should also be noted that the ensemble of random networks could be avoided if

analytical methods to derive the desired probability for a subgraph were available.

Recent work pursues this line of research [MSB+06, Wer06, PDK+08, SLS08], but

these theoretical statistical approaches still require further development to reach the

accuracy and generality needed for a practical application. In any case, they would

not avoid the need to compute the census in the original network.
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Algorithm 3.11 Direct method for creating similar randomized graphs

Require: Graph G

Ensure: Random Graph similar to G

1: R := empty graph

2: Ri :=
∑

j GAdj[i][j]

3: Cj :=
∑

i GAdj[i][j]

4: while ∃Ri > 0 do

5: m := arbitrary row with probability Rm/
∑

Ri

6: n := arbitrary col with probability Cn/
∑

Ci

7: if RAdj[m][n] 6= 0 then

8: RAdj[m][n] := 1

9: Ri := Ri − 1

10: Ci := Ci − 1

3.5 Parallel Algorithms

Research work on parallel algorithms for motifs discovery is still very scarce. Specific

to the motifs discovery problem and its associated subproblems, there are only two

distinct implemented and studied parallel approaches available [WTZ+05, SCBB08].

Schreiber and Schwobbermeyer [SS04] do refer they were working on implementing a

parallel version of their algorithm, but they defer the scalability analysis and further

studies to possible future work.

These two parallel approaches were not subject to detailed and extensive scalability

analysis and focus essentially on parallelizing a single complete census. Parallelism on

the whole motifs discovery problem can then only be achieved by calculating consec-

utively the parallel census of the original and random networks, making it necessary

to have synchronization after each census. The process of randomly generating a set

of similar networks is also done sequentially.

3.5.1 Wang et al.

Wang et al. [WTZ+05] rely on finding neighborhood assignments for each vertex that

avoid overlapping and redundancy on subgraph counts (as in the ESU algorithm), and

try to statically balance the workload before the computation begins using mostly

the node degrees. However, they do not detail the static scheduling process and they
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do not study the scalability of their approach, limiting the empirical analysis to a

single network (the E. coli transcriptional regulation network), and a fixed number

of processors (32). The obtained speedup was not linear. Another characteristic of

their approach is that they do not do isomorphism tests during the parallel compu-

tation, that is, they wait until the end to check all the subgraphs and compute the

corresponding isomorphic classes.

3.5.2 Schatz et al.

Schatz et al. [SCBB08] focuses instead on parallelizing Grochow and Kellis [GK07]

approach. They do different single subgraph queries at the same time on differ-

ent processors in a master-worker strategy, experimenting with static pre-computed

scheduling (the same number of queries for each processor) and first-fit scheduling

(meaning that workers only process one query at a time and when they finish it

they ask the master for more work). The later was shown to have almost linear

speedup against the corresponding sequential algorithm up to 64 processors, although

it should be noticed that they only used one experimental network and in terms of

motif discovery, following the Grochow and Kellis [GK07] approach, they would have

to query the entire set of possible k-subgraphs, even when some of those subgraphs

may not even appear on the networks.

They have also tried to parallelize a single query using a network partition algorithm

that creates small overlapping regions, adding some overhead for possibly repeated

computations. This lead to some speedup, but again it was only tested on a single

network and for eight different 7-subgraph queries.

3.6 Summary

This chapter has an extensive review of the state of the art in motif discovery. Being

a relatively young field, a walk trough all algorithmic innovations was done, and a

time line and comparison table was shown. Then, all main sequential algorithms were

described in more detail, including pseudo-code. Care was taken to describe exact and

approximate algorithms, as well as how similar random networks can be generated. A

look at the existing parallel approaches was also included.
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Get your data structures correct first, and

the rest of the program will write itself.

David Jones

4
The G-Trie Data Structure

The algorithms mentioned in the previous chapter still present serious limitations

on the maximum feasible network and motif sizes. They follow one of two extreme

approaches: either all subgraphs of a given size are enumerated and then checked

for isomorphism, or individual subgraphs are queried on the desired network. There

was no intermediate approach that would enable us to query sets of subgraphs: not

necessarily all, but also not just one subgraph. In order to follow this path, a novel data

structure was created, the g-tries, that is the subject of this chapter. G-tries enable

new algorithms with great potential for efficiency gains. We start by presenting the

inspiration and motivation behind it and follow with a more concise definition. We

then describe in detail the associated algorithms and how they can be used to discover

motifs.

4.1 Motivation and Prefix Trees

When analyzing the previous motif discovery methods, some common drawbacks were

identified. All network-centric methods start by first computing a complete census of

the respective network, regardless of it being the original or a similar random network.

However, the random networks can contain more types of subgraphs than the original

one. And we can know beforehand that specific subgraph classes can not possibly

be motifs (for example because they do not present the minimum desired frequency).

This means that by doing a complete census on the random networks, the operation
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that is the bottleneck of motif computation, since this ensemble has at least dozens of

networks, we will be doing a significant proportion of unnecessary work, by discovering

the frequency of subgraphs that are not interesting from the point of view of motifs

calculation.

Subgraph-centric methods appeared later and were able to give a workaround to this

problem. However, they work by finding in turn the frequency of individual subgraphs.

This means that there will be redundant work, in the sense that the same nodes will

have to be traversed for every single interesting subgraph class. Two subgraphs that

are exactly the same with the exception of a single node, will be computed extensively

and separately without taking advantage of that similarity.

The main idea for a new methodology for discovering motifs is therefore to explore

these aspects to gain computational efficiency. We wanted an algorithm that is

specialized in finding a set of subgraphs, that is not necessarily all possible subgraphs,

but also not just one single subgraph. This is the core of what motif algorithms

are really doing on the random network census computation, which constitutes the

bottleneck of the whole motif discovery process.

In many ways, what scientists are now doing with graphs is comparable to what was

done in sequences. Indeed, the word motif is also recurrent in sequence analysis,

particularly in DNA analysis, meaning a sequence that is interesting because it is

statistically over-represented. Metaphorically, network-centric methods are the equiv-

alent of searching all possible words of a determined size that exist in a word. In

contrast, subgraph-centric methods are equivalent to searching one word individually,

and then start over the search for each new word query, without reusing anything from

past queries.

In sequences, if we want a data structure that can store a set of a words, that is, a

dictionary, one has many options. One of those is the trie data structure, also known

as a prefix tree [Fre60]. Introduced in 1960 by Fredkin, tries make use of common

prefixes of sequences. They are basically trees, where all descendants of a node have

the same common prefix, as illustrated in Figure 4.1. Note how common prefixes are

aggregated in the same nodes.

Algorithmically, tries can be considered an efficient structure. They provide linear

execution time for verifying if a word of size n is in the set. Basically we can just

descend the trie, one letter at a time. In memory terms they also provide big saves

when comparing to actually storing all the words, because common prefixes are only

stored once, avoiding redundancy.
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Figure 4.1 – A trie representing a set of four words.

One of the possible usages of a trie is to discover instances of all the words contained

in the trie. When we have a partial match of a word, we know exactly which words

can be formed from that particular subsequence. In that sense we do not need to do

the redundant work of searching again for the same prefix if we would start to look

for a new word disregarding previous searches. More than that, at a certain point, we

could know that there is no possible word of a determined size starting with a certain

prefix, since there are no descendant nodes, and we could stop the computation on

that search branch.

The core idea for the new g-trie data structure is to take advantage of these conceptual

advantages and apply them in the graphs realm, as we show in the next section.

4.2 G-Tries Definition

A trie takes advantage of common prefixes. By analogy, g-tries take advantage of

common substructures in a collection of graphs. In the same way two or more strings

can share the same prefix, two or more graphs can share a common smaller subgraph.

Figure 4.2 exemplifies this. The five graphs all share a common strongly connected

3-subgraph indicated by the light vertices and thick edges.

Figure 4.2 – Common substructures in graphs.

Like tries, g-tries are trees. Each trie node has a single letter and each g-trie node
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will represent a single graph vertex. Each vertex is characterized by its connections

to the respective ancestor nodes. This can be visualized in Figure 4.3. Each tree node

adds a new vertex (in black) to the already existing ones in the ancestor nodes (light

vertices).

Figure 4.3 – A g-trie representing a set of 6 undirected graphs.

Note that all graphs with common ancestor tree nodes share common substructures

that are characterized precisely by those ancestor nodes. A single path through the tree

corresponds to a different single graph. Children of a node correspond to the different

graph topologies that can emerge from the same subgraph. Graphs of different sizes

can be stored in the same tree if each tree node also signals if it corresponds to

the “end” of a graph. All of this is easily generalizable to directed subgraphs (see

Figure 4.4), and also to colored graphs.

We call these kind of trees as g-tries, following the etymology “Graph reTRIEval”.

We now give an informal definition of this abstract data structure. Note that a

multiway tree is a tree with a variable number of children per tree node.

Definition 4.1 (G-Trie) A g-trie is a multiway tree that can store a collection of

graphs. Each tree node contains information about a single graph vertex, its corre-

sponding edges to ancestor nodes and a boolean flag indicating if that node is the last

vertex of a graph. A path from the root to any g-trie node corresponds to one single

distinct graph. Descendants of a g-trie node share a common subgraph.

In order to avoid further ambiguities, throughout this chapter we will use the term

nodes for the g-trie tree nodes, and vertices for the graph network nodes.
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Figure 4.4 – A g-trie representing a set of 4 directed graphs.

4.3 A G-Trie Implementation

For the purposes of this work we need to implement g-tries efficiently and with the

ability to support undirected and directed graphs. As we have seen, a g-trie is a tree

where in each node we need to store two different types of data:

• The connections of the new vertex to the already existing vertices in the ancestor

nodes. We will use two variables: in represents the ingoing edges and out the

outgoing edges. In an undirected subgraph basically in is the same as out and

can be disregarded if one wants to save memory.

• A flag indicating if the path from the root to that node corresponds to a graph

that is stored on that g-trie. We will call isGraph to this g-trie node variable.

The flag is implemented as a boolean variable. There are however several options to

store the connections. For the first practical implementation we chose the equivalent of

the adjacency matrix, a simple yet effective option. For illustration purposes, we will

use the standard 0-1 way of representing a cell of the adjacency matrix (’1’ indicates

a connection and ’0’ its absence).

Given this, on any node, out stores the adjacency matrix row up to that vertex and

in stores the adjacency matrix column up to that vertex. In any case, given a path

from the root to a node, we have a fully specified graph. Note that the g-trie root

node must be empty since there are two possible direct child nodes: a vertex with
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or without a connection to itself. In this way, g-tries are also able to accommodate

self-loops.

Figure 4.5 exemplifies this implementation. White g-trie nodes have the boolean

isGraph variable set to false and gray g-trie nodes have it set to true, the later

meaning that a path to that node represents a graph in the set. Since we are dealing

with undirected graphs, we only show the contents of the out variable, represented

by a sequence of 0-1 numbers indicating the corresponding adjacency matrix row.

Exemplifying, if the sequence starts by ’1’ it means that the new vertex is connected

to the first vertex of the graph. If it is ’0’, it means it is not connected to that vertex.

The adjacency matrix of the undirected graphs is a triangle matrix formed by the

sequence of out variables of each node in the path from the root to its end node.

Figure 4.5 – An implementation of g-tries using adjacency matrices.
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4.4 Creating a G-Trie

The first task one must be able to do in order to use g-tries is of course to be able to

create one. The following sections will show how we do this.

4.4.1 Iterative Insertion

In order to construct a g-trie, we just repeatedly insert one subgraph at a time, starting

with an empty tree (just a root node). Each time, we traverse the tree and verify if

any of the children has the same connections to previous nodes as the graph we are

inserting. With each increase in depth we also increase the index of the vertex we are

considering.

Figure 4.6 exemplifies this process. The g-trie tree node squares in gray are the

new ones after each insertion and node squares in white are the ones that remain

from before. Squares with dashed lines represent the actual g-trie implementation

with adjacency matrices, and squares with normal lines give the correspondent visual

representation. Black vertices indicate new vertices, while the old ones are white.

Nodes with the isGraph variable set to true are also indicated with the subtext

“isGraph”.

Figure 4.6 – Sequential insertion of 3 graphs on an initially empty g-trie.
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4.4.2 Canonical Representation of Graphs

The same graph can be represented by different adjacency matrix representations. In

this section we will first explain why we need to use a canonical representation and

will then describe our custom canonical form.

4.4.2.1 The Need for a Canonical Form

Following the described insertion procedure, the insertion is completely defined by the

adjacency matrix of the inserted graph. However, there are many different possible

adjacency matrices representing the same class of isomorphic graphs. This is exem-

plified in Figure 4.7. Note how the labeling of the vertices affects the correspondent

matrix.

Figure 4.7 – Three different adjacency matrices representing the same graph.

The problem with this is that different matrices will give origin to different g-tries.

We could even have two isomorphic graphs having different g-trie representations,

leading to different branches of the tree representing the same graph, which would

contradict the purpose of the g-trie. In order to cope with that we must use a

canonical labeling, which guarantees that isomorphic graphs will always produce the

same univocal adjacency matrix, and therefore the same set of subgraphs is guaranteed

to produce the same g-trie.

4.4.2.2 Impact on the G-Trie Structure and Compression Ratio

There are many possible canonical representations, and the representation used di-

rectly and significantly impacts the g-trie structure. In order to illustrate this, consider

the string formed by the concatenation of all adjacency matrix rows, and call it

adjacency string. Any choice of canonical representation will give origin to different

adjacency strings. Two possible options of forming a canonical adjacency string would

be to consider the lexicographically larger or the lexicographically smaller one for each

graph.
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Figure 4.8 illustrates the g-tries generated for each of these possible choices for the

same set of six 4-graphs. Note the contrast between these two choices, with completely

different structures of the g-trie formed. One can clearly observe a variation on the

number of g-tries nodes needed and a different balance on the nodes of each size of

the g-trie.

Figure 4.8 – Two different g-tries using lexicographically larger and smaller

adjacency strings.

If we increase the amount of common ancestor topologies, we decrease the size of

the tree and effectively we compress the representation, needing less memory to

represent it than when we had the original set of subgraphs (represented by their

adjacency matrices). We can measure the amount of compression if we take into

account the number of nodes in the tree and the number of vertices in the subgraphs

(equation (4.1)). By using a tree we do have to spend some auxiliary memory to
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represent the tree edges, but the total memory needed for the tree structure is very

small compared to the actual information stored in the nodes (the graph adjacency

matrix) and loses relative weight as we increase the amount of subgraphs and their size.

Hence, the real memory bottleneck is in the storage of node values, and equation (4.1)

is a good indicator of how much space we save and how much common substructure

we identified.

compression ratio = 1− nodes in tree∑
nodes of stored graphs

(4.1)

As an example, the two g-tries constructed in figure 4.8 have a compression ratio of

respectively 58.34% = 1 − 10/24 (lexicographically larger) and 45.84% = 1 − 13/24

(lexicographically smaller). We can ignore the root, since it uses constant memory

space and only exists as a placeholder for the initial children representing the first

vertex. A tree with no common topologies would need a node for each graph vertex

and would have a 0% compression ratio.

4.4.2.3 An Efficient Custom Built Canonical Form

The lexicographically largest adjacency string seems like a very good candidate for

the canonical representation and in fact it was the first we experimented. However,

it is not the only possible choice. In general, a canonical label suitable for g-tries use

should observe the following properties:

• Connectivity: the path from the root to any given node always induces a

connected subgraph.

• Compressibility: the g-trie should have the least possible number of nodes,

that is, the one that identifies more common sub-structure and avoids redundant

representations, and computations.

• Constraining: new subgraph vertices should have as many connections as

possible to the ancestors, in order to highly constraint the choice of possible

network vertices that will match with it. The worst case is a vertex not connected

at all to previous vertices, which will allow any unconnected and unused network

vertex to be candidate match for it.

Choosing the lexicographically largest string obeys to the first two properties but does

not try to factor directly on the third. It is also very time consuming to compute.
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Given this, we opted to create our own more efficient canonical representation, geared

to being more efficient to compute and as constraining as possible for later use when

matching the g-trie graphs as subgraphs of another larger network. Algorithm 4.1

describes our method for computing a canonical form, and we call it GTCanon.

Algorithm 4.1 Converting a graph to a canonical form

Require: Graph G

Ensure: Canonical Form of G

1: function GTCanon(G)

2: G := nautyLabeling(G)

3: for all i ∈ V (G) do

4: current degree[i] := nr ingoing+outgoing connections of i

5: global degree[i] := last degree[i] := current degree[i]

6: for pos : |V (G)| down to 1 do

7: Choose umin subject to:

8: • umin is still not labeled and is not an articulation point

9: • umin has minimum current degree

10: • In case of a tie, umin has minimum last degree

11: • In case of a new tie, umin has minimum global degree

12: label[umin] := pos

13: last degree[] := current degree[]

14: update current degree[] removing umin connections

15: return label[]

The first step of GTCanon is to apply any other canonical representation. In our case

we use nauty [McK81], a proven and very efficient third-part algorithm (line 2). Then,

several lookup tables are initialized with the degrees of every node of the graph. The

core of the algorithm is iterative and in each step we select a new node for being

labeled at the last available labeling position. The idea is to choose a node that has

the minimum amount of connections as possible (lines 9 to 11), guaranteeing that it

does not divide the graph in two (line 8) and then label it (line 12) and remove it from

the graph. Before the next iteration, the lookup tables with degree information are

updated (lines 13 and 14).

By removing a node not densely connected to the rest of the graph, we increase

the number of connections in lower labeling positions, and therefore we increase

constraining. By not choosing articulation points, we guarantee connectivity in the
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subgraph. Finally, each time we remove a node, we get a smaller instance of the same

problem, having to compute a canonical form of the graph with one less vertex. By

using the same criteria on each phase for all graphs, we increase the compressibility.

When our criteria does not suffice to chose an unique candidate, the fact that we

first used another canonical form guarantees that GTCanon will also be canonical and

always return the same labeling for isomorphic graphs.

Note that computing a canonical form is always a computational hard problem because

solving it is at least as hard as the isomorphism problem (two graphs are isomorphic if

they have the same canonical form). However, GTCanon takes advantage of an efficient

third party algorithm, nauty, which is state-of-art, and uses an efficient algorithm

after that computation. Computing the articulation points can be done in linear time

O(|V (g)|+ |E(G)|) with a simple depth-first search [Tar71]. Computing and updating

the three degree arrays can also be done in linear time.

Figure 4.9 illustrates GTCanon in action, showing a g-trie built with the algorithm

and containing the 11 subgraphs of size 5 found in an electronic circuit network. The

Figure was automatically created using our own g-trie drawing code.

Figure 4.9 – A g-trie containing 11 undirected 5−subgraphs.

The results chapter gives more empirical verification that GTCanon is indeed a good

choice for the labeling (see Section 6.2.2.1).
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4.4.3 Insertion Algorithm

With the considerations made in the previous sections we are now ready to detail our

algorithm for creating a g-trie. Algorithm 4.2 details a method to insert a single graph

in a g-trie. As said, constructing a complete g-trie from a set of subgraphs can be

done by inserting the graphs, one by one, into an initially empty tree.

Algorithm 4.2 Inserting a graph G in a g-trie T

Require: Graph G and G-Trie T

Ensure: Inserts graph G in G-Trie T

1: procedure gtrieInsert(G, T )

2: M := adjacency matrix of GTCanon(G)

3: insertRecursive(M,T, 0)

4: procedure insertRecursive(M,T, k)

5: if k = numberRows(M) then

6: c.isGraph = true

7: else

8: for all children c of T do

9: if (c.out = first k + 1 values of k-row of M) AND

10: (c.in = first k + 1 values of k-column of M) then

11: insertRecursive(M, c, k + 1)

12: return

13: nc := new g-trie node

14: nc.in := first k + 1 values of k-row of M

15: nc.out := first k + 1 values of k-column of M

16: nc.isGraph := false

17: T .insertChild(nc)

18: insertRecursive(M,nc, k + 1)

Explaining in more detail, we start by calculating the canonical adjacency matrix of

the graph being inserted (line 2). Then we recursively traverse the tree, inserting new

nodes when necessary, with the procedure insertRecursive(). This is done by going

through all possible children of the current node (line 8) and checking if their stored

value is equal to the correspondent part of the adjacency matrix (lines 9 and 10). If it

is, we just continue recursively with the next vertex (line 11). If not, we create a new

child (lines 13 to 16) and continue as before (line 18). When there are no more vertices
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to process, we stop the recursion (line 5) and set the isGraph variable, indicating the

end of the graph (line 6).

Regarding the complexity of the algorithm, insertRecursive() takes O(|V (G)|2),
the size of the adjacency matrix. Besides this, the whole insertion needs to calculate

the canonical labeling of the graph.

After constructing the g-trie, if we want to retrieve the initial set of graphs a simple

depth-first search of the tree will suffice. A path from the root to any given g-trie

node at depth k with isGraph set to true, represents a k-graph.

4.4.4 Reusing G-Tries

There are cases in which it would be very fruitful to reuse a g-trie previously created.

For instance, we can pre-compute a g-trie containing all possible k-subgraphs, or we

can store a g-trie containing only the subgraphs that are meaningful in the context of

some subject we are studying.

For situations like these one, we created the option to serialize a g-trie, providing the

ability to write an read a g-trie to the file system. For our initial implementation and

in order to be able to use it in any computational environment, we used text files and

compressed the information using only printable characters, that are constant for any

encoding system.

The results chapter details the performance of reading and writing g-tries to the file

system (see Section 6.2.1).

4.5 Computing subgraph frequencies

Once the g-trie is built, the next logical step in order to find motifs is to create

a method for finding instances of the g-trie graphs as subgraphs of another larger

network.

4.5.1 An Initial Approach

Algorithm 4.3 details a method for finding and counting all occurrences of the g-

trie graphs as induced subgraphs of another larger graph. The main idea is to
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backtrack through all possible subgraphs, and at the same time do the isomorphism

tests as we are constructing the candidate subgraphs. We take advantage of common

substructures in the sense that at a given time we have a partial isomorphic match

for several different candidate subgraphs (all the descendants).

Algorithm 4.3 Census of subgraphs of T in graph G

Require: Graph G and G-Trie T

Ensure: All occurrences of the graphs of T in G

1: procedure gtrieMatch(T, G)

2: for all children c of T.root do match(c, ∅)
3: procedure match(T, Vused)

4: V := matchingVertices(T, Vused)

5: for all node v of V do

6: if T.isGraph then foundMatch(Vused ∪ {v})
7: for all children c of T do

8: match(c, Vused ∪ {v})
9: function matchingVertices(T, Vused)

10: if Vused = ∅ then Vcand := V (G)

11: else

12: Vconn := {v : v ∈ N(Vused)}
13: m := m ∈ Vconn : ∀v∈ Vconn, |N(m)| ≤ |N(v)|
14: Vcand := {v ∈ N(m) : v 6∈ Vused}
15: V ertices := ∅
16: for all v ∈ Vcand do

17: if ∀i∈[1..|Vused|]:
18: T.in[i] := GAdj [Vused[i]][v] ∧ T.out[i] = GAdj[v][Vused[i]] then

19: V ertices := V ertices ∪ {v}
20: return V ertices

At any stage, Vused represents the currently partial match of graph vertices to a g-trie

path. We start with the g-trie root children nodes and call the recursive procedure

match() with an initial empty matched set (line 2). The later procedure starts by

creating a set of vertices that completely match the current g-trie node (line 4). We

then traverse that set (line 5) and recursively try to expand it through all possible

tree paths (lines 7 and 8). If the node corresponds to a full subgraph, then we have
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found an occurrence of that subgraph (line 6). Note that at this time no isomorphic

test is needed, since this was implicitly done as we were matching the vertices.

Generating the set of matching vertices is done in the matchingVertices() procedure.

The efficiency of the algorithm heavily depends on the above mentioned constraints

as they help in reducing the search space. To generate the matching set, we start by

creating a set of candidates (Vcand). If we are at a root child, then all graph vertices are

viable candidates (line 10). If not, we select from the already matched vertices that

are connected to the new vertex (line 12), the one with the smallest neighborhood

(line 13), thus reducing the possible candidates to the unused neighbors (line 14).

Then, we traverse this set of candidates (line 16), and if one respects all connections

to ancestors (lines 17 and 18) we add it to the set of matching vertices (line 19). Since

we are using the lexicographically larger representation, the initial nodes will have the

maximum possible number of connections. This also helps in constraining the search

and reducing the possible matches.

Figure 4.10 exemplifies the flow of the previously described procedure, when searching

for a 3-subgraph on a graph of 6 vertices. Note how the subgraph {0, 1, 4} is found

twice. This particular property of the procedure as it is now defined will be the subject

of the next section.

Figure 4.10 – An example of a partial program flow of the recursive g-trie match()

procedure.
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4.5.2 Breaking Symmetries

One problem with the gtrieMatch() method described is that we do not avoid

subgraph symmetries. If there are automorphisms on a subgraph, then that specific

subgraph will be found multiple times. In the example of figure 4.10, we would not

only find {0, 1, 4} but also {0, 4, 1}, {1, 0, 4}, {1, 4, 0}, {4, 0, 1} and {4, 1, 0}. At the

end we can divide by the number of automorphisms to obtain the real frequency, but

a lot of valuable computation time is wasted.

4.5.2.1 Creating a Set of Symmetry Breaking Conditions

G-tries need to avoid this kind of redundant computations and find each subgraph

only once. In order to achieve that we generate a set of symmetry breaking conditions

for each subgraph, similarly to what was done by Grochow and Kellis [GK07]. The

main idea is to generate a set of conditions of the form a < b, indicating that the

vertex in position a should have an index smaller than the vertex in position b.

Figure 4.11 shows an example of a graph and conditions of the type we described that

break the symmetry. The conditions fix the position of the vertices indicated in white.

Vertices in other colors have at least another equivalent vertex.

Figure 4.11 – Symmetry breaking conditions for an example 4-graph.

Although inspiration was taken from Grochow and Kellis [GK07], a different method

for generating the conditions is used, which we detail in algorithm 4.4. Our algorithm

differs from Grochow and Kellis [GK07] because of the method by which we choose

the candidates for the conditions.

We start by emptying the set of conditions (line 2). We then calculate the set Aut of

automorphisms of the graph (line 3), and start adding conditions that when respected

will reduce the above mentioned set to the identity map. Note that although calcu-
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Algorithm 4.4 Symmetry breaking conditions for graph G

Require: Graph G

Ensure: Symmetry breaking conditions of G

1: function gtrieConditions(G)

2: Conditions := ∅
3: Aut := setAutomorphisms(G)

4: while |Aut| > 1 do

5: m := minimum v : ∃map ∈ Aut,map[v] 6= v

6: for all v 6= m : ∃map ∈ Aut,map[m] = v do

7: add m < v to Conditions

8: Aut := {map ∈ Aut : map[m] = m}
9: return Conditions

lating automorphisms is thought to be computationally expensive, in practice it was

found to be almost instantaneous for the subgraph sizes used and with nauty [McK81]

we were able to test much bigger subgraphs (with hundreds of nodes) and obtain their

respective automorphisms very quickly, in less than 1 second. Thus, this calculation is

very far from being a bottleneck in the whole process of generating and using g-tries.

In each iteration, to add a new condition, the algorithm finds the minimum index

m corresponding to a vertex that still has at least another equivalent node (line 5).

It then adds conditions stating that the vertex in position m should have an index

lower than every other equivalent position (lines 6 and 7), which in fact fixes m in its

position. We choose the minimum index vertex so that, when searching, we can know

as soon as possible that a certain partial match is not a suitable candidate. Note that

lower indexes mean lower depths in the g-trie.

After this, the algorithm reduces Aut by removing the mappings that do not respect

the newly added connections, that is, the ones that do not fix m. It repeats this

process until there is only the identity left Aut′ (line 4), and finally returns all the

generated conditions (line 9). In the case of the graph of figure 4.11, this algorithm

would create the exact same set of conditions as depicted there. Figure 4.12 illustrates

the symmetry conditions found for all 6 undirected graphs of size 4, with all graphs

in the GTCanon canonical form.
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Figure 4.12 – Symmetry conditions computed for all undirected 4-subgraphs.

4.5.2.2 Using the Conditions to Constrain the Search

In order to use the symmetry breaking conditions in g-tries, we store the graph symme-

try conditions in all the nodes corresponding to its g-trie path. The matching algorithm

can then determine if the partial subgraph constructed respects the conditions of at

least one possible descendant g-trie node, that is, there is at least one possible subgraph

that can still be constructed by expanding the current partial match and still obeys

to the symmetry conditions.

Algorithms 4.5 details how the insertion of the conditions is done. For the sake of

understanding, we repeat several lines that are the same as the previous insertion

algorithm, and indicate which lines are new. Basically, the only difference is that

we now compute the symmetry breaking conditions (line 3) and then we store those

conditions along the g-trie path that leads from the root to the final graph node (line

18).

With the symmetry breaking conditions placed in the g-trie nodes, we are now able

to search more efficiently for subgraphs. Algorithm 4.6 details how a census with

symmetry breaking is done. The same conventions of the insertion algorithm are

followed, meaning that we repeat lines that were already on the previous census

algorithm and we indicate the new lines of code.

The basic difference is that we now only accept matchings that respect at least one of

the sets of conditions stored, that is, that can still correspond to a descendant graph

(line 11). Moreover, we detect the minimum possible index for the current node being

matched (line 12) and use it to further constraint the generation of candidates (lines

13 and 15). If the neighbours of each network node are sorted (which can be done only

once before starting the census), we can use this minimum to discover that further

smaller neighbours will never be suitable candidates. In the end we must verify that
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Algorithm 4.5 Inserting a graph G in a g-trie T [with symmetry breaking]

Require: Graph G and G-Trie T

Ensure: Inserts graph G in G-Trie T

1: procedure gtrieInsert(G, T )

2: M := adjacency matrix of GTCanon(G)

3: C := symmetryConditions(G) ⊲ NEW CODE

4: insertCondRecursive(M,T, 0, C) ⊲ NEW FUNCTION HEADER

5: procedure insertCondRecursive(M,T, k, C) ⊲ NEW FUNCTION HEADER

6: if k = numberRows(M) then

7: c.isGraph = True

8: else

9: for all children c of T do

10: if (c.out = first k + 1 values of k-row of M) AND

11: (c.in = first k + 1 values of k-column of M) then

12: insertCondRecursive(M, c, k + 1, C) ⊲ NEW FUNCTION HEADER

13: return

14: nc := new g-trie node

15: nc.in := first k + 1 values of k-row of M

16: nc.out := first k + 1 values of k-column of M

17: nc.isGraph = False

18: nc.addConditions(C) ⊲ NEW CODE

19: T .insertChild(nc)

20: insertCondRecursive(M,nc, k + 1, C) ⊲ NEW FUNCTION HEADER

a particular matching respects all symmetry breaking conditions for that subgraph.

If the graph final vertex is in a g-trie leaf, this step can be skipped, since for sure the

conditions are respected. However, if the g-trie node is not a leaf, the search might

have arrived there because of the conditions of another descendant subgraph, and

therefore the algorithm must assure that the conditions for that particular subgraph

are respected.

The method to choose the minimum possible index for the current node that still

respects the symmetry conditions (labelmin on line 12) consists in computing, for each

set of conditions, the maximum already mapped node that must be smaller than the

current node, and then we pick the minimum of these. Illustrating with an example,

imagine that we are trying to match a node to position 2, the symmetry conditions
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Algorithm 4.6 Census of subgraphs of T in graph G [with symmetry breaking]

Require: Graph G and G-Trie T

Ensure: All occurrences of the graphs of T in G

1: procedure gtrieMatchCond(T, G)

2: for all children c of T.root do matchCond(c, ∅) NEW FUNCTION HEADER

3: procedure matchCond(T, Vused) ⊲ NEW FUNCTION HEADER

4: V := matchingVerticesCond(T, Vused) ⊲ NEW FUNCTION HEADER

5: for all node v of V do

6: if T.isGraph ∧ T.GraphConditionsRespected() then ⊲ UPDATED CODE

7: foundMatch(Vused ∪ {v}) ⊲ UPDATED CODE

8: for all children c of T do

9: matchCond(c, Vused ∪ {v}) ⊲ NEW FUNCTION HEADER

10: function matchingVerticesCond(T, Vused) ⊲ NEW FUNCTION HEADER

11: if NOT ∃C ∈ T.cond : Vused respects C then return ∅ ⊲ NEW CODE

12: labelmin := minimum possible index for current position ⊲ NEW CODE

13: if Vused = ∅ then Vcand := {v ∈ V (G) : v ≥ labelmin} ⊲ UPDATED CODE

14: else

15: Vconn := {v : v ∈ N(Vused) ∧ v ≥ labelmin} ⊲ UPDATED CODE

16: m := m ∈ Vconn : ∀v∈ Vconn, |N(m)| ≤ |N(v)|
17: Vcand := {v ∈ N(m) : v 6∈ Vused}
18: V ertices := ∅
19: for all v ∈ Vcand do

20: if ∀i∈[1..|Vused|]:
21: T.in[i] := GAdj [Vused[i]][v] ∧ T.out[i] = GAdj[v][Vused[i]] then

22: V ertices := V ertices ∪ {v}
23: return V ertices

are {{0<1, 1<2}, {0<2, 1<2}}, and the current matching is Vused = {34, 12}, which
means that network node number 34 is matched to position 0, and node 12 is matched

to position 1. Since we are matching position 2, only the conditions with 2 matter.

For the first set this is 1<2, which means that the current node must be larger than

12. For the second set, we must take into consideration 0<2 and 1<2, which means

that the node must be simultaneously larger than 34 and 12. We take the maximum,

which is 34. Afterwards, we know that the node must be larger than 12 (first set) or

99



CHAPTER 4. THE G-TRIE DATA STRUCTURE

larger than 34 (second set), and therefore we take the minimum, and we would have

labelmin := 12. If any set of conditions is empty, than labelmin := 0, that is, there is

no minimum for the index of the node.

With these two symmetry aware algorithms (insertion and census), a subgraph will

only be found once. All other possible matchings of the same set of vertices will

be broken somewhere in the recursive backtracking. Moreover, since the conditions

generation algorithm always create conditions of the minimal indexes still not fixed

(line 5 of algorithm 4.4), the census algorithm can discover early in the recursion that

a condition is being broken, therefore cutting branches of the possible search tree as

soon as possible.

4.5.2.3 Reducing the Number of Conditions

By using the last two algorithms, we may end up having a large number of symmetry

conditions on a single g-trie node, since it can have a very large number of descendants.

This can have a severe impact on memory costs and influence the performance, and

we should reduce as much as possible this cost. With that in mind, we use four steps

to filter and reduce the symmetry conditions.

Step #1 reduces the set of conditions by using the transitive property of the “less”

relationship, and in the cases where a < b, a < c and b < c are in the set of conditions,

we remove the condition a < c. This is illustrated in Figure 4.13, for all 6 undirected

4-graphs.

Step #2 reduces the conditions to the ones that matter to that particular node. This

means that if we are at a certain g-trie depth, conditions in which one of the elements

is bigger than the depth are discarded, that is, the conditions that are referring to

descendant nodes that are still not matched. Figure 4.14 illustrates how a g-trie

containing all 6 undirected 4-graphs would look like after this step.

Step #3 discards sets of conditions that are redundant. Since each g-trie node has a

group of sets of conditions (one for each descendant graph) and it must assure that at

least one of those sets is respected (meaning that that at least one descendant graph

is achievable), we search the group for sets that are redundant, in the sense that they

include another one, and we remove those sets. For instance, a descendant graph that

imposes no conditions at all means that any partial match must be continued from

there because of that graph. Therefore, no more sets of conditions are needed in that

g-trie node, besides the empty one. Another example can be given using the sets of
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Figure 4.13 – Filtering symmetry conditions: step #1.

conditions {{0<1}, {0<1, 1<2}}. In this case we can discard the second set since the

first one is included in it, that is, if a partial graph respects the second set, it would

also respect the first set, and therefore the second set is redundant if the algorithm

is trying to assure that at least one of the condition sets is respected. Figure 4.15

illustrates how the same g-trie containing all 6 undirected 4-graphs would look like

after this third filtering step.

Step #4 is the final one and removes conditions that are already assured. It is applied

after having all graphs already inserted in the g-trie, and all other filtering steps are

already made. If at any g-trie node there is a specific condition a<b that is included

in all of the sets, we can be assured that this condition is certainly respected and

all descendant nodes do not need to verify it again. As an example, consider the

set {{0<1}, {0<1, 1<2}}. The condition 0<1 is in every set and therefore we remove

it from all descendant g-trie nodes. In the case of the g-trie with all undirected 4-

subgraphs, this particular filtering step does not remove any conditions, but in larger

g-tries it can eliminate a large number of conditions.

By following the 4 described filtering steps, the resulting g-trie has a much reduced

number of stored conditions, which will not only save memory, but will also be more

efficient for census computation, as there are less conditions to be verified.
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Figure 4.14 – Filtering symmetry conditions: step #2.

Figure 4.15 – Filtering symmetry conditions: step #3.
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4.6 Sampling Subgraphs

The census algorithm given before creates an exhaustive and complete enumeration of

all subgraph occurrences. One way to accelerate its execution is to approximate the

exact value by only sampling a fraction of all the occurrences, trading accuracy for

execution speed. This section details how this can be done.

4.6.1 Uniform Sampling

The described recursive matching algorithm induces a search tree in which the search

nodes in the last depth level correspond to the g-trie leaf nodes, as exemplified

in Figure 4.16. Squares correspond to trying a g-trie node (a call to matchCond)

and hexagons correspond to trying all candidate nodes for a certain node (line 5 of

Algorithm 4.6). The dashed boxes with ’...’ indicate search branches that could

continue and the vertex numbers are only shown for illustration purposes.

Figure 4.16 – An example g-trie matching search tree.
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Computing the exact census corresponds to traversing this entire search tree. In order

to sample, our main conceptual idea is to only explore each g-trie search branch (the

squares of the figure) with a certain probability. This is similar to what was done

in [Wer06]. Algorithm 4.7 details our approach. Note that it is exactly the same

as the previous algorithm with the exception of the indicated lines. Probability of

reaching a leaf is P , with P =
∏

Pd, where Pd is probability of depth d.

Algorithm 4.7 Sample subgraphs of g-trie T in graph G.

Require: Graph G, G-Trie T and set of probability values P

Ensure: Sample of occurrences of the graphs of T in G

1: procedure gtrieSampleAll(T, G, P)

2: for all children c of T.root do

3: With probability P0 do matchSample(c, ∅) ⊲ NEW CODE

4: procedure matchSample(T, Vused) ⊲ NEW FUNCTION HEADER

5: V = matchingVerticesCond(T, Vused)

6: for all node v of V do

7: if T.isGraph ∧ T.GraphConditionsRespected() then

8: foundMatch(Vused ∪ {v})
9: for all children c of T do

10: With probability PT.depth matchSample(c, Vused ∪ {v}) ⊲ NEW CODE

In order to follow a probabilistic approach, the algorithm uses a set of probabilities

associated to each g-trie depth: {P0, P1, . . . , Pgtrie max depth} where 0 ≤ Pi ≤ 1. Any

given node of depth d will therefore only be reached with probability P0 × . . .× Pd−1.

With this, we can produce an unbiased estimator of the frequency count of a single

subgraph. Let Pi be the probability associated with depth i and Fsample(Gk, G) be the

number of occurrences of the k-subgraph Gk found in G by the gtrieSampleAll()

procedure of Algorithm 4.7. Then, an unbiased estimator F̂ (Gk, G) of the total number

of occurrences of Gk in G is given by the following equation:

F̂ (Gk, G) =
Fsample(Gk, G)

P0 × P1 × . . .× Pk−1

(4.2)

We say that the estimator is unbiased because any occurrence of Gk can be found with

equal probability, and as we increase the set of probabilities, the estimator gets closer

to the real value. In fact, if we choose Pi = 1 for all i, then the result is the same as

the original complete algorithm.
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Figure 4.17 exemplifies how the probability values can affect which search tree branches

are followed. Assuming the probabilities given in the figure, hypothetically the colored

nodes would be explored and the white nodes would not be.

Figure 4.17 – Associating a probability with each search tree depth.

4.6.2 Sampling Parameters

The parameters Pi control the search. Regarding the accuracy, we should avoid small

values of probability for lower depths, closer to the root. Its effect is to increase the

variance of the result because any disregarded branch in lower depths may correspond

to entire parts of the graph, and therefore may correspond to a higher number of

subgraph occurrences not found. In terms of the execution time, the opposite happens.

Very high probabilities in the lower depths will increase the execution time, since more

parts of the search tree will have to be computed. For example, in the extreme case of

having all probabilities equal to one except the last one, in the higher possible depth

d, means that in practice we will explore all possible subgraphs of depth d− 1.

Picking the parameters is therefore a delicate choice that will influence both the

accuracy and speed of our method. The results chapter gives more detail on possible

choices for the parameters (see Section 6.2.4).

The main benefit of our sampling algorithm when compared to other proposals, is that

it is able to sample only the desired set of subgraphs (mfinder and ESU can only sample

the entire set of possible k-subgraphs and MODA can only sample the occurrences of a

particular single subgraph).

The quality of the estimation depends on many factors. A fully fledged analytical

determination of tight bounds on error margins is very complicated since we do not

know beforehand the distribution of the subgraphs that we are looking for. For
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example, if the subgraph is very well spread in the entire subgraph, we will have

less variance than if all occurrences are clustered in a small number of nodes. This

is because in the later case a search branch not followed may imply a significant

percentage of occurrences not found.

4.7 Motif Discovery with G-Tries

With the g-tries algorithms described in this chapter it is now possible to discover

motifs. As shown before in Algorithm 3.1, the main flow of all exact network motifs

algorithms is to calculate a census of subgraphs of a determined size k in the original

network, then generate a set of similar random networks, followed by the calculation

of the census on all of those, in order to assess the significance of the subgraphs present

in the original network.

The generation of the random networks themselves (normally done by a Markov chain

process [MSOI+02]) is just a very small fraction of the time that the census takes.

Computing the census on all random networks is therefore the main bottleneck of

the whole process (there can be hundreds of random networks) and g-tries can help

precisely in this phase. In order to use g-tries we propose two possible approaches:

• G-Trie use only - generate all possible graphs of a determined size (for example

using McKay’s gtools package [McK98]), insert all these in a g-trie and then

apply g-trie matching to the original network. Create a new g-trie only with the

subgraphs found, and then apply g-trie matching to the random networks, with

this new g-trie.

• Hybrid approach - use another network-centric method to enumerate the

subgraphs in the original network, like the efficient ESU algorithm. Create a

g-trie only with the subgraphs found, and then apply g-trie matching to the

random networks.

In both cases we will only be trying to discover in the random networks the subgraphs

that appear in the original network, and not spending execution time trying to find

subgraphs that are not interesting from the motifs problem point of view.

Note that in some cases one may also be interested in anti-motifs, which as the name

suggests are patterns under-represented. In this case, a complete census must also
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be performed in the random networks, either with other method, or with the g-trie

containing all possible subgraphs.

4.8 Summary

In this chapter we described a novel data-structure, the g-tries. It allows the rep-

resentation of a set of graphs by using a tree that identifies common substructure,

thus avoiding redundant representation. This characteristic of g-tries can be used

for generating a new efficient methodology for discovering motifs. Algorithms for

creating and using g-tries for this purpose were described. The possibility of trading

accuracy for faster execution times was also explored and the associated algorithm

was described.
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When you are stuck in a traffic jam with a

Porsche, all you do is burn more gas in idle.

Scalability is about building wider roads,

not about building faster cars.

Steve Swartz

5
Parallel Network Motif Discovery

Almost all the algorithms presented in the previous chapters are sequential in their na-

ture. Considering the computational tractability of the problem, resorting to scalable

parallelism for speeding up the computation is a research path capable of pushing

the limits and having impact in the feasible sizes of motifs and networks. The

purpose of this chapter is therefore to identify opportunities for parallelism in the

motif discovery process and to present real and practical algorithms for parallelizing

all aspects of it. We start by analyzing the algorithmic flow and we create a taxonomy

of possible parallel approaches. We then show that the whole computation can be

expressed as a tree based search with non-overlapping nodes, thus exposing its inherent

parallel nature. Furthermore, the computation can be divided into several steps for

which we present different strategies, with dynamic load balancing during the parallel

processing. We then describe in more detail how these techniques can be specifically

applied by using both g-tries and ESU algorithms in order to efficiently discover motifs.

5.1 Opportunities for Parallelism

Parallelism in the motif discovery realm has been scarcely used, as was shown in

Section 3.5. Its usage could however lead to significant efficiency improvements, which

could in turn lead to bigger achievable sizes both in motifs and networks. It seems

only natural then to explore this possibility.
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Chapter 3 detailed the sequential program flow of the motif discovery process, present-

ing the respective pseudo-code in Algorithm 3.1. As Figure 5.1 shows more graphically,

the basic methodology starts by computing a subgraph census on the original network.

This is followed by the generation of an ensemble of similar random networks, the

respective census computation for each of them, and finally with the analysis of the

significance of each isomorphic class of subgraphs, knowing their frequency on both

the original network and the random networks.

Figure 5.1 – Motif discovery algorithmic flow.

This process offers several opportunities for parallelism that we now identify by cre-

ating a taxonomy that we later use in order to classify parallel algorithms for motif

discovery, namely:

• Census Parallelization: compute in parallel the census of subgraphs in a

single network. This in turn can be done with three different methods:

– Partition: the network is pre-divided in several (possibly overlapping)

partitions/regions and different processors analyze different partitions.

– Tree: a recursive search procedure is executed in parallel, with different

search tree branches being searched at the same time in different processors.

– Query: in subgraph-centric algorithms, each individual subgraph query is

done separately by different processors.

• Random Networks Parallelization: distribute the random networks between

the processors. For example, if we he have to generate 100 random networks and

have access to 100 processors, then each processor could compute its own random

network and its corresponding census.
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• Significance Parallelization: distribute the significance calculation after the

census is computed.

With this nomenclature at hand, we can now classify the strategies described in

Section 3.5, namely Wang et al. [WTZ+05] and Schatz et al. [SCBB08], and both

rely only on single census parallelization. More specifically, Wang et al. use partition

parallelization and Schatz et al. use separately partition and query parallelization.

If we profile the sequential algorithm during real computations, we find that the

main bottleneck are the census computations (both on the original and the random

networks), taking on average more than 95% of the whole execution time. Therefore,

census parallelization is really a key issue. If we can do a single census in parallel,

one way of doing the whole computation is to do exactly as the sequential algorithm,

except that individual census calls are done in parallel. On its own this strategy

presents two main drawbacks:

• Synchronization is necessary after each census to ensure that all processors have

completed their computation before the next census begins. Since typically

we generate at least dozens of random networks, this can provoke a significant

amount of unwanted idle time on processors.

• The other steps of the network motif discovery must be done sequentially. In

particular, repeating the process of generating a similar network for every new

random network can be time consuming.

We could therefore do better if we parallelized at the same time all the steps needed to

discover motifs (not just the census) and this is precisely the aim of this chapter. The

goal is to use at the same time census and random network parallelization, something

which was not done before. The significance computation takes on average less than

0.01% of the total time and therefore even if done sequentially will not detract good

scalability.

5.2 Motif Discovery as a Tree Shaped Computa-

tion

In the previous chapter we have shown how to use g-tries in order to discover motifs.

More specifically, in Section 4.7, we have provided two possibilities: g-tries only (GO)
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and an hybrid approach (HA). Both approaches start by doing a subgraph census on

the original network, either by generating all possible subgraphs and inserting them

into a g-trie (GO) or by using any other method other than g-tries (HA). The next

phase uses the computed census to feed a g-trie only with the subgraphs that present

the desired minimum frequency and then that g-trie is used to count the occurrences

of those subgraphs in the ensemble of random networks.

For the purposes of this work, in the hybrid approach, we will use exclusively the ESU

algorithm as the basis for the initial step. This is due to several reasons: (a) it is

one of the most efficient among the already existing algorithms (Chapter 6 shows this

more empirically, with experimental results); (b) it allows for sampling, like g-tries, in

a way that we can trade accuracy for speed in the whole motif discovery; (c) it uses

as a basis a recursive search procedure that implicitly builds a search tree like in the

case of g-tries, a common property that we will explore to use the same generalizable

parallel approaches for both methods.

With all of this in mind, the whole motif discovery process using g-tries and R random

networks can be depicted as a very large search tree, as exemplified in Figure 5.2. The

search trees of individual census are only given as examples, and we can imagine that

they could present completely different layouts. Note that there are two synchroniza-

tion points: (a) computing the census of the random networks can only be started after

the census on the original network, since we will be using a g-trie containing only the

relevant subgraphs found on that original census; (b) computing the significance can

only be started after all the census are done, because it requires both the frequency

in the original and in the random networks. In the figure, G1 to GN are the subgraph

isomorphic classes for which we have to compute its respective significance.

Figure 5.2 – Motif discovery as a tree shaped computation.
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Thus, parallelizing motif computation consists now, in its essence, in parallelizing the

traversal of this global search tree. Let us now analyze in more detail the search

trees of ESU and g-tries census, the basic building blocks for each individual census,

highlighting a very important common characteristic: the independence of subtrees.

5.2.1 The Search Tree of ESU Census

When performing a subgraph census with the ESU algorithm, an implicit search tree is

created, with each internal tree node being a call to the extendSubgraph(VSubg, VExt, v)

recursive procedure (line 4 of algorithm 3.3), where v is the root vertex, VSubg is

the partially constructed subgraph and Vext are the possible nodes for extending the

subgraph. Figure 5.3 exemplifies such a search tree, with each internal node indicating

the parameters passed as {VSubg, VExt}.

Figure 5.3 – Search tree of ESU algorithm (revisited).

Note that the root vertex v is always the first element of VSubg, which makes this

information redundant. Moreover, a crucial aspect is that all the subtrees (different

calls to the recursive procedure) are independent from each other. Therefore, a pair

(VSubg, VExt) uniquely identifies where we are in the search and we can continue from

that point without knowledge of what may have been computed before. This is vital

and will be put to use in the proposed parallel algorithms.
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5.2.2 The Search Tree of G-Trie Census

When doing a subgraph census with the g-tries matching algorithm, an implicit search

tree is also created, with each internal node being a call to the recursive procedure

MatchCond(T, Vused) (line 3 of Algorithm 4.6), where T is a g-trie node and Vused

are the already used network vertices that match the subgraph of the g-trie node.

Figure 5.4 exemplifies this, with each internal node representing the respective g-trie

node and the used vertices. Nodes with ’...’ are search branches that could continue

and the vertex numbers are only shown for illustration purposes.

Figure 5.4 – An example g-trie matching search tree (revisited).

As in the case of ESU, the crucial aspect is that all subtrees (different calls to the

recursive procedure) are independent from each other. Therefore, a pair (T, Vused)

uniquely identifies where we are in the search and we can continue from that point

without the need to know anything else.

5.3 A General Parallel Approach

We have seen in the previous sections that the whole motif discovery can be seen as

large tree shaped computation and that different search branches exhibit a crucial

property: they are independent. In this section we will describe general parallel

strategies that are able to exploit this property to efficiently search this tree.
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5.3.1 Terminology

In order to better express all the concepts used in this section and to use a coherent

terminology, the following notation will be used:

• P - the number of processors, or cores. If the processor is actively participating

in the motif computation (and not just used for scheduling purposes) then it is

also called a worker.

• R - the number of similar random networks.

• N - the number of meaningful subgraphs found in the original network and that

will be fed to the g-trie used for matching the random networks.

• id - a number representing a network, where 0 (zero) means it is the original

subgraph and any 0 < id ≤ R means it is the id-th random network.

5.3.2 Work Units

We call each node of the search tree a work unit. Each of these corresponds to actual

work that needs to be done, and there are three possible types of work units:

• ©id - the census of the single network id.

• 2(id,s) - an internal node of the single census of network id, with a partially

constructed subgraph of size s. Note that this node can be either from ESU or g-

trie algorithms, but in both cases we have a partial subgraph already constructed.

If we want to specify the contents of a work unit of this type we will use the

notation 2(id,s)(contents), that is, 2(id,s)(VSubg, VExt) for ESU and 2(id,s)(T, Vused)

for g-tries.

• 3sg - computation of the significance of the subgraph sg. Note that 1 ≤ sg ≤ N .

This terminology (©, 2 and 3) was already used in Figure 5.2.

With all of this at hand, solving the network motifs problem can from now on be

expressed using our work unit symbols. We need to solve in order the work queues

Qoriginal, Qrandom and Qsignificance, defined in Equations 5.1, 5.2 and 5.3, which cor-

respond respectively to the census of the original network, the census of the random

networks and the significance computation.
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Qoriginal = {©0} (5.1)

Qrandom = {©1,©2, . . . ,©R} (5.2)

Qsignificance = {31,32, . . . ,3N} (5.3)

Note that in practice, computing a ©id can be decomposed in several smaller 2(id,i).

So, for example, ©0 can be decomposed in several 2(0,1), that is, computing the census

of the original network can be decomposed in all the work units that have a partial

subgraph of size 1. Exemplifying with the ESU algorithm, this means computing the

census consists in trying all different network vertices as possible root nodes.

Every 2(0,i) will then be decomposable in several 2(0,i+1) until the motif size is reached.

This means that every work unit with a partial subgraph of size n will generate several

possible work units with partial subgraphs of size n+ 1.

Note that different 2(id,i) will generate a different number of smaller work units,

corresponding to different topological parts of the network. This means that the

search tree is completely unbalanced.

The actual computation of a work unit is detailed in Algorithms 5.1, 5.2 and 5.3.

Essentially, according to the type of the work unit and the current method being

applied, the respective function is called. Algorithm 5.1 is just the dispatcher code,

together with the significance calculation if the work unit is of the type ⋄, according
to Equation 2.1. Algorithm 5.2 mimics the behavior of the ESU algorithm (previously

shown in Algorithm 3.3), and Algorithm 5.3 mimics the behavior of the g-tries match-

ing algorithm with conditions (previously shown in Algorithm 4.6), whose details were

already explained. The main difference is that each recursive call of the algorithms is

here transformed into a new work unit, ready to be computed at a later stage.

Note that for efficiency reasons, our actual implementations of the algorithms just

described are not exactly like the given pseudo-code, but their functionality is the

same. In particular, the dispatcher function expand() is specialized for each method

and work unit type, avoiding constant comparisons for knowing which subgraph census

method is being used and for knowing the unit work type. Furthermore, when

expanding a work unit, the behavior of the queue is simulated by using the recursive

stack. The insertion of the unexplored units into a queue is delayed until the program

has to stop computing and must communicate part of the work units to another

processor.
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Algorithm 5.1 Expanding or computing a Work Unit (main part)

Require: Work Unit U and method M

Ensure: New “smaller” unprocessed work units or storage of results in memory

1: function expand(U,M)

2: if type(u) = © then

3: if M = ESU then return ESUMain(U)

4: else if M = GTries then return GTriesMain(U)

5: else if type(u) = 2 then

6: if M = ESU then return ESUexpand(U)

7: else if M = GTries then return GTriesExpand(U)

8: else if type(u) = ⋄(sg) then
9: z-score(sg) := (foriginal − f̄random)/std(frandom)

10: return ∅

Algorithm 5.2 Expanding or computing a Work Unit (ESU part)

11: function ESUMain(©id)

12: Q := ∅
13: for all v ∈ V (Gid) do

14: Q.add(2(id,1)({v}, {u ∈ N(v) : u > v}))
15: return Q

16: function ESUExpand(2(id,size)(VSubg, VExt))

17: Q := ∅
18: if |VSubg| = k then

19: incrementCount(canonicalLabeling(VSubg))

20: else

21: while VExt 6= ∅ do

22: remove random chosen w ∈ VExt

23: V ′
ext := Vext ∪ {u ∈ Nexcl(w, Vsubg) : u > firstV ertex(VSubg)}

24: Q.add(2(id,size+1)(Vsubg ∪ {w}, V ′
ext))

25: return Q

5.3.3 Parallel Strategies

Since our work units are independent, we do not really have the need to use shared

memory. We target the distributed memory model, which offers scalability to a large
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Algorithm 5.3 Expanding or computing a Work Unit (g-tries part)

26: function GTriesMain(©id)

27: Q := ∅
28: T := g-trie of interesting subgraphs

29: for all children c of T.root do

30: Q.add(2(id,1)(c, ∅))
31: Return Q

32: function GTriesExpand(2(id,size)(T, Vused))

33: V = matchingVerticesCond(T, Vused)

34: for all node v of V do

35: if T.isGraph ∧ T.GraphConditionsRespected() then foundMatch()

36: for all children c of T do

37: Q.add(2(id,1)(c, Vused ∪ {v}))

number of processors, thus allowing massive parallelization of motif discovery. We use

the message passing interface (MPI) as our communication model.

In order to parallelize our search we have to distribute the work-units among all

worker processors. One problem is that, as seen, the search tree is highly unbalanced

and the execution time of each work-unit varies significantly. Figures 5.5 and 5.6

better illustrate this by showing the relative weight of all 2(0,1) in the total execution

time when applying ESU and g-tries to compute the census of 8-subgraphs in a social

network [LSB+03, New09], that is, the percentage of time spent using as a starting

partial subgraph each of the 62 single nodes of the network. For better legibility, work

units are sorted decreasingly by their weight.

Note the high variability, with some units taking around 20% of the total time, with

others being almost insignificant in terms of execution time. This makes it very hard

to use a pre-determined static allocation scheme, and approximating the execution

time cost of a work-unit can be as hard as computing the work-unit itself. Therefore,

we opted for a dynamic load balancing strategy, that redistributes work among the

worker processors during the execution.

Computing a work queue in parallel defines a parallel job. As seen before, the motif

discovery problem consists in computing three different queues in order: Qoriginal,

Qrandom and Qsignificance, defined in Equations 5.1, 5.2 and 5.3.

Each parallel job is made of three main phases, that must also be done in order:
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Figure 5.5 – Relative execution time of work units applying ESU to a social

network. Network data from [LSB+03, New09].

Figure 5.6 – Relative weight of work units applying g-tries to a social network.

Network data from [LSB+03, New09].

1. Pre-Processing Phase. Performs all the computations required to start the

job, providing an initial work queue for each worker.

2. Work Phase. Performs the bulk of the job, analyzing subgraphs and discov-

ering their frequency. It consists of workers computing the current work queue

and asking for more work when their queues become empty.

3. Aggregation Phase. In this phase the subgraph frequencies found on each

worker are aggregated on a single processor.
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For each phase we developed several possible strategies, that are enumerated in Ta-

ble 5.1. In the next sections we will detail exactly how each of these phases and

respective strategies are implemented. Any of these strategies is general enough to be

applied both to ESU and g-tries and they can be combined at will, because using a

determined strategy on a phase does not hinder the applicability of a different strategy

on another phase.

Phase Possible Strategies

Pre-Processing
• all in one

• static partition

Work

• master-worker

• distributed queues

• distributed snapshot

Aggregation

• naive

• hierarchical

• collective

Table 5.1 – Strategies for different phases of a parallel job

5.3.4 Pre-Processing Phase

Each worker processor has its own work queue, with Qi being the work queue of worker

i (1 ≤ i ≤ P ). We need to make sure that all computational work units are in some

work queue. So, for example, when computing the census on all random networks, we

must guarantee that ∪Qi = Qrandom.

We identify and propose two different strategies for this phase:

• all in one: the entire work queue is put on a single worker, and all other workers

start with an empty queue.

• static partition: Qcensus is statically divided among all workers.

This last option seems intuitively better, since all processors can start working on

their work queues, without the need for initial communication and distribution of

work units. Note that as said before, this static division cannot provide a guaranteed

balanced partition of the work, but it allows a speedier start up of the computation.
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Algorithm 5.4 details our implementation of a static division using a round robin

scheme. If the work queue has less work units than the number of workers (line 2)

then the first work unit is removed from the global queue (line 3), it is expanded (line

4), that is, subdivided in more work units (for example a © is expanded into possibly

several 2) and the results of that expansion are added to the global queue. After this

is done, we can start allocating the existing work queues until no more work units are

left to allocate (line 7). In order to do that we remove the first work unit (line 8),

allocate it to the “current” worker (line 9) and select a new next “current” worker,

by going through each one in turn and returning to the first worker after the last one

(line 10).

Algorithm 5.4 Static division of work queue using round-robin scheme

Require: Work Queue Q and P processors

Ensure: Partition Q into P different Qi work queues

1: procedure partition(Q)

2: while |Q| < P AND Q 6= ∅ do

3: WU := Q.pop( )

4: NQ := expand(WU)

5: Q.pushLast(NQ)

6: i := 1

7: while Q 6= ∅ do

8: WU := Q.pop( )

9: Qi.pushLast(WU)

10: i := 1 + (i mod P )

Consider an example with 4 workers (P = 4) and 6 random networks (R = 6) for a

Q = Qrandom = {©1,©2,©3,©4,©5,©6}. Then the above algorithm would result

in the following partition: Q1 = {©1,©5}, Q2 = {©2,©6}, Q3 = {©3} and Q4 =

{©4}.

For an example in which the number of initial work units is less than the number of pro-

cessors, consider a case with 3 workers (P = 4) and Q = Qoriginal = {©0}. Consider

also that the original network has 10 vertices. Then, the original work queue will be

expanded into Q = {20
(0,1),2

1
(0,1),2

2
(0,1),2

3
(0,1),2

4
(0,1),2

5
(0,1),2

6
(0,1),2

7
(0,1),2

8
(0,1),2

9
(0,1)}

and the algorithm would produce the following partition: Q1 = {20
(0,1),2

3
(0,1),2

6
(0,1),2

9
(0,1)},

Q2 = {21
(0,1),2

4
(0,1),2

7
(0,1)} and Q3 = {22

(0,1),2
5
(0,1),2

8
(0,1)},
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No matter which strategy is chosen for the initial division of work, whenever a pro-

cessor empties its work queue, it will immediately try to obtain more work. What is

important here is to give some initial reasonably balanced work to all processors, in

order to avoid unnecessary communication in the beginning of the computation.

5.3.5 Work Phase

This phase is the core of the work and where the main computations are made. Its

main goal is to ensure that workers are kept busy computing work units, minimizing

idle time. We will now describe our three proposed strategies for this phase.

5.3.5.1 Master-Worker

In this case there is a core dedicated exclusively for the load balancing and distribu-

tion of work units (the master) and all the other processors (workers) do work and

communicate only with the master [HSL+00]. This means that in practice if we have

P processors, the maximum possible theoretical linear speedup is P − 1, the number

of workers.

For this strategy it is vital that the master is able to maintain an updated list of

unprocessed work units, so that it can serve work requests as soon as possible, thus

keeping workers busy. Figure 5.7 overviews this approach.

Figure 5.7 – Master-Worker load balancing strategy.

Algorithms 5.5 and 5.6 detail our master-worker strategy. The master (Algorithm 5.5)

keeps receiving messages from the workers (line 4) and acts accordingly. If the message
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is a request for more work (line 5) then it can either send the first unprocessed work

unit (lines 7 and 8) or, if its work queue Q is empty, add the worker which sent

the message to the list of workers that are in need of work (IdleWorkers). If the

message contains a new unprocessed work unit (line 11), then it either adds it to the

work queue Q for future processing (line 16) or sends it directly to an idle worker, in

case there is one (lines 12 to 14). If all workers are idle, it means that there are no

more unprocessed work units and therefore we can end the work phase (line 3) and

broadcast a termination message to all workers (line 17).

Algorithm 5.5 Master procedure for master-worker load balancing

Require: Work Queue Q and P processors

Ensure: Computation of all work units of Q

1: procedure Master(Q)

2: IdleWorkers := ∅
3: while (not all workers are idle) do

4: msg := ReceiveMessage(AnyWorker)

5: if msg.type = RequestForWork then

6: if Q 6= ∅ then

7: WU := Q.popFront()

8: sendMessage(msg.Sender, WU)

9: else

10: IdleWorkers.pushBack(msg.Sender)

11: else if msg.type = NewWorkUnit then

12: if IdleWorkers 6= ∅ then

13: worker := IdleWorker.popFront()

14: sendMessage(worker, msg.WU)

15: else

16: Q.pushBack(msg.WU)

17: broadcastMessage(Terminate);

Regarding the worker execution (Algorithm 5.6), while there is no termination message

(lines 2 and 6) it keeps processing its own work queue Q in depth-first manner (line

8). If this queue is empty, then it asks the master for new work (line 4) and waits

until a message is received (line 5), adding the newly received work unit to the local

queue. Whenever masterThreshold is reached (line 9), the worker gives all but one of

its unprocessed work units to the master, so that they are distributed among workers
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Algorithm 5.6 Worker procedure for master-worker load balancing

Require: Work Queue Q and master processor

Ensure: Computation of all work units

1: procedure Worker(Q)

2: while notFinished() do

3: if Q = ∅ then

4: sendMessage(master, RequestForWork)

5: msg := receiveMessage(master)

6: if msg.type = Terminate then exitWhile

7: Q.pushBack(msg.WU);

8: Q.pushFront(expand(Q.popFront()))

9: if checkMasterThreshold() then

10: while Q.hasMoreThanOneElement() do

11: sendMessage(master, Q.popBack())

that are or will become idle. Note that this threshold is very important. If it is set

too high, the work units will not be sufficiently divided in order to adequately balance

the work among all workers. If it is too low, work will be divided too soon and the

communication costs will increase. We tried two different options for the threshold:

either a time limit or a number of work units processed limit. Chapter 6 gives more

details on actual parameters chosen.

5.3.5.2 Distributed Queues

In this case all processors are responsible both for the work itself and the load balanc-

ing. At any time they can communicate with any other processor and dynamically try

to redistribute the work. The maximum possible theoretical linear speedup is P , the

number of processors. Figure 5.8 overviews what is done on a distributed strategy.

The distributed queue approach follows a receiver-initiated scheme [ELZ85], and

all processors run Algorithm 5.7. The basic idea is simple: while a worker still has

work units in its queue, it keeps computing them (line 4). If its queue becomes empty,

then it asks for work from other processor (line 3) and continues processing the new

work units. If at a point in time a consensus is reached that the computation is over,

the worker stops (line 2). The other key component is serving work requests from
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Figure 5.8 – Distributed load balancing strategy.

other workers (line 5).

Algorithm 5.7 Distributed queue main worker procedure.

Require: Work Queue Q

Ensure: Computation of all work units

1: procedure distributedQueueWorker

2: while notFinished() do

3: if Q = ∅ then askForWork()

4: Q.pushFront(expand(Q.popFront()))

5: if checkMessagesThreshold() then serveWorkRequests()

We will now explain in more detail the work request mechanism. The first thing

to notice is that due to the nature of our desired environment (distributed memory

with message passing) there is no way to steal work from another processor without

intervention from it. We must send a message and wait for an answer. All processors

have a polling mechanism and from time to time (line 5, checkMessagesThreshold()

function) they will check if there are any incoming requests. This threshold is impor-

tant and can have an impact on performance. If it is set too low, the receiver worker

will be checking for messages too often and will spend valuable execution time trying

to serve nonexistent requests. If it is set too high, the sender worker will have to wait

for new work while remaining idle, because the receiver will take some time to check

for messages.

We tried two different options for the messagesThreshold value, as in masterThreshold

of the master-worker: either a time limit or a number of work units processed.
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Chapter 6 gives more details on actual parameters chosen.

Regarding which worker should we try to steal work from, ideally each processor

would know the processor that still has more work to do. In a completely distributed

environment, that is not possible without introducing major computation overheads.

Moreover, since search trees are unbalanced, a worker cannot even have a precise

prediction for the amount of computation in its own work queue. Therefore we opted

to always choose a random worker to ask work from, which was established as an

adequate heuristic [San94, San99].

The third aspect to detail is our strategy for dynamically sharing work in a distributed

setting. The main question here is to decide exactly which work units from our work

queue should we share whenever a work request is received. The ideal option is to

divide as equally as possible the work, in order to maximize the time in which both

processors will not need to ask for work again. In order to do that we opted for a

diagonal work-queue splitting scheme [RSM03]. Basically we distribute work units

in round-robin fashion: one for the sender, one for the receiver, one for sender, and

so on. As we are exploiting the search tree in a depth-first order (remember that

new expanded work units are pushed to the front of the queue), this will distribute

as evenly as possible the work units, taking into account that work units of the same

search depth will more likely have similar computational costs. However, since the tree

is really unbalanced, this cannot promise equal execution time, but it constitutes our

best prediction implemented by a simple yet elegant solution, diagonally distributing

work along the search tree.

Figure 5.9 exemplifies our splitting scheme. Dashed work units are yet to be explored.

The shaded area corresponds to the work units that will remain in the receiver of the

request. The other nodes go to the requester.

We also use a splitting threshold Tsplit, a way of knowing when not to share our work.

If it is in fact too small, we may spend more time preparing and sending the work

units than really just computing them. We based our threshold on the distance to the

g-trie leaf node: as we get closer, our work-unit will take less time. So, if all remaining

unexplored vertices are closer to a leaf than Tsplit, we do not divide work and instead

send a “no work available” message to the requesting processor. This threshold could

even be dynamically adapted as we discover how much time an average work-unit is

taking, but in practice a constant value was enough. Chapter 6 describes practical

choices for this parameter.

Finally, how do we detect termination? Whenever someone asks for work and receives
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Figure 5.9 – Diagonal work-queue splitting scheme example.

as response that the receiver’s work queue is empty, it will ask another processor. If

it happens that everyone answers that it has no more work, the worker will be able

to conclude that indeed there are no more work units in the global work queue and it

will broadcast a “termination” message to everyone, ending this phase of the parallel

job.

5.3.5.3 Distributed Snapshot

When we compare the master-worker and distributed queue parallel strategies to

the original sequential recursive procedures, we can observe that a small execution

time overhead is introduced. This is because almost every work unit must be added

to the queue and then removed, in order for it to be processed. By contrast, in the

original recursive procedure this was taken care by the natural procedural cycles and

recursive calls.

Furthermore, if we stop the computation at a given time, we can observe that a

memory overhead is introduced. Figure 5.10 shows a possible expansion of a work

queue with ESU that starts with only one unit and two steps after already has three

units. Note that all of the three units of the step #2 naturally have ′1′ as their first

node of the partial constructed subgraph, this is because they all derive from the same

first unit. Similarly, the first two units of step #2 have ′1′ and ′2′ as the first vertices

of the partial subgraph, since they all derive from the same step #1 unit. When the

sequential recursive procedure is being run, this redundant information is taken care

of naturally by the call-stack. Note also that as we go further, the work queue tends to
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grow exponentially with the branching factor, that is, the number of children of each

work unit. This can potentially hinder the parallel computation, not only because

of available memory for each processor, but also in terms of communication costs,

because work units are being exchanged between processors.

Figure 5.10 – An example expansion of a work queue using ESU algorithm.

We devised a scheme that is able to avoid these undesirable time and memory over-

heads. First, if the worker still has entire networks unexplored, it will give half of

these to the requesting processor, keeping its current network that is being explored.

When only one network is being explored, the basic idea is to follow the recursive

procedure as in the sequential algorithms and add two main capabilities: the ability

to stop the computation at will, efficiently storing the stack search space in what we

call a snapshot of the computation and the ability to rollback and continue work from

a given snapshot. This is similar to the concept of checkpointing [WHV+95]. The

main difference and novelty is however a capability of being able to divide a snapshot

in two halves that can be continued on two different processors. With this, we can

present a new parallel strategy, that we call distributed snapshot, as is overviewed

in Algorithm 5.8,

Basically, each processor starts by creating a snapshot from its initial share of work

(line 2) and then keeps processing it (line 4) until the whole global computation is

completed (line 3). While doing this, after a determined threshold is reached (line 11),

it checks for incoming messages from other processors (12). If a work request message

was received (line 13), the recursive computation is stopped and the search state stored

(line 14). Then it uses this state to divide the current search into two different sets of

work units (line 6), sending one to the requesting processor (line 7) and keeping one for

itself, in order to continue the computation. If there were no work request messages,

the recursive search is completed, ending in a situation with no more work-units to
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Algorithm 5.8 Distributed snapshot main worker procedure.

Require: Work Queue Q

Ensure: Computation of all work units

1: procedure distributedSnapshotWorker(Q)

2: S = makeSnapshot(Q)

3: while notFinished() do

4: recursiveProcess(S)

5: if receivedWorkRequest() then

6: (S, S2) = divideWork(S)

7: sendWork(requester, S2)

8: if S = ∅ then

9: W = askForMoreWork()

10: procedure recursiveProcess(S)

11: if checkMessagesThreshold() then

12: checkMessages()

13: if receivedWorkRequest() then

14: stop and store recursive computation

15: else

16: keep doing recursive search

compute, and therefore the processor starts looking for unprocessed work-units from

another processor (line 9).

The main core of the search is the recursive procedure, which will correspond to the

respective recursive procedure of the sequential algorithm. As said, a crucial extension

is that we must be able to stop and store the state of that recursive computation. For

this we must capture the stack contents and we want to do it in an efficient way. We

will now detail how we do this both for g-tries and ESU.

G-Trie Snapshots

Figure 5.11 depicts the recursive state of the g-tries matching computation at any given

time. Note that the original recursive procedure matchCond() (see Algorithm 4.6)

is based on two cycles: one enumerates all possible matching vertices and the other

enumerates all possible children of the corresponding matching g-trie node. If we freeze

time, the search position will therefore be defined by knowing the position where we
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are at each of these two cycles in all depths. In the figure, the exact subgraph being

matched corresponds to the current position in the two main cycles of the recursive

procedure.

Figure 5.11 – G-Trie recursive procedure frozen at a given time.

In order to store this state, we need to save the cycle position (that is, the current

node and vertex) for all depths of the recursive procedure. In the case of a g-trie node,

by knowing the current node one can instantly know the nodes that still remain to be

explored, since the g-trie is fixed. In the case of the vertices, we must explicitly store

the unexplored vertices, because they are dynamic and correspond to real computation

work done in the matchingVertices() procedure. We can unequivocally identify each

g-trie node by a single integer number, and the same can be done with each graph

vertex. With this in mind, we create a compact array structure that encapsulates

everything that we need in order to later resume the search. This snapshot array is

depicted in Figure 5.12.

Algorithm 5.9 details our modified version the matchCond() procedure so that it is

able to stop and store the recursion whenever a request for work arrives. In this case,

it builds the correspondent snapshot and stops the search.

New lines are indicated in the code. What changes is that now we keep checking for

messages (lines 2 and 3), and when a request for work is received, we stop making
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D - Larger recursive depth

Vi - current graph vertex being explored at depth i

Ni - current g-trie being explored depth i

Ui - number of unexplored vertices in depth i

UV j
i - j-th unexplored vertices in depth i

D V0 V1 . . . VD−1 N0 N1 . . . ND−1 U1 UV 1
1 UV 2

1 . . . UV U1

1 UD UV 1
D UV 2

D . . . UV UD

D

Figure 5.12 – An array structure representing a g-trie snapshot.

Algorithm 5.9 Distributed snapshot version of g-trie recursive procedure.

1: procedure snapshotMatch(T, Vused)

2: if checkMessagesThreshold() then ⊲ NEW CODE

3: checkMessages() ⊲ NEW CODE

4: V = matchingVerticesCond(T, Vused)

5: for all node v of V do

6: if receivedWorkRequest() then ⊲ NEW CODE

7: snapshot.add(remaining nodes of V ); break ⊲ NEW CODE

8: if T.isGraph then foundMatch()

9: for all children c of T do

10: if receivedWorkRequest() then ⊲ NEW CODE

11: snapshot.add(current children c); break ⊲ NEW CODE

12: snapshotMatch(c, Vused ∪ {v})

recursive calls, break all cycles, and build the snapshot array (lines 6, 7, 10 and 11).

Algorithm 5.10 shows how to resume a given snapshot S, assuming the notation given

in Figure 5.12. We also assume that the child nodes of a g-trie node are ordered and

that by bigger siblings we mean the g-tries nodes that share the same direct ancestor

node, that is, the same parent, and that are bigger in that order context.

We start by creating the set of used vertices, Vused as in snapshotMatch() (line 2). We

then traverse all recursive depths, from the highest to the lowest (line 3), since it would

be in that order that they would be computed in the original recursive procedure.

Then, we traverse all remaining g-trie nodes (line 5), as it would happen in the inner

cycle of snapshotMatch(), in order to simulate the continuation of the cycle that we

stopped. We then follow with all remaining unexplored nodes of that depth (line 9),
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Algorithm 5.10 Resuming a g-trie snapshot.

1: procedure resumeGTrieSnapshot(S)

2: Vused = {V0, . . . , VD−1}
3: for i: D − 1 down to 0 do

4: Nremaining = Ni∪ biggerSibblings(Ni)

5: for all C in Nremaining do

6: if receivedWorkRequest() then

7: state.add(remaining children); break;

8: snapshotMatch(C, Vused)

9: for j: 1 to U i do

10: if receivedWorkRequest() then

11: state.add(remaining nodes); break;

12: remove last element from Vused

13: add UV j
i to end of Vused

14: if Ni.isGraph then foundMatch()

15: for all children C of father(Ni) do

16: if receivedWorkRequest() then

17: state.add(remaining children); break;

18: snapshotMatch(C, Vused)

19: remove last element from Vused

proceed by updating Vused accordingly (line 12 and 13), and then traverse all possible

g-trie nodes from that search position (lines 15). In all of these cases, continuation of

computation itself is done by calling the original snapshotMatch() procedure (lines 8

and 18). As in the original procedure, if the computation has to stop, we update the

respective snapshot array (lines 6, 7, 16 and 17).

The whole resumeGTrieSnapshot() is done in order to simulate what would happen if

the original recursive procedure kept computing. In fact, if we would artificially stop

snapShotMatch(), and then resume work with resumeGTrieSnaphot(), we would

obtain the exact same results with almost no performance loss. This is due to our

efficient snapshot array structure, that minimizes the information needed to continue,

restricting it to the bare essential. In fact, the maximum theoretical size of the snap-

shot array is O(max depth gtrie×|V (G)|), since we can only go as far as the maximum

g-trie depth, and each depth always has at maximum all nodes as unexplored. In
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practice, the work array will be kept, with very high probability, much lower than this

maximum, since all the constraints will reduce the possible candidates.

The fact that our array is small sized is also beneficial because it means we can easily

communicate the array to another processor that issued a request for work. The idea

is that, upon receiving such a request, the current processor partitions its work array

in two valid pieces, continues to compute with one of them and dispatches the other

for the requesting processor. In order to maintain the computation balanced, it is

crucial that a processor divides his work array as equally as possible. To achieve this

goal, we partition the work array in two halves, by equally dividing all unexplored

vertices in the following way, where the number of a vertex is its position on the array

structure:

• 1st Half maintains currently explored nodes and vertices; gets even numbered

unexplored vertices.

• 2nd Half gets odd numbered unexplored vertices.

This configures a diagonal split, meaning that we traverse our tree search space

diagonally, as was the case in the distributed queue parallel strategy. This always

provides two equally sized halves in terms of the number of unexplored vertices.

ESU Snapshots

Figure 5.13 depicts the recursive state of the ESU matching computation at any given

time. It is essentially a simpler version of a g-trie snapshot, since the original recursive

procedure extendSubgraph() (see Algorithm 3.3) is based on just one cycle, that

traverses a list of possible expansion vertices. By freezing time, the search position is

defined by the position on this cycle on all depths. The exact subgraph being matched

corresponds to the set formed by the current vertex of each cycle.

In order to store this state we need only to save the cycle position for all depths of the

recursive procedure. We must also store the unexplored vertices, that is, the vertices

of the corresponding expansion list that were still not traversed. This is encapsulated

in the compact array structure of Figure 5.14. The maximum theoretical size of

this snapshot array is O(max subgraph size×|V (G)|), since we can only go as far as

the maximum subgraph size, and each depth always has at maximum all nodes as

unexplored. Like in g-tries snapshots, in practice, the actual contents will be much

lower than this maximum due to the constraints applied on the expansion list of

vertices.
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Figure 5.13 – ESU recursive procedure frozen at a given time.

D - Larger recursive depth

Vi - currently graph vertex being explored at depth i

Ui - number of unexplored vertices in depth i

UV j
i - j-th unexplored vertices in depth i

D V0 V1 . . . VD−1 U1 UV 1
1 UV 2

1 . . . UV U1

1 UD UV 1
D UV 2

D . . . UV UD

D

Figure 5.14 – An array structure representing an ESU snapshot.

Algorithm 5.11 details our adaptation of the ESU extendSubgraph() recursive proce-

dure so that it is able to stop and store the recursion whenever a request for work

arrives, building an ESU snapshot. It is the same as the initial sequential algorithm

with the exception of the marked lines, with the already explained checking of new

messages (lines 2 and 3) and the storage of the current vertex (line 12) and unexplored

vertices (line 13).

Algorithm 5.12 shows how to resume a given ESU snapshot S, assuming the notation

given in Figure 5.14. It starts by creating the partially extended subgraph Vsubg (line

2). Then it traverses all recursive depths, from the highest to the lowest (line 3),

since it would be in that order that they would be computed in the original recursive

procedure. After this, it builds the correspondent expansion list (line 7) and does

exactly as we would do in the snapshotExtendSubgraph() recursive algorithm (lines

10 to 16). If the computation has to stop again, the respective snapshot array is

updated (lines 4 to 5 and 13 to 16).
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Algorithm 5.11 Distributed snapshot version of ESU enumeration of subgraphs

1: procedure snapshotExtendSubgraph(VSubg, VExt, v)

2: if checkMessagesThreshold() then ⊲ NEW CODE

3: checkMessages() ⊲ NEW CODE

4: if |VSubg| = k then

5: incrementCount(canonicalLabeling(VSubg))

6: else

7: while VExt 6= ∅ do

8: remove random chosen w ∈ VExt

9: V ′
ext := Vext ∪ {u ∈ Nexcl(w, Vsubg) : u > firstV ertex(VSubg)}

10: snapshotExtendSubgraph(Vsubg ∪ {w}, V ′
ext, v)

11: if receivedWorkRequest() then ⊲ NEW CODE

12: snapshot.add(current vertex w) ⊲ NEW CODE

13: snapshot.add(remaining nodes of VExt) ⊲ NEW CODE

14: break ⊲ NEW CODE

Algorithm 5.12 Resuming an ESU snapshot.

1: procedure resumeESUSnapshot(S)

2: Vsubg := {V0, . . . , VD−1}
3: for i: D − 1 down to 0 do

4: if receivedWorkRequest() then

5: snapshot.add(depth i of S)

6: else

7: Vext := {UV 0
i , . . . , UV Ui

i }
8: remove last vertex from Vsubg

9: while VExt 6= ∅ do

10: remove random chosen w ∈ VExt

11: V ′
ext := Vext ∪ {u ∈ Nexcl(w, Vsubg) : u > firstV ertex(VSubg)}

12: snapshotExtendSubgraph(Vsubg ∪ {w}, V ′
ext, v)

13: if receivedWorkRequest() then

14: snapshot.add(current vertex w)

15: snapshot.add(remaining nodes of VExt)

16: break
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This whole resumeESUSnapshot is able to resume work exactly as it would have

originally run, as in the case of g-tries snapshots. The partition is also similar, with

the list of unexplored vertices being divided in two for each depth: current and even

unexplored vertices one one half and odd unexplored vertices on the other half. This

configures again a diagonal split, with two equally sized halfs in terms of the number

of unexplored vertices.

5.3.6 Aggregation Phase

After the work-phase has ended, every worker will have its own dictionary of frequen-

cies for every network analyzed (the original one and the random ones) and subgraphs

discovered. There will probably exist many zeroes, meaning that a particular network

was not analyzed at all by that particular worker, but potentially there can be valuable

information for every worker, for any subgraph, on any network. This is a huge amount

of data that we need to aggregate in order to calculate the subgraph significance. Note

that the number of possible k-subgraphs grows super-exponentially as k increases.

For each class of isomorphic subgraphs, we need to know the frequency in the orig-

inal network and its average frequency and standard deviation in the set of random

networks. We choose to have a “root” worker, responsible for storing the global

results. After gathering all needed frequencies, this worker can calculate the necessary

subgraph significance in a sequential manner (note that, as said, the majority of the

work is done during the computation of the census and that at this phase, since

a computation of a single subgraph significance is done in almost constant time, it

would not improve if it was sent to another worker - on the contrary it would take

more time).

A simple primitive approach for this would be for each worker to communicate in turn

with the root worker, sending its own results. In order to do that, it would have to

send pairs of subgraph descriptions (for example using the canonical labeling) and

their respective frequencies. We call this strategy naive.

This naive approach is not enough and can take a huge amount of time. Instead,

our strategy is to first agree on the list of subgraphs that are being computed. If all

workers have that list before communicating its own frequencies found, we could avoid

the need to communicate graph identifications, because we can induce a fixed order

of relevant subgraph types. Therefore, if we communicate a vector of frequencies, the

position in the vector will determine which subgraph we are referring too.
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In order to create that list of relevant subgraph types, depending on the subgraph

frequency discovery method being used, we do the following:

• g-tries: in this case the list of relevant subgraphs is already at our disposal in

the g-trie, and we assume that the subgraphs come in the depth-first order of

traversing that g-trie.

• ESU: the root worker will start by advertising a set of T concrete subgraphs that

it knows are being computed (that is, the ones whose frequency it has found to

be greater than zero), by broadcasting a message. Then, all workers, organized

in a binary tree (see an example in Figure 5.15), communicate to tree ancestors

their list of subgraph types not found by the root worker. After this process is

complete, the root will have a list of new subgraphs that it will broadcast to all

workers.

Figure 5.15 – 7 processors organized in binary search tree.

Having the pre-defined list of subgraphs at hand, the workers can just communicate

frequencies (and not graph descriptions). For the this step we propose two strategies:

• hierachical: like in the agreement of subgraph types being computed, we orga-

nize the workers in a binary tree. Each worker receives an array of frequencies

from its descendants, adds it to its own array and in turn communicates it to

the ancestor worker. Note that this has the potential to logarithmically cut the

needed time when compared to a naive sequential communication of frequencies.

• collective: instead of using point-to-point messages (from one worker to another

worker), we use the specialized MPI collective communications facilities. We use

MPI Reduce to gather and sum all frequency values in a vector. The position in
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the vector denotes which network and subgraph type it refers to. The specific

algorithm used by MPI Reduce is an implementation defined issue and can vary

even for two different versions of the same MPI suite. Traditionally it also uses

a tree [Hus99] but it can also incorporate more advanced features such as taking

advantage of node locality. The main aspect to notice is that we delegate to the

MPI implementation the gathering of information, by explicitly denoting that

we want to aggregate and sum the frequencies.

5.3.7 Parallel Sampling

The g-trie and ESU algorithm also allow for sampling and we have implemented that

option, providing a quicker but only approximate parallel calculation of motifs. The

basic idea is to only follow each search branch with a probability Pi related to the

depth i as described before in Sections 3.3.2 and 4.6.

Essentially the algorithms remain the same in all the cases with the following excep-

tions:

• master-worker and distributed queue: an unit 2(id,s) is only expanded

with a probability associated to its size s, which corresponds to the respective

recursive depth.

• distributed snapshot: the snapshotMatch() and snapshotExtendSubgraph()

are only called with a probability associated to the recursive depth, which is as

before equal to the size of the partially constructed subgraph.

With this in position, when looking for k-subgraphs, each possible occurrence will

only be found with probability P0 × P1 × . . . × P(k−1). This leads to an even more

unpredictable search tree topology, since a branch can sometimes be completely elim-

inated because it was not selected in the respective probabilistic test. The dynamic

load balancing scheme will then ensure that this workload is distributed among all the

processors.

5.3.8 Motif Discovery

With all the algorithms described before in this chapter it is now possible to discover

motifs in parallel, in three synchronization steps, as was depicted in Figure 5.2.
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1. Compute the frequency of subgraphs of a given size k in the original network,

using either parallel ESU or parallel gtries, with an initial g-trie containing all

the possible k-subgraphs. This will generate a list L of interesting subgraphs.

2. Compute the frequency of the subgraphs of L in all the random network using

parallel g-tries, with L being used to create the g-trie. This will originate a list

of frequencies in each network.

3. Compute the significance of each subgraph in serial, since each significance

computation takes only a very small fraction of time and doing it in parallel

would be detrimental.

This configures a direct parallel equivalent of the g-trie motif discovery methods given

in Section 4.7. The general applicability of our parallelization methodology makes

it also possible another parallel alternative, which is to compute the frequency of all

k-subgraphs at the same time in the original and random networks, using only parallel

ESU. This is the parallel equivalent to discovering motifs using only ESU.

5.4 Summary

In this chapter we first identified interesting opportunities for parallelism in the se-

quential motif discovery program flow and created an associated taxonomy. We then

abstracted the whole process as a tree shaped computation with independent branches.

Using that as a basis we presented a general parallel methodology with dynamic load

balancing capabilities, with both centralized and distributed control. We have also

added the capability to freeze the computation, creating an efficient way of storing,

dividing and resuming a snapshot of the search state. Finally we have added the

option to use sampling to further reduce execution time and we have shown how all

of this could be used to efficiently discover motifs in parallel.
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The difference between theory and practice

is that in theory, there is no difference

between theory and practice.

Richard Moore

6
Experimental Evaluation

In this chapter we present empirical data obtained by running our sequential and

parallel methods on a large and representative set of synthetic and complex networks.

We first detail the computational environment and the networks used, and follow with

a characterization of the g-tries sequential method. We then compare the behaviour

of g-tries with the other state-of-art motif discovery algorithms, in both exhaustive

and approximate (with sampling) scenarios. Finally, we do a performance evaluation

and scalability study of the parallel algorithms and conclude with an overview of the

main findings.

6.1 Common Materials

We organized our experimental evaluation in two major parts: one deals with sequen-

tial algorithms, the other deals with parallel algorithms. However there are aspects,

such as the computing the environment and the datasets used, that are common to

both parts. These are described next.

6.1.1 Computational Environment

All experimental results were obtained on a dedicated cluster with 12 SuperMicro

Twinview Servers for a total of 24 nodes. Each node has 2 quad-core Xeon 5335

141



CHAPTER 6. EXPERIMENTAL EVALUATION

processors and 12 GB of RAM, totaling 192 cores, 288 GB of RAM, and 3.8TB of disk

space, using Infiniband interconnect.

All code was developed in C++ and compiled with gcc 4.1.2. For message pass-

ing we used OpenMPI 1.2.7 [GWS06]. Execution times were measured using the

gettimeofday() function. They are wall clock times, that is, they measure real time

elapsed from the start to the end of the respective computation. The time unit used

is the second.

6.1.2 Complex Networks

There is no generally accepted set of benchmark networks for motif discovery experi-

mentation. This is mainly because motifs are so ubiquitous that they can be applied

to any system that can be modeled as a graph and therefore the possible applications

areas are almost infinite and from many scientific fields. Much research work has

been done already related to application-specific synthetic networks [WP08], such as

community detection algorithms [LFR08a], however, with motifs, we are aiming for

the most general applicability.

Our option was thus to use a large set of real representative networks from several

domains, focusing on getting diversity in topological features and scientific fields. We

divided the real networks that will be used in four big groups. Next, we describe each

of these networks, provide a name for future reference and indicate where the data set

was obtained.

• Biological networks: model biological processes and complex systems and are

gaining increasing attention [Alo03].

– ppi: an undirected budding yeast (S. cerevisiae) protein-protein interaction

(PPI) network [BZC+03]. PPI networks are one of the most intensely

studied, and model how proteins bind together to carry out many important

biological functions. Source: [BM06].

– neural: a directed neural network of the small nematode roundworm C.

elegans, describing its nervous system [WSTB86, WS98]. Source: [New09].

– metabolic: a directed metabolic network of the small nematode round-

worm C. elegans [DA05]. Source: [Are11].
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• Social networks: describe interactions between individuals or entities, such

as friendships, common interests or financial exchanges. Social network anal-

ysis is nowadays a key technique in sociology [WFI94], with several scientific

conferences exclusively devoted to it.

– coauthors: an undirected network describing coauthorship between scien-

tists working on network theory [New06]. Source: [New09].

– dolphins: an undirected social network of frequent associations between

62 dolphins in a community living near New Zealand [LSB+03]. Source: [New09].

– links: a directed network of hyperlinks between weblogs on US poli-

tics [AG05]. Source: [New09].

– company: a directed ownership network of companies in the telecommuni-

cations and media industries [NLGC02]. Source: [BM06].

• Physical networks: describe networks which have a physical real-world rep-

resentation, such as computer or transportation networks, where each node’s

geographical location may influence the topology of the network.

– circuit: an undirected network representing an electronic circuit. Source:

auxiliary material of [MSOI+02].

– power: an undirected network representing the topology of the Western

States Power Grid of the United States of America [WS98]. Source: [New09].

– internet: a symmetrized snapshot of the structure of the Internet at the

level of autonomous systems, reconstructed from BGP tables posted by the

University of Oregon Route Views Project. This data was compiled by

Mark Newman in July, 2006. Source: [New09].

• Semantic networks: represent connections between concepts.

– foldoc: Foldoc is an online dictionary of computing terms [How10]. This

is a directed network where an edge (X, Y ) means that term Y is used to

describe the meaning of term X. Source: [BM06].

– oldis: Oldis is the Online Dictionary of Library and Information Sci-

ence [Rei02]. It is a directed network built in the same way as foldoc.

Source: [BM06].

143



CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.1 summarizes the topological features of all these networks. They are shown

ordered by increasing number of nodes. All networks are simple unweighted graphs, in

accordance with the formalization of the motif discovery problem we use in this thesis.

Some simplifications on the original networks were done as necessary. Self-loops were

discarded, multiple edges were transformed in a simple unique edge between the two

nodes, and all weights were ignored.

Network Group Directed |V (G)| |E(G)| Nr. of Neighbours
Average Max

dolphins social no 62 159 5.1 12

circuit physical no 252 399 3.2 14

neural biological yes 297 2,345 14.5 134

metabolic biological yes 453 2,025 8.9 237

links social yes 1,490 19,022 22.4 351

coauthors social no 1,589 2,742 3.5 34

ppi biological no 2,361 6,646 5.6 64

odlis semantic yes 2,909 18,241 11.3 592

power physical no 4,941 6,594 2.7 19

company social yes 8,497 6,724 1.6 552

foldoc semantic yes 13,356 120,238 13.7 728

internet physical no 22,963 48,436 4.2 2,390

Table 6.1 – Topological features of the networks used to test the algorithms.

For each network we also provide the average and the maximum number of neighbours

per node, since this can provide an insight on how the number of subgraph occurrences

grows as its size increases. Generally speaking, the more neighbours a single node has,

the more subgraph occurrences it will participate in. Therefore, a larger number of

neighbours implies a larger growth ratio on the number of subgraph occurrences.

In order to perform some systematic tests on our algorithms, we also use synthetic

networks, artificially generated to present some topological constraints. In particular

we will use a benchmark social network proposed by Lancichinetti et al. [LFR08b], that

was originally created with the purpose of evaluating community detection algorithms.

It provides undirected or directed networks with features close to a real social network

and is fully customizable.

Since we are using a very large set of possible networks, we will not use all of them

for every aspect tested. For the sake of simplicity and ease of reading, some sections

will only present some representative cases.
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6.1.3 Other Competing Algorithms

We will compare the performance of our algorithm against the main state-of-art

algorithms that were designed to compute the same task. These were described in

detail in Chapter 3 and, in particular, Section 3.2 gives the pseudo-code for how they

compute the exact subgraph census of a network.

mfinder is not used since it is significantly slower, by several orders of magnitude, than

all other major algorithms, as it is shown for example in [Wer06]. For instance, we

empirically verified that it was more than 1000x slower than g-tries when computing

the 5-subgraph census of the undirected network ppi (an undirected network) and that

it was more than 2000x slower than g-tries when computing the 4-subgraph census of

the directed network company.

In order to compare with the network-centric approach, we will use both the ESU

and Kavosh algorithms. We use our own implementation of the algorithms, so that

the whole code infra-structure is the same with the exception of the algorithm itself,

allowing for better and fairer comparison. For example, both ESU and Kavosh use the

nauty third-part algorithm for isomorphism calculation, but the author’s implemen-

tation use different versions of it. In our implementation, we can make sure that this

is not the case and the same nauty version is used in both algorithms.

Great care was taken in the implementation of these algorithms, with special emphasis

on guaranteeing the best performance possible. We also downloaded, compiled and

used as a guide the original source code provided by the authors of ESU (fanmod tool1)

and Kavosh2, and compared the execution times with our own implementation, to

certify that we were not slowing down the algorithms. Both original implementations

use C++.

Table 6.2 shows this comparison. The Fanmod tool has a mandatory graphical user

interface that is not available at the dedicated cluster we used. Therefore, for this

experiment, we used a personal computer with an Intel Core i5-450M processor running

at 2.4GHz with 4GB of DDR3 memory. We show the execution times (measured in

seconds) for a complete k-subgraph census on four networks, two undirected and two

directed, with increasing k.

We can observe that our Kavosh implementation is very similar to the original imple-

mentation, with a slight gain. With respect to ESU, our implementation is faster than

1Fanmod is available at http://theinf1.informatik.uni-jena.de/∼wernicke/motifs/
2Kavosh source code is available in http://lbb.ut.ac.ir/Download/LBBsoft/Kavosh/
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network neural metabolic coauthors power

k 3 4 5 3 4 5 3 4 5 3 4 5

Original Kavosh 0.03 1.29 70.84 0.05 3.22 283.55 0.01 0.06 0.46 0.01 0.07 0.35

Our Kavosh 0.03 1.26 63.12 0.05 3.35 272.67 0.01 0.05 0.41 0.01 0.07 0.31

Original ESU 0.08 2.09 76.64 0.12 5.66 386.52 0.02 0.17 1.16 0.04 0.18 0.81

Our ESU 0.03 1.29 69.27 0.04 3.15 270.4 0.01 0.05 0.41 0.02 0.07 0.31

Table 6.2 – Execution time of our ESU and Kavosh implementations.

the original, with an average speedup close to 2x. This gain seems to be even more

pronounced in the undirected networks (coauthors and power).

Moreover, our own implementation of ESU does not impose strict limits on the motif

size, while the original source code is limited to 8 nodes. We also implemented

RAND-ESU, the sampling version of this algorithm.

Regarding the subgraph-centric approach we will use Grochow. However, given that

Grochow is implemented in Java, we do not show a comparison with our implementa-

tion. Generally speaking, Java is considered to be slower than C++ [K0̈8], although

each case may have its particular behaviour. Nevertheless, our own implementation

provides a much fairer comparison to the others, in the sense that it is written in the

same language and with the same code-infrastructure.

MODA is not used for comparison since it has a very high memory cost since it must store

subgraph occurrences, as these are needed for all possible k-subgraphs, in order to build

the complete expansion tree for the desired size. This hinders its applicability, specially

when the number of subgraphs found becomes large. Instead, we just compare with

algorithms that base their computation only on storing subgraph counts, as is the case

with g-tries, ESU, Kavosh and Grochow.

6.2 Sequential Algorithms

This section shows results obtained with sequential algorithms for motif discovery,

starting with a more detailed analysis of g-tries and then with a comparison with the

main competitor algorithms.
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6.2.1 G-Tries Creation

We will start by evaluating the time it takes to construct a g-trie and its ability to

compress the topological information of the original set of graphs.

We first generated all possible simple undirected k-graphs, increasing k, using the

nauty tools. We then experimented reading all those graphs from a file and inserting

them in an initially empty g-trie. No step was bypassed, such as computing the

symmetry breaking conditions, and filtering these conditions in the g-trie. Note that

on a real usage case, this could be avoided by pre-computing these conditions, but the

intention of this experiment is to show how much time it takes to create a g-trie on

the fly.

Table 6.3 shows the results obtained. We took note on the number of graphs, the

compression ratio (see Equation 4.1), the time it takes to create the g-tries and the

average number of subgraphs stored per second. We stop at the first k where the

number of different graphs is greater than one million. The smallest k used throughout

this chapter is 3, since those are the simplest subgraphs and considering less would

correspond to look for single vertices (k = 1) or for edges (k = 2).

k Nr. Graphs Compression Time (s) Graphs/sec

3 2 33.33% < 0.001 37,736

4 6 58.33% < 0.001 35,088

5 21 70.48% < 0.001 29,494

6 112 77.98% 0.004 25,524

7 853 82.21% 0.040 21,514

8 11,117 85.01% 0.588 18,917

9 261,080 87.12% 15.766 16,559

10 11,716,571 88.78% 917.379 12,772

Table 6.3 – Execution time for inserting all undirected k-graphs in a g-trie.

Table 6.3 shows that the number of k-graphs grows exponentially and, at the same

time, the compression also increases, meaning that more common substructure is

identified. This is mainly because there are more graphs and therefore more potential

for overlapping of structure. For example, all subgraphs will naturally share the same

root g-trie ancestor, containing a single node without a connection to itself. Regarding

the execution time, we can see that is initially almost instantaneous, but it grows

exponentially with the number of subgraphs. The results show that this approach
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could become prohibitive as k grows, but it should be noted that the number of

graphs would become so large that even the g-trie itself containing all k-graphs would

be too big to fit in main memory.

We now show the results for creating a g-trie with all directed k-graphs in the same

way, stopping again as soon as the number of graphs exceeds one million. The results

can be seen in Table 6.4.

k Nr. Graphs Compression Time (s) Graphs/sec

3 13 56.41% < 0.001 156,627

4 199 71.98% 0.002 83,789

5 9,364 79.07% 0.150 62,535

6 1,530,843 83.03% 50.254 30,462

Table 6.4 – Execution time for inserting all directed k-graphs in a g-trie.

The results are very similar to what happens with undirected networks, with growing

compression and again an exponential growth in number of graphs and execution time,

exposing the same virtues and limitations.

Remember that these complete g-tries containing all possible k-graphs can be reused

and they could be stored in the file system ready to be uploaded to main memory

without really computing them, as was described in Section 4.4.4. Tables 6.5 and 6.6

show execution times when reading the files of g-tries containing all possible k-graphs.

Again we show the number of graphs and the ratio of graphs per second. In this

experiment we also take note of the size of the file (in bytes) containing the respective

g-trie, and the number of bytes per graph.

We can observe that reading the previously computed g-trie from a file is obviously

much faster than creating the g-trie on the fly, and the main bottleneck is the file

size itself. The number of necessary bytes per graph decreases as k increases since the

compression ratio also increases.

For motif computation, as discussed before, we will typically find all k-subgraphs of

the original network and then populate a g-trie only with those that both appear

in the network and are meaningful for motif computation, that is, that appear at

least a given minimum of times. This means that in practice we will be inserting a

dynamic set of graphs, which is generally just a small percentage of the whole set

of possible subgraphs of a determined size, which would mean much smaller creation

times. Note that some of the computational costs could be further reduced, namely
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k Nr. Graphs Time (s) Graphs/sec File Size (bytes) Bytes/graph

3 2 < 0.001 83,333 42 21.0

4 6 < 0.001 193,548 97 16.2

5 21 < 0.001 437,500 281 13.4

6 112 < 0.001 783,217 1,287 11.5

7 853 < 0.001 1,055,693 8,935 10.5

8 11,117 0.010 1,059,670 100,182 9.0

9 261,080 0.209 1,249,288 2,020,172 7.7

10 11,716,571 8.277 1,415,603 79,571,853 6.8

Table 6.5 – Execution time for reading a g-trie with all undirected k-graphs.

k Nr. Graphs Time (s) Graphs/sec File Size (bytes) Bytes/graph

3 13 < 0.001 351,351 126 9.7

4 199 < 0.001 1,463,235 1,398 7.0

5 9,364 0.004 2,084,131 54,354 5.8

6 1,530,843 1.384 1,106,481 8,113,436 5.3

Table 6.6 – Execution time for reading a g-trie with all directed k-graphs.

be pre-computing the symmetry conditions, avoiding the necessity of computing the

automorphisms.

In practice, this means that we can achieve a very fast g-trie creation, with the g-trie

creation step not being the bottleneck in the motif computation. In fact, this time

will only start to be more meaningful as the number of graphs reaches a number so

high that their g-trie representation cannot be stored in main memory. This is the

main limitation of the g-trie creation process as it is right now, since all algorithms

assume that the g-trie in itself fits in memory.

Given this, for the last experiment on this section, we took note of the total memory

spent by a g-trie residing in memory during motif computation, using the valgrind

tool [NS07]. Tables 6.8 and 6.7 show the amount of memory needed for a g-trie

containing all possible k-graphs, as well as the number of stored graphs and the average

memory per graph.

We can observe that, as expected, the needed memory grows exponentially with the

number of stored graphs. The average memory per graph decreases as k grows because

of larger compression ratios. When comparing this with the number of bytes per graph
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k Nr. Graphs Memory (bytes) Bytes/graph

3 2 814 407.0

4 6 2,294 382.3

5 21 7,172 341.5

6 112 34,852 311.2

7 853 241,294 282.9

8 11,117 2,899,538 260.8

9 261,080 63,504,120 243.2

10 11,716,571 2,680,803,240 228.8

Table 6.7 – Memory needed for a g-trie containing all undirected k-graphs.

k Nr. Graphs Memory (bytes) Bytes/graph

3 13 3,004 231.1

4 199 38,210 192.0

5 9,364 1,635,190 174.6

6 1,530,843 260,796,274 170.4

Table 6.8 – Memory needed for a g-trie containing all directed k-graphs.

needed to store the g-trie in a file, we can see that the actual memory needed for the

computation itself is much larger. Several factors contribute for this, such as the

overhead introduced by using C++ objects or the added extra information, like the

actual frequencies found.

6.2.2 G-Tries Census

This section will focus on examining the algorithm that computes the census of the

subgraphs stored in a g-trie.

6.2.2.1 Effect of Canonical Labeling

As explained in detail in Section 4.4.2, the canonical representation will influence the

topology of the g-trie and therefore will have a great impact in the efficiency of the

census algorithm. In order to empirically justify our option for the canonical labeling,

we show the execution time of a complete k-subgraph census using a g-trie created
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with four different methods:

• GTCanon: our custom built GTCanon labeling algorithm, as described, that

favors in lower levels nodes with more connections to ancestor nodes in the g-

trie.

• Larger: the lexicographically largest possible adjacency matrix, that will induce

high compression in the g-trie.

• Random: a deterministic pseudo-random labeling (obtained by fixing the seed)

applied after the nauty canonization. We create it by a sequential random

choice of a node that is connected to an ancestor node (when possible). This

is to ensure minimum efficiency, because a purely random labeling would create

many unconnected nodes, for which any unused network node would be a suitable

candidate. This would exponentially increase the execution time needed for

computing a census, as was explained in Section 4.4.2.

• Opposite: a labeling algorithm expressing the opposite of GTCanon, that chooses

the nodes with less connections for the lower levels of the g-trie. As in the Random

labeling case, we ensure connectivity in order to guarantee minimum efficiency.

Table 6.9 shows the results obtained for two networks, one directed and one undirected,

for a representative set of sizes k so that the computation is not instantaneous but at

the same time small enough so that even the slowest labeling method takes only a few

minutes. We computed the census by using a g-trie with all possible k-subgraphs.

network circuit metabolic

k 7 8 9 4 5

Execution time (s)

GTCanon 0.037 0.202 1.230 0.178 10.611

Larger 0.075 0.554 4.202 0.224 19.108

Random 0.251 2.846 45.814 0.292 40.319

Opposite 0.628 8.723 145.116 0.351 55.927

Compression Ratio

GTCanon 82.21% 86.33% 87.12% 71.98% 79.07%

Larger 83.44% 86.33% 88.32% 72.86% 79.48%

Random 67.43% 68.01% 69.00% 68.84% 74.15%

Opposite 78.80% 81.87% 84.28% 72.61% 79.18%

Table 6.9 – Effect of canonical labelings on k-census computation.
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We can observe that our chosen strategy has the best behaviour (smaller execution

times) for every pair of network and subgraph size, both in undirected and directed

cases.

The lexicographically largest adjacency matrix (larger), which is more costly to com-

pute, produces higher compression in the g-tries, but this does not have a proportional

impact in lowering the execution time. Indeed, a greater compression ratio is desirable,

but in itself it does not guarantee better performance and the GTCanon labeling takes

advantage of the fact that we know the census algorithm and therefore can optimize it

for discovering, as soon as possible, that a set of nodes will not match to a subgraph.

The random labeling shows that the compression ratio and census efficiency cannot be

assumed to happen, and thus efficiency must be obtained by choosing an appropriate

labeling. Finally, opposite, the reverse of our chosen strategy, is even worst than the

random case, further substantiating the claim that our labeling choice has a positive

effect on the efficiency of the census.

6.2.2.2 Effect of Symmetry Breaking Conditions

If we did not use the symmetry breaking conditions detailed in Section 4.5.2, all

automorphisms of each subgraph isomorphic class would be found and the census

would be substantially slower. Our filtering of symmetry conditions, as previously

explained, reduces the memory needed for storing the the g-trie, and improves the

execution times.

Table 6.10 shows execution times for a k-census on the same two networks used in the

previous section, with a g-trie with all k-subgraphs, varying the symmetry breaking

conditions used:

• Normal: our standard use of symmetry breaking conditions.

• No filtering: symmetry breaking conditions are used, but we do not minimize

their number by following the 4 filtering steps described on section 4.5.2.3.

• No conditions: No symmetry breaking conditions are used at all.

As expected, not using any conditions slows the algorithm. Not filtering also slows

down, albeit by a smaller margin. However, for bigger g-tries, the amount of unfiltered

symmetry conditions starts to be so large that the algorithm becomes even slower than
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network circuit metabolic

k 7 8 9 4 5

Execution time (s)

Normal 0.037 0.202 1.230 0.178 10.611

No filtering 0.062 0.590 38.562 0.238 15.638

No conditions 0.205 1.592 13.155 0.460 56.414

Table 6.10 – Effect of symmetry breaking conditions on k-census computation.

the g-trie without any conditions (see k = 9 for circuit). This showcases the need

for reducing the number of conditions and the validity of our filtering process.

6.2.2.3 Asymptotic Behavior

We will now have a look at the empirical asymptotic behavior of the g-trie census

algorithm as the size of both the networks and subgraphs grows.

For testing network growth, we will use the synthetic social benchmark network

described in Section 6.1.2, that allows us to slowly grow network size n while preserving

the same topological characteristics. As before, we will be computing k-census with g-

tries containing all possible subgraphs. The network is customized with the following

parameters: average degree 20; minimum community size 20, maximum community

size 50, mixing parameter 0.1 (for more information on these see [LFR08a] and the

networks generation source code Readme file3).

Figure 6.1 shows the execution time for computing a full k-subgraph census by using

a g-trie with all possible k-subgraphs. We vary the size from 500 to 10,000 nodes,

with increments of 500 nodes and we use both undirected and directed versions of the

network. We opted for choosing k, the subgraph size, so that the execution times are

within a single minute. For better legibility, both graphs use the same scale, but one

should note that in the case of the undirected network we are computing subgraphs

of size 5, and in the directed network subgraphs of size 4.

We can see that the execution time appears to have a linear relation to the network

size, for this particular network. Remember that g-tries (and for that matter all

other current major motif detection algorithms) must explicitly pass in every subgraph

occurrence in order to have an exhaustive perfect count. Taking this into account, a

more telling statistic is to check the subgraph discovery ratio, that is, the number of

3The source code is available at http://sites.google.com/site/andrealancichinetti/files
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Figure 6.1 – Execution time for a census on a social network as the number of

nodes increases.

occurrences found per second. A constant value would be the desirable situation, since

the algorithm (such as the others) is by now limited by design to those occurrences.

Figure 6.2 illustrates the subgraph discovery ratio for the same experiment.

10
3

10
4

10
5

10
6

10
7

10
8

su
bg

ra
ph

s
pe

r
se

co
nd

0 2000 4000 6000 8000 10000

network size (nr. nodes)

(a) undirected (subgraph size k = 5)

10
3

10
4

10
5

10
6

10
7

10
8

su
bg

ra
ph

s
pe

r
se

co
nd

0 2000 4000 6000 8000 10000

network size (nr. nodes)

(b) directed (subgraph size k = 4)

Figure 6.2 – Subgraph discovery ratio for a social network as the number of nodes

increases.

We can see that our algorithm is able to maintain a steady flow on the number of

subgraphs found per second, without loosing much performance as the network size

grows. Note however that the ratio is different in the two cases, since it is quite

different to look for directed or undirected subgraphs, and their size is different.

In general, two different networks will induce different discovery ratios, as this depends

heavily on the topology of the network itself. For example, a dense network would be

more prone to a bigger ratio, with many subgraphs packed together. However, at the

same time, it would have more subgraph occurrences.
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Table 6.11 and Table 6.12 give a more practical view on this effect, by showing the

subgraph ratio for different networks on subgraphs of the same size, when again

computing a census with a complete g-trie. Note the differences, but also note the

magnitude of the ratio, that stays between 106 and 107. This does not mean however

that, for every network, g-tries subgraph discovery ratio will stay within this margin.

Network Execution Time Subgraph Occurrences Subgraphs/sec

dolphins 3.027 12,495,833 4,128,240

circuit 1.230 13,512,688 10,985,192

coauthors 448.071 886,423,840 1,978,312

power 18.444 183,453,978 9,946,388

Table 6.11 – Subgraph discovery ratio for 9-census on undirected networks.

Network Execution Time Subgraph Occurrences Subgraphs/sec

neural 3.778 43,256,069 11,448,911

metabolic 10.611 195,573,511 18,431,064

links 971.269 7,347,672,714 7,562,022

odlis 713.630 8,655,784,561 12,129,235

Table 6.12 – Subgraph discovery ratio for 5-census on directed networks.

In what concerns the execution time behaviour when we increase the size of the motifs

for the same network, what generally happens is that we have a subgraph discovery

ratio that very slowly starts degrading as the size increases. Figure 6.3 shows this

behaviour and how this ratio changes as we increment the subgraph size for two

networks, one undirected, and one directed, as we compute a k-census using a complete

g-trie.

6.2.3 G-Tries Comparison with Other Algorithms

In this section, we provide a thorough comparison of g-tries, with other competing

algorithms, namely ESU, Grochow and Kavosh, as explained in Section 6.1.3.

For the first set of tests we will fully enumerate all k-subgraphs present in the original

network, doing the equivalent to the first step of any motif discovery process. In the

case of network-centric algorithms (ESU and Kavosh), this is simply running them.
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Figure 6.3 – Subgraph discovery ratio for power and metabolic as subgraph size

increases.

In the case of the subgraph-centric algorithms (Grochow), we queried all possible k-

subgraphs, in the same way we used g-tries with all those subgraphs inserted.

In order to give a broad overview of how g-tries consistently outperform every other

major motif algorithm we used for comparison the entire set of 12 real complex

networks. For each one of them we did a k-census, increasing k one by one starting

with 3. In order to produce readable tables, we stopped when the slowest algorithm

would take more than 5 hours to run and took note of the execution times and of the

relative speedup of g-tries versus the other algorithms.

Tables 6.13 and 6.14 present the results obtained for the undirected and directed

networks, respectively. All methods are identified by the first three letters of their

name (GTR for g-tries, ESU, KAV for Kavosh and GRO for Grochow). Every experiment

was executed at least three times and average execution times were recorded.

The major fact to notice is that there is not a single case where g-tries performs worst

than other method, which showcases the efficiency of our algorithm. G-Tries clearly

outperform the other algorithms in all the complex networks used.
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Network k
k-census execution time (s) Speedup of g-tries vs

GTR ESU KAV GRO ESU KAV GRO

dolphins

3 < 0.001 < 0.001 < 0.001 < 0.001 14.9x 14.3x 9.8x

4 < 0.001 0.006 0.006 0.003 15.5x 15.6x 8.3x

5 0.002 0.036 0.036 0.032 14.7x 14.5x 12.8x

6 0.014 0.251 0.241 0.324 17.7x 17.0x 22.8x

7 0.085 1.499 1.405 3.727 17.7x 16.6x 43.9x

8 0.483 9.182 8.468 55.093 19.0x 17.5x 114.0x

9 3.027 52.431 46.033 1323.984 17.3x 15.2x 437.4x

circuit

3 < 0.001 0.001 0.001 0.002 12.6x 12.4x 18.8x

4 < 0.001 0.007 0.007 0.006 18.0x 18.1x 17.1x

5 0.002 0.034 0.034 0.043 21.9x 21.8x 27.7x

6 0.007 0.221 0.218 0.317 32.4x 32.1x 46.5x

7 0.037 1.365 1.311 2.778 36.7x 35.3x 74.8x

8 0.202 9.267 8.670 32.630 45.9x 42.9x 161.5x

9 1.230 59.804 53.152 632.213 48.6x 43.2x 514.0x

coauthors

3 < 0.001 0.010 0.010 0.030 14.1x 14.4x 42.0x

4 0.006 0.077 0.077 0.172 12.0x 11.9x 26.7x

5 0.053 0.633 0.617 1.635 12.0x 11.7x 31.0x

6 0.442 5.711 5.568 18.465 12.9x 12.6x 41.8x

7 4.088 50.748 49.579 284.614 12.4x 12.1x 69.6x

8 40.560 481.432 464.540 6669.196 11.9x 11.5x 164.4x

ppi

3 0.004 0.086 0.092 0.092 21.8x 23.4x 23.4x

4 0.068 3.106 3.053 1.450 45.9x 45.1x 21.4x

5 1.507 84.959 84.852 39.182 56.4x 56.3x 26.0x

6 40.275 2922.555 2934.426 1092.221 72.6x 72.9x 27.1x

power

3 0.002 0.017 0.018 0.215 7.9x 8.3x 98.3x

4 0.008 0.101 0.102 0.845 12.6x 12.7x 105.3x

5 0.029 0.481 0.486 5.164 16.6x 16.8x 178.1x

6 0.119 2.947 2.913 35.729 24.7x 24.4x 299.7x

7 0.600 17.891 17.285 313.052 29.8x 28.8x 521.5x

8 3.247 120.695 112.065 3840.250 37.2x 34.5x 1182.7x

internet
3 0.423 11.571 12.206 6.865 27.3x 28.8x 16.2x

4 204.442 11044.788 10827.744 3390.107 54.0x 53.0x 16.6x

Table 6.13 – Comparison of g-tries with other algorithms when doing a full k-

census on original undirected networks.
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Network k
k-census execution time (s) Speedup of g-tries vs

GTR ESU KAV GRO ESU KAV GRO

neural

3 0.004 0.043 0.047 0.031 12.3x 13.2x 8.9x

4 0.112 1.989 1.981 1.676 17.7x 17.6x 14.9x

5 3.778 107.646 111.350 124.329 28.5x 29.5x 32.9x

6 128.364 5382.221 5837.072 17214.101 41.9x 45.5x 134.1x

metabolic

3 0.003 0.062 0.067 0.035 22.3x 24.0x 12.6x

4 0.178 5.037 5.215 3.214 28.3x 29.3x 18.1x

5 10.611 428.613 424.673 238.696 40.4x 40.0x 22.5x

links

3 0.080 1.086 1.110 0.719 13.6x 13.9x 9.0x

4 9.427 124.496 124.852 110.434 13.2x 13.2x 11.7x

5 971.269 16984.341 16895.159 16766.414 17.5x 17.4x 17.3x

odlis
3 0.062 1.027 1.105 1.015 16.5x 17.8x 16.3x

4 5.394 237.232 237.193 145.371 44.0x 44.0x 26.9x

company

3 0.016 0.296 0.308 0.656 18.7x 19.5x 41.5x

4 1.751 67.476 70.457 35.434 38.5x 40.2x 20.2x

5 241.378 13460.332 13459.479 2127.840 55.8x 55.8x 8.8x

foldoc
3 0.352 2.720 2.799 20.343 7.7x 8.0x 57.8x

4 18.338 379.087 393.359 1124.439 20.7x 21.5x 61.3x

Table 6.14 – Comparison of g-tries with other algorithms when doing a full k-

census on original directed networks.
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Specific speedups obtained can vary from method to method and from network to

network, but what is consistent is that using g-tries take less time to compute.

Figure 6.4 gives a more graphical view of the obtained speedups. Note that the

speedup scale is logarithmic and that almost all speedups seem to have the tendency

to grow as the subgraph size increases, meaning that g-tries appear to scale a little

better than the other algorithms.
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Figure 6.4 – G-Tries speedup over other algorithms on original network census.
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For all the networks, the speedup is at least very close to an order of magnitude faster.

If we consider the last computed subgraph size, there is only one network (company)

where our algorithm is less than 10x faster than all the other algorithms, and even

so it is 8.8x faster than the closest competitor. In the other cases it is much faster,

like in the case of circuit or neural, where it is more than 40x faster than all other

approaches.

Regarding this experiment, one can observe that the behaviour of the network-centric

methods (ESU and Kavosh) is very similar to each other, with only a marginal differ-

ence. Grochow, on the other hand, performs differently, having difficulties when the

number of subgraph classes increases. This is also a problem with our approach, since

increasing k will likely make the g-trie too big to fit in memory. However, remember

that this last experiment pertained to the computation of the full k-census in the

original network. As shown in Section 4.7, we can opt for an hybrid approach and

use a network-centric method on the original network, and only after that populate

the g-trie with the found classes of subgraphs, which typically will be a much smaller

percentage of the whole set of possible subgraphs.

Moreover, in the current motif discovery flow, the real bottleneck comes after when the

census must be computed for the ensemble of similar random networks. Since the size

of this set is normally large (one hundred is a typical minimum use case) and since the

random networks have the same number of nodes and edges of the original network,

the time spent on this step of the computation takes precedence over everything else.

It is therefore important to test the algorithms on randomized networks generated in

this way.

In order to do this test, we applied a random Markov-Chain process (see Section 3.4)

like it was done in [MSOI+02], with 3 swaps per edge and computed the census of all

subgraphs that appeared on the original network. Note that the motif definition (see

Section 2.2.1) allows one to specify an uniqueness threshold, specifying the minimum

frequency that a subgraph must have in order to be considered a motif. In a real use

case we can discard some subgraphs that are below the threshold and not count them

on the randomized networks. However, for the sake of a more complete experiment,

here we consider that this threshold is zero, meaning that every subgraph class that

appears at least once in the original network is considered.

We use the exact the same randomized networks in all algorithms, obtained by using

the same pseudo-random number generation seed. For network-centric methods, the

only option is to do an exhaustive census. For subgraph-centric methods capable of
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querying a single subgraph, namely Grochow, we only queried the pertinent subgraphs.

For the g-tries, we created a g-trie precisely with the subgraphs for which we want to

know the frequency in the random networks. We produced the same type of data as

we had for the original network, but this time we ran the algorithms on 25 different

random networks.

Considering that in a real use case, normally a minimum number of 100 random

networks is used, we stopped when the average time per random network meant that

computing the census in a set of 100 randomized networks with the slowest algorithm

for that case would take more than 10 hours. In other word, the average execution time

per randomized network must be smaller than 360s. In the cases where this meant

that there would only be results for subgraphs of 3 nodes, we also report results on

subgraphs of 4 nodes.

Tables 6.15 and 6.16 show the obtained average execution time for each similar ran-

domized network, and the average speedup of g-tries against the other approaches.

The standard deviation for the time spent in each randomized network, not shown in

the table for the sake of legibility, is always smaller than 25% of the average, meaning

that this average is a good indicator and that the time needed per randomized network

does not suffer large variations.

First, observe that the computation time for a single randomized network tends to be

larger than the time to compute the census in the original network. This is caused by

the fact that randomization creates a network with more subgraph occurrences to be

found, due to a more chaotic structure.

Nevertheless, g-tries again consistently outperform all other algorithms, being substan-

tially faster for every network and for every subgraph size. Moreover, the speedups

versus the network centric methods are generally even better, partially due to the fact

that we are now using smaller g-tries, populated with only the relevant subgraphs,

instead of all possible subgraphs of that size.

Observing the speedup against all other algorithms on the last subgraph sizes com-

puted in each network, we can see that it always larger than 10x for all networks, and

even larger than 20x for 8 out of the 12 networks.

Also note that, again, the speedups show a tendency to increase as the subgraph size

is incremented, as illustrated in Figure 6.5. This points to even further gains for larger

sizes.
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Network k
Avg. execution time per network (s) Avg G-Tries Speedup

GTR ESU KAV GRO ESU KAV GRO

dolphins

3 < 0.001 < 0.001 < 0.001 < 0.001 17.7x 18.3x 10.7x

4 < 0.001 0.008 0.008 0.003 24.8x 24.5x 9.4x

5 0.003 0.068 0.065 0.036 25.7x 24.6x 13.6x

6 0.021 0.576 0.572 0.393 27.8x 27.6x 19.0x

7 0.155 4.403 3.988 4.211 28.4x 25.8x 27.2x

8 1.121 32.399 30.140 44.293 28.9x 26.9x 39.5x

circuit

3 < 0.001 0.001 0.001 0.002 11.6x 12.0x 16.9x

4 < 0.001 0.007 0.007 0.006 18.8x 19.3x 17.0x

5 0.002 0.036 0.036 0.037 23.1x 23.2x 23.8x

6 0.008 0.239 0.236 0.231 31.7x 31.3x 30.6x

7 0.040 1.514 1.509 1.412 38.0x 37.9x 35.5x

8 0.228 10.799 10.656 8.641 47.4x 46.8x 37.9x

9 1.403 74.652 72.969 55.307 53.2x 52.0x 39.4x

coauthors

3 < 0.001 0.015 0.016 0.029 19.0x 20.1x 37.1x

4 0.006 0.231 0.229 0.198 38.3x 38.0x 32.9x

5 0.060 2.873 2.900 2.281 48.1x 48.5x 38.2x

6 0.747 48.128 49.532 29.687 64.4x 66.3x 39.7x

ppi

3 0.004 0.097 0.096 0.089 25.9x 25.6x 23.6x

4 0.072 3.657 3.659 1.516 50.6x 50.7x 21.0x

5 1.862 115.058 115.597 47.668 61.8x 62.1x 25.6x

power

3 0.002 0.020 0.020 0.198 8.9x 8.8x 85.9x

4 0.014 0.132 0.134 0.848 9.7x 9.9x 62.4x

5 0.050 0.758 0.746 5.433 15.2x 15.0x 109.2x

6 0.211 5.528 5.499 39.124 26.2x 26.1x 185.6x

7 1.064 40.585 40.399 304.141 38.2x 38.0x 285.9x

internet 3 0.491 11.608 12.378 6.472 23.7x 25.2x 13.2x

4 245.065 11495.764 11148.303 3614.261 46.9x 45.5x 14.7x

Table 6.15 – Comparison of g-tries with other algorithms when computing a

k-census in the similar undirected randomized networks.
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Network k
k-census execution time (s) Speedup of g-tries vs

GTR ESU KAV GRO ESU KAV GRO

neural

3 0.004 0.049 0.055 0.033 13.5x 15.1x 9.2x

4 0.143 2.496 2.431 2.330 17.4x 17.0x 16.3x

5 5.506 139.271 140.120 158.658 25.3x 25.5x 28.8x

metabolic

3 0.003 0.059 0.061 0.019 22.7x 23.6x 7.3x

4 0.109 3.955 4.086 1.271 36.3x 37.5x 11.7x

5 4.418 308.769 304.222 68.257 69.9x 68.9x 15.4x

links
3 0.089 1.369 1.469 0.791 15.5x 16.6x 8.9x

4 13.031 193.734 197.661 171.364 14.9x 15.2x 13.2x

odlis
3 0.075 1.173 1.222 1.165 15.6x 16.2x 15.4x

4 8.848 259.565 262.449 199.647 29.3x 29.7x 22.6x

company
3 0.025 0.308 0.338 0.595 12.1x 13.3x 23.4x

4 1.396 68.241 69.906 35.375 48.9x 50.1x 25.3x

foldoc 3 0.608 4.200 4.252 23.804 6.9x 7.0x 39.1x

4 32.907 520.484 526.030 1661.945 15.8x 16.0x 50.5x

Table 6.16 – Comparison of g-tries with other algorithms when computing a

k-census in the similar directed randomized networks.
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Figure 6.5 – G-Tries speedup over other algorithms on the randomized set of

networks.
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Combining the observations on the original network with the observations on the

randomized networks, we can estimate the time needed for discovering motifs, that

will be essentially dominated by the time spent in the large set of similar networks.

The result is a new much faster algorithm for motif detection.

Table 6.17 shows the average speedup obtained with g-tries when compared against

the three other competing algorithms. We used as a basis the results of the last two

tables (execution time for a census in the randomized networks) and computed the

average speedup per network, giving the same weight to each network in the calculation

of the global average. We show the g-tries speedup against each method category

(network-centric: ESU and Kavosh; and subgraph-centric: Grochow) and subgraph

type (undirected and directed). We also show this average speedup when considering

all the subgraph sizes computed and also when only considering the last subgraph size

computed for each network, which corresponds to larger execution times.

Subgraph Subgraph Average Speedup vs method type

Size Type All methods Network-centric Subgraph-centric

All All 30.1x 28.6x 34.4x

Measured Undirected 37.2x 33.5x 47.3x

Sizes Directed 23.0x 23.8x 21.5x

Last All 44.3x 40.1x 49.9x

Measured Undirected 57.2x 46.0x 73.8x

Size Directed 31.4x 34.1x 26.0x

Table 6.17 – Average speedup of g-tries against competing algorithms.

Globally, g-tries are 30.1x faster, on average, than its competing algorithms. The

speedup is more pronounced on undirected subgraphs (37.2x) than on directed ones

(23.0). The speedup is also larger, on average, against subgraph-centric methods

(34.4x) than against the network-centric methods (28.6x). This last observation is

inverted in the case of directed subgraphs, where the speedup of network-centric

methods (23.8x) is larger than the subgraph-centric one (21.5x).

If we just take into account the last subgraph size computed for each network (which

factors bigger sizes, more subgraph occurrences, and larger execution times), the

results are similar but the speedup obtained is even larger, with a global average

speedup of 44.3x against the competing algorithms.
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6.2.4 G-Tries Sampling

We will now analyze the sampling option of g-tries and overview the balance between

accuracy and execution speed. For the purposes of this section we will limit the choice

of probability parameters to three levels of quality. In order to sample a fraction f

of all k-subgraph occurrences, we will use one of the following options, with the given

name being a hint to the predicted accuracy:

• very high: {P0 = 1, . . . , Pk−2 = 1, Pk−1 = f}

• high: {P0 = 1, . . . , Pk−3 = 1, Pk−2 =
√
f, Pk−1 =

√
f}

• medium: {P0 = 1, . . . , Pk−4 = 1, Pk−3 =
3
√
f, Pk−2 =

3
√
f, Pk−1 =

3
√
f}

• low: {P0 = 1, P1 =
k−1
√
f, P1 =

k−1
√
f, . . . , Pk−1 =

k−1
√
f}

Basically, very high means that we will traverse the entire tree up to the last level

and only then will we make a probabilistic choice. This reduces the variability on the

results but will potentially take more time. high starts the probabilistic choices one

level before and medium another level more, trading some potential accuracy for better

speed. low represents the other extreme, by distributing the non-determinism to all

levels except the first and lower level of the tree.

For the rest of this section we will use the term RAND-GTRIE to designate sampling

with g-tries. Our first test is to analyze the speed at which we are able to generate

samples. For that we computed the sampling ratio measuring how many subgraphs

we are finding per second. We compare the performance with RAND-ESU, the previous

most efficient network centric method that also allows sampling in a way similar to ours

(by specifying a similar set of probabilities for each level). Kashtan, the other major

comparable alternative for sampling, was shown to be much slower than RAND-ESU

and it does not scale well [Wer06].

We use one undirected and one directed network, and we compute the sampling ratio

both for a complete enumeration (all Pi = 1) and with only 10% of the k-subgraphs

obtained by sampling with the high quality level. We used motif sizes from 4 to 6,

and the results are shown in Figure 6.6.

The main aspect to note is that RAND-GTRIE is always faster. This was also the case

for all other networks and quality levels tested, with the speedups of the sequential

exact algorithm propagating to the sampling version. Also, as before, RAND-GTRIE
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Figure 6.6 – Subgraph discovery ratio with RAND-GTRIE and RAND-ESU.

is able to sustain the subgraph discovery ratio, scaling well when the subgraph size

increases.

In order to test the accuracy of our algorithm, we applied all levels of sampling quality,

while increasing the fraction of subgraphs being sampled, taking note of the percentage

of subgraphs correctly identified. We considered an estimate to be accurate when it

was within a 20% error margin of the correct perfect value. We took 100 samples for

each fraction and level and only considered the estimate correct when at least 75 of

those samples were accurate. For accuracy purposes, we do not consider subgraph

classes which are sampled less than 10 times, reflecting what would probably happen

in a real case, where such a small number of samples would not give any certainties

to the user.

The results for the same two networks as before, with 5 as motif size, are shown on

Figure 6.7. As expected, higher probabilities in lower depths correspond to better

sampling quality (less variance). Note the completely different shape of the curves in

different networks, which suggests that the accuracy is influenced by the topology of

the network.

If we measure the execution time for the exact same tests, we can see that the opposite

happens, with better quality sampling taking more execution time as detailed in

Figure 6.8. All quality levels have an execution growth proportional to the percentage

of samples, but higher quality levels have a minimum time bigger than lower quality

minimum time. For example, on the ppi network, sampling just 0.1% of the subgraphs

in very high level of quality already takes around 18.01% of the time it takes to do a

full enumeration. This is because we are traversing the entire tree up to depth k − 1.
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Figure 6.7 – Accuracy of g-tries sampling of 5-subgraphs.
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Figure 6.8 – Time spent in g-tries sampling of 5-subgraphs.

Judging by our empirical tests, the ideal choice of parameters for sampling with g-

tries can vary with the network. However, the high level results seem to offer a good

balance between execution time and sampling quality.

If we take a closer look to what g-tries sampling is computing, we can see that the more

rare subgraphs are the ones with less estimation quality. This is because a smaller

number of occurrences will obviously imply more variance in the estimated values (a

“miss” has more weight). Almost all of the subgraph classes not correctly estimated

appear less than 100 times in the sample. On the other hand, with a low percentage

of samples, the few that are estimated correctly correspond to subgraph classes that

were sampled at least 1000 times.

Note that the registered accuracy does not have a direct proportional impact on the

possible motifs found. It is true that we want the algorithm to be as accurate as
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possible, but a subgraph not reported as accurate in the last figures can still be

reported as a motif, if its z-score is high, meaning that it is still over-represented.

Precisely regarding motif detection, we experimented to discover all motifs of size 5 in

the two networks, using 10% sampling with high quality level. For motif detection,

we used R = 100 random networks, minimum frequency U = 4, minimum deviation

D = 0.1 and probability P = 0.01.

We were able to find all of the motifs that a full enumeration would find in the

ppi network, spending less than 20% of the time it would take to compute that full

enumeration. In the neural network, more than 70% of the motifs were found, again

spending less than 20% of time a full enumeration would take.

6.3 Parallel Algorithms

This section shows the results obtained with the developed parallel algorithms for

motif discovery. We start by explaining how parameters were chosen and we follow

with a more detailed analysis of the obtained speedup with all the proposed strategies.

6.3.1 Parameters Choice

In Chapter 5, for the parallel algorithms, we mentioned three parameters that act as

thresholds. The splitThreshold, Tsplit, tells where to stop work splitting, and it is

measured as the distance to a leaf node. The messagesThreshold, Tcheck, controls the

frequency with which we poll for incoming messages, and it can be measured in terms

of the number of work units computed or time spent. Finally, the masterThreshold,

Tmaster, controls the frequency with which a worker sends unprocessed units to the

master within the master-worker strategy, and it can be measured in terms of the

number of work units computed or time spent.

For Tsplit, ideally one would choose the first distance k so that it takes more time to

communicate that part of the search than to just compute it. However, the time to

compute is related to the topology of the network and can vary significantly for each

network.

A value of k for Tsplit means that a worker will prefer to compute locally all the

associated “k-subsubgraphs” that complete the partial match already made. A value
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of 1 for k, means that the work completes almost instantaneously, as only one more

node needs to be added. A value of 2 for k means that we are looking for pairs

of connected nodes, and the work is also executed almost instantaneously. A value

of 3 for k, however, may mean that in some extreme cases the computation will

already be somehow significant (remember for example that sequentially computing all

3− subgraphs of the bigger networks is already measured in seconds - see Tables 6.13,

6.14, 6.15 and and 6.16). For this reason we opted for Tsplit = 2 and empirically

verified that for the networks we use it allows good scalability, as will be seen below.

For Tcheck, we noted that using as a unit the time spent was not feasible. The threshold

condition is tested very often, on every work procedure call, and the most efficient

language primitive for time check would still degrade considerably the algorithm

performance if used that often. We therefore opted for using the number of computed

nodes, and since the rate of traversed nodes remains relatively stable for the same

search, this means it will be roughly equivalent to using time.

The MPI implementation on our computing environment, as empirically verified, has

a very efficient poll primitive (MPI Probe) to check for new incoming messages. With

this, we are able to choose relatively small values for Tcheck without degrading the

performance of the search. Ultimately, we chose 10, 000 for parallel ESU and 100, 000 for

parallel g-tries, which roughly amounts to an average of less than 0.1s of computation.

Finally, regarding Tmaster, after empirical verification, we chose 100, 000 for parallel

ESU and 1.000, 000 for parallel g-tries, which roughly amounts to 1s of computation,

which produced good results when compared to larger or smaller threshold values.

We are aware that these parameter values can be data and system dependent for

optimal performance, and that ideally these should be dynamically computed by our

own algorithm, and that is indeed in our future plans. But it remains that they add

adaptability to the algorithm, instead of detracting it from being efficient on other

cases.

6.3.2 Parallel Strategies for Pre-Processing and Aggregation

The pre-processing and aggregation phases, when in presence of a large data set,

may be a source for inefficiency, and thus careful strategies need to be thought.

Regarding pre-processing we have presented two alternative strategies all in one and

static partition, detailed in Section 5.3.4. The later is clearly a better strategy
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since each processor can immediately start computing, instead of having to ask for

work using message passing.

This is better illustrated in Figures 6.9 and 6.10, which have a more detailed look at

communication between processors during the work phase of the parallel execution.

In these figures, white represents no communication (busy state) and black regions

represent communication. We consider that a processor is communicating when it

is trying to find work (by sending request messages) or, when it is providing work

(by servicing work request messages). In both figures we are using 128 processors to

compute the 6-census of the neural network and using a distributed queue strategy

for load balancing.

Figure 6.9 – Communication between 128 processors with all in one pre-

processing phase.

Figure 6.10 – Communication between 128 processors with static partition

pre-processing phase.

Note the intense communication in the beginning when using all in one in the pre-

processing phase, with all processors trying to get some initial work. By contrast, in

the static partition alternative, all processors are already busy at the beginning,

since we provide an initial work allocation. Sometime after, some processors start

running out of work (exactly when depends on the topology of the network and the

subgraphs of the g-trie). The communication gradually increases as the granularity of

work units left to compute starts to decrease, with an obvious peak of communication

at the end, where all processors are trying to find the remaining pieces of work and

trying to establish that indeed there is nothing more to compute.
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In the aggregation phase, we must communicate the frequency of each isomorphic class

in both the original and randomized networks. We proposed three possible strategies,

naive, hierarchical and collective, detailed in Section 5.3.6. Figure 6.11 sum-

marizes the results obtained when using these strategies as we increase the number

of subgraph frequencies being communicated. The measured time is the wall clock

time required to aggregate all subgraph frequencies in a single processor, suitable for

further computing the significance if we are discovering motifs. For this figure we used

randomized frequencies, assuming that each frequency is stored on a MPI INT 32-bit

integer data type.
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Figure 6.11 – Aggregation times for all strategies as the number of communicated

frequencies increases.

The best option in terms of scalability, is clearly the collective strategy, meaning

that the implementation of the primitive MPI Reduce used is efficient and is this

justifiable to be used for gathering all information.

6.3.3 Load Balancing and Scalability

With the best strategies for pre-processing (static partition) and aggregation (collective)

fixed we will now experiment with the three options available for load balancing.

The core of our test will be to apply these strategies to compute k-motifs for all of

the 12 real networks. We fixed the number R of random graphs to 100, a quantity

capable of already giving meaningful results in terms of subgraph significance (also
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used in many articles, such as [SK04]).

We want to show that our strategies are able to effectively parallelize the problem

at hand, so we need to use cases where the sequential execution time is big enough

to justify parallelization up to the 128 processors. For that purpose we measured

the sequential execution time for computing all motifs of size k as we increase k,

generating 100 similar random networks, and we stopped when that time was larger

than one hour (in two cases we stopped a little before because the next k would mean

computing for more than one day). We also calculated the average growth ratio, that

is, for increasing values of k, how much did the execution time grew, the approximate

total number of different occurrences of k-subgraphs in all the networks (original and

randomized) and the number of different subgraph types (isomorphic classes) found

in the original network. We used our hybrid approach, with ESU for discovering the

subgraphs in the original network, and a g-trie only with those subgraphs to find all

k-motifs. The results can be seen in Table 6.18.

Network k

Execution Average Approx. Nr Iso-

time Growth total nr -morphic

(s) subgraphs classes

dolphins 10 5,728.442 6.75 ±0.4 ≈ 3× 1010 295,236

circuit 11 7,942.371 5.79 ±0.9 ≈ 6× 1010 13,462

neural 6 27,438.786 39.24 ±2.3 ≈ 2× 1011 286,376

metabolic 6 48,736.553 55.26 ±2.9 ≈ 3× 1011 5,633

links 4 1,424.454 138.94 ±0.0 ≈ 1× 1010 199

coauthors 8 15,260.855 10.81 ±4.2 ≈ 4× 1011 2.612

ppi 6 8,835.332 29.54 ±5.0 ≈ 2× 1011 112

odlis 4 1,101.509 116.24 ±0.0 ≈ 2× 1010 199

power 9 5,026.64 5.19 ±1.2 ≈ 7× 1010 31,543

company 5 42,284.77 131.37 ±105.5 ≈ 1× 1010 310

foldoc 4 3,676.80 57.45 ±0.00 ≈ 3× 1010 198

internet 4 34,840.27 580.34 ±0.00 ≈ 2× 1011 6

Table 6.18 – First motif sizes k for which a sequential program takes more than

1 hour.

The average growth ratios have a relatively low standard deviation. This means that

we can make rough estimates on how much more time we would need to compute

greater motif sizes. Note also that growth differs significantly from network to network,
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and it is not directly proportional to the size of network. Typically, directed networks

present a larger growth, since they feature more connectivity options and more possible

subgraph types.

We can now show the global behaviour of our parallel algorithms using the three

load balancing strategies. Table 6.19 details the absolute speedups we obtained, i.e.,

the relative time gain when compared to running the sequential version with only

one processor. This time was measured inside the program itself to exclude the MPI

initialization process, which takes at most a couple of seconds.

All the strategies have very good performances and scale up to 128 processors. The

distributed strategies are better options since all processors can be used for the

computation, with no CPU power wasted. As expected, the distributed snapshot

is the overall better option, since it does not introduce the overhead of reading and

storing work units (see Section 5.3.5.3).

Regarding this last option we can see that it obtains almost linear speedup for 128

processors (the numbers indicated in bold). Only in two cases the speedup is smaller

than 100x (links and odlis), but this is caused by the relatively small value of the

initial sequential time. For example, in the odlis case, 1, 101.509s was the time spent

by the sequential program. This means that a program running 128x times faster

would have to run in less than 8.6 seconds. In fact, the 128 processor version only

took less than 4 seconds more than that (12.212s), but with such low values this was

not enough for reducing the speedup. For larger sequential execution times this effect

does not happen, and hence the fact that all the bigger speedups obtained correspond

to sequential versions that run for longer times.

Note also that we can effectively combine the power of g-tries with the power of

parallelization. If we compare to the previously available sequential approaches, and

by multiplying the speedup obtained by using g-tries by the parallel speedup, we

obtain an algorithm that is in the order of several thousands of times faster than what

was previously available. If we recall the average growth for computing k-motifs as

we increase k (Table 6.18), we see that in the same amount of time we will be able to

achieve bigger sizes, effectively unlocking new information for the practitioners.

Our parallel algorithms are very flexible and work well both for cases where the number

of random networks is greater than the number of CPUs, and when this number is

smaller. In order to further verify this claim, we used the full 128 processors on two of

the networks (one undirected, other directed) using the distributed snapshot strategy,

while varying the number of random networks. The most extreme lower case is when
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Network k Strategy
#CPUs: speedup

32 64 128

dolphins 10

Master-Worker 24.8 48.4 92.3

Distributed Queue 27.7 53.7 102.0

Distributed Snapsot 30.8 59.4 112.7

circuit 11

Master-Worker 25.1 50.5 98.4

Distributed Queue 28.3 56.0 109.1

Distributed Snapsot 31.3 61.7 121.2

neural 6

Master-Worker 25.4 51.2 102.3

Distributed Queue 28.6 57.1 111.5

Distributed Snapsot 31.4 62.5 122.8

metabolic 6

Master-Worker 25.5 51.6 104.2

Distributed Queue 28.6 57.9 113.5

Distributed Snapsot 31.5 62.9 126.0

links 4

Master-Worker 23.6 44.0 77.5

Distributed Queue 26.8 49.8 88.0

Distributed Snapsot 30.0 57.1 95.9

coauthors 8

Master-Worker 25.3 51.4 101.8

Distributed Queue 28.4 57.3 111.8

Distributed Snapsot 31.4 62.6 123.9

ppi 6

Master-Worker 25.1 51.0 99.0

Distributed Queue 28.4 56.7 109.7

Distributed Snapsot 31.4 62.0 122.1

odlis 4

Master-Worker 23.0 42.4 72.1

Distributed Queue 26.2 48.3 82.4

Distributed Snapsot 29.7 55.9 90.2

power 9

Master-Worker 24.9 49.1 94.2

Distributed Queue 28.0 54.7 105.7

Distributed Snapsot 31.1 61.0 118.8

company 5

Master-Worker 25.4 52.2 103.7

Distributed Queue 28.9 57.0 114.1

Distributed Snapsot 31.3 62.8 125.2

foldoc 4

Master-Worker 24.8 48.6 92.8

Distributed Queue 28.2 54.7 102.6

Distributed Snapsot 30.9 60.6 116.9

internet 4

Master-Worker 25.4 51.3 103.9

Distributed Queue 28.6 57.2 114.5

Distributed Snapsot 31.4 62.9 125.7

Table 6.19 – Parallel performance of motif discovery with g-tries.
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we have zero random networks (in that case we are merely doing a subgraph census

of the original network, with no statistical significance) and we extend the number of

random networks up to 1,000. Table 6.20 details the results we obtained.

Network k
Nr of random networks

0 10 100 1000

metabolic 6 124.0 124.3 124.2 123.1

internet 4 123.7 123.9 123.5 122.6

Table 6.20 – Parallel performance with 128 processors as the number of random

networks change.

The algorithm scales well for all cases, being able to create a good load balance,

regardless of the variation in the number of networks. Note that computing more

random networks results in bigger aggregation times and in some cases this could be a

factor in decreasing the speedup. In the networks presented in this table, the number

of isomorphic classes is small, and therefore the increase on the number of random

networks does not have a significant negative impact on the speedup obtained.

As described before, both the g-tries and the ESU algorithms allows one to trade

accuracy for execution time. We experimented to sample 10% of all subgraphs with

various quality levels and we obtained speedups comparable to running the normal

exhaustive version. This means that the algorithm adapts well to the even more

unpredictable search tree shapes and is able to maintain scalability. The speedup can

however be relatively smaller than the one obtained with the complete enumeration

since with sampling we take less time to enumerate but we still need roughly the same

time for the aggregation phase, because the number of isomorphic classes and random

networks does not change.

6.4 Summary

In this chapter we presented a thorough experimental evaluation of our proposed

algorithms. First we have shown the common materials, namely the computational

environment, the set of used networks and the competing algorithms used for compar-

ison purposes. We then evaluated g-tries creation, showing high compressibility ratios

and how g-tries can be reused by storing them in the file system. After, the census

algorithm was examined, showing the power of the canonical labeling used and of the
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symmetry breaking conditions. We did an empirical asymptotically evaluation of our

algorithm showing that it is able to maintain a stable subgraph discovery ratio as

the network and motif sizes change. We then compared our algorithm to all previous

existing algorithms, and the results show that it clearly outperforms all competing

algorithms in all tested cases. We continued by showing the scalability of our parallel

approach, by first deciding on what threshold parameters and strategies to use, and

then by showing that it obtains almost linear scalability up to 128 processors.
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The outcome of any serious research can

only be to make two questions grow where

only one grew before.

Thorstein Veblen

7
Conclusions and Future Work

Complex Networks are ubiquitous in artificial and natural systems. The identification

of network motifs provides a new tool towards the understanding of their meaning

and function. Motif discovery has already been applied to networks in many fields,

such as biology, chemistry, sociology and engineering. This is however a hard problem

from a computational point of view and current usage of motifs is strongly limited

by the time it takes identify them in a network within a reasonable amount of time.

Faster methods to identify motifs would have a strong multidisciplinary impact on our

understanding of networks. The purpose of this work was precisely to provide such

methods.

This chapter summarizes the main results obtained, points out the main contributions

and then discusses limitations and directions for future research.

7.1 Summary

This work overviews the state-of-the-art in network motif discovery, describing all

major methods with an emphasis on their algorithmic aspects. Despite being a

relatively young field, with the core definition and initial algorithm appearing only

in 2002 [MSOI+02], the related published literature is already substantial.

The core of the work resides on computing frequencies of subgraphs. From a con-

ceptual point of view, current methods follow two very distinct approaches: either
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all possible subgraphs of a given size are computed, by enumerating them and then

doing isomorphism tests (as in ESU or Kavosh) or single subgraphs have to be queried,

with the isomorphism tests incorporated in the search (as in Grochow and Kellis or

MODA).

The bulk of the work to be done is due to the computation of the frequency of

subgraphs on a large set of randomized networks. However, we are only interested in

the frequency of the set of interesting subgraphs that appear in the original network.

Computing the full census means potentially spending time finding frequencies that

will be discarded because the respective subgraph does not appear in the original

network. By contrast, the alternative is to search individually for each subgraph,

without taking advantage of the fact that we are really looking for more than one

subgraph.

One of the main innovations introduced in this work is to escape these two extreme

visions and look at the problem from a new angle. By acknowledging that we are

in fact trying to compute the frequency of a set of subgraphs, new solutions can be

pursued.

The first question is how to represent this set of subgraphs? G-Tries were created

with this purpose in mind. They represent a general data-structure able to efficiently

store collections of graphs. Its main property is that it identifies common smaller

substructures and organizes them hierarchically in a tree.

The first consequence is that we are able to compress the topological information

given by the collections of graphs. Moreover, this property enables us to create a

novel efficient algorithm capable of finding the frequency of these graphs as subgraphs

of another graph. By traversing the tree, we can identify that a set of nodes is already

a structural partial match to several possible descendant graphs. This avoids the

need to postpone the isomorphism comparison to the end of the computation, as in

the network-centric methods. It also avoids having to start over when searching for

another graph, as in the subgraph-centric methods. By doing an extensive empirical

evaluation we have shown that g-tries consistently outperform any other previous

sequential method at this task.

Taking advantage of the tree based nature of g-tries, we presented a method for

uniformly taking samples from it. This enabled the creation of a flexible sampling

methodology capable of trading accuracy for faster execution times, further improving

the potential of g-tries.
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Exploiting parallelism in motif discovery has been scarcely done in the past. Here

too, we make a contribution by first identifying and describing the opportunities for

parallelism that are present in the motif discovery algorithms. We then parallelized

the g-trie and ESU algorithms, allowing for a completely parallel execution of motif

discovery. In order to obtain a scalable approach, several strategies were proposed. In

particular, a novel approach was taken in which we can efficiently stop, store and most

importantly divide a computation during execution time. The main result is that we

were able to obtain almost linear speedups up to 128 processors.

With all of the algorithms and data-structures developed, we obtained a new motif

discovery algorithm that can be several orders of magnitude faster than previous

approaches. In doing this, we effectively push the limits on the applicability of network

motifs, allowing the identification of larger motifs in larger networks.

7.2 Main contributions

This work makes the following major contributions:

• Survey and comparison of previous sequential algorithms: we presented

a complete survey of previous algorithms, creating an associated taxonomy able

to distinguish methods, a time line of their appearance, an algorithmic view with

pseudo-code for all major existing algorithms, a common implementation, and

their experimental evaluation and comparison.

• G-Trie Data Structure and its associated algorithms: we created and

implemented a novel specialized data-structure designed to efficiently store col-

lections of graphs, exploiting common substructures. It allows the efficient com-

putation of subgraph frequencies, by using symmetry breaking techniques and

taking advantage of an efficient custom canonical representation that produces

a high level of overlapping topologies between subgraphs.

• G-Trie Sampling: we designed a flexible way of trading accuracy for better

execution times by allowing one to sample only a fraction of all the subgraph

occurrences, providing the first method able to sample a specific set of subgraphs

of another larger network.

• Characterization of parallelization opportunities in motif discovery:

we identified opportunities for exploiting parallelism in motif discovery, created
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an associated taxonomy and showed where it is applicable.

• General scalable parallelization of subgraph counting: we designed and

implemented a general scalable parallel strategies for g-tries and ESU census of

subgraphs, with almost linear speedup up to 128 processors.

• Novel efficient g-trie based motif discovery algorithm: by combining the

power of g-tries census, g-tries sampling and g-tries parallelization, a new much

improved motif detection was developed. It ultimately outperforms previous

algorithms by several orders of magnitude.

7.3 Future Work

Despite the contributions to the motif discovery problem, there are still limits on its

applicability and areas where much can still be improved. We will now point out some

issues that deserve further research.

7.3.1 Overall Contributions to the Community

Given the fact that we have pushed the limits on motif discovery, we feel we are in a

position to greatly contribute to the complex network analysis community.

We intend to make our software framework available as an easy to use tool for

the practitioners of any network field. This will help in disseminating the g-tries

methodology and will allow end users to more efficiently identify network motifs and

potentially reach larger motif and network sizes than it was before possible.

We also intend to actively pursue practical applications of our methods, both by

computing larger motif sizes for already existing networks, observing if the increase in

the scale can provide new insight, and by finding collaborators which have networks

as a fundamental data set and have interesting research questions that could be solved

by applying our developed algorithms.

Another path is to have a look at new angles of analysis that can be now pursued given

the provided novel algorithmic tools. One example that we see as very important is to

directly look at very large motifs and understand what is their purpose and usefulness.

What is their relationship with smaller motifs? Do they provide new information or

do they just reflect the smaller level topology?
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7.3.2 Efficiency and Flexibility of the Developed Methods

The developed algorithms can still be improved and here we present several possible

research directions.

Automatic and dynamic parameters for the parallel algorithms

The current parallel strategies use parameters that were set empirically. We would like

to study how this process can be automated, with the thresholds being determined

by the tool itself for any general case of data and computation environment. One

possible first step is to automate the process one would empirically do, by testing

several possible values, embedding it as a preliminary step to be run before using the

parallel algorithms.

Adaptive sampling

Currently the sampling version of g-tries uses a static set of parameters, the probabil-

ities for each level. We intend to create an adaptive version of our sampling algorithm

that is able to make an initial quicker estimation and then keeps refining it for the

subgraphs that do not have enough estimation quality. For example, one could remove

all frequent subgraphs from the g-trie and only repeat the search for the less frequent

ones, with a higher fraction of samples. This includes the necessity to have an improved

formal method for determining the statistical accuracy of the results obtained.

Study graph labeling

Since our symmetry breaking conditions rely on the order of the vertices, can we relabel

the graph in a way that improves the efficiency of the search? Does this labeling affect

sampling quality? Should we generate a different set of symmetry breaking conditions

that is better able to exploit the node labels? Currently, not much work was done

to examine in detail the influence of the network node labels in all aspects of our

algorithms, and we intend to do it in a systematic way.

Adaptive hybrid motif discovery

Searching for a single subgraph with a subgraph-centric algorithm such as Grochow

should be quicker than using a g-trie solely with that subgraph, since no order for

discovering the nodes is imposed. As we start to increase the size of the set of

subgraphs to look for, when do g-tries start to be faster? We would like to explore

this direction and be able to produce an hybrid approach that dynamically adapts to

the user request and uses the most efficient way for producing the desired results.
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Larger networks support

A major limitation of our methodology is that currently it assumes that the entire

network will be available in main memory. This limits its applicability to relatively

small networks. But nowadays networks with millions or even billions of networks are

becoming widely available, like the twitter interaction network collected by Cha et

al. [CHBG], with almost 55 million nodes and 2 billion connections. All other major

existing algorithms suffer from this and the first step is to actually be able to compute

even very small motifs for such large networks. General tools for very large network

analysis such as Pegasus [KTF10], with its usage of the Hadoop [Whi09] platform and

the MapReduce concept[Coh09] provide some possible initial directions for this.

7.4 Final remarks

Researching network motif discovery has been a very interesting and challenging task.

In the end we feel that the major goals of this dissertation were met and the author

has gained an invaluable insight into the world of complex networks as a whole.

From a computer science point of view, the process of creating a new data-structure

was most rewarding. Having a strong background on programming contests and a

lifelong interest on understanding (and teaching) the beauty of algorithms and data-

structures, it felt like a dream come true to be able to contribute with a fundamental

way of storing and using collections of graphs.

From an applications point of view, we want the algorithms and data-structures

presented in this work to be helpful to practitioners from many fields. This is the

ultimate goal of this work and we hope that in the near future this can be achieved.

When finishing this step and closing the window on this dissertation, we feel that

many new research doors are being opened. We hope that traveling through those

unexplored paths will be as enjoyable and fruitful as traveling along the road that led

us here.
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Make your mental image clear enough, picture it

vividly in every detail, and the Genie-of-your-Mind

will speedily bring it into being as an everyday

reality.

Robert Collier

A
G-Tries Anatomy

This appendix contains images of fully functional g-tries generated with the algorithms

described in Chapter 4, that is, generated with the GTCanon labeling method described

in Section 4.4.2.3, and doing the four steps of filtering to reduce the symmetry breaking

conditions as described in Section 4.5.2.3.

The g-tries drawing was automatically generated, with the exception of the symmetry

breaking conditions. Our own implementation allows for the creation of a PNG image

file showing the anatomy of any g-trie stored in memory.

We now present g-tries containing all possible undirected k-subgraphs, as k increases

(Figures A.1, A.2 and A.3). Empty condition sets are not shown for better legibility,

and the other sets of conditions are shown near the respective nodes. A group of sets

of conditions at a node implies that a partial match of a subgraph passing through

that node must respect at least one of those sets of conditions.
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Figure A.1 – A g-trie containing all 2 undirected 3-subgraphs.

Figure A.2 – A g-trie containing all 6 undirected 4-subgraphs.
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Figure A.3 – A g-trie containing all 21 undirected 5-subgraphs.

The g-trie with all the 112 undirected 6-subgraphs is already too big to be legible

on paper. Instead, Figure A.4 shows a g-trie containing only a subset of all the 6-

subgraphs, namely the 33 6-subgraphs found in the circuit network (see Section 6.1.2

for details on the network). Note that this would be the g-trie used to count the

subgraphs appearing in similar randomized networks if we were discovering network

motifs on circuit.

Figure A.4 – A g-trie containing the 33 undirected 6-subgraphs found in circuit.
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Figure A.5 shows a g-trie containing all 13 possible directed 3-subgraphs. As the g-trie

containing all 199 directed 4-subgraphs is too big to be legible on paper, Figure A.6

shows a g-trie containing a subset of these, namely the 24 directed 4-subgraphs

found in the metabolic network (see Section 6.1.2). This would be the g-trie used

for counting the occurrences of subgraphs in the randomized networks if we were

discovering network motifs on metabolic.

Figure A.5 – A g-trie containing all 13 directed 3-subgraphs.

Figure A.6 – A g-trie containing the 24 directed 4-subgraphs found in metabolic.
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If you don’t think carefully, you might

believe that programming is just typing

statements in a programming language.

Ward Cunningham

B
G-Tries Implementation

This appendix contains a very brief overview of the current g-tries implementation

framework, which was used to produce the results described in Chapter 6.

All code was made in C++ and compiled using gcc 4.1.2, with optimization level 3

turned on (parameter -O3). The entire code base is documented using the Doxygen

Documentation System [vH11]. Great care was taken to follow good software engi-

neering patterns, to guarantee that the framework would be more easily maintained

and updated in the future.

We used the object oriented pattern, but it was not always easy to find a good balance

between modularity and efficiency. Whenever possible, general abstractions were used,

but in some cases the correspondent overhead meant that some modularity had to be

sacrificed for the sake of efficiency and better execution times.

Table B.1 shows the main C++ classes developed, indicating the number of lines of

source code for each class (excluding Doxygen related commentaries) and giving a

brief description of the functionality. We are aware that lines of source code are a very

limited statistic, but our aim is just to give a brief overview on the implementation

effort. Classes are shown in lexicographical order.

Figure B.1 shows an high level overview of the main interactions between the used

classes. We use two third-party modules in our framework. One is the efficient iso-

morphism package nauty, developed by Brendan McKay [McK81]1, used for canonical

1nauty is available at http://cs.anu.edu.au/∼bdm/nauty/
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Class Nr Lines Description

Conditions 217 Generation and maintenance of symmetry breaking conditions

Error 56 A common framework for reporting errors

ESU 142 ESU and Rand-ESU algorithms

Graph 42 An interface for a graph defined as a purely virtual abstract class

GraphFile 256
An experimental implementation of graph using the file system

to store graphs that are to large to reside in main memory

GraphList 182 An implementation of graph using adjacency lists

GraphMatrix 195 An implementation of graph using both adjacency matrix and list

GraphTree 255 A binary tree for efficient storage of subgraph frequencies

GraphUtils 146 Utility functions for graph, such as reading from a file

Grochow 401 Grochow algorithm

GTrie 1202
A g-trie implementation and methods to deal with it; uses GTrieNode

as an “internal” class; it is the functional core or our implementation

GTrieDraw 115 G-Trie image generation

Isomorphism 495 Isomorphism related functions and canonical representations of graphs

Kavosh 202 Kavosh algorithm

Motifs 341 Motif discovery wrap-up, providing high level functinoality

ParCommon 643 Common utilities for the MPI parallel implementations

ParESU 328 Parallel MPI implementation of ESU

ParGTries 472 Parallel MPI implementation of g-tries

Random 76 Generation of random number and networks

Timer 30 Execution time measuring functionality

Table B.1 – Main C++ classes used in our implementation.

labeling. The other is PNGWriter2, used for generating g-trie image files.

For obtaining the results shown in Chapter 6 we used exclusively the GraphMatrix

graph implementation, which provides efficient graph primitives by using both an

adjacency list and an adjacency matrix, at a cost of a larger amount of main memory

used. Our code is however prepared for using other graph implementations that may

be slower, but are less demanding in memory terms, such as GraphFile, which already

provides experimental support for large scale networks in the order of millions of nodes.

We plan to very soon release our source code to the community and make it available

online.

2PNGWriter is is available at http://pngwriter.sourceforge.net/
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Figure B.1 – Interactions between the C++ classes of our implementation.
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