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omAbstra
t. The �rst part of this paper provides a perspe
tive view of meta-learningin whi
h the goal is to build self-adaptive learning algorithms. The idea is to improvethe learning bias dynami
ally through experien
e by the 
ontinuous a

umulation ofmeta-knowledge. The se
ond part of this paper provides a survey of meta-learning asreported by the ma
hine-learning literature. We �nd that di�erent resear
hers holddi�erent views of what the termmeta-learning exa
tly means. Despite di�erent viewsand resear
h lines, a question remains 
onstant: how 
an we exploit knowledge aboutlearning (i.e., meta-knowledge) to improve the performan
e of learning algorithms?Clearly the answer to this question is key to the advan
ement of the �eld and
ontinues being the subje
t of intensive resear
h.Keywords: indu
tive learning, 
lassi�
ation, meta-knowledge.1. Introdu
tionMeta-learning studies how learning systems 
an in
rease in eÆ
ien
ythrough experien
e; the goal is to understand how learning itself 
anbe
ome 
exible a

ording to the domain or task under study. All learn-ing systems work by adapting to a spe
i�
 environment, whi
h redu
esto imposing a partial ordering or bias on the set of possible hypothesesexplaining a 
on
ept (Mit
hell, 1980). Meta-learning di�ers from base-learning in the s
ope of the level of adaptation: meta-learning studieshow to 
hoose the right bias dynami
ally, as opposed to base-learningwhere the bias is �xed a priori, or user parameterized. In a typi
alindu
tive-learning s
enario, applying a base-learner (e.g., de
ision tree,neural network, or support ve
tor ma
hine) over some data produ
esa hypothesis that depends on the �xed bias embedded in the learner.Learning takes pla
e at the base-level be
ause the quality of the hy-pothesis normally improves with an in
reasing number of examples.Nevertheless, su

essive appli
ations of the learner over the same dataalways produ
es the same hypothesis, independently of performan
e;no knowledge is extra
ted a
ross domains or tasks (Pratt and Thrun,1997).Meta-learning aims at dis
overing ways to dynami
ally sear
h forthe best learning strategy as the number of tasks in
reases (Thrun,
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2 Vilalta and Drissi1998; Rendell et al., 1987B). A 
omputer program quali�es as a learningma
hine if its performan
e improves with experien
e (Mit
hell, 1997;Cohen and Feigenbaum, 1989). Experien
e is best understood as theknowledge gained from the analysis of several tasks; the de�nition is notlimited to the ability to re�ne a hypothesis after presenting examplesthat belong to one task. Hen
e, meta-learning advo
ates the need for
ontinuous adaptation of the learner at di�erent levels of abstra
tion. Ifa base-learner fails to perform eÆ
iently, one would expe
t the learningme
hanism itself to adapt in 
ase the same task is presented again.Thus, learning 
an take pla
e not only at the example (i.e., base) level,but also at the a
ross-task (i.e., meta) level.After des
ribing our own perspe
tive view of meta-learning and pos-ing some interesting 
hallenges for future resear
h, this paper providesa survey of the �eld as reported in the ma
hine-learning literature.Some areas of study that bear 
lose relationship to meta-learning in-
lude building a meta-learner of base-learners (Se
tion 4.1), sele
ting anindu
tive bias dynami
ally (Se
tion 4.2), building meta-rules mat
hingtask properties with algorithm performan
e (Se
tion 4.3), indu
tivetransfer and learning to learn (Se
tion 4.4), learning 
lassi�er systems(Se
tion 4.5), and others (Se
tion 4.6). Our survey shows how the termmeta-learning means di�erently to di�erent resear
h groups; we �ndthat ea
h of the areas mentioned above 
overs only a few pie
es in thebig puzzle 
onformed by the �eld of meta-learning. Our ultimate goalis to see the �eld progressing towards a uniform and 
oherent view.This paper is organized as follows. Se
tion 2 gives de�nitions andba
kground information in 
lassi�
ation. Se
tion 3 provides our ownperspe
tive view of the nature and potential avenues of resear
h inmeta-learning. Se
tion 4 is a survey of meta-learning as reported inthe ma
hine-learning literature. Se
tion 5 ends with dis
ussion and
on
lusions. 2. PreliminariesOur study is 
entered on the 
lassi�
ation problem ex
lusively. Theproblem is to learn how to assign the 
orre
t 
lass to ea
h of a set ofdi�erent obje
ts (i.e., events, situations). A learning algorithm L is�rst trained on a set of pre-
lassi�ed examples Ttrain : f(~Xi; 
i)gmi=1.Ea
h obje
t ~X is 
hara
terized by features, and 
an be represented asa ve
tor in an n-dimensional feature spa
e, ~X = (X1;X2; � � � ;Xn).Ea
h feature Xk 
an take on a di�erent number of values. ~Xi is labeledwith 
lass 
i a

ording to an unknown target fun
tion F , F (~Xi) = 
i(we assume a deterministi
 target fun
tion, i.e., zero-bayes risk). In
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A Survey of Meta-Learning 3
lassi�
ation, ea
h 
i takes one of a �xed number of 
ategori
al values.Ttrain will 
onsist of independently and identi
ally distributed (i.i.d.)examples obtained a

ording to a �xed but unknown joint probabilitydistribution � in the spa
e of possible feature-ve
tors X . The goal in
lassi�
ation is to produ
e a hypothesis h that best approximates F ,i.e., that minimizes a loss fun
tion (e.g., zero-one loss) in the spa
e offeature ve
tors and 
lasses, X � C, a

ording to distribution �.Classi�
ation begins when learning algorithm L re
eives as inputa training set Ttrain and 
ondu
ts a sear
h over a hypothesis spa
eHL until it �nds a hypothesis h, h 2 HL, that approximates the truefun
tion F . Thus a learning algorithm L maps a training set into ahypothesis, L : T ! HL, where T is the spa
e of all training sets ofsize m. The sele
ted hypothesis h 
an then be used to guess the 
lassof unseen examples.Learning algorithm L embeds a set of assumptions or bias thata�e
ts the learning pro
ess in two ways: it restri
ts the size of thehypothesis spa
e HL, and it imposes an ordering or ranking over allhypotheses inHL. The bias of a learning algorithm LA is stronger thanthe bias of another learning algorithm LB if the size of the hypothesisspa
e1 
onsidered by LA is smaller than the size of the hypothesis spa
e
onsidered by LB (i.e., if jHLA j � jHLB j). In this 
ase the bias embed-ded by LA 
onveys more extra-evidential information (Watanabe, 1969)than the bias in LB, whi
h enables us to narrow down the number of
andidate hypotheses estimating the true target 
on
ept F . We say thebias of a learning algorithm is 
orre
t if the target 
on
ept is 
ontainedin the hypothesis spa
e (i.e., if F 2 HL). An in
orre
t bias pre
ludes�nding a perfe
t estimate to target 
on
ept F .3. A Perspe
tive View of Meta-LearningIn this se
tion we lay down some de�nitions and 
on
epts that will behelpful to 
ompare some of the 
urrent resear
h dire
tions adopted inmeta-learning. Our own view of the �eld advo
ates the 
onstru
tion ofself-adaptive learners.In base-learning, the hypothesis spa
e HL of a learning algorithmL is �xed. Applying a learning algorithm (e.g., de
ision tree, neuralnetwork, or support ve
tor ma
hine) over some data produ
es a hy-pothesis that depends on the �xed bias embedded by the learner. Thisimplies a learning algorithm 
an only learn eÆ
iently over a limitednumber of tasks. More formally, let a learning task s be de�ned as1 We limit our study to hypothesis spa
es that are �nite.
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4 Vilalta and Drissia 3-tuple, s = (F;m;�), 
omprising a target 
on
ept F , a training-set size m, and a sample distribution � from whi
h the examples in atraining set are drawn2. If we represent the spa
e of all possible learningtasks (i.e., the 
ross produ
t of all target 
on
epts, training-set sizes,and distributions) as S, then algorithm L 
an learn eÆ
iently over alimited region RL in S that favors the bias embedded in L; algorithm L
an never be made to learn eÆ
iently over all tasks in S as long as itsbias remains �xed (S
ha�er, 1994; Watanabe, 1985; Wolpert, 1996; Raoet al., 1995).3.1. Random vs Stru
tured TasksOne may rightly argue that the spa
e of all tasks 
ontains many randomregions; failing to learn over those regions 
arries in fa
t no negative
onsequen
es. For this reason, we will assume RL 
omprises a subset ofstru
tured tasks, Sstru
t � S, where ea
h task is non-random and 
an beas
ribed a low degree of 
omplexity. Here we simply want to distinguishbetween two sets of tasks: stru
tured and random. We attempt to givea more formal de�nition of both types of tasks.One dimension along whi
h we 
an di�erentiate between stru
turedand random tasks lies in the expe
ted amount of data 
ompressionthat 
an be obtained over the training sets. Stru
tured tasks Sstru
tdenote regular patterns over the training sets that 
ommonly lead tothe dis
overy of 
on
ise representations. Random tasks, on the otherhand, are 
hara
terized by many irregularities; long representationsare then ne
essary to reprodu
e the original body of data. But how
an we determine the degree of stru
ture (
onversely the degree ofrandomness) of a task? Let us assume we have a measure of 
omplexityK appli
able to any task. We 
an 
lassify all possible tasks a

ording toits 
omplexity in the following way. For a �xed 
on
ept F , training-setsize m, and distribution �, we denote the 
omplexity of a tasks s asK(s) = E�(KF;m(Ti)) = X8 Ti of size mP (Ti) KF;�;m(Ti) (1)where P (Ti) is the probability of generating training set Ti a

ordingto �, and KF;m(Ti) is the value of the 
omplexity (i.e., degree of ran-domness) of training set Ti (
onditioned on F ), for a �xed size m, anda �xed distribution �. This de�nition 
an serve to 
lassify the universeof all possible tasks a

ording to K.2 A task 
an be seen as a random variable where ea
h possible out
ome is atraining set of size m drawn a

ording to distribution �; examples are labeleda

ording to 
on
ept F .
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A Survey of Meta-Learning 5The nature of K is left unspe
i�ed. Ideally one would use a mea-sure su
h as Kolmogorov Complexity (Vitanyi, 1996; Li and Vitanyi,1992; Li and Vitanyi, 1997; Vitanyi, 1997). Given a training set T ,the Kolmogorov 
omplexity of T , K(T ), is de�ned as the length ofthe shortest e�e
tive des
ription of T . More rigorously, K(T ) is thelength of the shortest binary program from whi
h the data 
an be re-
onstru
ted (Vitanyi, 1997). Unlike other measures (e.g., 
lassi
al infor-mation theory) Kolmogorov 
omplexity 
onsiders the maximal degreeof 
ompressibility over the data under analysis.3.2. Goals in Meta-LearningOne goal in meta-learning is to learn what 
auses L to dominate inregion RL. The problem 
an be de
omposed in two parts: 1) determinethe properties of the tasks in RL that make L suitable for su
h region,and 2) determine the properties of L (i.e., what are the 
omponents
ontained by algorithm L and how they intera
t with ea
h other) that
ontribute to the domination of RL. A solution to the problem abovewould provide guidelines for 
hoosing the right learning algorithm ona parti
ular task. As illustrated in Figure 1, ea
h task si may lie insideor outside the region that favors the bias embedded by a learning algo-rithm L. In Figure 1, task s1 is best learned by algorithm LA be
auseit lies within the region RLA . Similarly, s2 is best learned by algorithmLB, whereas s3 is best learned by both LA and LB . A solution to themeta-learning problem 
an indi
ate how to mat
h learning algorithmswith task properties, in this way yielding a prin
ipled approa
h to thedynami
 sele
tion of learning algorithms.In addition, meta-learning 
an solve the problem of learning taskslying outside the s
ope of available learning algorithms. As shown inFigure 1, task s4 lies outside the regions of both LA and LB . If LAand LB are the only available algorithms at hand, task s4 is proneto re
eiving a poor 
on
ept estimation. One approa
h to solve theproblem above is to use a meta-learner to 
ombine the predi
tions ofbase-learners in order to shift the dominant region over the task understudy. In Figure 1, the goal would be to embed the meta-learner witha bias favoring a region of tasks that in
ludes s4. Se
tion 4 des
ribes
urrent resear
h heading in this dire
tion.3.3. Self-Adaptive Learning AlgorithmsThe 
ombination of base-learners by a meta-learner o�ers no guaranteeof 
overing every possible (stru
tured) task of interest. We 
laim a po-tential avenue of resear
h in meta-learning is to provide the foundationsto 
onstru
t self-adaptive learning algorithms, i.e., learning algorithms
metaL.tex; 29/03/2002; 12:41; p.5



6 Vilalta and DrissiUniverse of all tasks SStru
tured tasks Sstru
tRLA RLBs1 � s3 � s2 � s4 �Figure 1. Ea
h learning algorithm 
overs a region of (stru
tured) tasks favored byits bias. Task s1 is best learned by algorithm LA, s2 is best learned by algorithmLB , whereas s3 is best learned by both LA and LB . Task s4 lies outside the s
opeof LA and LB .that 
hange their internal me
hanism a

ording to the task under anal-ysis. In Figure 1, this would mean enabling a learning algorithm tomove along the spa
e of stru
tured 
on
epts Sstru
t until the algorithmlearns to 
over the task under study. We assume this 
an be a
hievedthrough the 
ontinuous a

umulation of meta-knowledge indi
ating themost appropriate form of bias for ea
h di�erent task. Beginning withno experien
e, the learning algorithm would initially use a �xed formof bias to approximate the target 
on
ept. As more tasks are observed,however, the algorithm would be able to use the a

umulated meta-knowledge to 
hange its own bias a

ording to the 
hara
teristi
s ofea
h task. This is one kind of life-long learning (Thrun, 1998).Figure 2 is a (hypotheti
al) 
ow diagram of a self-adaptive learner.The input and output 
omponents to the system are a training setand a hypothesis respe
tively. Ea
h time a hypothesis is produ
ed, aperforman
e assessment 
omponent evaluates its quality. The resultinginformation be
omes a new entry in a performan
e table; an entry
ontains a ve
tor of meta-features 
hara
terizing the training set, andthe bias employed by the algorithm if the quality of the hypothesisex
eeds some a

eptable threshold. We assume the self-adaptive learner
ontains a meta-learner that takes as input the performan
e table andgenerates a set of rules of experien
e (i.e., meta-hypothesis) mappingany training set into a form of bias. The la
k of rules of experien
e atthe beginning of the learner's life would for
e the me
hanism to use a�xed form of bias. But as more training sets are observed, we expe
t
metaL.tex; 29/03/2002; 12:41; p.6



A Survey of Meta-Learning 7Training Set - Self-Adaptive LearnerMeta-Learner Rules ofExperien
e- - Hypothesis
?Performan
eAssessment?Meta-FeatureGenerator Performan
eTable�����* HHHHHY6

Figure 2. A 
ow diagram of a self-adaptive learner.the expertise of the meta-learner to dominate in de
iding whi
h formof bias best suits the 
hara
teristi
s of the training set.The self-adaptive learner des
ribed in Figure 2 poses major 
hal-lenges to the meta-learning 
ommunity (a more detailed analysis ofthese 
hallenges is provided by Vilalta (2001)). Brie
y, we need to de�nehow 
an we assess the quality of a hypothesis, or how 
an we assessthe quality of the bias employed by the the learning algorithm. Alsowe need to de�ne how 
an we 
hara
terize a task in terms of relevantmeta-features. Finally, one must be aware of a problem related to the
exibility of the self-adaptive learner in Figure 2: whereas the biasis now sele
ted dynami
ally, the meta-learner is not self-adaptive andemploys a �xed form of bias. Clearly the meta-learner 
an be seenas a learning algorithm too, but la
king the adaptability as
ribed tothe base learner. Ideally we would like the meta-learner to be self-adaptive, i.e., to improve through experien
e. One solution 
ould be to
ontinue with the same logi
al fashion as in Figure 2, and de�ne a meta-meta-learner helping the meta-learner improve through experien
e. Theproblem, however, does not disappear be
ause the meta-meta learnerwould exhibit a �xed form of bias. The 
hallenge lies on how to stop theapparently in�nite 
hain of meta-learners needed to a
hieve 
omplete
exibility in the sele
tion of bias.The problems just des
ribed provide interesting goals that we hopewill stimulate the resear
h 
ommunity to 
ontribute to the �eld of meta-learning.
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8 Vilalta and Drissi4. A Survey of Meta-LearningThis se
tion provides a survey of meta-learning as reported in thema
hine-learning literature. Any survey of this kind is prone to omitrelevant work and adopt a single-minded view for whi
h we o�er ourapologies. Our goal is simply to unify 
urrent views and de�nitions ofwhat is meant by the term meta-learning.4.1. A Meta-Learner of Base-LearnersOriginally proposed be Wolpert (1992), one 
ommon approa
h to meta-learning is known as sta
ked generalization. Here, a set of q base-learners are applied to a training set Ttrain : f(~Xi; 
i)gmi=1 to produ
eq hypotheses, fhjgqj=1, also 
alled level-0 generalizers. Meta-learningtakes pla
e when training set Ttrain is rede�ned into a new set T 0train.The rede�nition repla
es ea
h ve
tor ~Xi with a new ve
tor ~X0i that
ontains the 
lass predi
ted by ea
h of the q hypothesis on ~Xi:T 0train = f(~X0i; 
i)g = f((h1(~Xi); h2(~Xi); � � � ; hq(~Xi)); 
i)g (2)The new training set T 0train serves as input to a set of meta-learners,whi
h produ
e a new set of hypotheses or level-1 generalizers. The re-de�nition of Ttrain into T 0train is done via k-fold 
ross validation (Kohavi,1995).Sta
ked generalization is 
onsidered a form of meta-learning be
ausethe transformation of the training set 
onveys information about thepredi
tions of the base-learners (i.e., 
onveys meta-knowledge). We donot 
onsider as part of meta-learning other model-
ombination te
h-niques where the idea is to produ
e variations of the data (e.g., bagging(Breiman, 1996) and boosting (Freund and S
hapire, 1996)), althoughde�nitions of relevant meta-features have been obtained from this work.Sta
ked generalization has a severe limitation in that both base-learnersand meta-learners have a �xed form of bias, i.e., no dynami
 sele
tion ofbias takes pla
e. The dominant (task) region for the meta-learner maybe di�erent from the base-learners, but ultimately �xed (Se
tion 3 andFigure 1).Resear
h in the sta
ked-generalization paradigm investigates whatbase-learners and meta-learners produ
e best empiri
al results (Chanand Stolfo, 1998; Chan and Stolfo, 1993; Chan, 1996). After transform-ing the original training set, ea
h example 
ontains the predi
tions ofthe base-learners, but it may also 
ontain the original features. Resultsshow how 
ertain 
ombinations of learners and meta-learners 
an yieldsigni�
ant improvements in a

ura
y.
metaL.tex; 29/03/2002; 12:41; p.8



A Survey of Meta-Learning 9Several variations to sta
ked generalization have been explored. Forexample, Chan and Stolfo (1998) experiment with a modi�ed approa
hwhere ea
h base-learner is trained with a fra
tion of the total data.While running ea
h learning algorithm in parallel, a hierar
hi
al treestru
ture is built where ea
h leaf is a level-0 generalizer and ea
h in-ternal node is a high-level generalizer (see referen
e for details). Thisstrategy outperformed a majority-voting approa
h. In a similar vein,Prodromidis and Stolfo (1999B) build a tree of generalizers from meta-data and then prune the tree to eliminate redundant generalizers. Thesame idea is studied in a distributed system (Prodromidis et al., 1999;Prodromidis and Stolfo, 1999A). Todorovski and Dzeroski (2000) intro-du
e meta-de
ision-trees, where ea
h leaf of the meta-tree 
omprisesa hypothesis for predi
tion. Domingos (1997,1998) shows empiri
aleviden
e supporting the 
laim that a meta-learner 
an improve thea

ura
y of base-learners while retaining 
omprehensibility.The study of how to 
ombine the predi
tions of base-learners hasprodu
ed novel meta-features; these meta-features are useful to un-derstand and predi
t the a

ura
y of the meta-learner. For example,Fan et al. (1999) introdu
e a 
on
i
t-based measure that indi
atesthe proportion of examples in the training set a

urately 
lassi�edby the base-learners. Other meta-features in
lude 
overage (Brodleyand Lane, 1996) {fra
tion of examples for whi
h at least one of thebase 
lassi�ers produ
es 
orre
t predi
tions; diversity (Brodley andLane, 1996; Ali and Pazzani, 1996)) {degree of di�eren
e in the pre-di
tions of the base-learners; and 
orrelated error (Ali and Pazzani,1996) {fra
tion of examples for whi
h two base-learners make the samein
orre
t predi
tion.4.2. Dynami
 Sele
tion of BiasDynami
 sele
tion of bias enables a learning algorithm to shift its regionof expertise along the set of (stru
tured) tasks (Figure 1). The goal is tomodify the hypothesis spa
e to have a better 
overage of the task underanalysis. Meta-learning is a ne
essary 
omponent during dynami
-biassele
tion, often a
ting as a guideline in the sear
h over the bias spa
e.An introdu
tion to the �eld of dynami
-bias sele
tion is given byDesJardins and Gordon (1995A). The authors develop a framework forthe study of dynami
 bias as a sear
h in three di�erent tiers (DesJardinsand Gordon, 1995B). The �rst tier refers to a sear
h over a hypothesisspa
e HL where a learning algorithm L looks for the best hypothesisapproximating the target 
on
ept; most learning algorithms assumethis spa
e �xed. For dynami
 bias sele
tion to take pla
e, a learningalgorithm L must sear
h in a se
ond tier, where the strength and size of
metaL.tex; 29/03/2002; 12:41; p.9



10 Vilalta and DrissiHL 
an be modi�ed separately (Se
tion 2). A third tier helps to modifythe meta-spa
es de�ned at the se
ond tier. Although no more tiers areintrodu
ed in this framework, the problem of where to stop buildingmore tiers (i.e., more meta-meta-spa
es) is evident (Se
tion 3).One approa
h to the dynami
 sele
tion of bias is to 
hange therepresentation of the feature spa
e by adding or removing features. Oneof the earliest systems using a form of dynami
 bias is STABB (Utgo�,1986). With the goal of generating a hypothesis spa
e that is strong and
orre
t (Se
tion 2), STABB 
ontinually exerts a form of 
hange of repre-sentation. As an example, the system is able to 
onstru
t a new featureas the disjun
tion of two original features; additional features in
reasethe size of the hypothesis spa
e and thus help to alleviate the problemof a strong hypothesis spa
e (i.e., of having few available hypotheses).In 
ontrast, Gordon (1992) shows how to weaken the hypothesis spa
eby eliminating features when bias is deemed inappropriate. Hen
e, bias
an be made stronger by eliminating features or weaker by restoringfeatures (Gordon, 1990). In addition one 
an �lter out hypotheses usingmeta-rules as a form of expli
it bias sele
tion (Gordon and Perlis, 1989).Baltes (1992) des
ribes a framework for dynami
 sele
tion of bias as a
ase-based meta-learning system; 
on
epts displaying some similarityto the target 
on
ept are retrieved from memory and used to de�ne thehypothesis spa
e.Dynami
-bias sele
tion applies to the algorithm-sele
tion problem.Rendell et al. (1987A) des
ribe the VBMS system that learns howto sele
t a learning algorithm depending on the properties of the task.VBMS uses a dynami
 similarity measure that evolves with experien
e;as more tasks are attempted VBMS learns relationships between task
hara
teristi
s and biases embedded in the learning algorithms (Rendellet al., 1987B). The task 
hara
teristi
s used by VBMS are simple (e.g.,number of features), and bias is not modi�ed but rather depends onthe available learning algorithms. A related approa
h is des
ribed byBruha (2000) in a rule-based system. Here, predi
ting the 
lass of newexamples depends on the quality of ea
h rule; su
h quality is updatedduring the testing phase: a dynami
 pro
ess that 
hanges bias in therule-sele
tion poli
y.4.3. Meta-Rules Mat
hing Domains With AlgorithmPerforman
eOne important fa
et of meta-learning is to provide guidelines of howto relate a learning algorithm with those domains in whi
h the al-gorithm performs well. Most often the main performan
e 
riterion ispredi
tive a

ura
y, but in reality other 
riteria may be equally im-
metaL.tex; 29/03/2002; 12:41; p.10



A Survey of Meta-Learning 11portant, e.g., 
omputational 
omplexity, expressiveness, 
ompa
tness,
omprehensibility, et
. (Giraud, 1998).The general approa
h 
onsists of de�ning a set of domain 
hara
-teristi
s or meta-features that are relevant to the performan
e of alearning algorithm (Mi
hie, 1994); those meta-features enable us tobuild a meta-domain Tmeta relating domain 
hara
teristi
s with al-gorithm performan
e (on
e a suÆ
ient number of domains has beenanalyzed). Finally, we 
an indu
e a set of rules using a meta-learnerover Tmeta to dis
over the 
onditions under whi
h a learning algorithmoutperforms others.Under this framework, Aha (1992) aims at obtaining rules spe
ifyingwhen a learning algorithm outperforms others signi�
antly. Examplesof domain 
hara
teristi
s are the degree of 
orrelation between featuresand the target 
on
ept, the distribution of examples within 
on
eptsdisjun
ts, the distribution of examples among 
on
epts, et
. The rulesreveal the 
onditions under whi
h signi�
ant di�eren
es in performan
ehold. Gama and Brazdil (1995) extra
t domain 
hara
teristi
s su
h asthe number of examples, number of attributes, number of 
lasses, stan-dard deviation ratio for ea
h feature, skewness, kurtosis, noise-signalratio, et
., to generate meta-rule models. Similar work is reported byBrazdil (1998) who proposes using meta-learning as a pre-pro
essingstep to model sele
tion; experimentation on a

ura
y performan
e isthen used to sele
t the best algorithm. Meta-rules mat
hing domain
hara
teristi
s with indu
tive bias have also been 
rafted manually(Brodley, 1993; Brodley, 1994). In addition, a domain may be rep-resented by properties of the �nal hypothesis rather than the dataitself. For example, Bensusan et. al (2000) measure properties of ade
ision-tree, e.g., nodes per feature, maximum tree depth, shape, treeimbalan
e, et
., and 
onvert them into meta-features.4.3.1. Finding Regions In The Feature Spa
e And Meta-Feature Spa
eInstead of using meta-learning to sele
t a learning algorithm for aparti
ular domain, a {more granular{ approa
h 
onsists of sele
tinga learning algorithm for ea
h individual test example. The idea is to
hoose that learning algorithm displaying best performan
e aroundthe neighborhood of the test example (Merz, 1995A; Merz, 1995B).Algorithm sele
tion is done a

ording to best performan
e, using 
ross-validatory history.A slight variation to the approa
h above is to look at the neigh-borhood of a test example in the spa
e of meta-features. Spe
i�
ally,after learning from several domains, one 
an 
onstru
t a meta-domainTmeta, where ea
h element pair is a des
ription of a domain (meta-feature ve
tor) and a 
lass label 
orresponding to the best-performan
e
metaL.tex; 29/03/2002; 12:41; p.11



12 Vilalta and Drissilearning algorithm on that domain. When a new domain arrives, we 
angather the k-nearest neighbor examples in Tmeta to sele
t the learningalgorithm with best average performan
e (Keller et. al, 2000). Meta-features like a

ura
y, storage spa
e, and running time 
an be usedfor performan
e evaluation (Keller et. al, 2000). A similar approa
his de�ned by Brazdil and Soares (2000), in whi
h the learning algo-rithms 
orresponding to the k-nearest neighbor domains are ranked asa fun
tion of a

ura
y and running time.4.3.2. LandmarkingA re
ent pie
e of work in meta-learning is 
alled landmarking. Theidea is to have two sets of learning algorithms Qlandmark and Qpool.The �rst set, Qlandmark, is 
omposed of simple learners that exhibitsigni�
ant di�eren
es in their me
hanism.We will use their a

ura
y (orerror rate) to 
hara
terize a domain, and refer to them as landmarkers.The se
ond set, Qpool, 
ontains advan
ed learners, one of whi
h mustbe sele
ted for our 
urrent domain. A meta-domain is 
onstru
ted asfollows. Ea
h example (i.e., ea
h domain) is 
hara
terized by the errorrates of the landmarkers inQlandmark. The label or 
lass of ea
h exampleis the algorithm in Qpool with best 
ross-validatory a

ura
y. A meta-learner 
an then asso
iate the performan
e of the landmarkers withthe best algorithm in Qpool. From this point of view, meta-learning isthe pro
ess of �nding areas of expertise of learners 
alled landmarkers,and of 
orrelating those areas with the performan
e of other {moreadvan
ed{ learners (Bensusan and Giraud-Carrier, 2000; Pfahringeret. al, 2000).4.4. Indu
tive Transfer and Learning to LearnLearning is not an isolated task that starts from s
rat
h every time anew problem domain appears. As experien
e a

umulates, a learningme
hanism is expe
ted to perform in
reasingly better (Se
tion 3). Forlearning to improve through time, knowledge about learning, or meta-knowledge, must be transferred a
ross domains or tasks. The pro
essis known as indu
tive transfer (Pratt and Thrun, 1997).An interesting study in indu
tive transfer falls in the realm of neuralnetworks. A review of how neural networks 
an learn from related tasksis provided by Pratt and Jennings (1998). Caruana (1997) shows whymultitask learning works well in the 
ontext of neural networks usingba
kpropagation. The 
laim is that training with many domains in par-allel on a single neural network indu
es information that a

umulatesin the training signals; a new domain 
an then bene�t from su
h pastexperien
e. Thrun and Sullivan (1998) propose a learning algorithm
metaL.tex; 29/03/2002; 12:41; p.12



A Survey of Meta-Learning 13where domains are 
lustered when mutually related. A new domainis assigned to the most related 
luster; indu
tive transfer takes pla
ewhen generalization exploits information about the sele
ted 
luster.Multitask learning 
an also be used in other learning paradigms su
has kernel regression and de
ision trees.An introdu
tion to the bene�ts of learning from multiple tasks toimprove generalization is provided by Thrun and Pratt (1998). The au-thors propose a general framework that shows the distin
tion betweenlearning at the base-level and at the meta-level. In the base-level onesimply tries to �nd the 
orre
t hypothesis h on a �xed hypothesis spa
eHL. In the meta-level one needs to �nd properties of target fun
tions to
hara
terize entire hypothesis spa
es fHg. It must be 
lear that bothlevels require some form of bias, i.e., no-free lun
h theorems (S
ha�er,1994; Watanabe, 1985; Wolpert, 1996; Rao et al., 1995) apply at bothlevels.4.4.1. Learning to LearnLearning-to-learn relies on the main assumption that learning is sim-pli�ed when it 
ontinues working in a life-long 
ontext (Thrun, 1998).The assumption is supported by the existen
e of patterns on ea
h do-main, and a
ross domains. The general understanding of the natureof patterns a
ross domains is that of invariant transformations. Forexample, image re
ognition of a target obje
t is simpli�ed if the obje
tis invariant under rotation, translation, s
aling, et
. Hen
e, learning-to-learn studies how to improve learning by dete
ting, extra
ting, andexploiting invariant transformation a
ross domains. As an example,Thrun and Mit
hell (1995) des
ribe how to sear
h for 
ertain forms ofinvarian
e in life-long learning using a neural network. These kinds ofinvarian
e are used to bias the learner as it sele
ts a hypothesis on anew domain.4.4.2. Theoreti
al StudiesA theoreti
al analysis of the learning-to-learn paradigm is found withinan empiri
al and Bayesian view (Baxter, 1998), and within a ProbablyApproximately Corre
t (Valiant, 1984) or PAC view. We fo
us on thePAC view (Baxter, 2000). In this 
ase, the learner is assumed em-bedded in an environment of related learning domains. Meta-learningtakes pla
e be
ause the learner is not only looking for the right hy-pothesis h in a hypothesis spa
e HL, but in addition is sear
hing forthe right hypothesis spa
e in a family of hypothesis spa
es fHg. Theright hypothesis spa
e HL 2 fHg must be large enough to embed asolution to the problem domain, but small enough to make any form ofgeneralization possible. The study draws an analogy between the role
metaL.tex; 29/03/2002; 12:41; p.13



14 Vilalta and Drissiof the VC dimension (Blumer et. al, 1989) and the size of the familyof hypothesis spa
es jfHgj. It turns out both measures 
an be used toderive bounds on the number of domains, and the number of exampleson ea
h domain, required to ensure with high probability that we will�nd a solution having low error on new training domains. Hen
e, under
ertain assumptions, the number of examples required for ea
h domainde
reases as the number of observed domains in
reases.4.5. Learning Classifier SystemsLearning 
lassi�er systems originated from the pioneer work of Holland(Holland, 1992; Holland and Reitman, 1978). An ex
ellent review of thesubje
t is given by Lanzi et. al (2000). A 
lassi�er system is a parallel,message-passing, rule-based system. Ea
h message or rule {referred inthis 
ontext as a 
lassi�er{ is a 
ondition-a
tion pair; if a messagemat
hes the 
ondition part, the rule is 
andidate to a
tivate and ex-e
ute the a
tion part. The system assumes an input interfa
e or setof dete
tors that translates signals from an external environment intomessages. Similarly an output interfa
e translates messages throughe�e
tors into external a
tions (Booker et. al, 1989).A 
lassi�er system is a learning me
hanism working at two di�erentlevels. At the �rst level, the system learns to identify rules that 
anreturn high pro�t from the environment. The problem of how to assign
redit to the right rules, also known as the 
redit-assignment problem,is solved through some form of reinfor
ement learning (Sutton andBarto, 1998), e.g., bu
ket-brigade, pro�t-sharing plan, Q-learning. Theme
hanism assigns a 
redit or value of strength to ea
h rule based on its
ontribution. At the se
ond level, the system learns how to 
onstru
tnew rules that have the potential of further in
reasing the reward fromthe environment. Normally a set of geneti
 operators 
ome into play forevolving the rule set. Rules with high strength have a higher probabilityof being sele
ted to produ
e new o�spring rules (Holland et. al, 2000).Classi�er systems may appear at �rst glan
e dis
onne
ted frommeta-learning. A 
loser examination, however, reveals the opposite. Forexample, a learning algorithm 
an be disse
ted into a set of 
omponents(Vilalta, 1998), ea
h with a spe
i�
 fun
tion during 
lassi�
ation, e.g.,sele
t the most relevant features, partition the training set followinga separate-and-
onquer approa
h or a divide-and-
onquer approa
h,hypothesis pruning, et
. For ea
h domain, a
tivating some 
omponentsmay give a higher reward (e.g., higher predi
tive a

ura
y) than others.The framework adopted by learning 
lassi�er systems 
an be used inmeta-learning by mapping 
lassi�ers or rules with learning 
omponents.A form of reinfor
ement learning 
an de
ide what learning strategy,
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A Survey of Meta-Learning 15i.e., 
ombination of learning 
omponents, maximizes the learner's per-forman
e. In addition, a dis
overy system may also try to �nd new
omponents that 
an produ
e more eÆ
ient learning algorithms. Theidea above sheds light on a resear
h dire
tion to build self-adaptivelearners (Figure 2), where the assessment of a hypothesis is based onthe su

essful performan
e of a 
ombination of learning 
omponents,and on a meta-learner using that meta-knowledge to build new learningalgorithms.4.6. Other Approa
hesOutside the s
ope of 
lassi�
ation, meta-learning has been applied toareas like 
ase-based reasoning, 
onstraint satisfa
tion, learning agents,et
. We end our survey by brie
y mentioning some work related to theseareas.In the 
ontext of 
ased-based reasoning, Goel (1996) des
ribes a
ase-based intera
tive system for problem solving. The system displaysthe ability to reason about its own performan
e by keeping tra
k of howa problem is solved, i.e., by keeping tra
k of meta-
ases. As a result, thesystem is able to provide explanations of its reasoning and justi�
ationsof its solutions.Meta-learning has been used in analyti
 learning for 
onstraint-satisfa
tion problems (Minton, 1993). Analyti
 learning (e.g., expla-nation based learning, derivational analogy), exploits problem-solvingexperien
e (Minton, 1989). When applied at a meta-learning level, theidea is to use meta-level theories to help the system reason about theproblem solver's base-level theory. A meta-level analysis is appropriatewhen the base-level theory is intra
table (Minton, 1993).Meta-learning 
an also be applied to areas like learning agents.Baum (1998) provides an extensive study and dis
ussion on how tomake agents 
ollaborate (using a kind of reinfor
ement learning). Thesystem embeds learning agents that 
an generate other agents. Otherapproa
hes in
lude the use of meta-level information of problem-solvingknowledge for 
ooperation in a multi-agent system (Prasad and Lesser,1997). 5. Dis
ussion and Con
lusionsOur survey shows how the term meta-learning has been as
ribed di�er-ent meanings by di�erent resear
h groups. From building meta-learnersof base 
lassi�ers (Se
tion 4.1), to looking for dynami
 forms of bias(Se
tion 4.1), to studying how learning 
an 
ontinue in a life-long en-vironment (Se
tion 4.1), meta-learning 
ontinues to enri
h the �eld of
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16 Vilalta and Drissima
hine learning with a 
onstant question: how 
an we exploit knowl-edge about learning (i.e., meta-knowledge) to improve the performan
eof learning algorithms? In spite of the many resear
h dire
tions, no
lear answer has emerged.Perhaps broadening our view of the s
ope of meta-learning 
an pro-vide better insights on how meta-knowledge 
an be used. For example,the approa
h adopted by sta
ked generalization (Se
tion 4.1) assumesno fundamental distin
tion between learning at the base-level and atthe meta-level. Transforming the training set by in
luding the predi
-tions of base learners is a form of re-using our learning tools at di�erentlevels of abstra
tion. The idea of making no fundamental di�eren
esbetween learning and meta-learning is shared by several resear
hers(S
hmidhuber, 1995).But meta-learning may be radi
ally di�erent from learning at thebase level. For example, we 
ould de�ne meta-learning as the problemof taking the right a
tion (i.e., the right bias) a

ording to a spe
i�
world state (e.g., the type of input-output distribution). This de�nitionallows us to equate meta-learning with some form of reinfor
ementlearning (Ring, 1998). The de�nition also points to the me
hanismbehind learning 
lassi�er systems (Se
tion 4.5).Whether we 
onsider meta-learning to have the same fundamen-tal stru
ture as base-learning or not, an important goal in ma
hinelearning is to 
ombine the ability of a learning algorithm to improveperforman
e when the number of examples in
reases, with the abilityof the same learning algorithm to improve its learning bias when thenumber of tasks in
reases. To a
hieve this goal, we believe the �eld ofmeta-learning would bene�t greatly from a study of how learning algo-rithms 
an improve their performan
e through experien
e, i.e., throughmeta-knowledge (Se
tion 3).A
knowledgementsThis work was supported by IBM T.J. Watson Resear
h Center.Referen
esAha David W. (1992). Generalizing from Case Studies: A Case Study. Pro
eedings ofthe Ninth International Workshop on Ma
hine Learning, 1{10, Morgan Kaufman.Ali Kamal and Pazzani Mi
hael J. (1996). Error Redu
tion Through Learning ModelDes
riptions. Ma
hine Learning, 24, 173{202.Baltes Ja
ky (1992). Case-Based Meta Learning: Sustained Learning Supportedby a Dynami
ally Biased Version Spa
e. Pro
eedings of the Ma
hine LearningWorkshop on Biases in Indu
tive Learning.
metaL.tex; 29/03/2002; 12:41; p.16



A Survey of Meta-Learning 17Baum Eri
 B. (1998). Manifesto for an Evolutionary E
onomi
s of Intelligen
e.Neural Networks and Ma
hine Learning, 285{344, Editor C.M. Bishop, Springer-Verlag.Baxter Jonathan (1998). Theoreti
al Models of Learning to Learn. Learning toLearn, Chapter 4, 71{94, Kluwer A
ademi
 Publishers, MA.Baxter Jonathan (2000). A Model of Indu
tive Learning Bias. Journal of Arti�
ialIntelligen
e Resear
h, 12, 149{198.Bensusan Hilan and Giraud-Carrier Christophe (2000). Casa Batlo in Passeig orlandmarking the expertise spa
e. Eleventh European Conferen
e on Ma
hineLearning, Workshop on Meta-Learning: Building Automati
 Advi
e Strategiesfor Model Sele
tion and Method Combination, Bar
elona, Spain.Bensusan Hilan, Giraud-Carrier Christophe, and Kennedy C. J. (2000). A High-Order Approa
h to Meta-Learning. Eleventh European Conferen
e on Ma
hineLearning, Workshop on Meta-Learning: Building Automati
 Advi
e Strategies forModel Sele
tion and Method Combination, Bar
elona, Spain.Blumer, A., Ehrenfeu
ht, A., Hausler, D., and Warmuth, M.K. (1989). Learnabilityand the Vapnik-Chervonenkis Dimension. Journal of the ACM, 36, 929{965.Booker L., Goldberg D., and Holland J. (1989). Classi�er Systems and Geneti
Algorithms. Arti�
ial Intelligen
e, 40, 235{282.Brazdil Pavel B. (1998). Data Transformation and model sele
tion by exper-imentation and meta-learning. Pro
eedings of the ECML-98 Workshop onUpgrading Learning to Meta-Level: Model Sele
tion and Data Transformation,11{17, Te
hni
al University of Chemnitz.Brazdil Pavel B. and Soares Carlos (2000). Ranking Classi�
ation AlgorithmsBased on Relevant Performan
e Information. Eleventh European Conferen
eon Ma
hine Learning, Workshop on Meta-Learning: Building Automati
 Advi
eStrategies for Model Sele
tion and Method Combination, Bar
elona, Spain.Breiman (1996). Bagging Predi
tors. Ma
hine Learning, 24, 123{140.Brodley Carla (1993). Addressing the Sele
tive Superiority Problem: Automati
Algorithm/Model Class Sele
tion. Pro
eedings of the Tenth InternationalConferen
e on Ma
hine Learning, 17-24, San Mateo, CA, Morgan Kaufman.Brodley Carla (1994). Re
ursive Automati
 Bias Sele
tion for Classi�er Constru
-tion. Ma
hine Learning, 20.Brodley Carla and Lane T. (1996). Creating and Exploiting Coverage and Diversity.Pro
eedings of the AAAI-96 Workshop on Integrating Multiple Learned Models,8{14, Portland, Oregon.Bruha Ivan (2000). A feedba
k loop for re�ning rule qualities in a 
lassi�er: areward-penalty strategy. Eleventh European Conferen
e on Ma
hine Learning,Workshop on Meta-Learning: Building Automati
 Advi
e Strategies for ModelSele
tion and Method Combination, Bar
elona, Spain.Caruana Ri
h (1997). Multitask Learning. Se
ond Spe
ial Issue on Indu
tiveTransfer. Ma
hine Learning, 28, 41{75.Chan Philip K. and Stolfo S. (1998). On the A

ura
y of Meta-Learning forS
alable Data Mining. Journal of Intelligent Integration of Information, Ed.L. Kers
hberg.Chan Philip K. and Stolfo S. (1993). Experiments on Multistrategy Learning byMeta-Learning. Pro
eedings of the International Conferen
e on InformationKnowledge Management, 314{323.Chan Philip K. (1996). An Extensible Meta-Learning Approa
h for S
alable andA

urate Indu
tive Learning. PhD Thesis, Graduate S
hool of arts and S
ien
esat Columbia University.
metaL.tex; 29/03/2002; 12:41; p.17



18 Vilalta and DrissiCohen Paul and Feigenbaum Edward (1989). Learning and Indu
tive Inferen
e. TheHandbook of Arti�
ial Intelligen
e, Volume III. 326-334. Addison-Wesley.DesJardins Marie and Gordon Diana F. (1995A). Spe
ial issue on bias evaluationand sele
tion. Ma
hine Learning, 20 (1/2).DesJardins Marie and Gordon Diana F. (1995B). Evaluation and Sele
tion of Biasesin Ma
hine Learning. Ma
hine Learning, 20, 5{22.Domingos Pedro (1997). Knowledge A
quisition from Examples Via MultipleModels. Pro
eedings of the Fourteenth International Conferen
e on Ma
hineLearning, 98{106. Morgan Kaufmann, Nashville TN.Domingos Pedro (1998). Knowledge Dis
overy Via Multiple Models. IntelligentData Analysis, 2, 187{202.Fan Wei, Stolfo S., and Chan Philip K. (1999). Using Con
i
ts Among MultipleBase Classi�ers to Measure the Performan
e of Sta
king. Pro
eedings of theICML-99 Workshop on Re
ent Advan
es in Meta-Learning and Future Work, 10{15, Giraud-Carrier Christophe and Pfahringer Bernhard (eds.), Stefan InstitutePublisher, Ljubljana.Freund Y. and S
hapire R. E. (1996). Experiments with a new boosting algorithm.Pro
eedings of the Thirteenth International Conferen
e on Ma
hine Learning,148{156. Morgan Kaufman, Bari, Italy.Gama J. and Brazdil P. (1995). Chara
terization of Classi�
ation Algorithms. Pro-
eedings of the seventh Portuguese Conferen
e on Arti�
ial Intelligen
e, EPIA,189-200, Fun
hal, Madeira Island, Portugal.Giraud-Carrier Christophe (1998). Beyond Predi
tive A

ura
y: What?. Pro
eed-ings of the ECML-98 Workshop on Upgrading Learning to Meta-Level: ModelSele
tion and Data Transformation, 78{85, Te
hni
al University of Chemnitz.Goel Ashok K. (1996). Meta-Cases: Explaining Case-Based Reasoning. Pro
eed-ings of the Third European Workshop on Case-Based Reasoning, Published inAdvan
es in Case-Based Reasoning, Le
ture Notes in Computer S
ien
e, 1168,Springer, New York.Gordon Diana and Perlis Donald (1989). Expli
itly Biased Generalization. Compu-tational Intelligen
e, 5, 67-81.Gordon Diana F. (1992). Queries for Bias Testing. Pro
eedings of the Workshop onChange of Representation and Problem Reformulation.Gordon Diana F. (1990). A
tive Bias Adjustment for In
remental, SupervisedCon
ept Learning. PhD Thesis, University of Maryland, 1990.Holland John, Booker Lashon, Colombetti Mar
o, Dorigo Mar
o, Goldberg David,Forrest Stephanie, Riolo Ri
k, Smith Robert, Lanzi Pier Lu
a, Stolzmann Wolf-gang, and Wilson Stewart (2000). What is a Learning Classi�er System?. Le
tureNotes in Arti�
ial Intelligen
e LNAI 1813, Springer Verlag, pp. 3-22, 2000.Holland John (1975). Adaptation in Natural and Arti�
ial Systems. University ofMi
higan Press, Ann Arbor (Republished by the MIT Press, 1992.Holland John and Reitman J. (1978). Cognitive Systems Based On Adaptive Al-gorithms. In D. A. Waterman and F. Hayes Roth, editors, Pattern-dire
tedinferen
e systems, New York: A
ademi
 Press, Springer Verlag, 1978.Keller Jorg, Paterson Iain, and Berrer Helmutt (2000). An Integrated Con
ept forMulti-Crieria-Ranking of Data-Mining Algorithms. Eleventh European Confer-en
e on Ma
hine Learning, Workshop on Meta-Learning: Building Automati
Advi
e Strategies for Model Sele
tion and Method Combination, Bar
elona,Spain.
metaL.tex; 29/03/2002; 12:41; p.18



A Survey of Meta-Learning 19Kohavi Ron (1995). A Study of Cross-Validation and Bootstrap for A

ura
y Esti-mation and Model Sele
tion. Pro
eedings of the Fourteenth International JointConferen
e on Arti�
ial Intelligen
e, 1137{1143.Lanzi Pier Lu
a, Stolzmann Wolfgang, and Wilson Stewart W. (2000). LearningClassi�er Systems: From Foundations to Appli
ations. Le
ture Notes in Arti�
ialIntelligen
e 1813, Springer-Verlag, New York, 2000.Li Ming and Vitanyi Paul (1992). Philosophi
al Issues in Kolmogorov Complexity.International Colloquium on Automata, Languages, and Programming, Le
tureNotes in Computer S
ien
e, volume 623, Springer Verlag, Berlin, 1992.Li Ming and Vitanyi Paul (1997). An Introdu
tion to Kolmogorov Complexity andIts Appli
ations. Springer -Verlag, New York.Merz Christopher J. (1995A). Dynami
 Learning Bias Sele
tion. Preliminary papersof the Fifth International Workshop on Arti�
ial Intelligen
e and Statisti
s, 386{395, Florida.Merz Christopher J. (1995B). Dynami
al Sele
tion of Learning Algorithms. Learningfrom Data: Arti�
ial Intelligen
e and Statisti
s, D. Fisher and H. J. Lenz (Eds.),Springer-Verlag.Mi
hie D., Spiegelhalter DJ, and Taylor CC (1994). Ma
hine Learning, Neural andStatisti
al Classi�
ation. Ellis Horwood, Chi
hester, England.Minton Steve (1993). An Analyti
 Learning System for Spe
ialized Heuris-ti
s. Pro
eedings of Thirteenth International Joint Conferen
e on Arti�
ialIntelligen
e.Minton Steve (1989). Explanation Based-Learning: A problem Solving Perspe
tive.Arti�
ial Intelligen
e, 40, 63{118.Mit
hell Tom (1980). The need for biases in learning generalizations. Te
hni
alReport CBM-TR-117, Computer S
ien
e Department, Rutgers University, NewBrunswi
k, NJ 08904.Mit
hell Tom (1997). Ma
hine Learning. Ed. Ma
Graw-HillPfahinger Bernhard, Bensusan Hilan, and Giraud-Carrier Christophe (2000). Meta-Learning by Landmarking Various Learning Algorithms. Pro
eedings of theSeventeenth International Conferen
e on Ma
hine Learning, Stanford, CA.Prasad M. V. Nagendra and Lesser Vi
tor R. (1997). The Use of Meta-Level Infor-mation in Learning Situation-Spe
i�
 Coordination. Pro
eedings of the FifteenthInternational Joint Conferen
e on Arti�
ial Intelligen
e, Nagoya, Japan.Pratt Lorien and Thrun Sebastian (1997). Se
ond Spe
ial Issue on Indu
tiveTransfer. Ma
hine Learning, 28.Pratt Sebastian and Jennings Barbara (1998). A Survey of Conne
tionist NetworkReuse Through Transfer. Learning to Learn, Chapter 2, 19{43, Kluwer A
ademi
Publishers, MA.Prodromidis Andreas L., Chan Philip K., and Stolfo S. (1999). Meta-Learning in Dis-tributed Data Mining Systems: Issues and Approa
hes. Advan
es in DistributedData Mining, Book AAAI Press, Kargupta and Chan (eds.).Prodromidis Andreas L. and Stolfo S. (1999A). A Comparative Evaluation of Meta-Learning Strategies over Large and Distributed Data Sets. Pro
eedings of theICML-99 Workshop on Re
ent Advan
es in Meta-Learning and Future Work, 18{27, Giraud-Carrier Christophe and Pfahringer Bernhard (eds.), Stefan InstitutePublisher, Ljubljana.Prodromidis Andreas L. and Stolfo S. (1999B). Minimal Cost Complexity Pruningof Meta-Classi�ers. Pro
eedings of AAAI, Extended Abstra
t.Rao, R.B., Gordon, D., and Spears W. (1995). For Every Generalization A
tion,Is There Really an Equal and Opposite Rea
tion? Analysis of the Conservation
metaL.tex; 29/03/2002; 12:41; p.19



20 Vilalta and DrissiLaw for Generalization Performan
e. Pro
eedings of the Twelfth InternationalConferen
e on Ma
hine Learning, 471{479, Morgan Kaufman.Rendell Larry, Seshu Raj, and T
heng David (1987A). More Robust Con
ept Learn-ing Using Dynami
ally-Variable Bias. Pro
eedings of the Fourth InternationalWorkshop on Ma
hine Learning, 66{78, Morgan Kaufman.Rendell Larry, Seshu Raj, and T
heng David (1987B). Layered Con
ept-Learningand Dynami
ally-Variable Bias Management. Pro
eedings of the InternationalJoint Conferen
e of Arti�
ial Intelligen
e, 308{314, Milan, Italy.Ring Mark B. (1998). CHILD: A �rst Step Towards Continual Learning. Learningto Learn, Chapter 11, 261{292, Kluwer A
ademi
 Publishers, MA.S
ha�er C. (1994). A Conservation Law for Generalization Performan
e. Pro
eedingsof the eleventh International Conferen
e on Ma
hine Learning, 259{265, SanFran
is
o, Morgan Kaufman.S
hmidhuber Jurgen (1995). Dis
overing Solutions with Low Kolmogorov Complex-ity and High Generalization Capability. Pro
eedings of the Twelve InternationalConferen
e on Ma
hine Learning, 488{49, Morgan Kaufman.Sutton Ri
hard and Barto Andrew (1995). Reinfor
ement Learning. MIT Press,Cambridge Massa
husetts.Thrun Sebastian and Mit
hell Tom (1995). Learning One More Thing. Pro
eedings ofthe International Joint Conferen
e on Arti�
ial Intelligen
e, 1217{1223, MorganKaufman.Thrun Sebastian and Lorien Pratt (1998). Learning To Learn: Introdu
tion AndOverview. Learning to Learn, Chapter 1, 3{17, Kluwer A
ademi
 Publishers,MA.Thrun Sebastian (1998). Lifelong Learning Algorithms. Learning to Learn, Chapter8, 181{209, Kluwer A
ademi
 Publishers, MA.Thrun Sebastian and O'Sullivan Joseph (1998). Clustering Learning Tasks and theSele
tive Cross-Task Transfer of Knowledge. Learning to Learn, Chapter 10,235{257, Kluwer A
ademi
 Publishers, MA.Todorovski Ljup
o and Dzeroski Saso (2000). Combining Multiple Models with MetaDe
ision Trees. Eleventh European Conferen
e on Ma
hine Learning, Workshopon Meta-Learning: Building Automati
 Advi
e Strategies for Model Sele
tion andMethod Combination, Bar
elona, Spain.Utgo� Paul (1986). Shift of Bias for Indu
tive Con
ept Learning. In Mi
halski,R.S. et al (Ed), Ma
hine Learning: An Arti�
ial Intelligen
e Approa
h Vol. II,107{148, Morgan Kaufman, California.Valiant, L. G. (1984). A Theory Of The Learnable. Comm. ACM, 27, 1134-1142.Vilalta, R. (1998). On the Development of Indu
tive Learning Algorithms: Gener-ating Flexible And Adaptable Con
ept Representations. PhD Thesis, Universityof Illinois at Urbana-Champaign.Vilalta, R. (2001). Resear
h Dire
tions in Meta-Learning: Building Self-AdaptiveLearners. International Conferen
e on Arti�
ial Intelligen
e, Las Vegas, Nevada.Li Ming and Vitanyi Paul (1996). Ideal MDL and its Relation to Bayesianism.ISIS: Information, Statisti
s Indu
tion in S
ien
e. World S
ientif
, Singapore,pp. 282{291.Li Ming and Vitanyi Paul (1997). On Predi
tion by Data Compression. 9th Euro-pean Conferen
e on Ma
hine Learning. Le
ture Notes in Arti�
ial Intelligen
e,Springer-Verlag.Watanabe Satosi (1969). Knowing and Guessing, A Formal and Quantitative Study.John Wiley & Sons In
.
metaL.tex; 29/03/2002; 12:41; p.20



A Survey of Meta-Learning 21Watanabe Satosi (1985). Pattern Re
ognition: Human and Me
hani
al. John Wiley& Sons In
.Wolpert D. (1992). Sta
ked Generalization. Neural Networks, 5: 241{259.Wolpert D. (1996). The La
k of a Priori Distin
tions Between Learning Algorithmsand the Existen
e of a Priori Distin
tions Between Learning Algorithms. NeuralComputation, 8.

metaL.tex; 29/03/2002; 12:41; p.21



metaL.tex; 29/03/2002; 12:41; p.22


