Implementacao de Linguagens
de Programacao Logica

Extended Andorra Model

Ricardo Lopes

rslopes@ncc.up.pt
DCC-FCUP

Tépicos Avancados de Informdtica
Mestrado em Informatica 2003/04

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

The Andorra Principle

[1 Much research on Logic Programming has been performed on improving the
performance of Prolog through And/Or parallelism and concurrent execution.

[1 The work on these areas is substantial and already mature, however the com-
bination of this work has introduced new difficulties affecting both language
design and implementation.

[1 In order to tackle this problem, several languages were proposed more recently,
namely the Andorra-based languages.

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

The Andorra Principle

In 1987 D.H.D Warren proposed the Basic Andorra Model.

[1 A goal is determinate if it has at most one candidate clause.
[1 Determinate goals are executed first.

[J When no determinate goal exists, a non-determinate goal is selected for execu-
tion.

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Advantages of the Basic Andorra Model:

[1 May reduce the search space.

* Deterministic goals need to be tried only once, rather than re-executed at
different branches of the search space.

* Constraints from the deterministic goals may reduce the number of alternatives
for other goals, and even make them deterministic as well.

[1 All deterministic goals can execute in parallel. The model supports two forms of
parallelism extracted implicitly from the program:

* And-Parallelism, by running deterministic goals in parallel.
* Or-Parallelism, by exploring different alternative clauses to a goal in parallel.

[1 Programs are less execution order sensitive than in Prolog.
?7- member (X,L), L=[1,2,3]. is finite in the Andorra Model.

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

The Basic Andorra Model

An Andorra implementation has to deal with novel problems inherent
to the model:

[1 Determine which goals are deterministic can be hard.
boss(mary, john). boss (mary,mary) . 7- boss(X,X).

[1 Concurrency can break Prolog semantics.
?- write(Solutions), fail. ?7- var(X), X=a.

[1 Programs may do more work.
a(l). a(2). b@3). bp@). ?7- a(X), b(X), lots_determ_work.

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Andorra-|

[The Andorra-l is the most well-known implementation of the Basic Andorra
Model. It exploits or-parallelism and determinate dependent and-parallelism

while fully supporting Prolog.
[1 The Andorra-l system consists of three main components:

1. Preprocessor: responsible for generating the determinacy code and the sequen-
cing information necessary to maintain the correct execution of programs.

2. Engine: responsible for executing the Andorra-l programs. The engine consists
of teams of workers, where each worker normally corresponds to a CPU.

3. Scheduler: responsible for finding new tasks (work) for workers that have
completed their tasks.

[1 Despite the excellent results that the Andorra-l attained, the system is limited
by the fact that coroutining and and-parallelism can only be exploited between
determinate goals.

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

EAM Motivation: Attain Maximum Performance

In 1990 D.H.D Warren proposed the Extended Andorra Model (EAM)

(1 Mininum number of inferences:

— try to never repeat the same execution step in different locations of the
execution tree.

[1 Maximum parallelism:

— allow goals to be executed as independently as possible, and combine solutions
as late as feasible.

[1 Implicit control:
— ideal behavior without requiring too much reliance on user annotation.

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

EAM Characteristics

[1 Extends the Basic Andorra Model by allowing non-deterministic goals to
execute in and-parallel as long they do not bind external variables.

* BAM clause determinacy — don't guess a clause till you have to.

* EAM binding determinacy — don't guess a variable binding till you have to.

[1 Explore the three main forms of Parallelism:

* Or-Parallelism: between alternatives.
* Independent And-Parallelism: between goals that do not share variables.
* Dependent And-Parallelism: between goals that share variables.

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

EAM different approaches

[One approach was followed by researchers at SICS who concentrated on the
AKL, the Andorra Kernel Language, based on the principle that the advantages
of the Extended Andorra Model justified a new programming paradigm that
could subsume both traditional Prolog and the committed choice languages.

* Explicit Control Scheme: AKL programs were constructed from guarded clau-
ses, where the guard could be separated with a sequential conjunction, cut,
or commit.

[1 In contrast, David H. D. Warren and researchers at Bristol and UP concentrated
on the Extended Andorra Model with Implicit Control.

* The goal was to obtain the advantages of the Extended Andorra Model with
the least effort from the programmer.
* BEAM was the first sequencial implementation of the EAM.

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

BEAM Concepts

The EAM is formally defined through rewrite rules that manipulate
and-or trees.

[1 And-boxes — clause with subgoals G+, ..., G,; include:
— local variables X1, ..., X, created in the box,
— and constraints, o, on external variables imposed by the box.

Or-boxes — alternative clauses for a goal, C4,...,C,.

Rewrite rules:
— reduction, promotion, substitution (propagation) and forking (splitting).

[1 Simplification and optimization rules:
— to simplify the and-or tree and to discard boxes.

[1 Control strategies
— define how and when to apply the rules.

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Main Operations of BEAM |

Reduction: expands a goal G into an or-box.

10

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Main Operations of BEAM I

Promotion: promotes constrains from a inner-box to the outer-box.

X ‘) X,Y ‘ co
‘A Q@ B\—» A Q@ B

Y 0

]]

11

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Main Operations of BEAM Il

Propagation: propagates constrains from an outer-box to the inner-boxes.

12

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Main Operations of BEAM IV

Splitting: distributes a conjunction across a disjunction.

X o X 9 X o

A /5{\ B
ddlh W @ m

13

Implementacdo de Linguagens de Programacao Légica

EAM pruning rules

Ricardo Lopes DCC-FCUP

Implicit Pruning

14

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Simplification Rules and Implicit Prunning |

false-in-or & true-in-or Simplifications:

NN, T

C,--Cip false C. C,Cii C.

i1
m —» true

C --Cj.1 true

15

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Simplification Rules and Implicit Prunning ||

true-in-and & false-in-and Simplifications:

X | c x | 6

Gl ... Gi-1 true Gi+l ... Gn} ——— ‘Gl .. Gi-1 Gi+l .. Gn\

X | o
Gl ... Gi-1 false Gi+l ... Gn] ——» false

16

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Execution Control

[1 The Extended Andorra Model gives us a set of basic operations which are
logically valid, and which can be controlled in a variety of ways.

[1 The unrestricted application of the described rules will surely lead to a completely
unpredictable and undesirable computation.

[1 The original EAM design tries to keep the control implicit, as much as possible,
that is, it does not rely on information supplied by the programmer.

[The control decisions are based exclusively on information implicitly extracted
from the program.

[1 One of the aims of the Extended Andorra Model is to perform the least number
of reductions to obtain the solutions for a goal.

17

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Execution Control

David Warren presented a set of intuitions on how to optimally evaluate
3X (P &...& P :

[1 if we have no solution for X, we only want to work on goals which will lead to
failure;

if we have one or more solutions to X, it is safe to work on all goals;

if there are multiple solutions for X, we want to perform all work that does not
depend on X before installing different instantiations for X;

[1 if one goal can generate a unique value for X, allow that goal to be the producer
and others to be consumers. Otherwise we need to select one goal to be a
non-determinate producer and let other goals be consumers;

[1 use splitting solely to transmit non-determinate bindings from producer to
consumers, making copies of consumers in the process.

18

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

BEAM Execution Control

Control strategies: define how and when to apply the rules.

Start

+ A i

Simplify

YEeS yes

Promotion Reduction Splitting

Propagation I Halt

19

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Non-Termination

[1 As long as it does not bind variables, the EAM allows the parallel early execution
of non-determinate goals. In some cases, this may create speculative and-work,
as some other goals might fail. This may result in a larger search space or even
lead to non-termination.

ancestor (X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

parent(a,fa). parent(a,ma) . parent(b,fb). parent(b,mb).
parent(ma,mma). parent(ma,fma). parent(mb,c). parent(mb,d).

parent (fb,mfb). parent(fb,ffb). parent(fa,c). parent(fa,d).

?- ancestor(a,Z), ancestor(b,Z).

20

Implementacdo de Linguagens de Programacao Légica

0] paz)

2]

Suspend

Suspend

Ricardo Lopes DCC-FCUP

{7} a(a,Z) , a(b,2) {}

(identical)

] X1} p@Xl),aX1,2)

{7}

Suspend Suspend

p(X1,X2), a(X2,2) |{Z.X1}

Computation will never stop

21

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

Dealing with Non-Termination

[1 The solution that we proposed is the combination of:

* Eager Non-Determinate Promotion
* Tabling

[1 This solutions is ideal in two contexts:

* First it guarantees that the computation end in programs that have finite
solutions.
* Second, it allows the reuse of goals.

22

Implementacgdo de Linguagens de Programacdo Légica Ricardo Lopes DCC-FCUP

TABLED: a

L2 | w202 | (|

(identical)
’ {X1} | p(a,X1), a(X1,2) ‘ {Z} |
’ Z=ma ‘ ’ X1=fa‘
Suspend Suspend Suspend Suspend
’ {} | p(X1,Z) | {z, X1} ‘ ’ {X2}| p(X1,X2), a(X2,Z) | {Zz, X1} ‘
v b
All Suspend All Suspend
o __________________SupendsonTable _ ______________________
Non-Det-Promotion
Lz | ez, ||
(identical)

{}|p@2Z)|Z
’ {X1=fa} | p(a,fa), a(fa,Z) ‘ {Z} | ’ {Xl:ma}| p(a,ma) , a(ma,Z) ‘ {Z} |
Z=fa Z=ma
Identicaly would
Suspend Suspend ’ {} | p(fa,Z)| Z ‘ ’ {X2} | p(fa,X2) , a(X2,Z2) | {Z,X1} ‘ suspend on Table
and after Forking
would get
Z=mma or Z=fma
’ Z=c ‘ ’ Z=d ‘ ’ X2=c ‘ ’ X2=d ‘ Identicaly would
Suspend Suspend Suspend Suspend suspend on Table
and after Forking
would fail
777 23
On the End we would have for a(a,Z) the solutions : On the End we would have for a(b,Z) the solutions :

Z=fa or Z=ma or Z=c or Z=d or Z=mma or Z=fma Z=fb or Z=mb or Z=c or Z=d or Z=mfb or Z=ffb

Implementacdo de Linguagens de Programacao Légica

Deterministic Benchmarks

Ricardo Lopes DCC-FCUP

YAP SICStus

Benchs. BEAM | AKL | Andorra-I 08 4.4 386
cal 0.010 | 0.020 0.020 0.009 | 0.005 0.012
deriv 0.060 | 0.380 0.050 0.019 | 0.013 0.024
gsort 0.49 1.07 0.46 0.18 0.11 0.38
serialise 0.23 0.69 0.38 0.08 0.06 0.18
reverse_1000 0.30 1.60 0.37 0.13 0.12 0.17
nreverse_1000 130 780 140 50 40 60

kkqueens 240 460 240 127 40 70

tak 110 154 140 60 30 50

average 62% 24% 49% 136% | 213% | 100%

24

Implementacdo de Linguagens de Programacdo Légica Ricardo Lopes DCC-FCUP

Non-deterministic Benchmarks

BEAM YAP SICStus
Benchs. | pefaut £ | AR | ANDV) 98 44 | 386
ancestor NA 0.29 0.7 0.19 0.02 | 0.018 0.059
houses 5.0 4.1 13 1.4 0.6 0.5 1.1
query 34 5.5 45 2.1 073 | 0.35 0.97
zebra 100 24 54 46 13.5 10.5 19.4
puzzledx4 2,730 - 2,850 960 320 270 360
average 14% | 37% | 13% 47% | 173% | 229% 100%

25

Implementacdo de Linguagens de Programacao Légica

Reduced Search Benchmarks

Ricardo Lopes DCC-FCUP

Benchs. BEAM AKL And-1 | YAP 4.4
send_money lst 14 20 1.7 17,820
send_money all 32 120 9.0 129,840
queens-9 12 20 1.6 30
queens-16 19,990 | 26,820 720 | >24 hours
queens-20 787,030 | 962,550 19,460 | >24 hours
check_1list-10 0.26 1.13 343,680 56,180
check_list-11 0.29 1.47 | 11,221,800 | 1,826,400
check_list-15 0.49 3.44 | >24 hours | >24 hours
ppuzzle-A 22 28 246,460 | >24 hours
ppuzzle-B 60 62 | >24 hours | >24 hours
ppuzzle-C lst 7 10 3,747,980 | >24 hours

26

Implementacdo de Linguagens de Programacao Légica Ricardo Lopes DCC-FCUP

To End...

e The EAM with Implicit Control can be implemented efficiently.

e The model performs well, even when just using implicit control.

e Simple programmer annotations and prunning can often lead to a better perfor-
mance.

e The EAM can extend logic programming for applications where Prolog would
not cope well.

27

