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Abstract
In recent years, there has been a surge in the prevalence of high- and multidimensional temporal data across various scientific
disciplines. These datasets are characterized by their vast size and challenging potential for analysis. Such data typically exhibit
serial and cross-dependency and possess high dimensionality, thereby introducing additional complexities to conventional
time series analysis methods. To address these challenges, a recent and complementary approach has emerged, known as
network-based analysis methods for multivariate time series. In univariate settings, quantile graphs have been employed to
capture temporal transition properties and reduce data dimensionality by mapping observations to a smaller set of sample
quantiles. To confront the increasingly prominent issue of high dimensionality, we propose an extension of quantile graphs into
amultivariate variant,whichwe term“MultilayerQuantileGraphs”. In this innovativemapping, each time series is transformed
into a quantile graph, and inter-layer connections are established to link contemporaneous quantiles of pairwise series. This
enables the analysis of dynamic transitions across multiple dimensions. In this study, we demonstrate the effectiveness of
this new mapping using synthetic and benchmark multivariate time series datasets. We delve into the resulting network’s
topological structures, extract network features, and employ these features for original dataset analysis. Furthermore, we
compare our results with a recent method from the literature. The resulting multilayer network offers a significant reduction
in the dimensionality of the original data while capturing serial and cross-dimensional transitions. This approach facilitates
the characterization and analysis of large multivariate time series datasets through network analysis techniques.

Keywords Multivariate time series · Quantile graphs · Multilayer networks · Dimensionality reduction

1 Introduction

In recent years, the prevalence of multidimensional data has
surged across various research fields thanks to technologi-
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cal advancements that have enabled the generation of vast
datasets using advanced sensing technologies. While time
series analysis, a well-established field [11, 17], has tradi-
tionally focused on the analysis of time-indexed univariate
data, the contemporary data landscape now encompasses
high-dimensional, multivariate, and panel time series data
collected concurrently from numerous sensors. Existing
methods for analyzing such data are often constrained,
designed for specific domains, and rely on various assump-
tions, leaving many unresolved challenges and hindering
broader applications (see [22] for more details). For instance,
the high dimensionality of the data imposes limitations on
computational andmemory capacities, rendering the applica-
tion of conventional methods difficult and often impractical.

Efforts to confront the challenges posedbyhigh-dimensional
temporal data have emerged within the realms of data min-
ing, machine learning, and network science. Specifically,
network science offers a vast array of both elementary and
complex topological features for characterizing various prop-
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erties of network structures [2, 9]. Recent developments have
introduced advanced graph structures, known as multilayer
networks, which facilitate the modeling of multidimensional
data without sacrificing essential properties, including both
intra-dimensional and inter-dimensional connections. Multi-
layer networks are intricate structures capable of establishing
internal connectionswithin the same layer/graph and external
connections between different layers/graphs. Despite being
a relatively recent addition to the field of network science,
well-established methods, and methodologies can be readily
extended and adapted to this innovative concept [14].

In this study, our primary focus is on a recent multi-
layer network-based approach for analyzing and representing
multivariate time series data. This approach is relatively
novel, especially in the context of constructing multilayer
networks. Traditional approaches often involve simplifying
multivariate time series into single-layer networks, which
can lead to the loss of valuable data information crucial for
comprehensive analysis. Furthermore, existing methods that
map multivariate time series to multilayer networks have
raised questions, as indicated in prior research [18, 20].
For instance, the multiplex visibility graphs [12, 15] only
establish external connections between the same node across
different adjacent layers, potentially overlookingdirect exter-
nal connections between different nodes. Another recent
example is the multilayer horizontal visibility graphs [20],
which can be computationally intensive and impractical for
handling large datasets.

In the realm of univariate time series analysis, quantile
graphs [8] have been proven to be effective in mapping
transition properties, offering the advantage of reducing
data dimensionality. Given these properties and consider-
ing the aforementioned challenges, our work introduces a
novel method for mapping multivariate time series data. This
method extends the concept of quantile graphs to a multi-
variate context, resulting in what we term the “Multilayer
Quantile Graph” (MQG). The process entails establishing
cross-dimensional connections between contemporaneous
data quantile samples (that is, between data quantiles at the
same timestamp) among the univariate components of the
time series dataset.

Our primary objective in this study is twofold: first, to
introduce a newmultivariate mappingmethodwithin the tax-
onomy of time series mappings [20], and second, to advance
the representation of multivariate time series data using mul-
tilayer time series networks. To accomplish this, we evaluate
the proposed mapping approach using a synthetic multivari-
ate time series generated from a selected set of multivariate
time series models. We analyze high-level topological prop-
erties proposed in [20] through features extracted from the
resulting multilayer quantile graphs and use these properties
to assess and analyze the mapping method. Additionally, we
compare our results with a similar method, the multilayer

horizontal visibility graph, which we introduced in our prior
work [20]. We also apply the topological features extracted
from MQG on several benchmark multivariate time series
datasets. We perform a classification mining task to evaluate
their efficacy. Figure1 illustrates the methodology employed
in this study.

In summary, our contributions in this work can be sum-
marized as follows:

• A novel concept of a multivariate time series mapping
into a multilayer network, capable of capturing charac-
teristics of the underlying time series into the topology
of the mapped network;

• An implementation of the proposed method that is more
efficient than a similar method that we previously pro-
posed [20];

• Empirical experimentation on a diverse set of synthetic
and benchmark multivariate time series, showcasing the
efficacy and usefulness of our approach.

The remainder of the paper is organized as follows. Sec-
tion2 introduces the necessary background and notation
to facilitate the understanding of the subsequent sections.
Section3, provides a concise overview of the main exist-
ing multivariate time series mapping approaches. Section4
proposes a novel multivariate time series mapping method.
Section5, details the evaluation methodology and describes
the experiments conducted. Lastly, in Sect. 6, we offer our
conclusions, provide insights, and outline future research.

2 Preliminaries

To facilitate the comprehension of the paper, we introduce
the necessary background and notation on multivariate time
series and multilayer networks.

2.1 Multivariate time series

We can think of time series data as collections of observa-
tions indexed by time. Formally, we can define a Univariate
Time Series (UTS) as a sequence of (scalar) observations
time-indexed usually denoted by {Yt }Tt=1, and a Multi-
variate Time Series (MTS) as a vector of m observations
obtained at each time t , i.e., Y t = [Y1,t ,Y2,t , . . . ,Ym,t ]′,
where ′ represents the transpose. We denote an MTS by
Y = {Y t }Tt=1 and the UTS components of the MTS Y by
Yα = [Yα,1,Yα,2, . . . ,Yα,T ] with α = 1, . . . ,m, thus, we
can denote an MTS data by its components, Y = {Y α}mα=1.

UTS is ordered in time and usually presents serial cor-
relation as opposed to a random sample. MTS presents not
only serial correlation within each UTS component, Yα, but
also (contemporaneous and lagged) correlation between the
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Fig. 1 Schematic diagram of the multilayer network-based approach to multivariate time series reducing and mining

different UTS components, Yα and Yβ, α �= β. Thus, ana-
lyzingMTSdepends onkeydependencemeasures such as the
autocorrelation function (ACF), which measures the linear
predictability of a UTS, and the cross-correlation function
(CCF), which measures the correlation between any two dif-
ferent UTS components of the MTS. The theory of UTS
analysis is mature and solid, and although the methods and
statistical models extend naturally to the multivariate case
new issues and new concepts inevitably arise [22]. An ade-
quate MTS analysis requires advanced tools, methods, and
models for mining information from multiple components
that present temporal and cross-sectional correlations and
impose high-dimensionality issues.

2.2 Multilayer networks

An alternative time series analysis approach is to map
univariate and multivariate time series data to a network
representation and use network science methodologies to
analyze the original time series. Simply, a network (or graph)
is a mathematical structure, G = (V , E), that represents a
set of elements by nodes, V , and the connections between
elements by a set of edges, E .

A Multilayer Network (MNet) is a more general and
complete definition of a network that can model several
types of connections between elements of the same and
different systems. Formally, a MNet is defined by M =
(VM , EM , V , L) [14], where V and L represent the sets of
entities and layers, respectively, and VM represents the set
of node-layer combinations, VM ⊆ V × L1 × . . . × Lm,

in which a node is present in the corresponding elementary
layer Lα ∈ L. And EM ⊆ VM × VM represents the set
of edges (pairs of possible combinations of nodes and ele-
mentary layers), we call intra-layer edges to the connections
between nodes of the same layer, (vα

i , vα
j ), and inter-layer

edges to the connections between nodes of different layers,
(vα

i , v
β
j )with α �= β.AMNet can be represented by an adja-

cency tensor of order 4,AAA,with tensor elementAi, j,α,β = 1

if (vα
i , v

β
j ) ∈ EM and is 0 otherwise [14]. Another represen-

tation is flatteningAAA into a supra-adjacencymatrix, A, where

intra-layer edges are associatedwith diagonal element blocks
and inter-layer edges with off-diagonal element blocks [20].
So, we can infer the following types of subgraphs:

• Intra-layer graphs, Gα , formed by the diagonal element

blocks,

[
Aα 0
0 0

]
, i.e., intra-layer edges, Aα

i, j ,

• Inter-layer graphs, Gα,β , formed by off-diagonal ele-

ment blocks,

[
0 Aα,β

Aβ,α 0

]
, α �= β, i.e., inter-layer

edges, Aα,β
i, j and Aβ,α

j,i , and no intra-layer edges, A
α
i, j = 0

and Aβ
i, j = 0, and

• All-layer graphs, Gα,β
all , formed by both on and off-

diagonal element blocks,

[
Aα Aα,β

Aβ,α Aβ

]
, α �= β, i.e.,

intra-layer edges, Aα
i, j and Aβ

i, j , and inter-layer edges,

Aα,β
i, j and Aβ,α

j,i .

Figure2 illustrates a simple representation of a multilayer
network and the corresponding supra-adjacency matrix.

Network science encompasses a rich array of method-
ologies, along with a multitude of topological, statistical,
spectral, and combinatorial properties, which are instru-
mental in the analysis and extraction of information from
single-layer networks (see [2, 16]). These methodologies
and properties can be seamlessly extended to the structure
of MNet and their respective subgraphs. Additionally, there
are emerging methods specifically tailored for the study of
MNet structures [14].

3 Time series mappings

The literature presents a wide range of time series mapping
methods for converting both UTS and MTS data into net-
work representations. This innovative framework for time
series analysis revolves around a mapping function that can
draw inspiration from various concepts, including visibil-
ity, transition probability, proximity, time series models, and
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Fig. 2 An illustrative example
of a a toy multilayer network
with five entities
V = {1, 2, 3, 4, 5} and two
elementary layers L1 and L2,
and b the corresponding
supra-adjacency matrix. The
solid lines (colored blocks)
represent intra-layer edges and
the dashed lines (gray blocks)
represent inter-layer edges.
Source: Modified from [18]

statistical principles [23]. These mappings can result either
in single-layer 1 or multilayer networks [18]. Until now,
the predominant focus has been on strategies for mapping
UTS into single-layer networks, while the development of
mapping MTS has not been as extensive [18]. In particular,
the most commonly employed approach involves techniques
that condense MTS data into single-layer networks. In this
approach, the node set represents the components of the
MTS, denoted as Yi,t , and the edge set is determined by a
statistical model or a correlation measure applied to these
UTS components. While this method effectively reduces the
dimensionality of MTS data into a more compact structure,
namely a single-layer network, it comes at the cost of signifi-
cant data reduction, preserving only the information captured
by the models or measures employed within the mapping
function [18].

Mapping MTS to a MNet represents a cutting-edge and
promising approach aimed at retaining more comprehensive
data information. Initial efforts concentrated on leveraging
multiplex networks (see more in [12, 15, 18]). Specifically, a
multiplex network is a particular type of multilayer network
defined by a sequence of m graphs, denoted as {Gα}mα=1 =
{(V α, Eα)}mα=1, that share the same set of nodes across layers
(i.e., V α = V β for allα, β) and the inter-layer edges can only
connect the same nodes in adjacent layers (i.e., (vα

i , v
β
j )with

i = j and α �= β) [4].
Mapping MTS to multiplex networks involves mapping

each UTS component onto an individual layer, representing
every timestamp (or its corresponding representation) as a
unique node, and establishing intra-layer connections based
on the fundamental principles ofUTSmapping.Additionally,
connections between distinct UTS are defined through inter-
layer edges that link only contemporaneous nodes across
consecutive (adjacent) layers.

In our previous work [20], we introduced a novel mapping
approach based on the concept of visibility and the general

1 Recalling the definition of MNet in Sect. 2.2, a single-layer network,
G, is an MNet with m = 1.

definition ofmultilayer networks. It is calledMultilayer Hor-
izontal Visibility Graph (MHVG). This method maps MTS
data to an MNet structure, incorporating intra-layer edges
derived from UTS visibility mapping and inter-layer edges
connecting (directly) lagged nodes between pairs of layers
using a novel concept known as cross-visibility. The results
of this proposed mapping approach were promising, demon-
strating the MNet’s capacity to capture complementary
information captured by the created connections between dif-
ferent nodes in different layers. However, one drawback of
the MHVG mapping method is its computational intensity,
especially when applied to large datasets featuring numerous
time series components.MHVGhas computational complex-
ityO(m2T 2)which is determined by the procedure that tests
the cross-horizontal visibility connections between all pairs
of time series in an MTS data.

In this work, we introduce a novel mapping approach
aimed at mitigating the computational challenge mentioned
above. Our primary objective remains to preserve the MNet
structure, which encompasses both intra and inter-layer con-
nections. However, we seek to simultaneously reduce data
dimensionality and computational complexity. To achieve
this goal, we turn to quantile graphs [8]. Building upon the
concepts introduced in [20], we extend the QGmethodology
to fit within an MNet structure, a topic we delve into in the
subsequent section.

4 MQG: a novel multivariate time series
mapping

A quantile graph (QG) is the result of a UTS mapping tech-
nique rooted in the concept of transition probability, which
has consistently demonstrated remarkable efficacy in captur-
ing the essential characteristics of UTS data [5, 10, 19]. This
method operates by mapping the serial transition probabili-
ties governing the dynamics between UTS data timestamps
using a limited set of symbols, typically sample quantiles.
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In this section, we introduce an innovative QG algorithm
designed to map MTS data into a multilayer quantile graph
(MQG). This algorithm entails the establishment of fresh
connections amongUTS components. These connections are
created by extending the concept of transition probability and
incorporating sample quantiles from the UTS components.
We start by introducing the QG algorithm tailored for UTS
data, followed by the unveiling of the MQG algorithm, cus-
tomized for MTS data.

4.1 Quantile graph

The QG algorithm [18] (see Algorithm 1) starts to assign the
UTS observations to bins that are defined by η sample quan-
tiles, q1, q2, ..., qη. Each sample quantile, qi , is mapped to a
node vi of the corresponding graph (a single-layer network)
and edges between two nodes vi and v j are directed and
weighted, (vi , v j , wi, j ), withwi, j corresponding to the tran-
sition probability between quantile ranges. The adjacency
matrix is a Markov transition matrix:

∑η
j=1 wi, j = 1, for

each i = 1, . . . , η, and the single-layer network is weighted,
directed and contains self-loops2. Figure3 illustrates this
mapping method.

Typically, the number of quantiles (η) is significantly
smaller than the length of the time series (η � T ). If η is
excessively large, the resultant graph may not be connected,
resulting in isolated nodes3. Conversely, if η is too small, the
QG may exhibit a substantial loss of information, character-
ized by the assignment of high weights to self-loops.

4.2 Multilayer quantile graph

The MQG algorithm (see Algorithm 2) builds upon the
foundational principles introduced in the preceding QG
framework. It starts by mapping all UTS components within
MTS data, {Yα}mα=1, to the corresponding QGs. In this step,
for each UTS Yα , the temporal quantile sequence asso-
ciated with the resulting QG is stored, and it is denoted
as Qα = {qα,1

i , qα,2
i , . . . , qα,T

i } with i = 1, . . . , η. Sub-
sequently, for each pair of UTS, denoted as Yα and Yβ ,
the contemporaneous quantiles (qα,t

i and qβ,t
j at the same

time t) are linked by inter-layer edges representing the
cross-dimensions contemporary transitions. For reasons of
simplicity, from this point on we will omit the superscript
temporal index in the quantile sequence, that is, we will sim-
ply denote Qα = {qα

i , qα
i , . . . , qα

i }.
Inmore detail, theMQG involves the following three steps

(see Fig. 4):

2 A self-loop is an edge that connects a node to itself.
3 An isolated node is a node that is not connected by an edge to any
other node.

Algorithm 1 Quantile Graph
Input: time series ts and number of quantiles η

Output: multilayer graph mnet and single layer layer of mnet
Which_GEQ finds the quantile of a given value

1: procedure QG(ts,mnet, layer , η)
2: T ← ts.si ze()
3: probs ← {}
4: q ← {}
5: for i ← 1 to η do
6: probs[a] ← i/η
7: end for
8: q ← Quantiles(ts, probs)
9: for i ← 1 to η do
10: mnet . Add_Node(i, layer )
11: end for
12: for i ← 1 to η do
13: f rom ← Which_GEQ(q, ts[i])
14: to ← Which_GEQ(q, ts[i + 1])
15: e ← mnet . Get_Edge( f rom, to, layer )
16: if !e then
17: mnet . Add_Edge( f rom, to, layer , 1)
18: else
19: w ← mnet . Get_Weight(e)
20: mnet . Set_Weight(e, w + 1)
21: end if
22: layer .q_seq[i] ← f rom
23: if i == T − 1 then
24: layer .q_seq[T ] ← to
25: end if
26: end for
27: return
28: end procedure

Step 1: each UTS component, Yα, α = 1, . . . ,m, is
mapped to a QG, Lα, by applying the Algorithm 1
(top of Fig. 4).

Step 2: each pair of QGs, Lα and Lβ, α, β = 1, . . . ,m and
α �= β, is connected by the corresponding contem-
porary quantiles, qα

i and qβ
j , i, j = 1, . . . , η, at the

same time t = 1, . . . , T (panel (b) of Fig. 4 and
Algorithm 3). The quantiles qα

i and qβ
j belong to

the temporal sequences Qα and Qβ, respectively.

The weightwα,β
i, j represents the probability that Yα,t

and Yβ,t belong to the quantiles qα
i and qβ

j , respec-
tively, at the same time.

Step 3: an MTS, Y , is mapped into an MQG, M, (panel (c)
of Fig. 4). Layer set refers to each QG, Lα ∈ L, α =
1, . . . ,m, and the node-layer set refers to the sample
quantiles, VM = {qα

i }ηi=1. The directed weighted
intra-layer edges, (qα

i , qα
j , w

α
i, j ) ∈ EM , of indi-

vidual QG are established in the corresponding
layer, Lα, and the bidirectional weighted inter-layer
edges, (qα

i , qβ
j , w

α,β
i, j ) ∈ EM , α �= β, of pairwise

QGs are established between dimensions pairwise
layers, Lα and Lβ.
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Fig. 3 Illustrative example of
the quantile graph algorithm for
η = 4. a illustrates a toy
univariate time series with
colored regions representing the
different η sample quantiles, and
b the corresponding network
generated by the quantile graph
algorithm. The thicker directed
lines represent the edges with
greater weights accounting for
repeated transitions between
quantiles. Source: Reproduced
from [18]

Algorithm 2 Multilayer Quantile Graph
Input: multivariate time series mts and number of quantiles η

Output: multilayer graph mnet
1: procedure MQG(mts, η)
2: m ← mts.si ze()
3: mnet ← {}
4: for a ← 1 to m do
5: mnet .layers[a] ← {}
6: Set_Direction(mnet .layers[a], true)
7: QG(mts[a],mnet,mnet .layers[a], η)
8: end for
9: for a ← 1 to m − 1 do
10: for b ← a + 1 to m do
11: Set_Direction(mnet .layers[a],

mnet .layers[b], f alse)
12: Contem_QG(mnet,mnet .layers[a],

mnet .layers[b])
13: end for
14: end for
15: return mnet
16: end procedure

Algorithm 3 Contemporaneous Quantile Graph
Input: multilayer network mnet
Output: two specified layers (layer A and layer B) of mnet

1: procedure Contem_QG(mnet, layer A, layer B)
2: T ← layer A.si ze()
3: q A ← layer A.q_seq
4: qB ← layer B.q_seq
5: for i ← 1 to T do
6: e ← mnet . Get_Edge(q A[i], qB[i],

layer A, layer B)
7: if !e then
8: mnet . Add_Edge(q A[i], qB[i],

layer A, layer B, 1)
9: else
10: w ← mnet . Get_Weight(e)
11: mnet . Set_Weight(e, w + 1)
12: end if
13: end for
14: return
15: end procedure

MQG is a directed and weighted MNet. Note that the
inter-layer edges are bidirectional, that is, whenever there
is a transition from qα

i to qβ
j there is an equivalent transition

from qβ
j to q

α
i . This symmetry implies that inter-layer edges

can also be equivalently represented as undirected edges. To
clarify the relationship with the MNet subgraphs described
in Sect. 2.2, we can distinguish two key components within
the MQG: a) intra-layer graphs, which correspond to indi-
vidual QGs, and; b) inter-layer graphs, which correspond to
bipartite graphs representing contemporaneous transitions.
We will refer to these bipartite graphs as contemporaneous
quantile graphs.

4.3 MQG: computational complexity

Thecomputational complexity of theMQGalgorithmdepends
on two variables: T , the time series length, andm, the number
of variables. The two for-loops in lines 4 to 8 and lines 9 to
14 of Algorithm 2, determine the algorithm complexity. The
first for-loop iterates m times the QG Algorithm 1 (for each
time series component), thus it has complexity O(m(ηT )).
The second for-loop consists of two nested loops iterating
the contemporaneous QG Algorithm 3 through pairs of time
series components; thus, it has complexity O(m2T ). This
results in a temporal complexity of O(m2T ) for the MQG
Algorithm 2 which is determined by proceeding the contem-
poraneous transitions between all pairs of time series in an
MTS.

As typically the variable T ismuch larger than the variable
m, the MQG is more efficient in terms of time complexity
than the MHVG algorithm.

Regarding spatial complexity, MQG produces a multi-
layer network with m × η nodes, while MHVG produces
m × T nodes. Given that the number of quantiles η is typi-
cally much smaller than the length of the time series T , this
means that the underlying network representation will also
be much smaller, as the number of possible edges in MQG
is O((m × η)2) while in MHVG is O((m × T )2).

5 Analyzingmultivariate times series data
via MQG

Analyzing time series data by leveraging features extracted
directly and indirectly from the data has emerged as a recent
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Fig. 4 Schematic diagram of the multilayer quantile graph algorithm
for η = 4: a original time series, b illustration of the intra-layer quan-
tile graphs (colored regions representing the different sample quantiles)
and inter-layer contemporaneous edges mapping, cMultilayer quantile

graph: black lines represent the intra-layer edges (theQGs), dashed lines
the inter-layer edges between nodes contemporaneous quantile nodes,
and the thickness of the lines represent the weighted intensities of the
edges

and promising approach in time series data mining [13, 19,
21]. In this section, wewill use the topological features intro-
duced in [20]. These features are based on both intra-layer
and inter-layer edges, and our goal is to apply them to analyze
the proposed MQG method. The aim is to ascertain whether
the information conveyed by inter-layer edges complements
the insights gained from intra-layer edges, which is the con-
ventional approach in the literature.

We empirically analyze the proposed MQG algorithm by
applying it to a rich MTS dataset and employ data mining
techniques to analyze this dataset. We first use a set of syn-
thetic data with different MTS correlation properties, both
serial and cross-correlation [20]. Then, we use different sets
of benchmark datasets with a diverse range of data character-
istics and with varying dimensions, including differences in
time series length and the number of time series components.

Before our evaluation, we begin with some considerations
about the adopted methodology’s implementation.

5.1 Implementation details

We start by mapping each MTS data Y into the correspond-
ing MQG using the Algorithm 2 presented in Sect. 4. We
use the formula η ≈ 2T 1/3 defined in [6] to choose the
number of quantiles (an input parameter of the MQG algo-
rithm). We also highlight the subgraphs corresponding to
intra-, inter-, and all-layer graphs using the corresponding
adjacency submatrices of the resulting MQG, as defined
in Sect. 2.2. Then, we map each MTS data from a dataset
of MTSs to the corresponding MQGs (one MQG for each
MTS instance) and extract for each MQG the corresponding
topological features. For this, we use the high-dimensional
topological features presented in [20] and the methodologies
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and algorithms described in this work. In short, we compute
the following features for each of the resulting MQGs and
their subgraphs:

• Average degree (k̄): computing the arithmetic mean of
the degrees ki of all node vi in the respective subgraph;

• Average path length (d̄): using an algorithm that com-
putes the average shortest path length between all pairs
of nodes (of respective subgraphs) using a breadth-first
search algorithm;

• Modularity (Q): computing howgood a specific division
of the corresponding subgraph into communities is, based
on the number of triangles and number of triples;

• Number of communities (S): using a function that
makes use of the known “Louvain” algorithm that finds
community structures by multi-level optimization of
modularity (Q) feature (see [3] for more details),

• Average ratio degree (r̄ ): computing the arithmetic
mean of the ratio degrees ri of all node vi in the respec-
tive subgraph (this is a new topologicalmeasure proposed
in [20], where in general the ratio degree is defined as the
ratio between inter-layer degree and intra-layer degree of
a given node in the network);

• Jensen–Shannon divergence (J SD): computing the
similarity between two degree distributions using the
known Jensen–Shannon divergence measure.

We calculate the first four measures (k̄, d̄, Q and S) in the
three different possible subgraphs, i.e., intra-, inter-, and all-
layer graphs, and the resulting set of features are called
intra-features, inter-features and all-features. The last two
measures (r̄ and J SD) measure the similarity between dif-
ferent connections in the network and are called relational
features [20]. The combination of these feature sets results
in a unique vector of features.

We used C++ and its needed set of libraries (such as
igraph and standard libraries) to implement the data struc-
ture to store an MNet and compute the functions to extract
the topological features.

5.2 Synthetic data set: multivariate time series
models

Weuse the six linear and nonlinear bivariate time series mod-
els (m = 2) summarized in Table 1 and described in detail
in [20]. For each of the six different MTS models, we gener-
ate 100 instances of length T = 10000, and the parameters
are chosen so that the data exhibits a range of serial and cross-
correlation properties as described in Table 1. From here on,
we refer to this data set as multivariate data generating pro-
cesses (MDGP) .4

4 MDGP is available at https://github.com/vanessa-silva/MHVG2MTS

In short, MDGP is a diverse set of MTS models with
a specific set of properties related to serial and cross-
correlation characteristics, namely: white noise (WN) pro-
cesses representing the noise effects, vector autoregression
(VAR) processes representing smooth linear data, and vec-
tor generalized autoregressive conditional heteroskedasticity
(VGARCH) processes representing nonlinear data with high
or low volatility. Furthermore, these processes are designed
to represent different levels of correlation, that is, data with
and without serial and cross-correlation and data with weak
and strong correlation properties both serial and cross, aswell
as lagged and contemporaneously. The parameters were cho-
sen in order to control these properties. A detailed description
of the MDGP and their properties, as well as computational
details, can be seen in [20].

5.2.1 MQG feature space

Particularly, for the MDGP we define η = 50 to the num-
ber of quantiles parameter, as in [7, 19], which is also a value
close to the result of the formulaη ≈ 2T 1/3 mentioned above.
From the resulting diversified vector of 21 high-dimensional
topological features (intra-, inter-, all-layer, and relational
features) extracted from the resulting multilayer time series
networks, MQGs, we perform a principal component analy-
sis (PCA). The obtained PCA feature space is illustrated in
Fig. 5 and shows which MNet topological features capture
the different properties of the MDGP.

The feature space is shown in a bi-plot obtained using a
total of 21 features with the two PCs explaining 89.5% of the
data variance.We can see a good distribution of the character-
istics inherent to each samplemodel. All topological features
contribute to the arrangement of the samples which capture
different properties of the MTSmodels. In particular, we can
see that the average degree and the number of communities
of intra-layer graphs of MQG try to place the WN models
in the third quadrant, while the same features for inter-layer
graphs try to place the VGARCH and VAR models weakly
correlated in the second quadrant. The communities-based
features and the average ratio degree seem to contribute to
distinguishing the strong and the weak correlation of het-
eroskedastic models.

5.2.2 MDGP clustering using MQG features

Additionally, we evaluate the MQG feature set (vector
of 21 MNet features) in a case study regarding time series
clustering. For this task, we rescale the intended topolog-
ical feature vector into the [0, 1] interval using Min-Max
normalization, the PCs are computed (no need of z-score nor-
malizationwithinPCA), and a clustering algorithm, k-means,
is applied to the PC’s corresponding to 100% of variance.
The clustering results are assessed using appropriate evalua-

123

https://github.com/vanessa-silva/MHVG2MTS


International Journal of Data Science and Analytics

Table 1 Summary of synthetic bivariate time series processes: parameters, the main characteristic of the data, and notation. See [20] for more
details

MDGP Parameters Characteristics Notation

Independent White Noise εt ∼ N (0, 1) Noise effect No correlation iBWN

Correlated White Noise
[ε1,t
ε2,t

] ∼ N

(
0,

[1.00 0.86
0.86 1.50

])
Noise effect No serial correlation Cross-correlation cBWN

Weak VAR(1) ϕ = [2.50
0.50

]
,φ = [0.20 0.10

0.02 0.10
]

Weak correlation (serial and cross) wVAR

εt ∼ [1.00 0.10
0.10 1.50

]

Strong VAR(1) ϕ = [0
0
]
,φ = [0.70 0.02

0.30 0.80
]

Strong correlation (serial and cross, lagged and contemporaneous) sVAR

εt ∼ [1.00 0.86
0.86 1.50

]

Weak VGARCH(1, 1) ω = [0.05
0.02

]
, α = [0.10 0.00

0.00 0.05
]

No serial correlation Weak cross-correlation wVGARCH

β = [0.85 0.00
0.00 0.88

]
, εt ∼ [1.00 0.10

0.10 1.50
]

Strong VGARCH(1, 1) ω = [0.05
0.02

]
, α = [0.10 0.00

0.00 0.05
]

Strong contemporaneous cross-correlation sVGARCH

β = [0.85 0.00
0.00 0.88

]
, εt ∼ [1.00 0.86

0.86 1.50
]

Fig. 5 Bi-plot of the first two
PCs of MQG topological feature
set for the synthetic bivariate
dataset. Different colors
represent the different
multivariate data generating
processes and the arrows
represent the contribution of the
corresponding feature to the
PCs: the larger the size, the
sharper the color, and the closer
to the red the greater the
contribution of the feature.
Features grouped are positively
correlated, while those placed
on opposite quadrants are
negatively correlated

tion metrics: Average Silhouette (AS); Adjusted Rand Index
(ARI) and Normalized Mutual Information (NMI). Note that
AS does not need ground truth, while ARI and NMI do. The
range of values for NMI is [0, 1] and for ARI and AS is [-1,
1].

We start by analyzing the usefulness of the MQG feature
set by performing a clustering exercise considering different
subsets of the MQG feature set. The results are summarized
in Table 2 (columns 2, 4, and 6) and indicate that inter-
layer edges contain additional information about the MTS

data, leading to better clustering results (together with the
intra-layer edges). We can also analyze that relational fea-
tures achieve good clustering results when considered alone.
Sub-graphs with both intra-layer edges and inter-layer edges
add information that leads to improvements in the cluster-
ing results (compare the last three rows with the first two
of columns 2, 4, and 6 of Table 2). The results show that the
contemporaneous quantile graphs (the inter-layer edges from
MQG) capture different properties from MTS. Note that the
results from the set of intra-layer features are good because
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the MDGP under analysis involves the same statistical pro-
cess for the two components of time series whose properties
inherent to each process are also captured by theQGmapping
methods (as we see in [19]).

We also compare the results obtained using the MQG fea-
ture set with the results obtained in [20], that is, using the
same feature set but for the MHVG mapping method. The
columns 3, 5 and 7 of Table 2 summarizes the clustering
results obtained in [20]. The two experiments are made in the
same computational environment and using the same meth-
ods. We can conclude that features from MQGs are more
accurate, almost perfect when we look at the evaluation fea-
tures ARI and NMI, with a mean value of 0.96, and AS with
0.53, when compared to cross-visibility based mapping that
obtains 0.63 to ARI, 0.71 to NMI, and 0.45 to AS feature. So,
for the MDGP used in this work, the MQG can be sufficient
to cluster the different MTS model samples.

5.3 Real data set: classification usingMQG features

To conclude our analysis and demonstrate the applicabil-
ity and practicality of the proposed method, in this section,
we present an application in a multivariate time series classi-
fication task (supervised learning).Weperformed thismining
task on real-world and benchmark datasets. We selected 19
datasets from the UEAmultivariate time series classification
archive [1], and these datasets have the same length and have
no missing values. Table 3 summarizes the general descrip-
tion of each MTS dataset, including dataset size, time series
length, number of dimensions/components UTS, number of
classes, and the dataset type. The datasets are diverse and
exhibit a variety in terms of dimensionality. The dataset size
(including both train and test sets) varies between 27 and
10992, time series length T ∈ [8, 2500], the number of UTS
components by instance MTS m ∈ [2, 28], and the number
of classes ranging from 2 to 26.

Following the implementationdetails described inSect. 5.1,
for each dataset and each instance of the dataset, we create
the corresponding MQG and extract the associated topo-
logical features. The resulting feature vectors were used to
perform the classification task for each different dataset.
The datasets have associated a training set and a testing set
(see columns 2 and 3 of Table 3). We used the training set
with the corresponding MQG feature vectors and the associ-
ated ground-truth classes to train the prediction model (i.e.,
supervised learning), and we used the testing set with the
corresponding MQG feature vectors to make predictions of
the classes of this testing set. For consistency, we also per-
formed this classification analysis in MDGP, where we split
the dataset into the training set using 80% of the dataset size
and the testing set using 20% (see last row of Table 3).

We use the random forest ensemble learning method
to conduct the training and prediction processes for each

dataset. The experimentswere performed inR software using
the caret package. Results were evaluated using thewidely
accepted accuracy metric, which computes the ratio of cor-
rect predictions to the total number of predictions.

Table 4 presents the accuracy results obtained from the
classification analysis carried out for each of the benchmark
datasets. The results reflect the different experiments using
the proposed feature vectors extracted from MQGs. In gen-
eral, the most favorable results were achieved when using
the entire set of topological features of MQGs, combining
all feature subsets. The results indicate that different sets of
features capture different data properties, with certain feature
sets being more favorable for certain datasets. An interesting
task for future work is to add feature selection methods to
capture the most representative features of each dataset.

For some datasets the results were good. The character-
istics of the dimensions (dataset size, time series length,
number of dimensions, or number of classes) of the datasets
do not seem to influence these results, except for Handwrit-
ingwhich has a testing set larger than the training set and the
number of different classes is also large. However, in gen-
eral, we consider these results to be very good and promising
given the global nature of the features used and, also that we
did not usemore advanced techniques such as the selection of
more representative features and other pre-processing min-
ing techniques, which could improve the results.

6 Conclusion

Methods for mappingmultivariate time series intomultilayer
networks have attracted the attention of researchers in recent
times due to their potential. Special interest lies in map-
pings that generate inter-layer edges thus allowing to capture
not only the time dependencies, but also the dependencies
between different variables.

In this work, we introduce a multilayer quantile graph
as a new multivariate time series mapping method. MQG
is based on a transition probability concept extending the
traditional concept of quantile graph [8] for the univariate
time series data. The procedure consists of two steps. First,
create a reduced multilayer network structure that repre-
sents a high-dimensional MTS following the QG mapping
method available in the literature. The resulting set of lay-
ers/graphs characterizes the serial dynamic transitions of
each of the time series components. Second, for each pair
of time series components in the MTS, introduce weighted
inter-layer edges between corresponding layers that cap-
ture the contemporaneous (and lagged) dynamic transitions
between the different time series dimensions. MQG was
designed to reduce the dimensionality of time series data
with high dimensionality and be more computationally effi-
cient and feasible than recently proposed mapping methods.
The resulting multilayer networks have smaller dimensions
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Table 2 Clustering evaluation
metrics for the different
clustering analyses resulting
from different MQG feature
vectors (columns 2, 4 and 6) and
MHVG feature vectors
(columns 3, 5 and 7). The last
row presents the results obtained
by combining all the MQG and
MHVG feature vectors,
respectively.

Feature set ARI NMI AS
[−1, 1] [0, 1] [−1, 1]
MQG MHVG MQG MHVG MQG MHVG

Intra-layer 0.52 0.52 0.65 0.61 0.52 0.29

Inter-layer 0.57 0.29 0.68 0.42 0.83 0.51

All-layer 0.78 0.67 0.86 0.73 0.78 0.51

Relational 0.71 0.58 0.81 0.65 0.55 0.62

MNet 0.96 0.63 0.96 0.71 0.53 0.45

The values reflect the mean of 10 repetitions of the proposed method for different feature vectors and the
ground truth (k = 6). The two highest values in each column are highlighted in bold for both MQG and
MHVG feature vectors. Source: The results for MHVG feature vectors were extracted from [20]

Table 3 Brief description of the
benchmark multivariate time
series datasets

Dataset Train Test TS No. of No. of Type
Size Size Length Dimens. Classes

ArticularyWordRecognition 275 300 144 9 25 HAR

AtrialFibrillation 15 15 640 2 3 ECG

BasicMotions 40 40 100 6 4 HAR

Cricket 108 72 1197 6 12 HAR

Epilepsy 137 138 206 3 4 HAR

Ering 30 270 65 4 6 HAR

EthanolConcentration 261 263 1751 3 4 OTHER

FingerMovements 316 100 50 28 2 EEG

HandMovementDirection 160 74 400 10 4 EEG

Handwriting 150 850 152 3 26 HAR

Libras 180 180 45 2 15 HAR

LSST 2459 2466 36 6 14 OTHER

NATOPS 180 180 51 24 6 HAR

PenDigits 7494 3498 8 2 10 MOTION

RacketSports 151 152 30 6 4 HAR

SelfRegulationSCP1 268 293 896 6 2 EEG

SelfRegulationSCP2 200 180 1152 7 2 EEG

StandWalkJump 12 15 2500 4 3 ECG

UWaveGestureLibrary 2238 2241 315 3 8 HAR

MDGP 480 120 10000 2 6 Synthetic

than those obtained by other mapping methods such as the
MHVG, and allow the effective reduction in the dimension-
ality of the MTS. To analyze the proposed multivariate time
seriesmapping,MQG,weconsider the specific set ofmultidi-
mensional topological features proposed by [20] for MQGs.
These features are based on conventional concepts of node
centrality, graph distances, clustering, communities, and sim-
ilarity measures, and are extracted from all the subgraphs of
the resulting multilayer network, that is, intra-layer graphs,
inter-layer graphs, and all-layer graphs.

To assess the proposed methodology we use the set of
MTS models presented in [20]. The data set consists of
600 synthetic bivariate time series grouped into six differ-
ent multivariate statistical models. We map the MTS into the

MQG and compute the corresponding topological features.
The analysis of the set of topological features on the fea-
ture space provided by the two principal components shows
that different topological features (based on different con-
cepts and different subgraphs of the multilayer network)
capture different dynamic properties of the time series mod-
els. Furthermore, comparing the feature spaces obtained from
MHVG (see [20]) and from MQG, we can say that the latter
enhances the capture of cross-correlation properties.

Finally,weperformeda clustering analysis of the synthetic
time series based on topological features obtained fromMQG
andMHVG. The results show that despite the dimensionality
reduction, the MQG mapping is sufficient to distinguish the
characteristics inherent to each statistical model analyzed in
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Table 4 Evaluation of
benchmark multivariate time
series classification task
involving different clustering
analyses based on the different
MQG topological feature
vectors. Results are expressed in
terms of the accuracy evaluation
metric in each column
corresponding to the MQG
feature vectors used in the
corresponding experiment

Dataset MQG Intra-layer Inter-layer All-layer Relational

ArticularyWordRecognition 0.79 0.75 0.69 0.76 0.64

AtrialFibrillation 0.33 0.20 0.33 0.20 0.33

BasicMotions 0.93 0.88 0.65 0.90 0.78

Cricket 0.86 0.93 0.81 0.81 0.72

Epilepsy 0.86 0.83 0.41 0.77 0.75

Ering 0.59 0.55 0.49 0.57 0.37

EthanolConcentration 0.27 0.29 0.21 0.26 0.25

FingerMovements 0.46 0.48 0.44 0.46 0.53

HandMovementDirection 0.31 0.26 0.35 0.27 0.30

Handwriting 0.10 0.10 0.09 0.10 0.08

Libras 0.70 0.71 0.28 0.35 0.39

LSST 0.45 0.40 0.38 0.43 0.37

NATOPS 0.62 0.57 0.62 0.62 0.59

PenDigits 0.60 0.55 0.16 0.50 0.32

RacketSports 0.51 0.43 0.38 0.48 0.38

SelfRegulationSCP1 0.64 0.57 0.55 0.60 0.64

SelfRegulationSCP2 0.49 0.45 0.53 0.54 0.52

StandWalkJump 0.40 0.33 0.40 0.33 0.47

UWaveGestureLibrary 0.52 0.52 0.48 0.48 0.45

MDGP 0.95 0.66 0.69 0.91 0.78

The highest values for each dataset are highlighted in bold in the corresponding column

this work and that the inter-layer edges add valuable informa-
tion to intra-layer features, improving the accuracy of results.

To obtain additional results and demonstrate the appli-
cation of the proposed mapping method, we perform an
experimental analysis of a classification problem in several
real and benchmark datasets. For each dataset, we mapped
the MTS data instances into the corresponding MQG and
we extracted the topological feature vectors. The resulting
topological features are used to train a prediction model to
perform the prediction of classes of the MTS data. Although
the results are not optimal for all data sets, we consider
the results to be good given the purpose of this paper. For
future work, we intend to improve the classification results
obtained, adopting advanced feature selection and data pre-
processing techniques. Furthermore, we intend to explore the
combination of MQG features with MHVG features.

To conclude, the proposed MQG reduces the dimension-
ality of the original time series data, reducing the amount
of data observations to a smaller number of sample quan-
tiles, preserving the dynamic characteristics of the time series
(serially) and between time series (crossly), using probabil-
ity transitions, during the mapping process. The objectives
inherent to the design of this mapping method are quite rel-
evant at a multidisciplinary level where the capabilities of
the resulting networks are promising. The MQG algorithm
presented in this work represents interconnections (cross-
transitions) contemporaneously. However, following the idea
presented in [7], the MQG algorithm can be extended to rep-

resent transitions between quantiles corresponding to lagged
timestamps from different layers, expanding its capabilities
beyond consecutive quantiles. This version may enrich the
obtained results, just as in the univariate case [7]. In our future
work, we intend to explore this MQG algorithm version and
a more detailed analysis in real-world scenarios.
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