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Abstract. The first part of this paper provides a perspective view of meta-learning
in which the goal is to build self-adaptive learning algorithms. The idea is to improve
the learning bias dynamically through experience by the continuous accumulation of
meta-knowledge. The second part of this paper provides a survey of meta-learning as
reported by the machine-learning literature. We find that different researchers hold
different views of what the term meta-learning exactly means. Despite different views
and research lines, a question remains constant: how can we exploit knowledge about
learning (i.e., meta-knowledge) to improve the performance of learning algorithms?
Clearly the answer to this question is key to the advancement of the field and
continues being the subject of intensive research.
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1. Introduction

Meta-learning studies how learning systems can increase in efficiency
through experience; the goal is to understand how learning itself can
become flexible according to the domain or task under study. All learn-
ing systems work by adapting to a specific environment, which reduces
to imposing a partial ordering or bias on the set of possible hypotheses
explaining a concept (Mitchell, 1980). Meta-learning differs from base-
learning in the scope of the level of adaptation: meta-learning studies
how to choose the right bias dynamically, as opposed to base-learning
where the bias is fized a priori, or user parameterized. In a typical
inductive-learning scenario, applying a base-learner (e.g., decision tree,
neural network, or support vector machine) over some data produces
a hypothesis that depends on the fized bias embedded in the learner.
Learning takes place at the base-level because the quality of the hy-
pothesis normally improves with an increasing number of examples.
Nevertheless, successive applications of the learner over the same data
always produces the same hypothesis, independently of performance;
no knowledge is extracted across domains or tasks (Pratt and Thrun,
1997).

Meta-learning aims at discovering ways to dynamically search for
the best learning strategy as the number of tasks increases (Thrun,
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1998; Rendell et al., 1987B). A computer program qualifies as a learning
machine if its performance improves with experience (Mitchell, 1997;
Cohen and Feigenbaum, 1989). Experience is best understood as the
knowledge gained from the analysis of several tasks; the definition is not
limited to the ability to refine a hypothesis after presenting examples
that belong to one task. Hence, meta-learning advocates the need for
continuous adaptation of the learner at different levels of abstraction. If
a base-learner fails to perform efficiently, one would expect the learning
mechanism itself to adapt in case the same task is presented again.
Thus, learning can take place not only at the example (i.e., base) level,
but also at the across-task (i.e., meta) level.

After describing our own perspective view of meta-learning and pos-
ing some interesting challenges for future research, this paper provides
a survey of the field as reported in the machine-learning literature.
Some areas of study that bear close relationship to meta-learning in-
clude building a meta-learner of base-learners (Section 4.1), selecting an
inductive bias dynamically (Section 4.2), building meta-rules matching
task properties with algorithm performance (Section 4.3), inductive
transfer and learning to learn (Section 4.4), learning classifier systems
(Section 4.5), and others (Section 4.6). Our survey shows how the term
meta-learning means differently to different research groups; we find
that each of the areas mentioned above covers only a few pieces in the
big puzzle conformed by the field of meta-learning. Our ultimate goal
is to see the field progressing towards a uniform and coherent view.

This paper is organized as follows. Section 2 gives definitions and
background information in classification. Section 3 provides our own
perspective view of the nature and potential avenues of research in
meta-learning. Section 4 is a survey of meta-learning as reported in
the machine-learning literature. Section 5 ends with discussion and
conclusions.

2. Preliminaries

Our study is centered on the classification problem exclusively. The
problem is to learn how to assign the correct class to each of a set of
different objects (i.e., events, situations). A learning algorithm L is
first trained on a set of pre-classified examples Tirain : {(Xi, i)}y
Each object X is characterized by features, and can be represented as
a vector in an n-dimensional feature space, X = (X1, X2, -+, Xp).
Each feature Xj, can take on a different number of values. X; is labeled

with class ¢; according to an unknown target function F', F(X;) = ¢;
(we assume a deterministic target function, i.e., zero-bayes risk). In
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classification, each ¢; takes one of a fixed number of categorical values.
Tirain Will consist of independently and identically distributed (i.i.d.)
examples obtained according to a fixed but unknown joint probability
distribution @ in the space of possible feature-vectors X. The goal in
classification is to produce a hypothesis h that best approximates F,
i.e., that minimizes a loss function (e.g., zero-one loss) in the space of
feature vectors and classes, X x C, according to distribution ®.

Classification begins when learning algorithm L receives as input
a training set Tirain and conducts a search over a hypothesis space
‘H until it finds a hypothesis h, h € H, that approximates the true
function F'. Thus a learning algorithm L maps a training set into a
hypothesis, L : T — H,, where T is the space of all training sets of
size m. The selected hypothesis A can then be used to guess the class
of unseen examples.

Learning algorithm L embeds a set of assumptions or bias that
affects the learning process in two ways: it restricts the size of the
hypothesis space H ., and it imposes an ordering or ranking over all
hypotheses in H . The bias of a learning algorithm L 4 is stronger than
the bias of another learning algorithm Lp if the size of the hypothesis
space! considered by L 4 is smaller than the size of the hypothesis space
considered by Lp (i.e., if |H. | <|Hcg|). In this case the bias embed-
ded by L 4 conveys more extra-evidential information (Watanabe, 1969)
than the bias in Lp, which enables us to narrow down the number of
candidate hypotheses estimating the true target concept F. We say the
bias of a learning algorithmn is correct if the target concept is contained
in the hypothesis space (i.e., if F' € H). An incorrect bias precludes
finding a perfect estimate to target concept F'.

3. A Perspective View of Meta-Learning

In this section we lay down some definitions and concepts that will be
helpful to compare some of the current research directions adopted in
meta-learning. Our own view of the field advocates the construction of
self-adaptive learners.

In base-learning, the hypothesis space H, of a learning algorithm
L is fixed. Applying a learning algorithm (e.g., decision tree, neural
network, or support vector machine) over some data produces a hy-
pothesis that depends on the fized bias embedded by the learner. This
implies a learning algorithm can only learn efficiently over a limited
number of tasks. More formally, let a learning task s be defined as

! We limit our study to hypothesis spaces that are finite.
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a 3-tuple, s = (F,m,®), comprising a target concept F, a training-
set size m, and a sample distribution ® from which the examples in a
training set are drawn?. If we represent the space of all possible learning
tasks (i.e., the cross product of all target concepts, training-set sizes,
and distributions) as S, then algorithm L can learn efficiently over a
limited region Ry, in S that favors the bias embedded in L; algorithm L
can never be made to learn efficiently over all tasks in S as long as its
bias remains fixed (Schaffer, 1994; Watanabe, 1985; Wolpert, 1996; Rao
et al., 1995).

3.1. RANDOM VS STRUCTURED TASKS

One may rightly argue that the space of all tasks contains many random
regions; failing to learn over those regions carries in fact no negative
consequences. For this reason, we will assume R;, comprises a subset of
structured tasks, Sgruct C S, where each task is non-random and can be
ascribed a low degree of complexity. Here we simply want to distinguish
between two sets of tasks: structured and random. We attempt to give
a more formal definition of both types of tasks.

One dimension along which we can differentiate between structured
and random tasks lies in the expected amount of data compression
that can be obtained over the training sets. Structured tasks Sgiruct
denote regular patterns over the training sets that commonly lead to
the discovery of concise representations. Random tasks, on the other
hand, are characterized by many irregularities; long representations
are then necessary to reproduce the original body of data. But how
can we determine the degree of structure (conversely the degree of
randomness) of a task? Let us assume we have a measure of complexity
K applicable to any task. We can classify all possible tasks according to
its complexity in the following way. For a fixed concept F, training-set
size m, and distribution ®, we denote the complexity of a tasks s as

K(s) = By(Kpm(T})) = >, P(Ti) Kpgm(T)) (1)

V T; of size m

where P(T;) is the probability of generating training set 7; according
to @, and Kp,,(T;) is the value of the complexity (i.e., degree of ran-
domness) of training set T; (conditioned on F'), for a fixed size m, and
a fixed distribution ®. This definition can serve to classify the universe
of all possible tasks according to K.

2 A task can be seen as a random variable where each possible outcome is a

training set of size m drawn according to distribution ®; examples are labeled
according to concept F.
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The nature of K is left unspecified. Ideally one would use a mea-
sure such as Kolmogorov Complexity (Vitanyi, 1996; Li and Vitanyi,
1992; Li and Vitanyi, 1997; Vitanyi, 1997). Given a training set 7',
the Kolmogorov complexity of 7', K(T'), is defined as the length of
the shortest effective description of T'. More rigorously, K(7') is the
length of the shortest binary program from which the data can be re-
constructed (Vitanyi, 1997). Unlike other measures (e.g., classical infor-
mation theory) Kolmogorov complexity considers the maximal degree
of compressibility over the data under analysis.

3.2. GOALS IN META-LEARNING

One goal in meta-learning is to learn what causes L to dominate in
region Ry. The problem can be decomposed in two parts: 1) determine
the properties of the tasks in Ry, that make L suitable for such region,
and 2) determine the properties of L (i.e., what are the components
contained by algorithm L and how they interact with each other) that
contribute to the domination of R;. A solution to the problem above
would provide guidelines for choosing the right learning algorithm on
a particular task. As illustrated in Figure 1, each task s; may lie inside
or outside the region that favors the bias embedded by a learning algo-
rithm L. In Figure 1, task s; is best learned by algorithm L4 because
it lies within the region Ry, ,. Similarly, s, is best learned by algorithm
Lp, whereas s3 is best learned by both L4 and Lg. A solution to the
meta-learning problem can indicate how to match learning algorithms
with task properties, in this way yielding a principled approach to the
dynamic selection of learning algorithims.

In addition, meta-learning can solve the problem of learning tasks
lying outside the scope of available learning algorithms. As shown in
Figure 1, task s4 lies outside the regions of both L4 and Lp. If Ly
and Lp are the only available algorithms at hand, task s4 is prone
to receiving a poor concept estimation. One approach to solve the
problem above is to use a meta-learner to combine the predictions of
base-learners in order to shift the dominant region over the task under
study. In Figure 1, the goal would be to embed the meta-learner with
a bias favoring a region of tasks that includes s4. Section 4 describes
current research heading in this direction.

3.3. SELF-ADAPTIVE LEARNING ALGORITHMS

The combination of base-learners by a meta-learner offers no guarantee
of covering every possible (structured) task of interest. We claim a po-
tential avenue of research in meta-learning is to provide the foundations
to construct self-adaptive learning algorithms, i.e., learning algorithms
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Universe of all tasks S

Structured tasks Ssiruct

Rp,

S1 - Ry
S3 -

S9

S4

Figure 1. Each learning algorithm covers a region of (structured) tasks favored by
its bias. Task s; is best learned by algorithm L,, s2 is best learned by algorithm
Lp, whereas s3 is best learned by both L4 and Lg. Task s4 lies outside the scope
of La and Lpg.

that change their internal mechanism according to the task under anal-
ysis. In Figure 1, this would mean enabling a learning algorithm to
move along the space of structured concepts Sgryct until the algorithm
learns to cover the task under study. We assume this can be achieved
through the continuous accumulation of meta-knowledge indicating the
most appropriate form of bias for each different task. Beginning with
no experience, the learning algorithm would initially use a fixed form
of bias to approximate the target concept. As more tasks are observed,
however, the algorithm would be able to use the accumulated meta-
knowledge to change its own bias according to the characteristics of
each task. This is one kind of life-long learning (Thrun, 1998).

Figure 2 is a (hypothetical) flow diagram of a self-adaptive learner.
The input and output components to the system are a training set
and a hypothesis respectively. Each time a hypothesis is produced, a
performance assessment component evaluates its quality. The resulting
information becomes a new entry in a performance table; an entry
contains a vector of meta-features characterizing the training set, and
the bias employed by the algorithm if the quality of the hypothesis
exceeds some acceptable threshold. We assume the self-adaptive learner
contains a meta-learner that takes as input the performance table and
generates a set of rules of experience (i.e., meta-hypothesis) mapping
any training set into a form of bias. The lack of rules of experience at
the beginning of the learner’s life would force the mechanism to use a
fixed form of bias. But as more training sets are observed, we expect
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Training Set Self-Adaptive Learner Hypothesis

Meta- __, Rules of
Learner Experience

Performance v
/ Table \
Meta-Feature Performance

Generator Assessment

Figure 2. A flow diagram of a self-adaptive learner.

the expertise of the meta-learner to dominate in deciding which form
of bias best suits the characteristics of the training set.

The self-adaptive learner described in Figure 2 poses major chal-
lenges to the meta-learning community (a more detailed analysis of
these challenges is provided by Vilalta (2001)). Briefly, we need to define
how can we assess the quality of a hypothesis, or how can we assess
the quality of the bias employed by the the learning algorithm. Also
we need to define how can we characterize a task in terms of relevant
meta-features. Finally, one must be aware of a problem related to the
flexibility of the self-adaptive learner in Figure 2: whereas the bias
is now selected dynamically, the meta-learner is not self-adaptive and
employs a fixed form of bias. Clearly the meta-learner can be seen
as a learning algorithm too, but lacking the adaptability ascribed to
the base learner. Ideally we would like the meta-learner to be self-
adaptive, i.e., to improve through experience. One solution could be to
continue with the same logical fashion as in Figure 2, and define a meta-
meta-learner helping the meta-learner improve through experience. The
problem, however, does not disappear because the meta-meta learner
would exhibit a fixed form of bias. The challenge lies on how to stop the
apparently infinite chain of meta-learners needed to achieve complete
flexibility in the selection of bias.

The problems just described provide interesting goals that we hope
will stimulate the research community to contribute to the field of meta-
learning.
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4. A Survey of Meta-Learning

This section provides a survey of meta-learning as reported in the
machine-learning literature. Any survey of this kind is prone to omit
relevant work and adopt a single-minded view for which we offer our
apologies. Our goal is simply to unify current views and definitions of
what is meant by the term meta-learning.

4.1. A META-LEARNER OF BASE-LEARNERS

Originally proposed be Wolpert (1992), one common approach to meta-
learning is known as stacked generalization. Here, a set of ¢ base-
learners are applied to a training set Tiyaiy : {(Xi,Cz‘)}ﬁl to produce
q hypotheses, {hj}g':p also called level-0 generalizers. Meta-learning
takes place when training set Ty is redefined into a new set T7.; .
The redefinition replaces each vector X; with a new vector 5(: that

contains the class predicted by each of the ¢ hypothesis on Xj:

Tlain = {(X, e} = {(((Xi), ha(Xi), - k(X)) )} (2)

The new training set T} ,;, serves as input to a set of meta-learners,
which produce a new set of hypotheses or level-1 generalizers. The re-
definition of T}, into t'rain is done via k-fold cross validation (Kohavi,
1995).

Stacked generalization is considered a form of meta-learning because
the transformation of the training set conveys information about the
predictions of the base-learners (i.e., conveys meta-knowledge). We do
not consider as part of meta-learning other model-combination tech-
niques where the idea is to produce variations of the data (e.g., bagging
(Breiman, 1996) and boosting (Freund and Schapire, 1996)), although
definitions of relevant meta-features have been obtained from this work.
Stacked generalization has a severe limitation in that both base-learners
and meta-learners have a fixed form of bias, i.e., no dynamic selection of
bias takes place. The dominant (task) region for the meta-learner may
be different from the base-learners, but ultimately fixed (Section 3 and
Figure 1).

Research in the stacked-generalization paradigm investigates what
base-learners and meta-learners produce best empirical results (Chan
and Stolfo, 1998; Chan and Stolfo, 1993; Chan, 1996). After transform-
ing the original training set, each example contains the predictions of
the base-learners, but it may also contain the original features. Results
show how certain combinations of learners and meta-learners can yield
significant improvements in accuracy.
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Several variations to stacked generalization have been explored. For
example, Chan and Stolfo (1998) experiment with a modified approach
where each base-learner is trained with a fraction of the total data.
While running each learning algorithm in parallel, a hierarchical tree
structure is built where each leaf is a level-0 generalizer and each in-
ternal node is a high-level generalizer (see reference for details). This
strategy outperformed a majority-voting approach. In a similar vein,
Prodromidis and Stolfo (1999B) build a tree of generalizers from meta-
data and then prune the tree to eliminate redundant generalizers. The
same idea is studied in a distributed system (Prodromidis et al., 1999;
Prodromidis and Stolfo, 1999A). Todorovski and Dzeroski (2000) intro-
duce meta-decision-trees, where each leaf of the meta-tree comprises
a hypothesis for prediction. Domingos (1997,1998) shows empirical
evidence supporting the claim that a meta-learner can improve the
accuracy of base-learners while retaining comprehensibility.

The study of how to combine the predictions of base-learners has
produced novel meta-features; these meta-features are useful to un-
derstand and predict the accuracy of the meta-learner. For example,
Fan et al. (1999) introduce a conflict-based measure that indicates
the proportion of examples in the training set accurately classified
by the base-learners. Other meta-features include coverage (Brodley
and Lane, 1996) —fraction of examples for which at least one of the
base classifiers produces correct predictions; diversity (Brodley and
Lane, 1996; Ali and Pazzani, 1996)) —degree of difference in the pre-
dictions of the base-learners; and correlated error (Ali and Pazzani,
1996) —fraction of examples for which two base-learners make the same
incorrect prediction.

4.2. DYNAMIC SELECTION OF BIAS

Dynamic selection of bias enables a learning algorithm to shift its region
of expertise along the set of (structured) tasks (Figure 1). The goal is to
modify the hypothesis space to have a better coverage of the task under
analysis. Meta-learning is a necessary component during dynamic-bias
selection, often acting as a guideline in the search over the bias space.

An introduction to the field of dynamic-bias selection is given by
DesJardins and Gordon (1995A). The authors develop a framework for
the study of dynamic bias as a search in three different tiers (DesJardins
and Gordon, 1995B). The first tier refers to a search over a hypothesis
space H, where a learning algorithm L looks for the best hypothesis
approximating the target concept; most learning algorithms assume
this space fixed. For dynamic bias selection to take place, a learning
algorithm L must search in a second tier, where the strength and size of
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‘H . can be modified separately (Section 2). A third tier helps to modify
the meta-spaces defined at the second tier. Although no more tiers are
introduced in this framework, the problem of where to stop building
more tiers (i.e., more meta-meta-spaces) is evident (Section 3).

One approach to the dynamic selection of bias is to change the
representation of the feature space by adding or removing features. One
of the earliest systems using a form of dynamic bias is STABB (Utgoff,
1986). With the goal of generating a hypothesis space that is strong and
correct (Section 2), STABB continually exerts a form of change of repre-
sentation. As an example, the system is able to construct a new feature
as the disjunction of two original features; additional features increase
the size of the hypothesis space and thus help to alleviate the problem
of a strong hypothesis space (i.e., of having few available hypotheses).
In contrast, Gordon (1992) shows how to weaken the hypothesis space
by eliminating features when bias is deemed inappropriate. Hence, bias
can be made stronger by eliminating features or weaker by restoring
features (Gordon, 1990). In addition one can filter out hypotheses using
meta-rules as a form of explicit bias selection (Gordon and Perlis, 1989).
Baltes (1992) describes a framework for dynamic selection of bias as a
case-based meta-learning system; concepts displaying some similarity
to the target concept are retrieved from memory and used to define the
hypothesis space.

Dynamic-bias selection applies to the algorithm-selection problem.
Rendell et al. (1987A) describe the VBMS system that learns how
to select a learning algorithm depending on the properties of the task.
VBMS uses a dynamic similarity measure that evolves with experience;
as more tasks are attempted VBMS learns relationships between task
characteristics and biases embedded in the learning algorithms (Rendell
et al., 1987B). The task characteristics used by VBMS are simple (e.g.,
number of features), and bias is not modified but rather depends on
the available learning algorithms. A related approach is described by
Bruha (2000) in a rule-based system. Here, predicting the class of new
examples depends on the quality of each rule; such quality is updated
during the testing phase: a dynamic process that changes bias in the
rule-selection policy.

4.3. META-RULES MATCHING DOMAINS WITH ALGORITHM
PERFORMANCE

One important facet of meta-learning is to provide guidelines of how
to relate a learning algorithm with those domains in which the al-
gorithm performs well. Most often the main performance criterion is
predictive accuracy, but in reality other criteria may be equally im-
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portant, e.g., computational complexity, expressiveness, compactness,
comprehensibility, etc. (Giraud, 1998).

The general approach consists of defining a set of domain charac-
teristics or meta-features that are relevant to the performance of a
learning algorithm (Michie, 1994); those meta-features enable us to
build a meta-domain T, relating domain characteristics with al-
gorithm performance (once a sufficient number of domains has been
analyzed). Finally, we can induce a set of rules using a meta-learner
over Tiets to discover the conditions under which a learning algorithm
outperforms others.

Under this framework, Aha (1992) aims at obtaining rules specifying
when a learning algorithm outperforms others significantly. Examples
of domain characteristics are the degree of correlation between features
and the target concept, the distribution of examples within concepts
disjuncts, the distribution of examples among concepts, etc. The rules
reveal the conditions under which significant differences in performance
hold. Gama and Brazdil (1995) extract domain characteristics such as
the number of examples, number of attributes, number of classes, stan-
dard deviation ratio for each feature, skewness, kurtosis, noise-signal
ratio, etc., to generate meta-rule models. Similar work is reported by
Brazdil (1998) who proposes using meta-learning as a pre-processing
step to model selection; experimentation on accuracy performance is
then used to select the best algorithm. Meta-rules matching domain
characteristics with inductive bias have also been crafted manually
(Brodley, 1993; Brodley, 1994). In addition, a domain may be rep-
resented by properties of the final hypothesis rather than the data
itself. For example, Bensusan et. al (2000) measure properties of a
decision-tree, e.g., nodes per feature, maximum tree depth, shape, tree
imbalance, etc., and convert them into meta-features.

4.3.1. Finding Regions In The Feature Space And Meta-Feature Space
Instead of using meta-learning to select a learning algorithm for a
particular domain, a —more granular— approach consists of selecting
a learning algorithm for each individual test example. The idea is to
choose that learning algorithm displaying best performance around
the neighborhood of the test example (Merz, 1995A; Merz, 1995B).
Algorithm selection is done according to best performance, using cross-
validatory history.

A slight variation to the approach above is to look at the neigh-
borhood of a test example in the space of meta-features. Specifically,
after learning from several domains, one can construct a meta-domain
Tineta, Wwhere each element pair is a description of a domain (meta-
feature vector) and a class label corresponding to the best-performance
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learning algorithm on that domain. When a new domain arrives, we can
gather the k-nearest neighbor examples in Ty e, to select the learning
algorithm with best average performance (Keller et. al, 2000). Meta-
features like accuracy, storage space, and running time can be used
for performance evaluation (Keller et. al, 2000). A similar approach
is defined by Brazdil and Soares (2000), in which the learning algo-
rithms corresponding to the k-nearest neighbor domains are ranked as
a function of accuracy and running time.

4.3.2. Landmarking

A recent piece of work in meta-learning is called landmarking. The
idea is to have two sets of learning algorithms Qandmark and Qpool-
The first set, Qlandmark, 1S composed of simple learners that exhibit
significant differences in their mechanism. We will use their accuracy (or
error rate) to characterize a domain, and refer to them as landmarkers.
The second set, (Jp001, contains advanced learners, one of which must
be selected for our current domain. A meta-domain is constructed as
follows. Each example (i.e., each domain) is characterized by the error
rates of the landmarkers in Qungmark- The label or class of each example
is the algorithm in QQpoo1 With best cross-validatory accuracy. A meta-
learner can then associate the performance of the landmarkers with
the best algorithm in (1. From this point of view, meta-learning is
the process of finding areas of expertise of learners called landmarkers,
and of correlating those areas with the performance of other —more
advanced— learners (Bensusan and Giraud-Carrier, 2000; Pfahringer
et. al, 2000).

4.4. INDUCTIVE TRANSFER AND LEARNING TO LEARN

Learning is not an isolated task that starts from scratch every time a
new problem domain appears. As experience accumulates, a learning
mechanism is expected to perform increasingly better (Section 3). For
learning to improve through time, knowledge about learning, or meta-
knowledge, must be transferred across domains or tasks. The process
is known as inductive transfer (Pratt and Thrun, 1997).

An interesting study in inductive transfer falls in the realm of neural
networks. A review of how neural networks can learn from related tasks
is provided by Pratt and Jennings (1998). Caruana (1997) shows why
multitask learning works well in the context of neural networks using
backpropagation. The claim is that training with many domains in par-
allel on a single neural network induces information that accumulates
in the training signals; a new domain can then benefit from such past
experience. Thrun and Sullivan (1998) propose a learning algorithm
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where domains are clustered when mutually related. A new domain
is assigned to the most related cluster; inductive transfer takes place
when generalization exploits information about the selected cluster.
Multitask learning can also be used in other learning paradigms such
as kernel regression and decision trees.

An introduction to the benefits of learning from multiple tasks to
improve generalization is provided by Thrun and Pratt (1998). The au-
thors propose a general framework that shows the distinction between
learning at the base-level and at the meta-level. In the base-level one
simply tries to find the correct hypothesis h on a fixed hypothesis space
H . In the meta-level one needs to find properties of target functions to
characterize entire hypothesis spaces {H}. It must be clear that both
levels require some form of bias, i.e., no-free lunch theorems (Schaffer,
1994; Watanabe, 1985; Wolpert, 1996; Rao et al., 1995) apply at both
levels.

4.4.1. Learning to Learn

Learning-to-learn relies on the main assumption that learning is sim-
plified when it continues working in a life-long context (Thrun, 1998).
The assumption is supported by the existence of patterns on each do-
main, and across domains. The general understanding of the nature
of patterns across domains is that of invariant transformations. For
example, image recognition of a target object is simplified if the object
is invariant under rotation, translation, scaling, etc. Hence, learning-
to-learn studies how to improve learning by detecting, extracting, and
exploiting invariant transformation across domains. As an example,
Thrun and Mitchell (1995) describe how to search for certain forms of
invariance in life-long learning using a neural network. These kinds of
invariance are used to bias the learner as it selects a hypothesis on a
new domain.

4.4.2. Theoretical Studies

A theoretical analysis of the learning-to-learn paradigm is found within
an empirical and Bayesian view (Baxter, 1998), and within a Probably
Approximately Correct (Valiant, 1984) or PAC view. We focus on the
PAC view (Baxter, 2000). In this case, the learner is assumed em-
bedded in an environment of related learning domains. Meta-learning
takes place because the learner is not only looking for the right hy-
pothesis h in a hypothesis space H,, but in addition is searching for
the right hypothesis space in a family of hypothesis spaces {H}. The
right hypothesis space H, € {#H} must be large enough to embed a
solution to the problem domain, but small enough to make any form of
generalization possible. The study draws an analogy between the role
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of the VC dimension (Blumer et. al, 1989) and the size of the family
of hypothesis spaces |[{H}|. It turns out both measures can be used to
derive bounds on the number of domains, and the number of examples
on each domain, required to ensure with high probability that we will
find a solution having low error on new training domains. Hence, under
certain assumptions, the number of examples required for each domain
decreases as the number of observed domains increases.

4.5. LEARNING CLASSIFIER SYSTEMS

Learning classifier systems originated from the pioneer work of Holland
(Holland, 1992; Holland and Reitman, 1978). An excellent review of the
subject is given by Lanzi et. al (2000). A classifier system is a parallel,
message-passing, rule-based system. Each message or rule —referred in
this context as a classifier— is a condition-action pair; if a message
matches the condition part, the rule is candidate to activate and ex-
ecute the action part. The system assumes an input interface or set
of detectors that translates signals from an external environment into
messages. Similarly an output interface translates messages through
effectors into external actions (Booker et. al, 1989).

A classifier system is a learning mechanism working at two different
levels. At the first level, the system learns to identify rules that can
return high profit from the environment. The problem of how to assign
credit to the right rules, also known as the credit-assignment problem,
is solved through some form of reinforcement learning (Sutton and
Barto, 1998), e.g., bucket-brigade, profit-sharing plan, Q-learning. The
mechanism assigns a credit or value of strength to each rule based on its
contribution. At the second level, the system learns how to construct
new rules that have the potential of further increasing the reward from
the environment. Normally a set of genetic operators come into play for
evolving the rule set. Rules with high strength have a higher probability
of being selected to produce new offspring rules (Holland et. al, 2000).

Classifier systems may appear at first glance disconnected from
meta-learning. A closer examination, however, reveals the opposite. For
example, a learning algorithm can be dissected into a set of components
(Vilalta, 1998), each with a specific function during classification, e.g.,
select the most relevant features, partition the training set following
a separate-and-conquer approach or a divide-and-conquer approach,
hypothesis pruning, etc. For each domain, activating some components
may give a higher reward (e.g., higher predictive accuracy) than others.
The framework adopted by learning classifier systems can be used in
meta-learning by mapping classifiers or rules with learning components.
A form of reinforcement learning can decide what learning strategy,
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i.e., combination of learning components, maximizes the learner’s per-
formance. In addition, a discovery system may also try to find new
components that can produce more efficient learning algorithms. The
idea above sheds light on a research direction to build self-adaptive
learners (Figure 2), where the assessment of a hypothesis is based on
the successful performance of a combination of learning components,
and on a meta-learner using that meta-knowledge to build new learning
algorithms.

4.6. OTHER APPROACHES

Outside the scope of classification, meta-learning has been applied to
areas like case-based reasoning, constraint satisfaction, learning agents,
etc. We end our survey by briefly mentioning some work related to these
areas.

In the context of cased-based reasoning, Goel (1996) describes a
case-based interactive system for problem solving. The system displays
the ability to reason about its own performance by keeping track of how
a problem is solved, i.e., by keeping track of meta-cases. As a result, the
system is able to provide explanations of its reasoning and justifications
of its solutions.

Meta-learning has been used in analytic learning for constraint-
satisfaction problems (Minton, 1993). Analytic learning (e.g., expla-
nation based learning, derivational analogy), exploits problem-solving
experience (Minton, 1989). When applied at a meta-learning level, the
idea is to use meta-level theories to help the system reason about the
problem solver’s base-level theory. A meta-level analysis is appropriate
when the base-level theory is intractable (Minton, 1993).

Meta-learning can also be applied to areas like learning agents.
Baum (1998) provides an extensive study and discussion on how to
make agents collaborate (using a kind of reinforcement learning). The
system embeds learning agents that can generate other agents. Other
approaches include the use of meta-level information of problem-solving
knowledge for cooperation in a multi-agent system (Prasad and Lesser,
1997).

5. Discussion and Conclusions

Our survey shows how the term meta-learning has been ascribed differ-
ent meanings by different research groups. From building meta-learners
of base classifiers (Section 4.1), to looking for dynamic forms of bias
(Section 4.1), to studying how learning can continue in a life-long en-
vironment (Section 4.1), meta-learning continues to enrich the field of
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machine learning with a constant question: how can we exploit knowl-
edge about learning (i.e., meta-knowledge) to improve the performance
of learning algorithms? In spite of the many research directions, no
clear answer has emerged.

Perhaps broadening our view of the scope of meta-learning can pro-
vide better insights on how meta-knowledge can be used. For example,
the approach adopted by stacked generalization (Section 4.1) assumes
no fundamental distinction between learning at the base-level and at
the meta-level. Transforming the training set by including the predic-
tions of base learners is a form of re-using our learning tools at different
levels of abstraction. The idea of making no fundamental differences
between learning and meta-learning is shared by several researchers
(Schmidhuber, 1995).

But meta-learning may be radically different from learning at the
base level. For example, we could define meta-learning as the problem
of taking the right action (i.e., the right bias) according to a specific
world state (e.g., the type of input-output distribution). This definition
allows us to equate meta-learning with some form of reinforcement
learning (Ring, 1998). The definition also points to the mechanism
behind learning classifier systems (Section 4.5).

Whether we consider meta-learning to have the same fundamen-
tal structure as base-learning or not, an important goal in machine
learning is to combine the ability of a learning algorithm to improve
performance when the number of examples increases, with the ability
of the same learning algorithm to improve its learning bias when the
number of tasks increases. To achieve this goal, we believe the field of
meta-learning would benefit greatly from a study of how learning algo-
rithms can improve their performance through experience, i.e., through
meta-knowledge (Section 3).
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