
Querying Subgraph Sets with G-Tries

Pedro Ribeiro Fernando Silva
CRACS & INESC-TEC, Faculdade de Ciencias, Universidade do Porto

R. Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{pribeiro, fds}@dcc.fc.up.pt

ABSTRACT
In this paper we present an universal methodology for find-
ing all the occurrences of a given set of subgraphs in one
single larger graph. Past approaches would either enumer-
ate all possible subgraphs of a certain size or query a single
subgraph. We use g-tries, a data structure specialized in
dealing with subgraph sets. G-Tries store the topological
information on a tree that exposes common substructure.
Using a specialized canonical form and symmetry breaking
conditions, a single non-redundant search of the entire set
of subgraphs is possible. We give results of applying g-tries
querying to different social networks, showing that we can
efficiently find the occurrences of a set containing subgraphs
of multiple sizes, outperforming previous methods.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms; E.1 [Data Structures]: [Graphs and networks]

General Terms
Algorithms, Experimentation, Performance

Keywords
Graph Mining, Subgraphs, G-Tries, Network Motifs

1. INTRODUCTION
Graph mining is ubiquitous and has applicability on a

multitude of fields [3]. One crucial task is to find relevant
subgraphs, trying to discover patterns that can help us to
better understand the structure and function of the under-
lying networks. The basic premise relies on being able to
efficiently discover subgraphs, which is a computationally
hard problem, closely related to the subgraph isomorphism
problem, which is known to be NP-complete [5].

Past approaches for finding subgraph occurrences tend to
rely on two almost opposite approaches. On one hand, we

Copyright ACM, 2012. This is the author version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in DBSocial’2012, an ACM SIGMOD
2012 Workshop, May 20, Scottsdale, AZ, USA.
http://doi.acm.org/10.1145/2304536.2304541
.

have algorithms that search for one specific individual sub-
graph, such as GraphGrep [6] (subgraph-centric approach).
On the other hand we have algorithms that need to enu-
merate all subgraphs of a specific size, such as ESU [23]
(network-centric). If we want to search for a specific set of
subgraphs, in the first case we need to make several queries
(not taking advantage of the previous computation), and in
the second case we need to potentially do several queries
and then filter the results to the subgraphs that interest us
(spending time searching for unnecessary results).

Searching for subgraph sets is however a very useful task,
with growing demand. For example, when finding network
motifs [14] the bottleneck of the computation is finding the
frequency of subgraphs that appear in the original network
on a large set of similar randomized networks. Occurrences
of subgraph sets are also being used to create characteris-
tic graphlet fingerprints of networks [16], than can be used
for comparison. Both these approaches have direct appli-
cability in the social networks domain. For instance, motif
profiles have been used to characterize the edition network of
Wikipedia articles (showing predictive power on the quality
of the articles) [25], and graphlets have been shown to be a
powerful way of characterizing the social network structure
(enabling the selection of an adequate model) [10]. Recent
work has also shown that different subgraphs have different
discriminative power [4], which increases the need for being
able to search for pre-defined sets of subgraphs.

By acknowledging that we are indeed looking for a certain
subgraph set, we may improve our methodology when com-
paring to previous methods. The more traditional approach
to subgraph mining has its roots on association rule mining,
and the associated problem has its core on finding frequent
subgraphs supported by a set of graphs [12]. This leads to
the creation of index structures for the set of graphs that
are in the database [6, 9]. By contrast, our approach relies
on the creation of an index like structure for the set of sub-
graphs being queried, by using the very recent g-tries data
structure [19].

In this paper we present a methodology for performing an
universal exact query of a set of subgraphs on a single larger
network. We pre-process the subgraph set to create the
correspondent g-trie, a tree that encapsulates information
about common topologies. By adding symmetry breaking
conditions to the g-trie, we are able to devise an algorithm
that efficiently searches for the entire subgraph set using a
single constrained pass through the entire network, in which
each matched occurrence is already guaranteed to be iso-
morphic equivalent to one of the subgraphs in the searched

set. The method is completely application-independent and
can be applied to any base set of subgraphs, regardless of
their size. It is also very flexible, meaning that it can be
applied both to directed and undirected graphs, and also
to colored and uncolored networks. We show experimental
results when running our algorithm, showcasing its general
applicability, and showing it can outperform previous algo-
rithms for this specific task.

The remainder of the paper is organized as follows. Sec-
tion 2 defines the problem we are tackling and overviews
related work. Section 3 introduces the g-trie data struc-
ture and details how we use it for querying subgraph sets.
Section 4 discusses the experimental results obtained, with
comparisons to previous algorithms. Section 5 concludes the
paper, commenting on the results and possible future work.

2. PRELIMINARIES

2.1 Subgraph Set Query
We formalize the problem we are trying to solve, which is

to discover all occurrences of a certain set of subgraphs in a
larger graph:

Definition 1. General Subgraph Set Query: Given a
set of subgraphs SG and a graph G, determine all exact
induced occurrences of subgraphs of SG in G. Two occur-
rences are considered different if they have at least one node
or edge that they do not share.

Note that this definition if very flexible and can be applied
to any type of graphs, directed and undirected, colored and
uncolored. The last part establishes how we can distinguish
different occurrences, stating the most widely used defini-
tione. This has a direct impact on the number of subgraphs
found, and thus, on the hardness of the problem. Other
definitions may use different concepts [22].

Note also that for the purposes of this paper, we are con-
cerned only with induced subgraphs, that is, the vertex set
of the subgraph has exactly the same set of edges as the
matched vertex set in the larger graph. G-tries could also
be used to find non-induced matches if that was intended.

2.2 Related Work
The concept of g-tries was introduced by us in 2010 [19].

In previous work our main focus has been to compute the
frequency of subgraphs of size k (k-subgraphs) for a given
static k (implying the creation of a g-trie with all possible
k-subgraphs). In this paper, besides a more mature under-
lying platform, the main innovation is the usage of sets of
differently sized subgraphs on the same g-trie, allowing a
single search for any general set of subgraphs. We have also
done some preliminary work on parallelizing the g-tries asso-
ciated algorithms [21], and on obtaining approximate results
by using sampling [18].

Network-centric approaches look for all possible k-subgraphs
for a certain k, by enumerating connected sets of k-vertices
and in the end doing tests to discover the isomorphic class of
each subgraph found. To our best knowledge, the most effi-
cient algorithms for this task are ESU [23] and Kavosh[11].
Subgraph-centric approaches, in contrast, query individual
subgraphs. Grochow and Kellis [7] show an efficient way
of doing this. GraphGrepSX [2], based on its predecessor
GraphGrep [6] is a state of the art subgraph-centric query-
ing system for a database of graphs.

We should also note that the problem we are trying to
solve is conceptually very different from frequent subgraph
discovery [12], given that in the later we do not have a pre-
defined set of querying subgraphs from which we need to
know all possible occurrences, but instead we have a set of
original graphs from which we need to extract frequent sub-
graphs that appear in all of them. In this way, algorithms
such as gSpan [26] perform a different task and are not di-
rectly comparable.

3. QUERYING SUBGRAPH SETS

3.1 The G-Trie Data Structure
A g-trie is a multiway tree (with a variable number of

children per node) able to store and describe a set of graphs.
In order to avoid ambiguities, from now on we will use the
term node for referring to g-trie tree nodes, and the term
vertex to refer to the actual graph vertices stored in the g-
trie. Each node contains information about a single vertex
and its connections to ancestor vertices. Descendants of a
node share a common subtopology. A path from the root to
any given node defines one single subgraph.

Figure 1 gives an example of a g-trie with 9 undirected
subgraphs: all possible subgraphs from sizes 2 to 4. Each g-
trie node adds a new graph vertex (in black) to the already
existing ones in the ancestor nodes (white vertices). The
nodes indicated in gray are terminal nodes, meaning that
they store the last vertex of a graph, that is, a path from
the root to a gray node defines a graph in the stored set.

Figure 1: A g-trie storing 9 undirected subgraphs.

For the sake of clarity, and given the space constraints, the
following sections will focus only on undirected graphs. The
explained concepts are however easily extendable to directed
and colored graphs.

3.2 Creating a G-Trie
A g-trie is created by an iterative algorithm that inserts

one graph at a time, as exemplified in Figure 2. As be-
fore, gray nodes indicate the terminal node of a graph. The
dashed nodes indicate the actual g-trie path that corre-
sponds to the newest inserted graph. The numbers of the
graph vertices indicate the order in which they are added.

Algorithm 1 describes the main steps used in the creation
of a g-trie. Basically we iterate trough all graphs of the set
(line 3) and execute a series of procedures for each of them.
The first one is to obtain a canonical form for the graph
(line 4). This determines the order in which the vertices are

Figure 2: Example iterative insertion of 6 undirected subgraphs in a g-trie.

inserted and therefore the path through the g-trie. We need
a canonical form in order to ensure that the same graph will
always give origin to the same path, meaning that an unique
graph set will give origin to an unique g-trie (regardless of
the order in which we insert the graphs).

Algorithm 1 Creating a G-Trie from a set of subgraphs

Require: Graph Set SG

Ensure: Inserts all Graphs of SG in G-Trie T

1: procedure createGTrie(SG)
2: T := empty G-Trie
3: for all graph G of SG do
4: Str := canonical form of G
5: Cond := symmetry breaking conditions of G
6: insert(T.root, Str, Cond, 0, |V (G)|)
7: Filter Conditions of T
8: return T
9: procedure insert(Node, Str, Cond, k, size)

10: Add relevant conditions of Cond to Node
11: if k = size then
12: Mark Node as terminal node of a Graph
13: else
14: for all children c of Node do
15: if c.connections = k-vertex of Str then
16: insert(c, Str, Cond, depth + 1, size)
17: return
18: c := new G-Trie node
19: c.connections = k-vertex of Str
20: insert(c, Str, Cond, depth + 1, size)

The choice of canonical form will have a direct impact
on the topology of the g-trie. What we want is to produce
the g-trie with as less nodes as possible, meaning that there
are more common subpaths between different graphs, and
therefore more common substructure. We will use this to
improve the search procedure, as described in the next sec-
tion. Note that computing a canonical from is a hard prob-
lem since it is related to graph isomorphism (two graphs are
isomorphic if they have the same canonical form). Our cur-
rent implementation uses GTCanon, a customized canonical
form that tries to guarantee three properties: connectivity
(a path in the g-trie will always define a connected graph),
compressibility (as more common substructure as possible)

and constraining (as more connections as possible in the first
vertices of the path, in order to highly constrain the possible
matching nodes in the larger graph). The actual algorithm
uses nauty [13], a proven and very efficient algorithm, as the
basis to obtain a fast and specialized canonization. More de-
tail on this can be seen in [17]. As an example, when applied
to the graph set of Figure 1, GTCanon would give origin to
the pictured g-trie.

The symmetry breaking conditions role (lines 5, 7 and
10) will be explained in the next section, given that they are
specially pertinent in the context using g-tries for query-
ing, but what remains is that they are computed for each
inserted graph and in the end they are filtered. The rest
of the algorithm is an almost straightforward recursive pro-
cedure (insert) that follows the path that corresponds to
the graph being inserted and creates new g-tries nodes as
needed.

3.3 Using G-Tries to Query Subgraphs
With the g-trie already built, we are now ready to search

for all its stored graphs as induced subgraphs of another
larger graph. The main methodology is to search for vertices
in the larger graph that match the subgraph represented in
a g-trie node, and increasingly grow the partial match so
that full occurrences are discovered. The efficiency gain is
obtained by matching several subgraphs at the same time,
in the sense that a partial match is a potential occurrence
of all the subgraphs stored on descendant nodes. Further-
more, when on a subgraph terminal node, we already are
assured that the match is isomorphic to the respective sub-
graph. This is different from what happens in subgraph-
centric approaches, in which different individual subgraph
queries would not take advantage of previous results. It
is also different from what happens in network-centric ap-
proaches, since in these all subgraphs would have to be enu-
merated and the isomorphic test would be delayed to after
the enumeration.

A naive approach for the described methodology would
encounter a problem when dealing with the symmetry that
inherently exists in subgraphs. This is because for each
unique occurrence of a subgraph, we can find several possible
matches, corresponding to the different number of possible
automorphisms of that subgraph. For instance, each triangle
would be found 6 times.

In order to counter this and to effectively find each sub-
graph instance just once, we introduce symmetry breaking
conditions of the form a < b. These impose constraints on
the labels of the actual matches found, in accordance to their
respective subgraph vertex matching, guaranteeing only one
possible matching that respects these ordering conditions.
Figure 3 exemplifies this, showing conditions for a triangle
and how they disallow 5 of the 6 possible automorphisms.

Figure 3: Symmetry breaking conditions example.

The conditions are defined similarly to what was done by
Grochow and Kellis [7], but we use a different condition gen-
eration algorithm. For each graph, after having applied the
canonization of GTCanon, we generate the set of possible
automorphisms. We then proceed by finding the first vertex
that is not fixed, that is, the one that still has equivalent
vertices (for instance, in the case of the triangle, all vertices
are equivalent). We then add a condition that fixes that ver-
tex, guaranteeing that it must be smaller than all equivalent
vertices. We proceed by finding that next non fixed vertice
and applying the same process. More detail on the exact
algorithm can be seen in [19].

After generating these conditions, we add them along the
g-trie path that corresponds to that subgraph. When we are
creating a possible match to a g-trie node, we ensure that the
conditions of at least one possible descendant terminal node
are respected. When all subgraphs are inserted with the re-
spective conditions we apply a filtering process that reduces
the total number of conditions, by removing redundancies.
For instance, a simple case is to use the transitivity of the
order relationship, reducing sets like a < b, a < c, b < c to
a < b, b < c. More specific details on all the steps taken by
our filtering process can be seen in [17]. Figure 4 illustrates
how a g-trie storing the six undirected 4-subgraphs would
look like with the conditions added.

Figure 4: A g-trie with symmetry breaking condi-
tions.

Given all of this we are ready to explain how we query the
subgraphs. Algorithm 2 overviews the procedure for finding
all occurrences of the graphs of a g-trie as induced subgraphs
of another larger graph.

Algorithm 2 Querying a set of subgraphs

Require: G-Trie T and Graph G
Ensure: Occurrences of subgraphs of T in G

1: procedure queryGTrie(T,G)
2: for all children c of T.root do
3: queryNode(c, ∅, G)

4: procedure queryNode(Node, Vused, G)
5: Vcand := candidates of V (G) that match Node
6: for all v ∈ Vcand do
7: if isTerminal(Node) ∧ conditionsOk(Node) then
8: foundOccurrence(Vused ∪ v)

9: for all children c of Node do
10: queryNode(c, Vused ∪ v,G)

The searching methodology of the algorithm is to use a
recursive backtracking procedure (queryNode) that basically
tries to find an extension to existing partial match that com-
plies with all the constraints imposed by the current g-trie
node (in terms of connections and labels). A set of candidate
vertices is generated (line 5) and then, for each of them, if
the node is terminal and the symmetry conditions for that
particular subgraph are met (line 7), we found an occur-
rence (line 8). If the node has children, then all possible
g-trie continuation paths are tried (lines 9 and 10).

The core of the work that greatly influences the perfor-
mance of the whole algorithm is the generation of the can-
didate vertices (line 5). For space reasons, we will not dwell
in to the small details of this part (check [17] for more thor-
ough information) but the main goal is to generate a list
of vertices of the larger graph that simultaneously obey to
the topological constraints (having all the needed connec-
tions) and to the ordering constraints (not breaking symme-
try conditions). Much care is taken to do this as efficiently
as possible, and the basic idea is that already matched nodes
(Vused) can constraint as much as possible, and as early as
possible, the candidates. We follow three main concepts:
(1) the vertex from Vused with the smaller neighborhood in
the graph and a connection to the current g-trie vertex gives
the smaller number of initial candidates; (2) the symmetry
conditions stored on the node limit the interval of possible
candidate labels; (3) only those candidates that respect all
the connections with Vused can remain.

When comparing with other methods, the potential gain
in efficiency is essentially due to the fact the we are able
to test at the same time several different subgraphs. In
fact, when we have a partial match of graph vertices for
a certain g-trie node, we have already an isomorphic par-
tial match to all the subgraphs stored in descendants nodes.
This contrasts with subgraph-centric methods that do not
take advantage of the results of previous queries, and with
network-centric methods that indeed need to enumerate all
possible subgraphs instead of just the ones we are interested
in. For querying with g-tries, in general, the more common
substructure we are able to find, and the larger number of
graphs we are looking for, then the more potential saving
we will obtain in the execution time.

4. EXPERIMENTAL RESULTS
In order to evaluate our approach, we implemented the

described algorithms in C++. All experiments were run on

an Intel Core i5 M 450 (2.40GHz) with 4GB of memory.
We use three different social networks, with varied topologi-
cal features, as described in Table 1, showcasing the general
applicability of our approach. All networks used were con-
verted if necessary to be undirected and unweighted.

Name |V (G)| |E(G)| Brief Description Ref

citations 395 994 citations between authors [1]
email 1.133 5.451 e-mails interchanges [8]

coauthors 8.361 15.751 co-authorship of papers [15]

Table 1: Networks used for experimentation.

In order to show the universal applicability of our method-
ology we gathered the results when querying three very dif-
ferent subgraph sets:

• Complete: all possible 141 undirected subgraphs from
sizes 3 to 6 (demonstrating full enumeration).

• Cycle: all 6 single cycles from sizes 3 to 8, that is,
subgraphs connected in a closed chain, with each ver-
tex connected to two other vertices (demonstrating the
search for a specific type of graph).

• Random: 20 different random subgraphs obtained by
uniformly sampling from the entire possible set of sub-
graphs from sizes 3 to 8 (demonstrating general appli-
cability).

We measure the execution time taken for building the gtrie
plus running the query that finds all induced occurrences of
the subgraph set on the larger graph. We compare the re-
sults obtained with two different state-of-the art algorithms,
both of them implemented by us in the same platform, using
the same graph primitives, in order to make a fairer com-
parison so that the differences are really in the algorithm.

• ESU: one of the fastest [20] network-centric enumera-
tion algorithms. Our implementations gives execution
times even slightly smaller than the original author’s
C++ implementation [24]. Since ESU needs to do a
full enumeration of all possible k-subgraphs, we only
use it for querying Complete. For the other cases the
algorithm would need to do full enumerations up to
size 8, which would take much more time (more than
1000 times) than the other presented alternatives.

• Grochow: Grochow and Kellis [7] provide a state of-
the-art subgraph-centric algorithm for querying a sin-
gle subgraph on a single larger graph. The original im-
plementation was in Java. For querying the subgraph
sets, we execute successive individual queries for each
subgraph and measure the total time spent.

We intended to compare our results with GraphGrepSX [2].
However, preliminary tests with version 3 have shown that
for this particular task it was much slower. Note that this
algorithm is specialized in searching for a single subgraph in
a set of larger graphs, building an index file for the entire
database of graphs. It is also thought primarily for non-
induced subgraphs, even if it allows induced matches, and it
is returning symmetric results. We have observed that even
for simple cases, such as querying all 8 subgraphs from sizes
3 to 4, g-tries querying was more than two orders of magni-
tude faster, and for bigger sizes the difference in performance
was growing even more.

Table 2 shows the obtained results for every combination
of larger graph, query subgraph set and algorithm. ’#’ de-
picts the number of different subgraphs in the query set and

matches the total number of real occurrences of these sub-
graphs in the graph. Speedup indicates the amount of times
g-tries was faster than the other algorithms.

We can observe that g-tries perform consistently better
than the two other algorithms. For the complete case, even
when we are in fact finding all possible subgraphs, g-tries can
perform much better (by more than one order oh magnitude)
than ESU, an algorithm built specifically for enumeration.
However, it should be noted, for a full enumeration of much
larger subgraph sizes, the cardinality of the needed subgraph
set may become too big for practical usage with this type of
query (even if in that case the full network-centric enumer-
ation will also be almost prohibitive).

When comparing to Grochow, we can see that in the com-

plete case the speedup is larger than 10x. If we reduce
the query set to a very small size, like with cycle, then the
speedup decreases, as expected, since there is less to gain
(less common subtructure and less number of subgraphs).
However, looking at random case, we can see that quickly
g-tries can really take advantage of the fact that can search
simultaneously several subgraphs, with the speedups being
even larger than in the complete case.

The actual speedup obtained depends on a series of factors
and is not easily predictable. As said, the key is to have
common structure that we use for avoiding redundancy in
the search procedure, either because the subgraphs are of
the same “family” or because the sheer number of subgraphs
implies the existing of common topologies. For specific types
of graphs, there may exist better specialized options, but g-
tries remain as an efficient approach to any general type of
query with multiple subgraphs.

In all the experiments of the table, the time needed for
building the g-trie itself was negligible in the total amount
of time, taking less than 0.1s. For a fairer comparison of
times, we recomputed the g-trie in all experiments, but it is
possible to save it for later reuse.

5. CONCLUSIONS
In this paper we have described a methodology for an

application-independent querying of subgraph sets. We use
g-tries, a data structure that allows the storage of a collec-
tion of subgraphs, with a customized canonical labeling that
helps in identifying common-substructure. We described
how to add symmetry breaking conditions that allow a sin-
gle efficient search of the entire subgraph set over a larger
graph. The results obtained show that not only our ap-
proach is feasible, but that it also significantly outperforms
previous algorithms. G-Tries are best suited for cases in
which we have a fair amount of subgraphs that we want to
query, and when common topologies exist in that query set.

In the near future we plan to apply this strategy to more
complex networks, including directed and colored graphs.
We also intend to provide full support for a sampling version,
trading accuracy for better execution times [18], and for a
parallel version of the described algorithms [21].

6. ACKNOWLEDGMENTS
This work is in part funded by the ERDF/COMPETE

Programme and by FCT within project FCOMP-01-0124-
FEDER-022701. Pedro Ribeiro is funded by an FCT Re-
search Grant(SFRH/BPD/81695/2011).

Graph
Subgraphs Set Execution time (seconds) Speedup of G-Tries vs

Name # Matches G-Tries Grochow ESU Grochow ESU

complete 141 927,461,151 19.07 292.88 2,925.76 15.4x 153.4x
citations cycle 6 29,858 0.09 0.28 —– 3.2x —–

random 20 67,050,079 2.02 41.73 —– 20.6x —–
complete 141 1,427,281,118 36.04 509.58 2,051.83 14.1x 56.9x

email cycle 6 51,625,766 84.44 396.26 —– 4.7x —–
random 20 29,791,398 1.63 56.85 —– 34.9x —–
complete 141 264,011,611 10.02 192.34 393.93 19.2x 39.3x

coauthors cycle 6 901,850 9.25 22.75 —– 2.5x —–
random 20 5,460,888 0.71 19.03 —– 26.9x —–

Table 2: Experimental results of querying subgraph sets with g-tries.

7. REFERENCES
[1] V. Batagelj and A. Mrvar. Pajek datasets. 2006.

http://vlado.fmf.uni-lj.si/pub/networks/data/.

[2] V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and
D. Shasha. Enhancing graph database indexing by
suffix tree structure. In 5th IAPR Int. Conference on
Pattern Recognition in Bioinformatics (PRIB), pages
195–203, Berlin, 2010. Springer.

[3] D. Chakrabarti and C. Faloutsos. Graph mining:
Laws, generators, and algorithms. ACM Computing
Surveys, 38:1, 2006.

[4] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan.
Identifying bug signatures using discriminative graph
mining. In 18th Int. Symposium on Software Testing
and Analysis, pages 141–152, NY, USA, 2009. ACM.

[5] S. A. Cook. The complexity of theorem-proving
procedures. In 3rd ACM Symposium on Theory of
computing (STOC), pages 151–158, NY, USA, 1971.

[6] R. Giugno and D. Shasha. Graphgrep: A fast and
universal method for querying graphs. In 16th
International Conference on Pattern Recognition,
volume 2, pages 112–115, 2002.

[7] J. Grochow and M. Kellis. Network motif discovery
using subgraph enumeration and symmetry-breaking.
Research in Computational Molecular Biology, pages
92–106, 2007.

[8] R. Guimerà, L. Danon, A. D. Guilera, F. Giralt, and
A. Arenas. Self-similar community structure in a
network of human interactions. Physical Review E,
68(6):065103+, 2003.

[9] H. He and A. K. Singh. Closure-tree: An index
structure for graph queries. In 22nd International
Conference on Data Engineering (ICDE), pages 38–,
Washington, DC, USA, 2006. IEEE CS.

[10] E. Janssen, M. Hurshman, and N. Kalyaniwalla.
Model selection for social networks using graphlets.
Internet Mathematics, 2012.

[11] Z. Kashani, H. Ahrabian, E. Elahi, A. Nowzari-Dalini,
E. Ansari, S. Asadi, S. Mohammadi, F. Schreiber, and
A. Masoudi-Nejad. Kavosh: a new algorithm for
finding network motifs. BMC Bioinformatics,
10(1):318, 2009.

[12] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In 1st IEEE International Conference on
Data Mining (ICDM), page 313, Los Alamitos, CA,
USA, 2001. IEEE CS.

[13] B. McKay. Practical graph isomorphism. Congressus
Numerantium, 30:45–87, 1981.

[14] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon. Network motifs: simple
building blocks of complex networks. Science,
298(5594):824–827, October 2002.

[15] M. E. J. Newman. The structure of scientific
collaboration networks. National Academy of Sciences
of the USA, 98(2):404–409, 2001.

[16] N. Pržulj. Biological network comparison using
graphlet degree distribution. Bioinformatics,
23:e177–e183, Jan. 2007.

[17] P. Ribeiro. Efficient and Scalable Algorithms for
Network Motifs Discovery. PhD thesis, University of
Porto, 2011.

[18] P. Ribeiro and F. Silva. Efficient subgraph frequency
estimation with g-tries. In International Workshop on
Algorithms in Bioinformatics (WABI), volume 6293 of
LNCS, pages 238–249. Springer, September 2010.

[19] P. Ribeiro and F. Silva. G-tries: an efficient data
structure for discovering network motifs. In 25th ACM
Symposium on Applied Computing (SAC), pages
1559–1566. ACM, March 2010.

[20] P. Ribeiro, F. Silva, and M. Kaiser. Strategies for
network motifs discovery. In 5th IEEE International
Conference on e-Science, pages 80–87, Oxford, UK,
December 2009. IEEE CS.

[21] P. Ribeiro, F. Silva, and L. Lopes. Efficient parallel
subgraph counting using g-tries. In IEEE International
Conference on Cluster Computing (Cluster), pages
1559–1566. IEEE CS, September 2010.

[22] F. Schreiber and H. Schwobbermeyer. Towards motif
detection in networks: Frequency concepts and flexible
search. In International Workshop on Network Tools
and Applications in Biology, pages 91–102, 2004.

[23] S. Wernicke. Efficient detection of network motifs.
IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 3(4):347–359, 2006.

[24] S. Wernicke and F. Rasche. Fanmod: a tool for fast
network motif detection. Bioinformatics,
22(9):1152–1153, May 2006.

[25] G. Wu, M. Harrigan, and P. Cunningham.
Characterizing wikipedia pages using edit network
motif profiles. In 3rd Int. workshop on search and
mining user-generated contents (SMUC), pages 45–52,
New York, NY, USA, 2011. ACM.

[26] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In 2nd IEEE International Conference
on Data Mining (ICDM), page 721, Washington, DC,
USA, 2002. IEEE CS Press.

