
APerspetive View And Survey Of Meta-LearningRiardo Vilalta and Youssef DrissiIBM T.J. Watson Researh Center19 Skyline Dr.Hawthorne, NY., 10532 U.S.A.Email: vilalta�us.ibm.om, youse�d�us.ibm.omAbstrat. The �rst part of this paper provides a perspetive view of meta-learningin whih the goal is to build self-adaptive learning algorithms. The idea is to improvethe learning bias dynamially through experiene by the ontinuous aumulation ofmeta-knowledge. The seond part of this paper provides a survey of meta-learning asreported by the mahine-learning literature. We �nd that di�erent researhers holddi�erent views of what the termmeta-learning exatly means. Despite di�erent viewsand researh lines, a question remains onstant: how an we exploit knowledge aboutlearning (i.e., meta-knowledge) to improve the performane of learning algorithms?Clearly the answer to this question is key to the advanement of the �eld andontinues being the subjet of intensive researh.Keywords: indutive learning, lassi�ation, meta-knowledge.1. IntrodutionMeta-learning studies how learning systems an inrease in eÆienythrough experiene; the goal is to understand how learning itself anbeome exible aording to the domain or task under study. All learn-ing systems work by adapting to a spei� environment, whih reduesto imposing a partial ordering or bias on the set of possible hypothesesexplaining a onept (Mithell, 1980). Meta-learning di�ers from base-learning in the sope of the level of adaptation: meta-learning studieshow to hoose the right bias dynamially, as opposed to base-learningwhere the bias is �xed a priori, or user parameterized. In a typialindutive-learning senario, applying a base-learner (e.g., deision tree,neural network, or support vetor mahine) over some data produesa hypothesis that depends on the �xed bias embedded in the learner.Learning takes plae at the base-level beause the quality of the hy-pothesis normally improves with an inreasing number of examples.Nevertheless, suessive appliations of the learner over the same dataalways produes the same hypothesis, independently of performane;no knowledge is extrated aross domains or tasks (Pratt and Thrun,1997).Meta-learning aims at disovering ways to dynamially searh forthe best learning strategy as the number of tasks inreases (Thrun, 2002 Kluwer Aademi Publishers. Printed in the Netherlands.
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2 Vilalta and Drissi1998; Rendell et al., 1987B). A omputer program quali�es as a learningmahine if its performane improves with experiene (Mithell, 1997;Cohen and Feigenbaum, 1989). Experiene is best understood as theknowledge gained from the analysis of several tasks; the de�nition is notlimited to the ability to re�ne a hypothesis after presenting examplesthat belong to one task. Hene, meta-learning advoates the need forontinuous adaptation of the learner at di�erent levels of abstration. Ifa base-learner fails to perform eÆiently, one would expet the learningmehanism itself to adapt in ase the same task is presented again.Thus, learning an take plae not only at the example (i.e., base) level,but also at the aross-task (i.e., meta) level.After desribing our own perspetive view of meta-learning and pos-ing some interesting hallenges for future researh, this paper providesa survey of the �eld as reported in the mahine-learning literature.Some areas of study that bear lose relationship to meta-learning in-lude building a meta-learner of base-learners (Setion 4.1), seleting anindutive bias dynamially (Setion 4.2), building meta-rules mathingtask properties with algorithm performane (Setion 4.3), indutivetransfer and learning to learn (Setion 4.4), learning lassi�er systems(Setion 4.5), and others (Setion 4.6). Our survey shows how the termmeta-learning means di�erently to di�erent researh groups; we �ndthat eah of the areas mentioned above overs only a few piees in thebig puzzle onformed by the �eld of meta-learning. Our ultimate goalis to see the �eld progressing towards a uniform and oherent view.This paper is organized as follows. Setion 2 gives de�nitions andbakground information in lassi�ation. Setion 3 provides our ownperspetive view of the nature and potential avenues of researh inmeta-learning. Setion 4 is a survey of meta-learning as reported inthe mahine-learning literature. Setion 5 ends with disussion andonlusions. 2. PreliminariesOur study is entered on the lassi�ation problem exlusively. Theproblem is to learn how to assign the orret lass to eah of a set ofdi�erent objets (i.e., events, situations). A learning algorithm L is�rst trained on a set of pre-lassi�ed examples Ttrain : f(~Xi; i)gmi=1.Eah objet ~X is haraterized by features, and an be represented asa vetor in an n-dimensional feature spae, ~X = (X1;X2; � � � ;Xn).Eah feature Xk an take on a di�erent number of values. ~Xi is labeledwith lass i aording to an unknown target funtion F , F (~Xi) = i(we assume a deterministi target funtion, i.e., zero-bayes risk). In
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A Survey of Meta-Learning 3lassi�ation, eah i takes one of a �xed number of ategorial values.Ttrain will onsist of independently and identially distributed (i.i.d.)examples obtained aording to a �xed but unknown joint probabilitydistribution � in the spae of possible feature-vetors X . The goal inlassi�ation is to produe a hypothesis h that best approximates F ,i.e., that minimizes a loss funtion (e.g., zero-one loss) in the spae offeature vetors and lasses, X � C, aording to distribution �.Classi�ation begins when learning algorithm L reeives as inputa training set Ttrain and onduts a searh over a hypothesis spaeHL until it �nds a hypothesis h, h 2 HL, that approximates the truefuntion F . Thus a learning algorithm L maps a training set into ahypothesis, L : T ! HL, where T is the spae of all training sets ofsize m. The seleted hypothesis h an then be used to guess the lassof unseen examples.Learning algorithm L embeds a set of assumptions or bias thata�ets the learning proess in two ways: it restrits the size of thehypothesis spae HL, and it imposes an ordering or ranking over allhypotheses inHL. The bias of a learning algorithm LA is stronger thanthe bias of another learning algorithm LB if the size of the hypothesisspae1 onsidered by LA is smaller than the size of the hypothesis spaeonsidered by LB (i.e., if jHLA j � jHLB j). In this ase the bias embed-ded by LA onveys more extra-evidential information (Watanabe, 1969)than the bias in LB, whih enables us to narrow down the number ofandidate hypotheses estimating the true target onept F . We say thebias of a learning algorithm is orret if the target onept is ontainedin the hypothesis spae (i.e., if F 2 HL). An inorret bias preludes�nding a perfet estimate to target onept F .3. A Perspetive View of Meta-LearningIn this setion we lay down some de�nitions and onepts that will behelpful to ompare some of the urrent researh diretions adopted inmeta-learning. Our own view of the �eld advoates the onstrution ofself-adaptive learners.In base-learning, the hypothesis spae HL of a learning algorithmL is �xed. Applying a learning algorithm (e.g., deision tree, neuralnetwork, or support vetor mahine) over some data produes a hy-pothesis that depends on the �xed bias embedded by the learner. Thisimplies a learning algorithm an only learn eÆiently over a limitednumber of tasks. More formally, let a learning task s be de�ned as1 We limit our study to hypothesis spaes that are �nite.
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4 Vilalta and Drissia 3-tuple, s = (F;m;�), omprising a target onept F , a training-set size m, and a sample distribution � from whih the examples in atraining set are drawn2. If we represent the spae of all possible learningtasks (i.e., the ross produt of all target onepts, training-set sizes,and distributions) as S, then algorithm L an learn eÆiently over alimited region RL in S that favors the bias embedded in L; algorithm Lan never be made to learn eÆiently over all tasks in S as long as itsbias remains �xed (Sha�er, 1994; Watanabe, 1985; Wolpert, 1996; Raoet al., 1995).3.1. Random vs Strutured TasksOne may rightly argue that the spae of all tasks ontains many randomregions; failing to learn over those regions arries in fat no negativeonsequenes. For this reason, we will assume RL omprises a subset ofstrutured tasks, Sstrut � S, where eah task is non-random and an beasribed a low degree of omplexity. Here we simply want to distinguishbetween two sets of tasks: strutured and random. We attempt to givea more formal de�nition of both types of tasks.One dimension along whih we an di�erentiate between struturedand random tasks lies in the expeted amount of data ompressionthat an be obtained over the training sets. Strutured tasks Sstrutdenote regular patterns over the training sets that ommonly lead tothe disovery of onise representations. Random tasks, on the otherhand, are haraterized by many irregularities; long representationsare then neessary to reprodue the original body of data. But howan we determine the degree of struture (onversely the degree ofrandomness) of a task? Let us assume we have a measure of omplexityK appliable to any task. We an lassify all possible tasks aording toits omplexity in the following way. For a �xed onept F , training-setsize m, and distribution �, we denote the omplexity of a tasks s asK(s) = E�(KF;m(Ti)) = X8 Ti of size mP (Ti) KF;�;m(Ti) (1)where P (Ti) is the probability of generating training set Ti aordingto �, and KF;m(Ti) is the value of the omplexity (i.e., degree of ran-domness) of training set Ti (onditioned on F ), for a �xed size m, anda �xed distribution �. This de�nition an serve to lassify the universeof all possible tasks aording to K.2 A task an be seen as a random variable where eah possible outome is atraining set of size m drawn aording to distribution �; examples are labeledaording to onept F .
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A Survey of Meta-Learning 5The nature of K is left unspei�ed. Ideally one would use a mea-sure suh as Kolmogorov Complexity (Vitanyi, 1996; Li and Vitanyi,1992; Li and Vitanyi, 1997; Vitanyi, 1997). Given a training set T ,the Kolmogorov omplexity of T , K(T ), is de�ned as the length ofthe shortest e�etive desription of T . More rigorously, K(T ) is thelength of the shortest binary program from whih the data an be re-onstruted (Vitanyi, 1997). Unlike other measures (e.g., lassial infor-mation theory) Kolmogorov omplexity onsiders the maximal degreeof ompressibility over the data under analysis.3.2. Goals in Meta-LearningOne goal in meta-learning is to learn what auses L to dominate inregion RL. The problem an be deomposed in two parts: 1) determinethe properties of the tasks in RL that make L suitable for suh region,and 2) determine the properties of L (i.e., what are the omponentsontained by algorithm L and how they interat with eah other) thatontribute to the domination of RL. A solution to the problem abovewould provide guidelines for hoosing the right learning algorithm ona partiular task. As illustrated in Figure 1, eah task si may lie insideor outside the region that favors the bias embedded by a learning algo-rithm L. In Figure 1, task s1 is best learned by algorithm LA beauseit lies within the region RLA . Similarly, s2 is best learned by algorithmLB, whereas s3 is best learned by both LA and LB . A solution to themeta-learning problem an indiate how to math learning algorithmswith task properties, in this way yielding a prinipled approah to thedynami seletion of learning algorithms.In addition, meta-learning an solve the problem of learning taskslying outside the sope of available learning algorithms. As shown inFigure 1, task s4 lies outside the regions of both LA and LB . If LAand LB are the only available algorithms at hand, task s4 is proneto reeiving a poor onept estimation. One approah to solve theproblem above is to use a meta-learner to ombine the preditions ofbase-learners in order to shift the dominant region over the task understudy. In Figure 1, the goal would be to embed the meta-learner witha bias favoring a region of tasks that inludes s4. Setion 4 desribesurrent researh heading in this diretion.3.3. Self-Adaptive Learning AlgorithmsThe ombination of base-learners by a meta-learner o�ers no guaranteeof overing every possible (strutured) task of interest. We laim a po-tential avenue of researh in meta-learning is to provide the foundationsto onstrut self-adaptive learning algorithms, i.e., learning algorithms
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6 Vilalta and DrissiUniverse of all tasks SStrutured tasks SstrutRLA RLBs1 � s3 � s2 � s4 �Figure 1. Eah learning algorithm overs a region of (strutured) tasks favored byits bias. Task s1 is best learned by algorithm LA, s2 is best learned by algorithmLB , whereas s3 is best learned by both LA and LB . Task s4 lies outside the sopeof LA and LB .that hange their internal mehanism aording to the task under anal-ysis. In Figure 1, this would mean enabling a learning algorithm tomove along the spae of strutured onepts Sstrut until the algorithmlearns to over the task under study. We assume this an be ahievedthrough the ontinuous aumulation of meta-knowledge indiating themost appropriate form of bias for eah di�erent task. Beginning withno experiene, the learning algorithm would initially use a �xed formof bias to approximate the target onept. As more tasks are observed,however, the algorithm would be able to use the aumulated meta-knowledge to hange its own bias aording to the harateristis ofeah task. This is one kind of life-long learning (Thrun, 1998).Figure 2 is a (hypothetial) ow diagram of a self-adaptive learner.The input and output omponents to the system are a training setand a hypothesis respetively. Eah time a hypothesis is produed, aperformane assessment omponent evaluates its quality. The resultinginformation beomes a new entry in a performane table; an entryontains a vetor of meta-features haraterizing the training set, andthe bias employed by the algorithm if the quality of the hypothesisexeeds some aeptable threshold. We assume the self-adaptive learnerontains a meta-learner that takes as input the performane table andgenerates a set of rules of experiene (i.e., meta-hypothesis) mappingany training set into a form of bias. The lak of rules of experiene atthe beginning of the learner's life would fore the mehanism to use a�xed form of bias. But as more training sets are observed, we expet
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A Survey of Meta-Learning 7Training Set - Self-Adaptive LearnerMeta-Learner Rules ofExperiene- - Hypothesis
?PerformaneAssessment?Meta-FeatureGenerator PerformaneTable�����* HHHHHY6

Figure 2. A ow diagram of a self-adaptive learner.the expertise of the meta-learner to dominate in deiding whih formof bias best suits the harateristis of the training set.The self-adaptive learner desribed in Figure 2 poses major hal-lenges to the meta-learning ommunity (a more detailed analysis ofthese hallenges is provided by Vilalta (2001)). Briey, we need to de�nehow an we assess the quality of a hypothesis, or how an we assessthe quality of the bias employed by the the learning algorithm. Alsowe need to de�ne how an we haraterize a task in terms of relevantmeta-features. Finally, one must be aware of a problem related to theexibility of the self-adaptive learner in Figure 2: whereas the biasis now seleted dynamially, the meta-learner is not self-adaptive andemploys a �xed form of bias. Clearly the meta-learner an be seenas a learning algorithm too, but laking the adaptability asribed tothe base learner. Ideally we would like the meta-learner to be self-adaptive, i.e., to improve through experiene. One solution ould be toontinue with the same logial fashion as in Figure 2, and de�ne a meta-meta-learner helping the meta-learner improve through experiene. Theproblem, however, does not disappear beause the meta-meta learnerwould exhibit a �xed form of bias. The hallenge lies on how to stop theapparently in�nite hain of meta-learners needed to ahieve ompleteexibility in the seletion of bias.The problems just desribed provide interesting goals that we hopewill stimulate the researh ommunity to ontribute to the �eld of meta-learning.
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8 Vilalta and Drissi4. A Survey of Meta-LearningThis setion provides a survey of meta-learning as reported in themahine-learning literature. Any survey of this kind is prone to omitrelevant work and adopt a single-minded view for whih we o�er ourapologies. Our goal is simply to unify urrent views and de�nitions ofwhat is meant by the term meta-learning.4.1. A Meta-Learner of Base-LearnersOriginally proposed be Wolpert (1992), one ommon approah to meta-learning is known as staked generalization. Here, a set of q base-learners are applied to a training set Ttrain : f(~Xi; i)gmi=1 to produeq hypotheses, fhjgqj=1, also alled level-0 generalizers. Meta-learningtakes plae when training set Ttrain is rede�ned into a new set T 0train.The rede�nition replaes eah vetor ~Xi with a new vetor ~X0i thatontains the lass predited by eah of the q hypothesis on ~Xi:T 0train = f(~X0i; i)g = f((h1(~Xi); h2(~Xi); � � � ; hq(~Xi)); i)g (2)The new training set T 0train serves as input to a set of meta-learners,whih produe a new set of hypotheses or level-1 generalizers. The re-de�nition of Ttrain into T 0train is done via k-fold ross validation (Kohavi,1995).Staked generalization is onsidered a form of meta-learning beausethe transformation of the training set onveys information about thepreditions of the base-learners (i.e., onveys meta-knowledge). We donot onsider as part of meta-learning other model-ombination teh-niques where the idea is to produe variations of the data (e.g., bagging(Breiman, 1996) and boosting (Freund and Shapire, 1996)), althoughde�nitions of relevant meta-features have been obtained from this work.Staked generalization has a severe limitation in that both base-learnersand meta-learners have a �xed form of bias, i.e., no dynami seletion ofbias takes plae. The dominant (task) region for the meta-learner maybe di�erent from the base-learners, but ultimately �xed (Setion 3 andFigure 1).Researh in the staked-generalization paradigm investigates whatbase-learners and meta-learners produe best empirial results (Chanand Stolfo, 1998; Chan and Stolfo, 1993; Chan, 1996). After transform-ing the original training set, eah example ontains the preditions ofthe base-learners, but it may also ontain the original features. Resultsshow how ertain ombinations of learners and meta-learners an yieldsigni�ant improvements in auray.
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A Survey of Meta-Learning 9Several variations to staked generalization have been explored. Forexample, Chan and Stolfo (1998) experiment with a modi�ed approahwhere eah base-learner is trained with a fration of the total data.While running eah learning algorithm in parallel, a hierarhial treestruture is built where eah leaf is a level-0 generalizer and eah in-ternal node is a high-level generalizer (see referene for details). Thisstrategy outperformed a majority-voting approah. In a similar vein,Prodromidis and Stolfo (1999B) build a tree of generalizers from meta-data and then prune the tree to eliminate redundant generalizers. Thesame idea is studied in a distributed system (Prodromidis et al., 1999;Prodromidis and Stolfo, 1999A). Todorovski and Dzeroski (2000) intro-due meta-deision-trees, where eah leaf of the meta-tree omprisesa hypothesis for predition. Domingos (1997,1998) shows empirialevidene supporting the laim that a meta-learner an improve theauray of base-learners while retaining omprehensibility.The study of how to ombine the preditions of base-learners hasprodued novel meta-features; these meta-features are useful to un-derstand and predit the auray of the meta-learner. For example,Fan et al. (1999) introdue a onit-based measure that indiatesthe proportion of examples in the training set aurately lassi�edby the base-learners. Other meta-features inlude overage (Brodleyand Lane, 1996) {fration of examples for whih at least one of thebase lassi�ers produes orret preditions; diversity (Brodley andLane, 1996; Ali and Pazzani, 1996)) {degree of di�erene in the pre-ditions of the base-learners; and orrelated error (Ali and Pazzani,1996) {fration of examples for whih two base-learners make the sameinorret predition.4.2. Dynami Seletion of BiasDynami seletion of bias enables a learning algorithm to shift its regionof expertise along the set of (strutured) tasks (Figure 1). The goal is tomodify the hypothesis spae to have a better overage of the task underanalysis. Meta-learning is a neessary omponent during dynami-biasseletion, often ating as a guideline in the searh over the bias spae.An introdution to the �eld of dynami-bias seletion is given byDesJardins and Gordon (1995A). The authors develop a framework forthe study of dynami bias as a searh in three di�erent tiers (DesJardinsand Gordon, 1995B). The �rst tier refers to a searh over a hypothesisspae HL where a learning algorithm L looks for the best hypothesisapproximating the target onept; most learning algorithms assumethis spae �xed. For dynami bias seletion to take plae, a learningalgorithm L must searh in a seond tier, where the strength and size of
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10 Vilalta and DrissiHL an be modi�ed separately (Setion 2). A third tier helps to modifythe meta-spaes de�ned at the seond tier. Although no more tiers areintrodued in this framework, the problem of where to stop buildingmore tiers (i.e., more meta-meta-spaes) is evident (Setion 3).One approah to the dynami seletion of bias is to hange therepresentation of the feature spae by adding or removing features. Oneof the earliest systems using a form of dynami bias is STABB (Utgo�,1986). With the goal of generating a hypothesis spae that is strong andorret (Setion 2), STABB ontinually exerts a form of hange of repre-sentation. As an example, the system is able to onstrut a new featureas the disjuntion of two original features; additional features inreasethe size of the hypothesis spae and thus help to alleviate the problemof a strong hypothesis spae (i.e., of having few available hypotheses).In ontrast, Gordon (1992) shows how to weaken the hypothesis spaeby eliminating features when bias is deemed inappropriate. Hene, biasan be made stronger by eliminating features or weaker by restoringfeatures (Gordon, 1990). In addition one an �lter out hypotheses usingmeta-rules as a form of expliit bias seletion (Gordon and Perlis, 1989).Baltes (1992) desribes a framework for dynami seletion of bias as aase-based meta-learning system; onepts displaying some similarityto the target onept are retrieved from memory and used to de�ne thehypothesis spae.Dynami-bias seletion applies to the algorithm-seletion problem.Rendell et al. (1987A) desribe the VBMS system that learns howto selet a learning algorithm depending on the properties of the task.VBMS uses a dynami similarity measure that evolves with experiene;as more tasks are attempted VBMS learns relationships between taskharateristis and biases embedded in the learning algorithms (Rendellet al., 1987B). The task harateristis used by VBMS are simple (e.g.,number of features), and bias is not modi�ed but rather depends onthe available learning algorithms. A related approah is desribed byBruha (2000) in a rule-based system. Here, prediting the lass of newexamples depends on the quality of eah rule; suh quality is updatedduring the testing phase: a dynami proess that hanges bias in therule-seletion poliy.4.3. Meta-Rules Mathing Domains With AlgorithmPerformaneOne important faet of meta-learning is to provide guidelines of howto relate a learning algorithm with those domains in whih the al-gorithm performs well. Most often the main performane riterion ispreditive auray, but in reality other riteria may be equally im-
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A Survey of Meta-Learning 11portant, e.g., omputational omplexity, expressiveness, ompatness,omprehensibility, et. (Giraud, 1998).The general approah onsists of de�ning a set of domain hara-teristis or meta-features that are relevant to the performane of alearning algorithm (Mihie, 1994); those meta-features enable us tobuild a meta-domain Tmeta relating domain harateristis with al-gorithm performane (one a suÆient number of domains has beenanalyzed). Finally, we an indue a set of rules using a meta-learnerover Tmeta to disover the onditions under whih a learning algorithmoutperforms others.Under this framework, Aha (1992) aims at obtaining rules speifyingwhen a learning algorithm outperforms others signi�antly. Examplesof domain harateristis are the degree of orrelation between featuresand the target onept, the distribution of examples within oneptsdisjunts, the distribution of examples among onepts, et. The rulesreveal the onditions under whih signi�ant di�erenes in performanehold. Gama and Brazdil (1995) extrat domain harateristis suh asthe number of examples, number of attributes, number of lasses, stan-dard deviation ratio for eah feature, skewness, kurtosis, noise-signalratio, et., to generate meta-rule models. Similar work is reported byBrazdil (1998) who proposes using meta-learning as a pre-proessingstep to model seletion; experimentation on auray performane isthen used to selet the best algorithm. Meta-rules mathing domainharateristis with indutive bias have also been rafted manually(Brodley, 1993; Brodley, 1994). In addition, a domain may be rep-resented by properties of the �nal hypothesis rather than the dataitself. For example, Bensusan et. al (2000) measure properties of adeision-tree, e.g., nodes per feature, maximum tree depth, shape, treeimbalane, et., and onvert them into meta-features.4.3.1. Finding Regions In The Feature Spae And Meta-Feature SpaeInstead of using meta-learning to selet a learning algorithm for apartiular domain, a {more granular{ approah onsists of seletinga learning algorithm for eah individual test example. The idea is tohoose that learning algorithm displaying best performane aroundthe neighborhood of the test example (Merz, 1995A; Merz, 1995B).Algorithm seletion is done aording to best performane, using ross-validatory history.A slight variation to the approah above is to look at the neigh-borhood of a test example in the spae of meta-features. Spei�ally,after learning from several domains, one an onstrut a meta-domainTmeta, where eah element pair is a desription of a domain (meta-feature vetor) and a lass label orresponding to the best-performane
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12 Vilalta and Drissilearning algorithm on that domain. When a new domain arrives, we angather the k-nearest neighbor examples in Tmeta to selet the learningalgorithm with best average performane (Keller et. al, 2000). Meta-features like auray, storage spae, and running time an be usedfor performane evaluation (Keller et. al, 2000). A similar approahis de�ned by Brazdil and Soares (2000), in whih the learning algo-rithms orresponding to the k-nearest neighbor domains are ranked asa funtion of auray and running time.4.3.2. LandmarkingA reent piee of work in meta-learning is alled landmarking. Theidea is to have two sets of learning algorithms Qlandmark and Qpool.The �rst set, Qlandmark, is omposed of simple learners that exhibitsigni�ant di�erenes in their mehanism.We will use their auray (orerror rate) to haraterize a domain, and refer to them as landmarkers.The seond set, Qpool, ontains advaned learners, one of whih mustbe seleted for our urrent domain. A meta-domain is onstruted asfollows. Eah example (i.e., eah domain) is haraterized by the errorrates of the landmarkers inQlandmark. The label or lass of eah exampleis the algorithm in Qpool with best ross-validatory auray. A meta-learner an then assoiate the performane of the landmarkers withthe best algorithm in Qpool. From this point of view, meta-learning isthe proess of �nding areas of expertise of learners alled landmarkers,and of orrelating those areas with the performane of other {moreadvaned{ learners (Bensusan and Giraud-Carrier, 2000; Pfahringeret. al, 2000).4.4. Indutive Transfer and Learning to LearnLearning is not an isolated task that starts from srath every time anew problem domain appears. As experiene aumulates, a learningmehanism is expeted to perform inreasingly better (Setion 3). Forlearning to improve through time, knowledge about learning, or meta-knowledge, must be transferred aross domains or tasks. The proessis known as indutive transfer (Pratt and Thrun, 1997).An interesting study in indutive transfer falls in the realm of neuralnetworks. A review of how neural networks an learn from related tasksis provided by Pratt and Jennings (1998). Caruana (1997) shows whymultitask learning works well in the ontext of neural networks usingbakpropagation. The laim is that training with many domains in par-allel on a single neural network indues information that aumulatesin the training signals; a new domain an then bene�t from suh pastexperiene. Thrun and Sullivan (1998) propose a learning algorithm
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A Survey of Meta-Learning 13where domains are lustered when mutually related. A new domainis assigned to the most related luster; indutive transfer takes plaewhen generalization exploits information about the seleted luster.Multitask learning an also be used in other learning paradigms suhas kernel regression and deision trees.An introdution to the bene�ts of learning from multiple tasks toimprove generalization is provided by Thrun and Pratt (1998). The au-thors propose a general framework that shows the distintion betweenlearning at the base-level and at the meta-level. In the base-level onesimply tries to �nd the orret hypothesis h on a �xed hypothesis spaeHL. In the meta-level one needs to �nd properties of target funtions toharaterize entire hypothesis spaes fHg. It must be lear that bothlevels require some form of bias, i.e., no-free lunh theorems (Sha�er,1994; Watanabe, 1985; Wolpert, 1996; Rao et al., 1995) apply at bothlevels.4.4.1. Learning to LearnLearning-to-learn relies on the main assumption that learning is sim-pli�ed when it ontinues working in a life-long ontext (Thrun, 1998).The assumption is supported by the existene of patterns on eah do-main, and aross domains. The general understanding of the natureof patterns aross domains is that of invariant transformations. Forexample, image reognition of a target objet is simpli�ed if the objetis invariant under rotation, translation, saling, et. Hene, learning-to-learn studies how to improve learning by deteting, extrating, andexploiting invariant transformation aross domains. As an example,Thrun and Mithell (1995) desribe how to searh for ertain forms ofinvariane in life-long learning using a neural network. These kinds ofinvariane are used to bias the learner as it selets a hypothesis on anew domain.4.4.2. Theoretial StudiesA theoretial analysis of the learning-to-learn paradigm is found withinan empirial and Bayesian view (Baxter, 1998), and within a ProbablyApproximately Corret (Valiant, 1984) or PAC view. We fous on thePAC view (Baxter, 2000). In this ase, the learner is assumed em-bedded in an environment of related learning domains. Meta-learningtakes plae beause the learner is not only looking for the right hy-pothesis h in a hypothesis spae HL, but in addition is searhing forthe right hypothesis spae in a family of hypothesis spaes fHg. Theright hypothesis spae HL 2 fHg must be large enough to embed asolution to the problem domain, but small enough to make any form ofgeneralization possible. The study draws an analogy between the role
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14 Vilalta and Drissiof the VC dimension (Blumer et. al, 1989) and the size of the familyof hypothesis spaes jfHgj. It turns out both measures an be used toderive bounds on the number of domains, and the number of exampleson eah domain, required to ensure with high probability that we will�nd a solution having low error on new training domains. Hene, underertain assumptions, the number of examples required for eah domaindereases as the number of observed domains inreases.4.5. Learning Classifier SystemsLearning lassi�er systems originated from the pioneer work of Holland(Holland, 1992; Holland and Reitman, 1978). An exellent review of thesubjet is given by Lanzi et. al (2000). A lassi�er system is a parallel,message-passing, rule-based system. Eah message or rule {referred inthis ontext as a lassi�er{ is a ondition-ation pair; if a messagemathes the ondition part, the rule is andidate to ativate and ex-eute the ation part. The system assumes an input interfae or setof detetors that translates signals from an external environment intomessages. Similarly an output interfae translates messages throughe�etors into external ations (Booker et. al, 1989).A lassi�er system is a learning mehanism working at two di�erentlevels. At the �rst level, the system learns to identify rules that anreturn high pro�t from the environment. The problem of how to assignredit to the right rules, also known as the redit-assignment problem,is solved through some form of reinforement learning (Sutton andBarto, 1998), e.g., buket-brigade, pro�t-sharing plan, Q-learning. Themehanism assigns a redit or value of strength to eah rule based on itsontribution. At the seond level, the system learns how to onstrutnew rules that have the potential of further inreasing the reward fromthe environment. Normally a set of geneti operators ome into play forevolving the rule set. Rules with high strength have a higher probabilityof being seleted to produe new o�spring rules (Holland et. al, 2000).Classi�er systems may appear at �rst glane disonneted frommeta-learning. A loser examination, however, reveals the opposite. Forexample, a learning algorithm an be disseted into a set of omponents(Vilalta, 1998), eah with a spei� funtion during lassi�ation, e.g.,selet the most relevant features, partition the training set followinga separate-and-onquer approah or a divide-and-onquer approah,hypothesis pruning, et. For eah domain, ativating some omponentsmay give a higher reward (e.g., higher preditive auray) than others.The framework adopted by learning lassi�er systems an be used inmeta-learning by mapping lassi�ers or rules with learning omponents.A form of reinforement learning an deide what learning strategy,
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A Survey of Meta-Learning 15i.e., ombination of learning omponents, maximizes the learner's per-formane. In addition, a disovery system may also try to �nd newomponents that an produe more eÆient learning algorithms. Theidea above sheds light on a researh diretion to build self-adaptivelearners (Figure 2), where the assessment of a hypothesis is based onthe suessful performane of a ombination of learning omponents,and on a meta-learner using that meta-knowledge to build new learningalgorithms.4.6. Other ApproahesOutside the sope of lassi�ation, meta-learning has been applied toareas like ase-based reasoning, onstraint satisfation, learning agents,et. We end our survey by briey mentioning some work related to theseareas.In the ontext of ased-based reasoning, Goel (1996) desribes aase-based interative system for problem solving. The system displaysthe ability to reason about its own performane by keeping trak of howa problem is solved, i.e., by keeping trak of meta-ases. As a result, thesystem is able to provide explanations of its reasoning and justi�ationsof its solutions.Meta-learning has been used in analyti learning for onstraint-satisfation problems (Minton, 1993). Analyti learning (e.g., expla-nation based learning, derivational analogy), exploits problem-solvingexperiene (Minton, 1989). When applied at a meta-learning level, theidea is to use meta-level theories to help the system reason about theproblem solver's base-level theory. A meta-level analysis is appropriatewhen the base-level theory is intratable (Minton, 1993).Meta-learning an also be applied to areas like learning agents.Baum (1998) provides an extensive study and disussion on how tomake agents ollaborate (using a kind of reinforement learning). Thesystem embeds learning agents that an generate other agents. Otherapproahes inlude the use of meta-level information of problem-solvingknowledge for ooperation in a multi-agent system (Prasad and Lesser,1997). 5. Disussion and ConlusionsOur survey shows how the term meta-learning has been asribed di�er-ent meanings by di�erent researh groups. From building meta-learnersof base lassi�ers (Setion 4.1), to looking for dynami forms of bias(Setion 4.1), to studying how learning an ontinue in a life-long en-vironment (Setion 4.1), meta-learning ontinues to enrih the �eld of
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16 Vilalta and Drissimahine learning with a onstant question: how an we exploit knowl-edge about learning (i.e., meta-knowledge) to improve the performaneof learning algorithms? In spite of the many researh diretions, nolear answer has emerged.Perhaps broadening our view of the sope of meta-learning an pro-vide better insights on how meta-knowledge an be used. For example,the approah adopted by staked generalization (Setion 4.1) assumesno fundamental distintion between learning at the base-level and atthe meta-level. Transforming the training set by inluding the predi-tions of base learners is a form of re-using our learning tools at di�erentlevels of abstration. The idea of making no fundamental di�erenesbetween learning and meta-learning is shared by several researhers(Shmidhuber, 1995).But meta-learning may be radially di�erent from learning at thebase level. For example, we ould de�ne meta-learning as the problemof taking the right ation (i.e., the right bias) aording to a spei�world state (e.g., the type of input-output distribution). This de�nitionallows us to equate meta-learning with some form of reinforementlearning (Ring, 1998). The de�nition also points to the mehanismbehind learning lassi�er systems (Setion 4.5).Whether we onsider meta-learning to have the same fundamen-tal struture as base-learning or not, an important goal in mahinelearning is to ombine the ability of a learning algorithm to improveperformane when the number of examples inreases, with the abilityof the same learning algorithm to improve its learning bias when thenumber of tasks inreases. To ahieve this goal, we believe the �eld ofmeta-learning would bene�t greatly from a study of how learning algo-rithms an improve their performane through experiene, i.e., throughmeta-knowledge (Setion 3).AknowledgementsThis work was supported by IBM T.J. Watson Researh Center.ReferenesAha David W. (1992). Generalizing from Case Studies: A Case Study. Proeedings ofthe Ninth International Workshop on Mahine Learning, 1{10, Morgan Kaufman.Ali Kamal and Pazzani Mihael J. (1996). Error Redution Through Learning ModelDesriptions. Mahine Learning, 24, 173{202.Baltes Jaky (1992). Case-Based Meta Learning: Sustained Learning Supportedby a Dynamially Biased Version Spae. Proeedings of the Mahine LearningWorkshop on Biases in Indutive Learning.
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