
G-Tries: an efficient data structure
for discovering network motifs

Pedro Ribeiro and Fernando Silva
CRACS & INESC-Porto LA

Faculdade de Ciências, Universidade do Porto
R. Campo Alegre, 4169-007 Porto, Portugal

{pribeiro,fds}@dcc.fc.up.pt

ABSTRACT
In this paper we propose a novel specialized data structure
that we call g-trie, designed to deal with collections of sub-
graphs. The main conceptual idea is akin to a prefix tree
in the sense that we take advantage of common topology
by constructing a multiway tree where the descendants of
a node share a common substructure. We give algorithms
to construct a g-trie, to list all stored subgraphs, and to
find occurrences on another graph of the subgraphs stored in
the g-trie. We evaluate the implementation of this struc-
ture and its associated algorithms on a set of representa-
tive benchmark biological networks in order to find network
motifs. To assess the efficiency of our algorithms we com-
pare their performance with other known network motif al-
gorithms also implemented in the same common platform.
Our results show that indeed, g-tries are a feasible, ad-
equate and very efficient data structure for network mo-
tifs discovery, clearly outperforming previous algorithms and
data structures.

Categories and Subject Descriptors
E.1 [Data Structures]: Graphs and networks, Trees;
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms

General Terms
Algorithms, Performance, Experimentation

Keywords
Biological Networks, Complex Networks, Network Motifs,
Graph Mining, Algorithms, Data Structures, Tries

1. INTRODUCTION
A wide variety of real-life structures can be represented

as complex networks [20]. There are many different mea-
sures and concepts one can use to mine interesting and useful
quantitative data from these networks [5, 6]. One of these
concepts is “network motifs”, originated by Milo et al. [18]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

in 2002. Briefly, a network motif is a recurring subnetwork
conjectured to have some significance. In particular, it ap-
pears with a higher frequency than it would be expected in
similar random networks. This concept has been applied in
a multitude of domains, like protein-protein interactions [2],
gene transcriptional regulation [7], food webs [13], brain [21]
or electronic circuits [11].

Finding network motifs is a computationally hard prob-
lem, since we will be trying to match the desired motifs with
subgraph patterns. This leads to graph isomorphism, which
does not have any polynomial time algorithm known [17].
Therefore, the time needed to discover network motifs grows
exponentially as the size of the motifs increases. Presently
used methods basically revolve around two main phases:
first they compute the frequency of all subgraphs of a de-
termined size that exist in the original graph (doing what
is called a “subgraph census”). Then a set of similar ran-
dom graphs (with the same degree sequence as the original
network) is generated and the subgraph census is calculated
on each of these, from which we can calculate the statistical
significance of each different class of isomorphic subgraphs,
by calculating the probability of that particular pattern be-
ing over-represented. Since we typically have hundreds of
random networks, the main bottleneck of the computation
is doing the census on these. There are optimizations (like
sampling [12]) that trade accuracy for computation time,
but if exact results are needed, we are obliged to use a costly
exhaustive census.

Note that finding network motifs is substantially differ-
ent from the problem of discovering frequent subgraphs [10,
14] Although with some similarities, frequent subgraph al-
gorithms are conceptually different (mostly based on the
a-priori principle [1] by incrementally building subgraphs),
since their goal is to find only frequent subgraphs (as op-
posed to a complete census) that appear at least a deter-
mined number of times in a set of graphs (as opposed to a
single graph).

Regarding network motifs, current methods do the sub-
graph census following two very different approaches: either
we enumerate all subgraphs of a determined size and then
determine which ones are isomorphic [18, 24], or we know in
advance which subgraphs we are looking for (for example by
generating all possible subgraphs of a determined size) and
then we separately compute the individual frequency of each
one by running a specialized search that identifies suitable
subgraph matchings [9].

These approaches are somehow in extreme corners. In the
first one, we need to consider all subgraphs of the graph,

even when in the case of random graphs we are mainly in-
terested in the frequency of the subgraphs that appeared in
the original network. Thus, we may be potentially wasting
a lot of time in discovering subgraphs whose frequency do
not interest us. In the second approach, we are only con-
sidering one subgraph at a time, potentially wasting a lot
of time by searching again on the same graph section which
had another very similar type of subgraph.

Our main contribution is to provide a data structure that
falls conceptually in the middle of these two approaches.
Since we know in advance the set of subgraphs that we are
interested in (calculated by doing the census in the origi-
nal subgraph), we store this set of subgraphs on a tree-like
data structure that takes advantage of common topologies.
We identify and use common ancestor tree nodes to repre-
sent common substructures. We then use this tree to effi-
ciently compute the frequency of the subgraphs in the ran-
dom graphs, by doing searching and matching at the same
time the entire set of graphs, while avoiding graph symme-
tries due to automorphisms. When we have a partial con-
structed subgraph, we know which subset of graphs are still
viable candidates to match that particular subgraph, and
when we finish that subgraph, we already know that it is
isomorphic to the one we are looking for. We called this
novel data structure g-tries (from “Graph reTRIEval”).
It significantly compresses the representation of a collection
of subgraphs that share common substructures and clearly
outperforms previously known methods when computing the
frequency of all its subgraphs within other larger graphs.
Thus, in our view, it is an excellent representation structure
on which one should base efficient solutions to the complete
network motif discovery problem.

The remainder of the paper is as follows. We start by
introducing some common network terminology (section 2),
then we define g-tries, and present the main algorithms
for its construction and usage (section 3). Next, we study
the performance of the g-tries implementation using a set
of representative real complex networks and compare its ef-
ficiency to the previously used methods also implemented in
the same common platform (section 4). We finally conclude
by summarizing contributions and suggesting some future
work (section 5).

2. GRAPH TERMINOLOGY
In order to have a well defined and coherent graph termi-

nology throughout the paper, this section reviews the main
concepts used.

A graph G is composed of a set V (G) of vertices or nodes
and a set E(G) of edges or connections. The size of a graph
is the number of vertices and is written as |V (G)|. A k-graph
is a graph of size k. Every edge is composed of a pair (u, v)
of two endpoints in the set of vertices. The neighborhood of
a vertex u ∈ V (G), denoted as N(u), is composed by the set
of vertices v ∈ V (G) such that v and u share an edge. All
vertices are assigned consecutive integer numbers starting
from 0. The comparison v < u means that the index of v is
lower than that of u. The adjacency matrix of a graph G is
denoted as GAdj , and GAdj [a][b] represents a possible edge
between vertices with index a and b.

A subgraph Gk of a graph G is a graph of size k in which
V (Gk)⊆V (G) and E(Gk)⊆E(G). This subgraph is said to
be induced if for any pair of vertices (u, v) ∈ E(Gk) if and
only if (u, v) ∈ E(G). The neighborhood of a subgraph Gk,

denoted by N(Gk) is the union of N(u) for all u ∈ V (Gk).
A mapping of a graph is a bijection where each vertex is

assigned a value. Two graphs G and H are said to be iso-
morphic, denoted as G∼H , if there is a one-to-one mapping
between the vertices of both graphs where two vertices of G
share an edge if and only if their corresponding vertices in H
also share an edge. The set of isomorphisms of a graph into
itself is called the group of automorphisms and is denoted as
Aut(G). Two vertices are said to be equivalent when there
exists some automorphism that maps one vertex into the
other. This equivalence relation partitions the vertices of a
graph G into equivalence classes denoted as GE.

3. G-TRIES
Given the space constraints and for the sake of clarity

of the explanation, we will exemplify the use of g-tries

on simple undirected graphs. The same basic ideas being
detailed, are easily expandable to more complex cases, like
directed, weighted or colored graphs.

3.1 Core idea and definition
When working with sequences, prefix trees (or tries) [8] are

a well known concept. This data structure is a tree where
all descendants of a node have the same common prefix, as
illustrated in Figure 1.

Figure 1: An example trie representing a set of four
words. Note how common prefixes are aggregated
in the same nodes.

What we propose is to apply a similar concept in graphs,
in order to take advantage of possible common substructures
of a collection of graphs. In the same way two or more strings
can share the same prefix, two or more graphs can share a
common smaller subgraph. Figure 2 exemplifies this.

Figure 2: These five 6-vertices subgraphs all share
a common substructure indicated by the black ver-
tices (a clique of size 3).

In the same way each trie node has a single letter, we
will create a tree where each node represents a single graph
vertice. Each vertice is characterized by its connections to
the respective ancestor nodes. Figure 4 exemplifies this kind
of trees.

Note that all graphs with common ancestor tree nodes
share common substructures that are characterized precisely
by those ancestor nodes. A single path through the tree
corresponds to a different single graph. Children of a node
correspond to the different graph topologies that can emerge
from the same subgraph.

We will call these kind of trees as g-tries, following the
etymology “Graph reTRIEval”. We now give an informal

Figure 3: Sequential insertion of 3 graphs on an initially empty g-trie. Tree nodes in gray are the new ones
after each insertion and nodes in white are the ones that remain from before. Squares with dashed lines
represent the actual g-trie implementation with adjacency matrices, and squares with normal lines give the
correspondent visual representation. Black vertices indicate new vertices, while the old ones are white.

Figure 4: A tree representing a set of 6 graphs. Each
tree node adds a new vertex (in black) to the already
existing ones in the ancestor nodes (white vertices)

definition of this abstract data structure. Note that a mul-
tiway tree is one with any number of children for each node.

Definition 1 (G-Trie). A g-trie is a multiway tree
that can store a collection of graphs. Each tree node contains
information about a single graph vertex and its correspond-
ing edges to ancestor nodes. A path from the root to a leaf
corresponds to one single graph. Descendants of a g-trie

node share a common subgraph.

3.2 Constructing G-Tries
In order to avoid further ambiguities, we will use the term

nodes for the g-trie tree nodes, and vertices for the graph
network nodes.

As said before, each node needs to store information about
a new vertex and its connections to ancestor vertices. Given
its simplicity and ease of use, we will represent the graph
by an adjacency matrix with ’1’ representing a connection
and ’0’ its nonexistence. A vertex and its edges is therefore
represented by the respective row of the matrix. Since every
tree node represents a single new vertex, we can therefore
just store in it the corresponding row. More than that, since
we only need to know the connections to ancestor vertices,

we can just store the values of the row up to the value defin-
ing if there is a connection to itself. Note that the graph
to be stored is undirected and therefore the matrix is sym-
metrical, and so in fact we only need to store half of the
matrix.

To construct a g-trie, we just repeatedly insert one sub-
graph at a time, starting with an empty tree (just a root
node). Each time, we traverse the tree and verify if any
of the children has the same partial adjacency matrix row
as the graph we are inserting. With each increase in depth
we also increase the index of the vertex we are considering.
Figure 3 exemplifies this process.

There are however many different possible adjacency ma-
trices representing the same class of isomorphic graphs, as
exemplified in figure 5.

Figure 5: Three different adjacency matrices repre-
senting the same graph. Note how the labelling of
the vertices affects the correspondent matrix.

The problem with this is that different matrices will give
origin to different g-tries. We could even have two isomor-
phic graphs having different g-trie representations, leading
to different branches of the tree representing the same graph,
which would contradict the purpose of the g-trie. In order
to cope with that we use a canonical labelling, which guar-
antees that isomorphic graphs will always produce the same
adjacency matrix, and therefore the same set of subgraphs
is guaranteed to produce the same g-trie.

There are many possible canonical representations. We
choose to use the labelling that produces the lexicographi-
cally larger matrix, ensuring that the vertices with the high-
est number of connections will appear first in the matrix.
This favours the occurrence of possible common substruc-
tures, specially on the lower index vertices. For example,
with canonical labelling, all graphs without self-loops will
produce the same partial row on the first vertex (just a ’0’

indicating no connection to itself), the same partial row on

the second vertex (just ’10’ - the first vertex needs to be
connected to some other vertex and this labelling will ensure
that there is always a connection to the second vertex) and
so on. Figure 3 illustrates this effect in practice.

Having many shared substructures on the lower index ver-
tices is highly desirable, since this will produce g-tries with
less total number of nodes and small number of nodes in the
lower depths. As we increase the amount of common an-
cestor topologies, we decrease the size of the tree and effec-
tively we compress the representation, needing less memory
to represent it than when we had the original set of sub-
graphs (represented by their adjacency matrices). We can
measure the amount of compression if we take into account
the number of nodes in the tree and the number of vertices
in the subgraphs (equation (1)). By using a tree we do have
to spend some auxiliary memory to represent the tree edges,
but the total memory needed for the tree structure is very
small compared to the actual info stored on the nodes (the
graph adjacency matrix) and loses relative weight as we in-
crease the amount of subgraphs and their size. Hence, the
real memory bottleneck is the actual node values, and equa-
tion (1) is a good indicator of how much space we save and
how much common substructure we identified.

compression ratio = 1 −
nodes in tree

P

nodes of stored graphs
(1)

As an example, the g-trie constructed in figure 3 has a
compression ratio of 41.67% = 1−7/(4+4+4) (we can ignore
the root, since it uses constant memory space and only exists
as a placeholder for the initial children representing the first
vertex). A tree with no common topologies would need a
node for each graph vertex and would have a 0% compression
ratio.

Algorithm 1 details a method to insert a graph in a g-

trie. As said, constructing a complete g-trie from a set
of subgraphs can be done by inserting them one by one into
an initially empty tree.

Algorithm 1 Inserting a graph G in a g-trie T

1: procedure insert(G, T)
2: M := canonicalAdjMatrix(G)
3: insertRecursive(M, T, 0)

4: procedure insertRecursive(M, T, k)
5: if k < numberRows(M) then
6: for all children c of T do

7: if c.value = first k + 1 values of M [k] then

8: insertRecursive(M, c, k + 1)
9: return
10: nc := new g-trie node
11: nc.value := first k + 1 values of M [k];
12: T .insertChild(nc)
13: insertRecursive(M, nc, k + 1);

Explaining in more detail, we start by obtaining a canoni-
cal adjacency matrix of the graph being inserted (line 2). In
our case, as explained before, we opted for the lexicograph-
ically bigger matrix. Then we recursively traverse the tree,
inserting new nodes when necessary, with the procedure in-
sertRecursive(). This is done by going trough all possible
children of the current node (line 6) and checking if their
stored value is equal to the correspondent part of the adja-
cency matrix (line 7). If it is, we just continue recursively
with the next vertex (line 8). If not, we create a new child
(lines 10 to 12) and continue as before (line 13). When there

are no more vertices to process, we stop the recursion (line
5).

Regarding the complexity of the algorithm, insertRecur-
sive() takes O(|V (G)|2), the size of the adjacency matrix.
Besides this, the whole insertion needs to calculate a canon-
ical labelling of the graph. This can be done using what-
ever already existing method for canonical labelling, like the
highly efficient third-party algorithm nauty [17]), or using
our own algorithm that guarantees certain properties (like
the lexicographically biggest adjacency matrix).

After constructing the g-trie, if we want to retrieve the
initial set of graphs a simple depth-first search of the tree
will suffice. A path from the root to any given leaf at depth
k represents a k−graph.

3.3 Census of a set of subgraphs
Algorithm 2 details a method for finding and counting all

occurrences of the g-trie collection of graphs as induced
subgraphs of another larger graph. The main idea is to
backtrack through all possible subgraphs, but at the same
time do the isomorphism tests as we are constructing the
candidate subgraphs. Moreover, taking advantage of com-
mon substructures in the sense that at a given time we have
a partial isomorphic match for several different candidate
subgraphs (all the descendants).

Algorithm 2 Census of subgraphs of T in graph G

1: procedure census(G, t)
2: for all children c of T.root do
3: match(c, G, 0, ∅)

4: procedure match(T, G, k, Vused)
5: if Vused = ∅ then
6: Vcand := V (G)
7: else
8: Vconn = {Vused[i]: T.value[i]=′1′}
9: m := m∈Vconn : ∀v∈Vconn, |N(m)| ≤ |N(v)|

10: Vcand := {v ∈ N(m) : v 6∈ Vused}

11: for all v ∈ Vcand do
12: add v to end of Vused

13: if ∀i∈[0..k]: T.value[i] = GAdj [v][Vused[i]] then
14: if T.isLeaf() then
15: reportGraph();
16: else
17: for all children c of T do
18: match(c, G, k + 1, Vused)

19: remove v from Vused

We start by iterating trough all children of the root (line
2), calling the recursive backtracking procedure match()

(line 3). This procedure starts by constructing the set Vcand

of candidate nodes to expand the Vused partially constructed
subgraph. If we still do not have any vertices, all nodes of
the graphs are suitable candidates for being the first vertex
(lines 5 and 6). If not, we first compute the Vconn vertices
to which the current vertex should be connected (line 8).
We then choose the vertex of this set which has the smaller
neighborhood (line 9), in order to minimize potential can-
didates. We proceed by adding to the candidate list the
vertices of that minimal neighborhood which are still not
in the partially construct subgraph (line 10). After all of
this we traverse the possible candidates (line 11) and start
by adding each one to the partial graph (line 12), do some

tests (lines 13 to 18) and then remove the vertex from Vused

in order to continue with the next candidate. To check if
a candidate is a plausible match for this graph position, we
start by looking at the g-trie node value and seeing if the
candidate provides a complete match do the desired connec-
tions with the ancestor vertex of Vused (line 13). If that is
the case, we have two options. If we are already in a leaf,
we completed a graph matching and we can do whatever we
want, like increasing its frequency (lines 14 and 15). If we
are not in a leaf, we recursively try to continue the matching
with all the children of the current tree node (line 18).

Figure 6 exemplifies the flow of the previously described
procedure. Note how the list of candidates is constructed
from the ancestor with the minimal neighborhood and how
candidates are rejected when they do not have the needed
connections to ancestor vertices.

Figure 6: An example partial program flow of the
census procedure, when searching for a 3-clique on
graph with 6 vertices.

3.4 Breaking Symmetries
One main problem with the census method described is

that we do not avoid subgraph symmetries. If there are
automorphisms on a subgraph, then that specific subgraph
will be found multiple times. In the example of figure 6,
we would not only find {0, 1, 4} but also {0, 4, 1}, {1, 0, 4},
{1, 4, 0}, {4, 0, 1} and {4, 1, 0}. In the end we can divide by
the number of automorphisms to obtain the real frequency,
but a lot of valuable computation time is wasted.

We need to avoid this kind of redundant computations
and find each subgraph only once. In order to do that we
will generate a set of symmetry breaking conditions for each
subgraph, similarly to what was done by Grochow and Kel-
lis [9]. The main idea is to generate a set of conditions of the
form a < b, indicating that the vertex in position a should
have an index smaller than the vertex in position b. Figure 7
shows an example of a graph and conditions of the type we
described that break the symmetry.

Although our inspiration was Grochow and Kellis [9], we
use a slightly different method for generating the conditions,
detailed in algorithm 3.

We start by emptying the set of conditions (line 2). We
then calculate the set Aut of automorphisms of the graph
(line 3), and start adding conditions that when respected
will reduce the above mentioned set to the identity mapping.

Figure 7: Symmetry breaking conditions for an ex-
ample graph with 4 vertices. The conditions fix the
position of the vertices indicated in white. Vertices
in black have at least another equivalent vertex.

Algorithm 3 Symmetry breaking conditions for graph G

1: function findConditions(G)
2: Conditions := ∅
3: Aut := setAutomorphisms(G)
4: while |Aut| > 1 do
5: m := minimum v : ∃map ∈ Aut,map[v] 6= v
6: for all v 6= m : ∃map ∈ Aut,map[m] = v do
7: add m < v to Conditions
8: Aut := {map ∈ Aut : map[m] = m}

9: return Conditions

Note that although calculating automorphisms is thought
to be computationally expensive, in practice we found it
to be almost instantaneous for the subgraph sizes used and
with nauty [17] we were able to test much bigger subgraphs
(with hundreds of nodes) and obtain their respective auto-
morphisms very quickly, in less that 1 second. What remains
is that this calculation is very far from being a bottleneck in
the whole process of generating and using g-tries. Each time
we start by finding the minimum index m where there is still
a mapping in Aut that allows for a vertex with index differ-
ent than m in position m, that is, we calculate the minimum
vertex that still has at least another equivalent node (line 5).
We then add conditions stating that the vertex in position
m should have an index lower than every other equivalent
position (lines 6 and 7), which in fact fixes m in its position.
We then reduce Aut removing the mappings that do not re-
spect the newly added connections, that is, the ones that do
not fix m. We continue repeating this process until there
is only the identity left Aut′ (line 4). We finally return all
the generated conditions (line 9). Note that in the case of
the graph of figure 7, this algorithm would create the exact
same set of conditions as depicted there.

We will now show how we can expand the insertion and
census algorithms in order to use symmetry breaking condi-
tions. The basic idea is that each g-trie node should know
which set of graphs (and respective conditions) are in their
descendant leafs. With this, the matching algorithm of the
census can see if the partial subgraph constructed is respect-
ing the conditions of at least one possible end leaf, that is,
there is at least one possible subgraph that can still be con-
structed by expanding the partial subgraph. Algorithms 4
and 5 detail how this is done. Note how almost everything
is the same as in the previously described algorithms.

With these two algorithms, a subgraph will only be found
once. All other possible matchings of the same set of ver-
tices will be broken somewhere in the recursive backtracking.
Moreover, since we always create conditions of the minimal

Table 1: Number of possible different undirected and connected subgraphs with k vertices.
k 3 4 5 6 7 8 9 10 11 12 13

Subgraphs 2 6 21 112 853 11117 261080 11716571 1006700565 164059830476 50335907869219

Algorithm 4 Inserting a graph G in a g-trie T [symmetry
breaking condition version]

1: procedure insertCond(G,T)
2: M := canonicalAdjMatrix(G)
3: insertCondRecursive(M,T, 0, C)

4: procedure insertCondRecursive(M,T, k, C)
5: lines 5 to 11 of algorithm 1
6: nc.addSetConditions(C)
7: lines 12 to 13 of algorithm 1

Algorithm 5 Census of subgraphs of T in graph G [sym-
metry breaking condition version of match()]

1: procedure match(T, G, k, Vused)
2: lines 5 to 13 of algorithm 2
3: if ∃C ∈ T .conditions: Vused respects C then
4: lines 14 to 18 of algorithm 2

5: line 19 of algorithm 2

indexes still not fixed (line 5 of algorithm 3), we tend to dis-
cover early in the recursion that a condition is being broken,
therefore cutting branches of the possible search tree as soon
as possible.

3.5 Application in network motifs discovery
The main flow of all exact network motifs algorithms it

to calculate a census of subgraphs of a determined size k
in the original network, then generate a set of similar ran-
dom networks, followed by calculating the census on all of
those, in order to assess the significance of the subgraphs
present in the original network. The generation of the ran-
dom networks themselves (normally done by a Markov chain
process [18]) is just a very small fraction of the time their
census takes. Computing the census on all the random net-
works is therefore the main bottleneck of the whole process
(there can be hundreds of random graphs) and g-tries can
help precisely in this phase.

In order to do that we must start by doing the census of
all the k-subgraphs in the original network by using what-
ever method we have available. The best general exhaustive
network-centric algorithm available we are aware of is the
one implemented in FanMod [24], which is orders of mag-
nitude faster than the original algorithm of mfinder [18].
Note that although FanMod is able to use sampling, it is
also capable to do an exhaustive and complete census. The
alternative is to generate the list of all possible subgraphs of
a determined size and then use a graph-centric algorithm to
calculate the frequency of all of them, one at a time. This
is what Grochow [9] proposes in this phase (by doing queries
for single subgraphs), and g-tries can also be used with
the same intent: we can generate all possible k-subgraphs,
insert them all in a g-trie and then calculate their cen-
sus in the original network with the algorithms given in
section 3.3. This approach has the problem of potentially
spending time searching for subgraphs that end up not exist-
ing in the network, but for small k is feasible. As k grows, it

becomes completely unfeasible because the number of possi-
ble k-subgraphs grows exponentially, as we can see in table 1.

After having the census of all the k-subgraphs in the orig-
inal network, we insert all of them in a g-trie. Then we
can do the most computationally costly part of the network
motif discovery process, generating the ensemble of random
networks and using the created g-trie to discover their fre-
quency on all of the random networks. When compared
with the network-centric alternative of doing a census of all
k-subgraphs in all the random networks (FanMod), we can
potentially save time because we will just look into the k-
subgraphs that matter. Note that in some cases one may also
be interested in anti-motifs, which as the name suggests are
patterns underrepresented. In this case the complete census
performed by the network-centric approach would be use-
ful since we may need to discover subgraphs not present in
the original graph. The other alternative is to use Grochow

and query individually all important subgraphs in all the
random networks. We can potentially save time with g-

tries when comparing with this approach, since we will be
traversing each region of the graph only once, because we
will be matching at the same time several different classes
of isomorphic subgraphs.

4. RESULTS
In order to evaluate the performance of our proposed data

structure and assess the efficiency of the described algo-
rithms, we implemented g-tries using C++. In order to
compare to previous algorithms, we also implemented the
best known previous strategies using the network-centric ap-
proach (FanMod [24]) and subgraph-centric approach (Gro-
chow [9]) in the same common C++ platform, enabling us
to be sure that differences in execution times are due to
the algorithms themselves and not due to the programming
language or graph data structures used (note that these two
last approaches also break symmetries, such as g-tries do).
Isomorphisms and canonical labellings were computed dur-
ing runtime, with the aid of nauty tool [17]. All tests were
made on a computer with an Intel Core 2 6600 (2.4GHz)
with 2GB of memory. Results obtained were double checked
with the publicly available FanMod tool [25], ensuring that
the frequency counts found were correct.

We used a set of complex networks from different domains,
with different number of vertices and edges. Table 2 sum-
marizes the five networks used. For simplification, self-loops
(connections from a node to itself) were removed when they
existed, and all weight in edges was ignored. Circuit was
initially a directed network that we converted to an undi-
rected one by considering that all edges were bi-directional.

Evaluation started with a census of the original network
using FanMod (exhaustive census), Grochow (query all k-
subgraphs) and G-Tries (apply algorithm 2 with a g-trie

including all k-subgraphs), and registering the processor time
spent. We then registered the number of different classes of
isomorphism found, noting the compression achieved when
we inserted all of them in a g-trie, defined by equation (1),
as well as the time spent creating the respective g-trie. Af-
ter that, we generated a random ensemble of five different

Table 2: The set of five different networks used to test the algorithms.
Network Vertices Edges Edges/Vertices Description Source
dolphins 62 159 2.56 Frequent associations between a group of dolphins [16, 19]
circuit 252 399 1.58 Electronic circuit [18]
social 1000 7770 7.77 Benchmark social network with heterogeneous communities [15]
yeast 2361 6646 2.81 Protein-protein interaction network in budding yeast [4, 3]
power 4941 6594 1.33 U.S.A. western states power grid [23, 19]

Table 3: Comparison of g-trie data structure with previous algorithms. Execution time is measured in
seconds and is relative to processor time. vs indicates the speedup ratio of g-tries against other algorithms
on the average time spent doing a census on a random network.

Network K
G-Trie Subgraphs Original Network Census Original Network Average Census on Similar Random Networks
Subgraphs Compression Time FanMod Grochow G-Trie FanMod Grochow G-Trie vs FanMod vs Grochow

dolphins

5 21 71.43% 0.00 0.07 0.03 0.01 0.13 0.04 0.01 16.00x 4.75x
6 101 78.55% 0.00 0.48 0.28 0.04 1.14 0.35 0.07 17.27x 5.24x
7 633 82.83% 0.01 3.02 3.44 0.23 8.34 3.55 0.46 18.21x 7.74x
8 4940 85.53% 0.04 19.44 73.16 1.69 67.94 37.31 4.03 16.87x 9.27x
9 39963 87.28% 1.87 100.86 2984.22 6.98 493.98 366.79 24.84 19.88x 14.76x

circuit
6 33 74.24% 0.00 0.49 0.41 0.03 0.55 0.24 0.03 19.57x 8.43x
7 89 78.01% 0.00 3.28 3.73 0.22 3.53 1.34 0.17 20.55x 7.81x
8 293 81.87% 0.00 17.78 48.00 1.52 21.42 7.91 1.06 20.17x 7.45x

social
3 2 33.33% 0.00 0.31 0.11 0.02 0.35 0.11 0.02 14.67x 4.75x
4 6 58.33% 0.00 7.78 1.37 0.56 13.27 1.86 0.57 23.28x 3.26x
5 21 71.43% 0.00 208.30 31.85 14.88 531.65 62.66 22.11 24.05x 2.83x

yeast
3 2 33.33% 0.00 0.47 0.33 0.02 0.57 0.35 0.02 31.67x 19.33x
4 6 58.33% 0.00 10.07 2.04 0.36 12.90 2.25 0.41 31.15x 5.44x
5 21 71.43% 0.00 268.51 34.10 12.73 400.13 47.16 14.98 26.70x 3.15x

power

3 2 33.33% 0.00 0.51 1.46 0.00 0.91 1.37 0.01 113.25x 171.00x
4 6 58.33% 0.00 1.38 4.34 0.02 3.01 4.40 0.03 107.43x 157.07x
5 21 71.43% 0.00 4.68 16.95 0.10 12.38 17.54 0.14 91.06x 128.96x
6 101 78.55% 0.00 20.36 95.58 0.55 67.65 92.74 0.88 76.52x 104.90x
7 626 82.82% 0.01 101.04 765.91 3.36 408.15 630.65 5.17 78.92x 121.94x

similar random networks, by applying a random Markov-
chain process like in [18] (with 3 swaps per edge), and we
calculated their census applying FanMod (exhaustive census),
Grochow (query the k-subgraphs of the original network)
and G-Tries (apply algorithm 2 with the g-trie of the k-
subgraphs in the original network), again as described in
section 3.5. This last phase is the real bottleneck of a com-
plete motifs detection algorithm (we will have to calculate it
potentially for hundreds of random networks) and therefore
we took note of not only the processor time spent, but the
speedup obtained with g-tries relative to the other algo-
rithms. We experimented with different sizes k of motifs,
and in order to limit the number of possible k we only reg-
istered the experiments in which FanMod average time for a
random network was greater than 0s and less than 1000s.

Note that the time needed to generate all possible undi-
rected k-subgraphs is quite small (nauty generates all undi-
rected graphs of size k < 10 in less than 0.5s). The time
needed to create the respective g-trie with all the possible
k-subgraphs (used for the census in the original network) is
also very small and all of this can even be precalculated for
all possible small k sizes and reused on all graphs being ana-
lyzed. If k is too big, we would still need to resort to FanMod

for the census on the original network, as said in section 3.5.
Table 3 details the results obtained. The first and most

relevant fact to notice is that in all cases g-tries outper-
form the previous algorithms. The comparison with FanMod

is overwhelmingly positive, with g-tries being orders of
magnitude faster. Against Grochow the difference is not so
accentuated, but even so g-tries always produces a better
behaviour. We can also observe that g-tries really excel on
less dense graphs, presenting the better speedup ratios on

networks with a small number of average edges per vertice.
The network power is the most extreme example of this.

One other important aspect is that the compression rates
of the trees are always significant and grow with the size of
k, since there are more graphs and more common parts (for
k > 5, the compression rate is always greater than 70%).
However, this does not have a direct influence on the time
needed by the g-tries census, and the speedup versus Gro-
chow seem to decrease as k increases (with the exception
of dolphins). This is probably caused by the fact that the
g-tries induce a specific order on the way the nodes of
a subgraph are found (since it is the same order that al-
lows us to create common parts), while Grochow does not,
and therefore g-tries spend some more time looking for
the right order of the nodes of subgraphs, and this happens
more frequently as k increases.

Regarding the census in the original network, since the
graphs are undirected and k is always relatively small, do-
ing the census by first generating all subgraphs and then
searching all those subgraphs with a g-trie is not only fea-
sible, but also much faster than doing a census with Fan-

Mod. However, it should be noticed that as k increases,
the time needed with a graph-centric approach can grow
exponentially, since we need to compute the frequency of
all subgraphs of that size (see table 1), even when the fre-
quency for the majority of those subgraphs is zero. This
effect can be seen with Grochow when k = 9 (261080 sub-
graphs) in dolphins, with much more time needed than with
the network-centric FanMod, meaning that more time is be-
ing spent searching for subgraphs that do not appear at all
in the original network.

5. CONCLUSION
In this paper we introduced g-tries, a novel data struc-

ture specialized in efficiently representing collections of sub-
graphs. G-Tries are multiway trees that take advantage
of common substructures in the subgraphs. We gave algo-
rithms for inserting subgraphs, discovering their frequency
on another larger graph and on how to break subgraph sym-
metries that could lead to redundant computations. We
have also shown how g-tries could be applied in the net-
work motifs discovery problem.

The results obtained are very promising. G-Tries can
significantly compress the representation of a set of sub-
graphs and the comparison with previously existent algo-
rithms shows that g-tries clearly outperforms those other
methods when computing subgraph census. The execution
times can be orders of magnitude better and in particular
with small motif sizes and not too dense networks the ad-
vantage in using g-tries is overwhelming.

This data structure has also the potential to be used in
different scenarios. We could use it to just do the initial
network census, useful for example on the social network
analysis realm (where triads census are very common [22]).
Or, we could use it to discover larger motifs, by specifying
beforehand larger subgraphs and then do the search for all
of them at the same time on a network.

In the near future, we plan to extend g-tries to more
complicated networks (for example, directed and colored
networks), and study its behaviour on these networks. In
order to do that, we only have to change the g-trie node
content to reflect the increased graph complexity. We also
intend to research on how they could be used to obtain ap-
proximated motifs results, such as it happens when subgraph
sampling is used in mfinder [18] or FanMod [24]. Finally, we
intend to parallelize the algorithms of g-tries, allowing for
its optimized and large scale use.

6. ACKNOWLEDGMENTS
Pedro Ribeiro is funded by an FCT Research Grant

(SFRH/BD/19753/2004).

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. 20th Int. Conf. Very Large
Data Bases, VLDB, pages 487–499, 1994.

[2] I. Albert and R. Albert. Conserved network motifs
allow protein-protein interaction prediction.
Bioinformatics, 20(18):3346–3352, December 2004.

[3] V. Batagelj and A. Mrvar. Pajek datasets, 2006.
http://vlado.fmf.uni-lj.si/pub/networks/data/.

[4] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu,
J. Zhang, S. Sun, L. Ling, N. Zhang, G. Li, and
R. Chen. Topological structure analysis of the
protein-protein interaction network in budding yeast.
Nucl. Acids Res., 31(9):2443–2450, May 2003.

[5] D. Chakrabarti and C. Faloutsos. Graph mining:
Laws, generators, and algorithms. ACM Computing
Surveys, 38:1, 2006.

[6] L. da F. Costa, F. A. Rodrigues, G. Travieso, and
P. R. V. Boas. Characterization of complex networks:
A survey of measurements. Advances In Physics,
56:167, 2007.

[7] R. Dobrin, Q. K. Beg, A. Barabasi, and Z. Oltvai.
Aggregation of topological motifs in the escherichia
coli transcriptional regulatory network. BMC
Bioinformatics, 5:10, 2004.

[8] E. Fredkin. Trie memory. Commun. ACM,
3(9):490–499, September 1960.

[9] J. Grochow and M. Kellis. Network motif discovery
using subgraph enumeration and symmetry-breaking.
pages 92–106. 2007.

[10] J. Han and M. Kamber. Data Mining, Second Edition:
Concepts and Techniques. Morgan Kaufmann,
September 2006.

[11] S. Itzkovitz, R. Levitt, N. Kashtan, R. Milo,
M. Itzkovitz, and U. Alon. Coarse-graining and
self-dissimilarity of complex networks. Phys Rev E Stat
Nonlin Soft Matter Phys, 71(1 Pt 2), January 2005.

[12] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon.
Efficient sampling algorithm for estimating subgraph
concentrations and detecting network motifs.
Bioinformatics, 20(11):1746–1758, 2004.

[13] M. Kondoh. Building trophic modules into a
persistent food web. Proceedings of the National
Academy of Sciences, 105(43):16631–16635, 2008.

[14] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. Data Mining, IEEE International
Conference on, 0:313, 2001.

[15] A. Lancichinetti, S. Fortunato, and F. Radicchi.
Benchmark graphs for testing community detection
algorithms. Physical Review E (Statistical, Nonlinear,
and Soft Matter Ph ysics), 78(4), 2008.

[16] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase,
E. Slooten, and S. M. Dawson. The bottlenose dolphin
community of doubtful sound features a large
proportion of long-lasting associations. can geographic
isolation explain this unique trait? Behavioral Ecology
and Sociobiology, 54(4):396–405, 2003.

[17] B. McKay. Practical graph isomorphism. Cong.
Numerantium, 30:45–87, 1981.

[18] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon. Network motifs: simple
building blocks of complex networks. Science,
298(5594):824–827, October 2002.

[19] M. Newman. Network data, september, 2009.
http://www-personal.umich.edu/~mejn/netdata/.

[20] M. E. J. Newman. The structure and function of
complex networks. SIAM Review, 45, 2003.

[21] O. Sporns and R. Kotter. Motifs in brain networks.
PLoS Biology, 2, 2004.

[22] S. Wasserman, K. Faust, and D. Iacobucci. Social
Network Analysis : Methods and Applications
(Structural Analysis in the Social Sciences).
Cambridge University Press, November 1994.

[23] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393(6684):440–442,
June 1998.

[24] S. Wernicke. Efficient detection of network motifs.
IEEE/ACM Trans. Comput. Biol. Bioinformatics,
3(4):347–359, 2006.

[25] S. Wernicke and F. Rasche. Fanmod: a tool for fast
network motif detection. Bioinformatics,
22(9):1152–1153, May 2006.

