
Implementação de Linguagens
de Programação Lógica

Extended Andorra Model

Ricardo Lopes
rslopes@ncc.up.pt

DCC-FCUP

Tópicos Avançados de Informática
Mestrado em Informática 2003/04

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

The Andorra Principle

➤ Much research on Logic Programming has been performed on improving the
performance of Prolog through And/Or parallelism and concurrent execution.

➤ The work on these areas is substantial and already mature, however the com-
bination of this work has introduced new difficulties affecting both language
design and implementation.

➤ In order to tackle this problem, several languages were proposed more recently,
namely the Andorra-based languages.

1

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

The Andorra Principle

In 1987 D.H.D Warren proposed the Basic Andorra Model.

➤ A goal is determinate if it has at most one candidate clause.

➤ Determinate goals are executed first.

➤ When no determinate goal exists, a non-determinate goal is selected for execu-
tion.

2

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Advantages of the Basic Andorra Model:

➤ May reduce the search space.

? Deterministic goals need to be tried only once, rather than re-executed at
different branches of the search space.

? Constraints from the deterministic goals may reduce the number of alternatives
for other goals, and even make them deterministic as well.

➤ All deterministic goals can execute in parallel. The model supports two forms of
parallelism extracted implicitly from the program:

? And-Parallelism, by running deterministic goals in parallel.
? Or-Parallelism, by exploring different alternative clauses to a goal in parallel.

➤ Programs are less execution order sensitive than in Prolog.
?- member(X,L), L=[1,2,3]. is finite in the Andorra Model.

3

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

The Basic Andorra Model

An Andorra implementation has to deal with novel problems inherent
to the model:

➤ Determine which goals are deterministic can be hard.
boss(mary, john). boss(mary,mary). ?- boss(X,X).

➤ Concurrency can break Prolog semantics.
?- write(Solutions), fail. ?- var(X), X=a.

➤ Programs may do more work.
a(1). a(2). b(3). b(4). ?- a(X), b(X), lots determ work.

4

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Andorra-I

➤ The Andorra-I is the most well-known implementation of the Basic Andorra
Model. It exploits or-parallelism and determinate dependent and-parallelism
while fully supporting Prolog.

➤ The Andorra-I system consists of three main components:

1. Preprocessor: responsible for generating the determinacy code and the sequen-
cing information necessary to maintain the correct execution of programs.

2. Engine: responsible for executing the Andorra-I programs. The engine consists
of teams of workers, where each worker normally corresponds to a CPU.

3. Scheduler: responsible for finding new tasks (work) for workers that have
completed their tasks.

➤ Despite the excellent results that the Andorra-I attained, the system is limited
by the fact that coroutining and and-parallelism can only be exploited between
determinate goals.

5

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

EAM Motivation: Attain Maximum Performance

In 1990 D.H.D Warren proposed the Extended Andorra Model (EAM)

➤ Mininum number of inferences:
→ try to never repeat the same execution step in different locations of the

execution tree.

➤ Maximum parallelism:
→ allow goals to be executed as independently as possible, and combine solutions
as late as feasible.

➤ Implicit control:
→ ideal behavior without requiring too much reliance on user annotation.

6

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

EAM Characteristics

➤ Extends the Basic Andorra Model by allowing non-deterministic goals to
execute in and-parallel as long they do not bind external variables.

? BAM clause determinacy – don’t guess a clause till you have to.

? EAM binding determinacy – don’t guess a variable binding till you have to.

➤ Explore the three main forms of Parallelism:

? Or-Parallelism: between alternatives.
? Independent And-Parallelism: between goals that do not share variables.
? Dependent And-Parallelism: between goals that share variables.

7

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

EAM different approaches

➤ One approach was followed by researchers at SICS who concentrated on the
AKL, the Andorra Kernel Language, based on the principle that the advantages
of the Extended Andorra Model justified a new programming paradigm that
could subsume both traditional Prolog and the committed choice languages.

? Explicit Control Scheme: AKL programs were constructed from guarded clau-
ses, where the guard could be separated with a sequential conjunction, cut,
or commit.

➤ In contrast, David H. D. Warren and researchers at Bristol and UP concentrated
on the Extended Andorra Model with Implicit Control.

? The goal was to obtain the advantages of the Extended Andorra Model with
the least effort from the programmer.

? BEAM was the first sequencial implementation of the EAM.

8

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

BEAM Concepts

The EAM is formally defined through rewrite rules that manipulate
and-or trees.

➤ And-boxes – clause with subgoals G1, . . . , Gn; include:
→ local variables X1, . . . , Xm created in the box,
→ and constraints, σ, on external variables imposed by the box.

➤ Or-boxes – alternative clauses for a goal, C1, . . . , Cn.

➤ Rewrite rules:
→ reduction, promotion, substitution (propagation) and forking (splitting).

➤ Simplification and optimization rules:
→ to simplify the and-or tree and to discard boxes.

➤ Control strategies
→ define how and when to apply the rules.

9

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Main Operations of BEAM I

Reduction: expands a goal G into an or-box.

A B

...

AG B

σ σ1 nX

B

G1 Gn
1 nX

10

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Main Operations of BEAM II

Promotion: promotes constrains from a inner-box to the outer-box.

X σ

A B

W
θY

X,

A B

W

σY θ

11

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Main Operations of BEAM III

Propagation: propagates constrains from an outer-box to the inner-boxes.

...

A

σ σX

B

G1 Gn
1 nX

...

A

X

B

G1 Gn
1 nX

σσY Y

12

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Main Operations of BEAM IV

Splitting: distributes a conjunction across a disjunction.

C C...1 n

X σ

A B

X σ

A B

X σ

A B

Ci ... C... n...C1

Y θ Y θ
Ci

13

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

EAM pruning rules

X σ

A B

C
θWR

!
S

X σ

A B

C
θWR

X σ

A B

C
θWR

|
S

X σ

A B

C
θW

X σ

A B

θWR
true

S

X σ

A B

Cut Commit Implicit Pruning

14

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Simplification Rules and Implicit Prunning I

false-in-or & true-in-or Simplifications:

C C...
1 nC falsei-1 C ...

i+1
C C...

1 nCi-1 C ...
i+1

C C...
1 nC truei-1 C ...

i+1

true

15

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Simplification Rules and Implicit Prunning II

true-in-and & false-in-and Simplifications:

X σ

G1 ... Gi-1 true Gi+1 ... Gn

X σ

G1 ... Gi-1 Gi+1 ... Gn

X σ

G1 ... Gi-1 false Gi+1 ... Gn false

16

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Execution Control

➤ The Extended Andorra Model gives us a set of basic operations which are
logically valid, and which can be controlled in a variety of ways.

➤ The unrestricted application of the described rules will surely lead to a completely
unpredictable and undesirable computation.

➤ The original EAM design tries to keep the control implicit, as much as possible,
that is, it does not rely on information supplied by the programmer.

➤ The control decisions are based exclusively on information implicitly extracted
from the program.

➤ One of the aims of the Extended Andorra Model is to perform the least number
of reductions to obtain the solutions for a goal.

17

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Execution Control

David Warren presented a set of intuitions on how to optimally evaluate
[∃X : (P1 & . . .& Pn)] :

➤ if we have no solution for X, we only want to work on goals which will lead to
failure;

➤ if we have one or more solutions to X, it is safe to work on all goals;

➤ if there are multiple solutions for X, we want to perform all work that does not
depend on X before installing different instantiations for X;

➤ if one goal can generate a unique value for X, allow that goal to be the producer
and others to be consumers. Otherwise we need to select one goal to be a
non-determinate producer and let other goals be consumers;

➤ use splitting solely to transmit non-determinate bindings from producer to
consumers, making copies of consumers in the process.

18

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

BEAM Execution Control

Control strategies: define how and when to apply the rules.

Start

Simplify

Promotion Reduction

Halt

yes

yes

yes
no

no

no
Splitting

Propagation

19

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Non-Termination

➤ As long as it does not bind variables, the EAM allows the parallel early execution
of non-determinate goals. In some cases, this may create speculative and-work,
as some other goals might fail. This may result in a larger search space or even
lead to non-termination.

ancestor(X,Y):- parent(X,Y).
ancestor(X,Z):- parent(X,Y), ancestor(Y,Z).

parent(a,fa). parent(a,ma). parent(b,fb). parent(b,mb).
parent(ma,mma). parent(ma,fma). parent(mb,c). parent(mb,d).
parent(fb,mfb). parent(fb,ffb). parent(fa,c). parent(fa,d).

?- ancestor(a,Z), ancestor(b,Z).

20

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

{Z} { }a(a,Z) , a(b,Z)

{}

All Suspend All Suspend

{X2} p(X1,X2) , a(X2,Z)p(X1,Z){} {Z,X1}{Z,X1}

All Suspend All Suspend

{X1} {Z}p(a,X1) , a(X1,Z)

Suspend Suspend

X1=fa X1=maZ=fa Z=ma

Suspend Suspend

Zp(a,Z){}

p(X2,Z) {Z,X2} {X3} {Z,X2}p(X2,X3) , a(X3,Z)

Computation will never stop

3

2

1

4

(identical)

21

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Dealing with Non-Termination

➤ The solution that we proposed is the combination of:

? Eager Non-Determinate Promotion
? Tabling

➤ This solutions is ideal in two contexts:

? First it guarantees that the computation end in programs that have finite
solutions.

? Second, it allows the reuse of goals.

22

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Z=fa Z=ma

Suspend Suspend

Zp(a,Z){}

{Z}p(a,ma) , a(ma,Z){X1=ma}

{X2} p(X1,X2) , a(X2,Z) {Z,X1}

Identicaly would
suspend on Table
and after Forking
would fail

TABLED: a

Non-Det-Promotion

{Z} { }a(a,Z) , a(b,Z)

{Z}p(a,fa) , a(fa,Z){X1=fa}

Z{} p(fa,Z)

(identical)

{Z} { }a(a,Z) , a(b,Z)

p(X1,Z){} {Z,X1}

All Suspend All Suspend

{X1} {Z}p(a,X1) , a(X1,Z)

Suspend Suspend

X1=fa X1=maZ=fa Z=ma

Suspend Suspend

Zp(a,Z){}

(identical)

Suspends on Table

{X2} {Z,X1}p(fa,X2) , a(X2,Z)

Suspend SuspendSuspend Suspend

Z=c Z=d X2=c X2=d

Identicaly would
suspend on Table
and after Forking
would get
Z=mma or Z=fma

On the End we would have for a(a,Z) the solutions :
Z=fa or Z=ma or Z=c or Z=d or Z=mma or Z=fma

On the End we would have for a(b,Z) the solutions :
Z=fb or Z=mb or Z=c or Z=d or Z=mfb or Z=ffb

After a last non-det-promotion we would obtain Z=c or Z=d as the only solutions

23

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Deterministic Benchmarks

YAP SICStus
Benchs. BEAM AKL Andorra-I

98 4.4 3.8.6
cal 0.010 0.020 0.020 0.009 0.005 0.012
deriv 0.060 0.380 0.050 0.019 0.013 0.024
qsort 0.49 1.07 0.46 0.18 0.11 0.38
serialise 0.23 0.69 0.38 0.08 0.06 0.18
reverse 1000 0.30 1.60 0.37 0.13 0.12 0.17
nreverse 1000 130 780 140 50 40 60
kkqueens 240 460 240 127 40 70
tak 110 154 140 60 30 50

average 62% 24% 49% 136% 213% 100%

24

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Non-deterministic Benchmarks

BEAM YAP SICStus
Benchs.

Default ES
AKL AND.-I

98 4.4 3.8.6
ancestor NA 0.29 0.7 0.19 0.02 0.018 0.059
houses 5.0 4.1 13 1.4 0.6 0.5 1.1
query 34 5.5 45 2.1 0.73 0.35 0.97
zebra 100 24 54 46 13.5 10.5 19.4
puzzle4x4 2,730 - 2,850 960 320 270 360

average 14% 37% 13% 47% 173% 229% 100%

25

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

Reduced Search Benchmarks

Benchs. BEAM AKL And-I YAP 4.4

send money 1st 14 20 1.7 17,820
send money all 82 120 9.0 129,840
queens-9 12 20 1.6 30
queens-16 19,990 26,820 720 >24 hours
queens-20 787,030 962,550 19,460 >24 hours
check list-10 0.26 1.13 343,680 56,180
check list-11 0.29 1.47 11,221,800 1,826,400
check list-15 0.49 3.44 >24 hours >24 hours
ppuzzle-A 22 28 246,460 >24 hours
ppuzzle-B 60 62 >24 hours >24 hours
ppuzzle-C 1st 7 10 3,747,980 >24 hours

26

Implementação de Linguagens de Programação Lógica Ricardo Lopes DCC-FCUP

To End...

• The EAM with Implicit Control can be implemented efficiently.

• The model performs well, even when just using implicit control.

• Simple programmer annotations and prunning can often lead to a better perfor-
mance.

• The EAM can extend logic programming for applications where Prolog would
not cope well.

27

