
Parallel Exe
ution of Prolog Programs:A SurveyGopal GuptaDepartment of Computer S
ien
eBox 830688/EC31University of Texas at DallasRi
hardson, TX 75083-0688gupta�utdallas.eduEnri
o PontelliDepartment of Computer S
ien
eBox 30001/CSNew Mexi
o State UniversityLas Cru
es, NM 88003, USAepontell�
s.nmsu.eduKhayri A.M. Ali and Mats CarlssonSwedish Institute of Computer S
ien
e, SICSBox 1263, SE-164 29Kista, Swedenfkhayri,mats
g�si
s.seManuel V. HermenegildoFa
ultad de Inform�ati
aUniversidad Polit�e
ni
a de Madrid28660-Boadilla del Monte, Madrid, Spainherme�fi.upm.es

Contents1 Introdu
tion 42 Logi
 Programming and Parallelism 52.1 Logi
 Programs and Prolog . 52.2 The Warren Abstra
t Ma
hine . 72.3 Logi
 Programming and Parallelism . 92.3.1 Uni�
ation Parallelism . 102.3.2 Or-Parallelism . 112.3.3 And-Parallelism . 112.4 Dis
ussion . 123 Or-parallelism 133.1 Challenges in the Implementation of Or-parallelism . 143.2 Or-parallel Exe
ution Models . 163.2.1 Shared Representation of Computation Tree . 173.2.2 Non-Shared Representation of Computation Tree . 213.3 Support for Full Prolog . 243.4 Problem Abstra
tion and Complexity . 253.4.1 Abstra
tion of the Problems . 253.4.2 Complexity on Pointer Ma
hines . 253.5 Experimental Systems . 273.5.1 The Aurora Or-parallel Prolog System . 273.5.2 The MUSE Or-parallel Prolog System . 284 Independent And-parallelism 304.1 Problems in Implementing Independent And-parallelism . 314.1.1 Ordering Phase . 314.1.2 Forward Exe
ution Phase . 334.1.3 Ba
kward Exe
ution Phase . 334.2 Support for Full Prolog . 364.3 Independent And-parallel Exe
ution Models . 364.4 Experimental Systems . 384.4.1 The &-Prolog AND-Parallel Prolog System . 384.4.2 The &ACE System . 415 Dependent And-Parallelism 425.1 Issues . 435.2 Dete
tion of Parallelism . 435.3 Management of Variables . 455.3.1 Introdu
tion . 455.3.2 Mutual Ex
lusion . 455.3.3 Binding Validation . 465.4 Ba
ktra
king . 485.5 Experimental Systems . 495.5.1 Andorra-I . 495.5.2 DASWAM . 505.5.3 ACE . 516 Combining Or-parallelism and And-parallelism 526.1 Issues . 526.2 S
heduling in And/Or-Parallel Systems . 54- 2 -

6.3 Models for And/Or-Parallelism . 546.3.1 The PEPSys Model . 556.3.2 The ROPM Model . 566.3.3 The AO-WAM model . 576.3.4 The ACE Model . 586.3.5 The COWL Models . 586.3.6 Paged Binding Array based Model . 606.3.7 The Prin
iple of Orthogonality . 616.3.8 The Extended Andorra Model . 627 Data parallelism vs. Control parallelism 647.1 Data Or-Parallelism . 657.2 Data And-Parallelism . 658 Parallel Constraint Logi
 Programming 669 Implementation and EÆ
ien
y Issues in Parallel LP 679.1 Pro
ess-based vs. Pro
essor-based . 679.2 Memory Management . 689.3 Optimizations . 699.4 Work S
heduling . 709.5 Granularity . 719.6 Parallel Exe
ution Visualization . 729.7 Compile-time Support . 749.8 Ar
hite
tural In
uen
e . 7510 Appli
ations and Appli
ability 7611 Con
lusions and Future of Parallel Logi
 Programming 77

- 3 -

1. INTRODUCTIONThe te
hnology for sequential implementation of logi
 programming languages has evolved
onsiderably in thelast two de
ades. In re
ent years, it has rea
hed a notable state of maturity and eÆ
ien
y. Today, a widevariety of
ommer
ial logi
 programming systems are available that are being used to develop large, real-lifeappli
ations. An ex
ellent survey of sequential implementation te
hnology that has been developed for Prologis presented by Van Roy [Van Roy 1994℄.For years logi
 programming has been
onsidered well suited for exe
ution on multipro
essor ar
hite
tures.Indeed resear
h in parallel logi
 programming is vast and dates ba
k to the in
eption of logi
 programmingitself|one of the earliest published work being Pollard's Ph.D. Thesis [Pollard 1981℄. Even Kowalski mentionsthe possibility of exe
uting logi
 programs in parallel in his seminal book \Logi
 for Problem Solving" [Kowalski1979℄. There has been a healthy interest in parallel logi
 programming ever sin
e, as is obvious from the numberof papers that have been published in
onferen
es and journals devoted to logi
 programming and parallelpro
essing, and the number of advan
ed tutorials and workshops organized on this topi
 in su
h
onferen
es.This interest in parallel exe
ution of logi
 programs arises from two perspe
tives:(1)
ontinuous resear
h in simple, eÆ
ient, and pra
ti
al ways to make parallel and distributed ar
hite
tureseasily programmable drew the attention to logi
 programming, sin
e, potentially, parallelism
an be ex-ploited impli
itly from logi
 programs (i.e., parallelism
an be extra
ted from logi
 programs automati
allywithout any user intervention);(2) the everlasting myth that logi
 programming languages have low exe
ution eÆ
ien
y: this promptedresear
hers to look for alternative ways of a
hieving speed, i.e., through the use of parallelism.As mentioned, the literature on parallel exe
ution of logi
 programs is vast and varied. There are twomajor (and non-independent) s
hools of thought. The �rst approa
h, whi
h is the main fo
us of this survey,relies on impli
it exploitation of parallelism from logi
 programs. This means that the parallelization of theexe
ution
an (potentially) o

ur without any input from the programmer. Note that these model do notprevent programmer intervention, but usually they either make it optional or they keep it at a very high level.In
ontrast, a number of approa
hes have been developed whi
h target the extra
tion of parallelism throughthe use of expli
it
onstru
ts introdu
ed in the sour
e language. This
an be done by extending a logi
programming language with expli
it
onstru
ts for
on
urren
y or by modifying the semanti
s of the logi
programming language in a suitable way. Approa
hes to expli
it exploitation of parallelism from logi
 programs
an be largely
lassi�ed into three
ategories:(1) Those that add expli
it message passing primitives to Prolog, e.g., Delta Prolog [Apar�i
io et al. 1986℄ andCS-Prolog [Futo 1993℄. Multiple Prolog pro
esses are run in parallel and they
ommuni
ate with ea
hother via expli
it message passing or other rendezvous me
hanisms.(2) Those that add bla
kboard primitives to Prolog, e.g., Shared Prolog [Cian
arini 1993℄. These primitivesare used by multiple Prolog pro
esses running in parallel to
ommuni
ate with ea
h other via the
ommonbla
kboard.Some re
ent proposals in this
ategory in
lude� the Jinni system [Tarau 1998℄ developed by Tarau, a Java-based logi
 programming system in
ludingmulti-threading and bla
kboard-based
ommuni
ation; this work is a
ontinuation of the previous workby Tarau and de Boss
here [de Boss
here and Tarau 1996℄;� the CIAO system [Hermenegildo 1994℄ supports novel Prolog database operations whi
h allow to usethe database as a (syn
hronizing) bla
kboard [Carro and Hermenegildo 1999℄.Bla
kboard primitives are
urrently supported by a number of other Prolog systems, in
luding SICStus[Carlsson et al. 1995℄ and YAP [Santos Costa, Damas, Reis, Azevedo 1999℄.(3) Those based on guards,
ommitted
hoi
e, and data-
ow syn
hronization, e.g., Parlog, GHC, KL1 (andits portable C-based implementation KLIC [Chikayama et al. 1994℄), and Con
urrent Prolog [Clark andGregory 1986; Ueda 1986; Shapiro 1987; 1989℄.This
lass in
ludes the
lass of
on
urrent
onstraint languages (e.g., LIFE [Ait-Ka
i 1993℄ and

l(fd) [VanHentenry
k, Saraswat, Deville 1998℄) and the
lass of distributed
onstraint languages su
h as Oz/Mozart[Haridi, Van Roy, Brand, S
hulte 1998; Smolka 1995℄ and AKL [Haridi and Jason 1990℄.- 4 -

Ea
h of the three approa
hes above has been explored and there is extensive resear
h literature that
anbe found. They all involve
omplex issues of language extension and design, as well as of implementation.However, in order to keep the paper fo
used we will
onsider these approa
hes only marginally or in those
ases where they introdu
e exe
ution me
hanisms whi
h are appli
able also in the
ase of impli
it exploitationof parallelism (e.g.,
ommitted
hoi
e languages).In the rest of this work we will fo
us primarily on the parallel exe
ution of Prolog programs, althougho

asional generalizations to logi
 languages with a di�erent operational semanti
s will be
onsidered (e.g., webrie
y dis
uss parallelization in
onstraint logi
 programming languages). This
hoi
e is di
tated by the wideruse of Prolog w.r.t. other logi
 languages, and a
onsequent wider appli
ability of the results a

omplished.Observe also that parallelization of Prolog raises issues that are absent from the parallelization of other logi
languages (e.g., due to the presen
e of extra-logi
al predi
ates). Throughout this work we will often use theterms \logi
 programs" and \Prolog programs" inter
hangeably, thus assuming sequential Prolog semanti
sas the target operational behavior (a dis
ussion of the di�eren
es between general logi
 programming andProlog is presented in Se
tion 2). Parallel exe
ution of other logi
-based languages, su
h as
ommitted-
hoi
elanguages, raises issues similar to those dis
ussed in this paper.The obje
tive of this paper is to provide a uniform view of the resear
h in parallel logi
 programming. Dueto the extensive body of resear
h in this �eld, we will not be able to
over every single aspe
t and model whi
hhave been presented in the literature. Thus, our fo
us will lie on highlighting the fundamental problems andthe key solutions that have been proposed. This survey expands on the work done by other resear
hers inthe past in proposing an organized overview of parallel logi
 programming. In parti
ular, this work expandson the remarkable survey on parallel logi
 programming systems by Chassin de Kergommeaux and Codognet[Chassin de Kergommeaux and Codognet 1994℄ by
overing the resear
h performed in the last 8 years andby provide a more in-depth analysis of various areas. Other surveys have also appeared in the literature,mostly
overing more limited areas of parallel logi
 programming [Gupta and Jayaraman 1993b; Ka
suk 1990;Takeu
hi 1992; Delgado-Rannauro 1992a; 1992b℄.The paper is organized as follows. The next se
tion provides a brief introdu
tion to logi
 programming andparallel logi
 programming, fo
using on the distin
tion between the di�erent forms of parallelism exploitedin logi
 programming. Se
tion 3 illustrates the issues involved in or-parallel exe
ution of Prolog programs.Se
tion 4 des
ribes independent and-parallelism and dis
usses the solutions adopted in the literature to handlethis form of parallelism. Se
tion 5 introdu
es the notion of dependent and-parallelism and des
ribes di�erentte
hniques adopted to support it in di�erent systems. The issues arising from the
on
urrent exploitation ofand- and or-parallelism are presented in Se
tion 6, along with the most relevant proposals to ta
kle su
h issues.Se
tion 7 des
ribes the te
hniques adopted in the literature to exploit data parallelism from logi
 programs.Se
tion 9
overs a variety of issues related to implementation and eÆ
ien
y of parallel logi
 programming (e.g.,optimizations, stati
 analysis, support tools). Se
tion 10 gives a brief overview of the types of appli
ations towhi
h parallel logi
 programming has been su

essfully applied. Finally, Se
tion 11 draws some
on
lusionsand gives some insights on
urrent and future resear
h dire
tions in the �eld.In the rest of this work we assume the reader to have familiarity with the basi
 terminology of logi
programming and Prolog [Lloyd 1987; Sterling and Shapiro 1994℄.2. LOGIC PROGRAMMING AND PARALLELISMIn this se
tion we present a brief introdu
tion to logi
 programming and Prolog. A more detailed presentationof these topi
s
an be found elsewhere [Lloyd 1987; Ait-Ka
i 1992; Sterling and Shapiro 1994℄.2.1 Logi
 Programs and PrologA logi
 program is
omposed by a set of Horn
lauses. Using Prolog's notation, ea
h
lause is a formula ofthe form Head : �B1; B2; : : : ; Bn- 5 -

where Head, B1; : : : ; Bn are atomi
 formulae and n � 0.1 Ea
h
lause represents a logi
al impli
ation of theform 8(B1 ^ : : : ^ Bn ! Head)A separate type of
lauses are those where Head is the atom false, whi
h are simply written as: �B1; : : : ; BnThese type of
lauses are
alled goals (or queries). Ea
h atom in a goal is
alled a subgoal.Ea
h atomi
 formula is
omposed by a predi
ate applied to a number of arguments (terms), and this willbe denoted as p(t1; : : : ; tn)|where p is the predi
ate name, and t1; : : : ; tn are the terms used as arguments.Ea
h term
an be either a
onstant (
), a variable (X), or a
omplex term (f(s1; : : : ; sm), where s1; : : : ; smare themselves terms and f is the fun
tor of the term).Exe
ution of a logi
 program typi
ally involves a program P and a goal : �G1; : : : ; Gn, and the obje
tive isto verify whether there exists an assignment � of terms to the variables in the goal su
h that (G1 ^ : : :^Gn)�is a logi
al
onsequen
e of P .2 � is
alled a substitution: a substitution is an assignments of terms to a setof variables (the domain of the substitution). If a variable X is assigned a term t by a substitution, then Xis said to be bound and t is the (run-time) binding for the variable X . The pro
ess of assigning values to thevariables in t a

ording to a substitution � is
alled binding appli
ation.Prolog, as well as many other logi
 programming systems, make use of SLD-resolution to
arry out program'sexe
ution. Exe
ution of a program P w.r.t. a goal G pro
eeds by transforming a resolvent using a sequen
eof resolution steps. Ea
h resolvent represents a
onjun
tion of subgoals. The initial resolvent
orresponds tothe goal G. Ea
h resolution step pro
eeds as follows:� Let us assume that : �A1; : : : ; Ak is the
urrent resolvent. An element Ai of the resolvent is sele
ted (sele
tedsubgoal) a

ording to a prede�ned
omputation rule. In the
ase of Prolog, the
omputation rule sele
ts theleftmost element of the resolvent.� If Ai is the sele
ted subgoal, then the program is sear
hed for a
lause Head : �B1; : : : ; Bh whose headsu

essfully uni�es with Ai. Uni�
ation is the pro
ess whi
h determines the existen
e of a substitution �su
h that Head� = Ai�. If there are rules satisfying this property then one is sele
ted (a

ording to asele
tion rule) and a new resolvent is
omputed by repla
ing Ai with the body of the rule and properlyinstantiating the variables in the resolvent:: �(A1; : : : ; Ai�1; B1; : : : ; Bh; Ai+1; : : : ; Ak)�In the
ase of Prolog, the
lause sele
ted is the �rst one in the program whose head uni�es with the sele
tedsubgoal.� If no
lause satis�es the above property, then a failure o

urs. Failures are
ured using ba
ktra
king.Ba
ktra
king explores alternative exe
ution paths by redu
ing one of the pre
eding resolvents with a di�erent
lause.� The
omputation stops either when a solution is determined (i.e., the resolvent
ontains zero subgoals) orwhen all alternatives have been explored without any su

ess.An intuitive pro
edural des
ription of this pro
ess is represented in Figure 2. The operational semanti
s of alogi
 based language is determined by the
hoi
e of
omputation rule (sele
tion of the subgoal in the resolvent|
alled sele
tliteral in Figure 2) and the
hoi
e of sele
tion rule (sele
tion of the
lause to
ompute thenew resolvent|
alled sele
trule). In the
ase of Prolog, the
omputation rule sele
ts the leftmost subgoalin the resolvent, while the sele
tion rule sele
ts the �rst
lause in the program whi
h su

essfully uni�es withthe sele
ted subgoal.Many logi
 languages (e.g., Prolog) introdu
e a number of extra-logi
al predi
ates, used to perform taskssu
h as:1If n = 0 then the formula is simply written as Head and
alled fa
t.2Following standard pra
ti
e, the notation e� denotes the appli
ation of the substitution � to the expression e|i.e., ea
h variableX in e will be repla
ed by �(X). - 6 -

(1) perform input/output (e.g., read and write �les);(2) add a limited form of
ontrol to the exe
ution (e.g., the
ut (!) operator, used to remove some unexploredalternatives from the
omputation);(3) perform meta-programming operations; these are used to modify the stru
ture of the program (e.g., assertand retra
t, add or remove
lauses from the program), or query the status of the exe
ution (e.g., varand nonvar, used to test the binding status of a variable).An important aspe
t of many of these extra-logi
al predi
ates is that their behavior is order-sensitive, meaningthat they
an produ
e a di�erent out
ome depending on when they are exe
uted. In parti
ular, this meansthat they
an potentially produ
e a di�erent result if a di�erent sele
tion rule or a di�erent
omputation ruleis adopted.In the rest of this work we will fo
us on exe
ution of Prolog programs (unless expli
itly stated otherwise);this means that we will assume that programs are exe
uted a

ording to the
omputation and sele
tion rule ofProlog. We will also frequently use the term observable semanti
s to indi
ate the overall observable behaviorof an exe
ution|i.e., the order in whi
h all visible a
tivities of a program exe
ution take pla
e (order ofinput/output, order in whi
h solutions are obtained, et
.). If a
omputation respe
ts the observable Prologsemanti
s, then this means that the user does not see any di�eren
e between su
h
omputation and a sequentialProlog exe
ution of the same program.2.2 The Warren Abstra
t Ma
hineThe Warren Abstra
t Ma
hine (WAM) [Warren 1983; Ait-Ka
i 1992℄ has be
ome a de-fa
to standard forthe sequential implementations of Prolog and Logi
 Programming languages. The WAM de�nes an abstra
tar
hite
ture whose instru
tion set is designed to(1) allow an easy mapping from Prolog sour
e
ode to WAM instru
tions;(2) be suÆ
iently low-level to allow an eÆ
ient emulation and/or translation to native ma
hine
ode.Most implementations of Prolog
urrently rely either dire
tly on the WAM, or on a suÆ
iently similar ar
hi-te
ture.The WAM is a sta
k-based ar
hite
ture, sharing some similarities with imperative languages implementations
hemes (e.g., use of
all/return instru
tions, use of frames for maintaining pro
edure's lo
al environment),but extended in order to support the features pe
uliar to Logi
 Programming, namely uni�
ation and ba
k-tra
king (and some other variations, like the need of supporting dynami
 type
he
king).The WAM is a sta
k-based ar
hite
ture. At any instan
e, the state of the ma
hine is de�ned by the
ontentof its memory areas (illustrated in �gure 1). The state
an be subdivided into internal and external state.� Internal State: it is des
ribed by the
ontent of the ma
hine registers. The purpose of most of the registersis des
ribed in �gure 1.� External State: it is des
ribed by the
ontent of the logi
al data areas of the ma
hine:� Heap: data areas in whi
h
omplex data stru
tures (lists and Prolog's
ompound terms) are allo
ated.� Lo
al Sta
k: (also known as Control Sta
k) it serves the same purpose as the
ontrol sta
k in theimplementation of imperative languages|it
ontains
ontrol frames,
alled environments (akin to thea
tivation re
ords used in implementation of imperative languages), whi
h are
reated upon entering anew
lause (i.e., a new \pro
edure") and are used to store the lo
al variables of the
lause and the
ontrolinformation required for \returning" from the
all.� Choi
e Point Sta
k:
hoi
e points en
apsulate the exe
ution state for ba
ktra
king purposes. A
hoi
epoint is
reated whenever a
all having multiple possible solution paths (i.e., more than one
lausesu

essfully mat
h the
all) is en
ountered. Ea
h
hoi
e point should
ontain suÆ
ient information torestore the status of the exe
ution at the time of
reation of the
hoi
e point, and should keep tra
k ofthe remaining unexplored alternatives.� Trail Sta
k: during an exe
ution variables
an be instantiated (they
an re
eive bindings). Nevertheless,during ba
ktra
king these bindings need to be undone (to restore the previous state of exe
ution). Inorder to make this possible, bindings that
an be subje
t to this operation are registered in the trail sta
k.Ea
h
hoi
e point re
ords the point of the trail where the undoing a
tivity needs to stop.- 7 -

CODE AREA

HEAP

Local Stack

Choice Point Stack

choice point

environment

TRAIL

Y1

Yn

Local
Variabless

Prev. Environment

Return Address

A1

A2

Am

Call

Arguments

Machine State

Arity

Next Alternative

Machine
Registers

Instruction Pointer

Return Address

Top of Trail

Top of Heap

Current CP

Current Env.

Top of Stack

Heap Top at Prev. CP

X1

Xk

Temp.
Registers

Fig. 1. Organization of the WAMProlog is a dynami
ally typed language; hen
e it requires type information to be asso
iated with ea
h dataobje
t. In the WAM, Prolog terms are represented as tagged words: ea
h word
ontains:(1) a tag des
ribing the type of the term (atom, number, list,
ompound stru
ture, unbound variable);(2) a value whose interpretation depends on the tag of the word; e.g., if the tag indi
ates that the wordrepresents a list, then the value �eld will be a pointer to the �rst node of the list3.Prolog programs are
ompiled into a series of abstra
t instru
tions operating on the previously des
ribedmemory areas. In a typi
al exe
ution, whenever a new subgoal is sele
ted (i.e., a new \pro
edure
all" isperformed), the following steps are taken:� the arguments of the
all are prepared and loaded into the temporary registers X1; : : : ; Xn|the instru
tionset
ontains a family of instru
tions, the \put" instru
tions, for this purpose.� the
lauses mat
hing the subgoal are dete
ted and, if more than one is available, a
hoi
e point is allo
ated(using the \try" instru
tions);� the �rst
lause is started: this requires head uni�
ation|i.e., uni�
ation between the head of the
lauseand the subgoal to be solved|to be performed (using \get/unify" instru
tions). If head uni�
ation issu

essful (and assuming that the rule
ontains some user-de�ned subgoals), then an environment for the
lause is
reated (\allo
ate") and the body of the
lause is exe
uted, otherwise ba
ktra
king to the last
hoi
e point
reated takes pla
e.� ba
ktra
king involves extra
ting a new alternative from the topmost
hoi
e point (\retry" will extra
t thenext alternative, assuming this is not the last one, while \trust" will extra
t the last alternative and remove3Lists in Prolog, as in Lisp, are
omposed of nodes, where ea
h node
ontains a pointer to an element of the list (the head) anda pointer to the rest of the list (the tail). - 8 -

the exhausted
hoi
e point), restoring the state of exe
ution asso
iated with su
h
hoi
e point (in parti
ular,the
ontent of the topmost part of the trail sta
k is used to remove bindings performed after the
reationof the
hoi
e point), and restarting the exe
ution of the new alternative.The WAM has been designed in order to optimize the use of resour
es during exe
ution, improving speed andmemory
onsumption. Optimizations whi
h are worth mentioning are:� Last Call Optimization: [Warren 1980℄ represents an instan
e of the well-known Tail-re
ursion optimization
ommonly used in the implementation of many programming languages. Last
all optimization allows toreuse the environment of a
lause for the exe
ution of the last subgoal of the
lause itself;� Environment Trimming: [Ait-Ka
i 1992℄ allows a progressive redu
tion of the size of the environment of a
lause during the exe
ution of the
lause itself, by removing the lo
al variables that are not needed in therest of the
omputation.� Shallow Ba
ktra
king: [Carlsson 1989℄ the prin
iple of pro
rastination [Gupta and Pontelli 1997℄ has beenapplied to the allo
ation of
hoi
e points in the WAM: the allo
ation of a
hoi
e point is delayed until asu

essful head uni�
ation has been dete
ted. This allows in many o

asions to avoid the allo
ation of the
hoi
e point at all|if no head uni�
ation su

eed, or if the su

essful one is the last
lause de�ning su
hpredi
ate.� Indexing: this te
hnique is used to guide the analysis of the possible
lauses that
an be used to solvethe
urrent subgoal. The values of the arguments
an be used to prune the sear
h spa
e at runtime.The original WAM supplies some instru
tions (\swit
h" instru
tions) to analyze the fun
tor of the �rstargument and sele
t di�erent
lusters of
lauses depending on its value. Sin
e many programs
annot pro�tfrom �rst-argument sele
tion, more powerful indexing te
hniques have been proposed, taking into a

ountmore arguments and generating more
omplex de
ision trees [Hi
key and Mudambi 1989; Van Roy andDespain 1992; Taylor 1991℄.2.3 Logi
 Programming and ParallelismParallelization of logi
 programs
an be seen as a dire
t
onsequen
e of Kowalski's prin
iple [Kowalski 1979℄Programs = Logi
 + ControlProgram development separates the
ontrol
omponent from the logi
al spe
i�
ation of the problem, thusmaking the
ontrol of exe
ution an orthogonal feature, independent from the logi
al spe
i�
ation of theproblem. The la
k (or, at least, the limited presen
e) of knowledge about
ontrol in the program allowsthe run-time systems to adopt di�erent exe
ution strategies without a�e
ting the de
larative meaning of theprogram (i.e., the set of logi
al
onsequen
es of the program). Not only does this allow
leaner (de
larative)semanti
s for logi
 programs, and hen
e a better understanding of them by their users, it also permits anevaluator of logi
 programs to employ di�erent
ontrol strategies for evaluation. That is, di�erent operationsin a logi
 program
an be exe
uted in any order without a�e
ting the meaning of the program. In parti
ular,these operations
an be performed by the evaluator in parallel.Apart from the separation between logi
 and
ontrol, from a programming languages perspe
tive, logi
programming o�ers two key features whi
h make exploitation of parallelism more pra
ti
al than in traditionalimperative languages:(1) From an operational perspe
tive, logi
 programming languages are single-assignment languages; variablesare mathemati
al entities whi
h
an be assigned a value at most on
e during ea
h derivation|this relievesa parallel system from having to keep tra
k of
omplex
ow dependen
ies, as in the parallelization oftraditional programming languages [Zima and Chapman 1991℄.(2) The operational semanti
s of logi
 programming,
ontrary to imperative languages, makes substantial useof non-determinism|whi
h in turn
an be easily
onverted into parallelism without radi
al modi�
ationsof the overall operational semanti
s. Furthermore,
ontrol in most logi
 programming languages is largelyimpli
it, thus limiting programmers' in
uen
e on the development of the
ow of exe
ution.The se
ond point is of parti
ular importan
e: the ability to
onvert existing non-determinism into parallelismleads to the possibility of extra
ting parallelism dire
tly from the exe
ution model without any modi�
ationto the language (impli
it parallelization). - 9 -

while (Query ≠ ∅) do
begin
 selectliteral B from Query;
 repeat
 selectclause (H :- Body) from Program;
 until (unify(H, B) or (no clauses left);

 if (no clauses left) then
 FAIL;
 else
 begin
 σ = MostGeneralUnifier(H,B);
 Query = (Query \ { B } ∪ { Body })σ
 end
end.

And-Parallelism

Or-Parallelism

Unification Parallelism

Fig. 2. Operational Semanti
s and Non-determinismThe typi
al strategy adopted in the development of parallel logi
 programming systems has been basedon the translation of one (or more) of the non-deterministi

hoi
es present in the operational semanti
s (seeFigure 2) into parallel
omputations. This leads to three main forms of parallelism:� And-Parallelism, whi
h originates from parallelizing the sele
tion of the next literal to be solved|thusallowing multiple literals to be solved
on
urrently.� Or-Parallelism, whi
h originates from parallelizing the sele
tion of the
lause to be used in the
omputationof the resolvent|thus allowing multiple
lauses to be tried in parallel.� Uni�
ation Parallelism, whi
h arises from the parallelization of the uni�
ation pro
ess.The next three subse
tions elaborates on these three forms of parallelism.2.3.1 Uni�
ation ParallelismUni�
ation parallelism arises during the uni�
ation of the arguments of a goal with the arguments of a
lause head with the same name and arity. The di�erent argument terms
an be uni�ed in parallel as
an thedi�erent subterms in a term [Barklund 1990℄. This
an be easily illustrated as follows: a standard uni�
ation(�a la Robinson) is approximatively stru
tured asunify(Arg1, Arg2):if (Arg1 is a
omplex term f(t1,...,tn) and Arg2 is a
omplex term g(s1,...,sm)) thenif (f is equal to g and n is equal to m) thenunify(t1,s1), unify(t2,s2), ..., unify(tn,sn)elsefailelse....Thus, uni�
ation of two
omplex terms is broken down in pairwise uni�
ation of the di�erent arguments. Forexample, the pro
ess of unifying two termsperson(birth(day(12),month(1),year(99)),address(street(foothills),number(2),
ity(
ru
es)))person(birth(day(X),month(1),Y), address(Z,W,
ity(
ru
es)))- 10 -

requires the separate uni�
ation between the argumentsbirth(day(12),month(1),year(99)) = birth(day(X),month(1),Y)address(street(foothills),number(2),
ity(
ru
es)) = address(Z,W,
ity(
ru
es))Uni�
ation parallelism takes advantage of the sequen
e of uni�
ations between the arguments of
omplexstru
tures, by performing them
on
urrently:doallr1 = unify(t1,s1);...rn = unify(tn,sn);endallreturn (r1 and ... and rn);where doall indi
ates the parallel exe
ution of all the statements between doall and endall.Uni�
ation parallelism is very �ne-grained and is best exploited by building spe
ialized CPUs with multipleuni�
ation units [Singhal and Patt 1989℄. Parallel uni�
ation also needs to deal with
omplex dependen
yissues [Singhal and Patt 1989; Barklund 1990℄. Uni�
ation parallelism has not been the major fo
us of resear
hin parallel logi
 programming.2.3.2 Or-ParallelismOr-Parallelism originates from the parallelization of the sele
t
lause phase in Figure 2. Thus, or-parallelism arises when more than one rule de�nes a relation and a subgoal uni�es with more than one rulehead|the
orresponding bodies
an then be exe
uted in parallel with ea
h other, giving rise to or-parallelism.Or-parallelism is thus a way of eÆ
iently sear
hing for solutions to the query, by exploring in parallel thesear
h spa
e generated by the presen
e of multiple
lauses appli
able at ea
h resolution step. Observe thatea
h parallel
omputation is potentially
omputing an alternative solution to the original goal.Note that or-parallelism en
ompasses not only the a
tual
on
urrent exe
ution of di�erent alternatives,but also the
on
urrent sear
h for the di�erent alternatives whi
h are appli
able to the sele
ted subgoal; someresear
hers have proposed te
hniques to expli
itly parallelize this sear
h pro
ess, leading to the so
alled sear
hparallelism [Bansal and Potter 1992; Kasif, Kohli, Minker 1983℄.Or-parallelism frequently arises in appli
ations that explore a large sear
h spa
e via ba
ktra
king. This isthe typi
al
ase in appli
ation areas su
h as expert systems, optimization and relaxation problems, parsing,natural language pro
essing, and s
heduling. Or-parallelism also arises in the
ontext of parallel exe
ution ofdedu
tive database systems [Ganguly et al. 1990; Wolfson and Silbers
hatz 1988℄.2.3.3 And-ParallelismAnd-Parallelism arises from the parallelization of the sele
tliteral phase in Figure 2. Thus, and-parallelism arises when more than one goal is present in the resolvent, and (some of) these goals are exe
uted inparallel. And-parallelism thus permits exploitation of parallelism within the
omputation of a single solutionto the original goal.And-parallelism arises in most appli
ations, but is parti
ularly present in divide&
onquer appli
ations, listpro
essing appli
ations, various
onstraint solving problems and system appli
ations.In the literature it is
ommon to distinguish two forms of and-parallelism:� Independent and-parallelism (IAP) arises when, given two or more subgoals, the runtime bindings for thevariables in these goals prior to their exe
ution are su
h that ea
h goal has no in
uen
e on the out
ome ofthe other goals. Su
h goals are said to be independent and their parallel exe
ution gives rise to independentand-parallelism. The typi
al example of independent goals is represented by goals whi
h, at run-time, do notshare any unbound variable|i.e., the interse
tion of the sets of variables a

essible by ea
h goal is empty.More re�ned notions of independen
e, e.g., non-stri
t independen
e, have also been proposed [Cabeza andHermenegildo 1994℄.� Dependent and-parallelism arises when, at runtime, two or more goals in the body of a pro
edure havea
ommon variable and are exe
uted in parallel, possibly \
ompeting" in the
reation of bindings for the- 11 -

ommon variable (or \
ooperating", if the goals share the task of
reating the binding for the
ommonvariable). Dependent and-parallelism
an be exploited in varying degrees, ranging from models whi
hfaithfully reprodu
e Prolog's observable semanti
s to models whi
h use spe
ialized forms of dependent and-parallelism (e.g., stream parallelism) to support
oroutining and other alternative semanti
s|as in thevarious
ommitted
hoi
e languages [Shapiro 1987; Ti
k 1995℄.The distin
tion between independent and-parallelism and dependent and-parallelism is based on the gran-ularity of
omputation
onsidered. Parallelism is always obtained by exe
uting two (or more) operations inparallel if those two operations do not in
uen
e ea
h other in any way (i.e., they are independent); otherwise,parallel exe
ution would not be able to guarantee
orre
tness. For independent and-parallelism entire goalshave to be independent of ea
h other to be exe
uted in parallel. On the other hand, in dependent and-parallelism the steps inside exe
ution of ea
h goal are examined, and steps in ea
h goal that do not interferewith ea
h other are exe
uted in parallel. Thus, independent and-parallelism
ould be
onsidered ma
ro leveland-parallelism, while dependent and-parallelism
ould be
onsidered as mi
ro level and-parallelism. As isperhaps now obvious to the reader, dependent and-parallelism is harder to exploit for Prolog (unless adequate
hanges to the operational semanti
s are introdu
ed, as in the
ase of
on
urrent logi
 languages [Shapiro1987℄).2.4 Dis
ussionOr-parallelism and and-parallelism identify opportunities for transforming
ertain sequential
omponents ofthe operational semanti
s of logi
 programming into
on
urrent operations. In the
ase of or-parallelism, theexploration of the di�erent alternatives in a
hoi
e-point is parallelized, while in the
ase of and-parallelismthe resolution of distin
t subgoals is parallelized. In both
ases, we expe
t the system to provide a numberof
omputing resour
es whi
h are
apable of
arrying out the exe
ution of the di�erent instan
es of parallelwork (i.e.,
lauses from a
hoi
e-point or subgoals from a resolvent). These
omputing resour
es
an be seenas di�erent Prolog engines whi
h are
ooperating in the parallel exe
ution of the program. We will oftenrefer to these
omputing entities as workers or agents. The term pro
ess has also been frequently used in theliterature to indi
ate these
omputing resour
es|as workers are typi
ally implemented as separate pro
esses.The
omplexity and
apabilities of ea
h agent vary a
ross the di�erent models proposed. Certain modelsview agents as pro
esses whi
h are
reated for the spe
i�
 exe
ution of an instan
e of parallel work (e.g., anagent is
reated to spe
i�
ally exe
uted a parti
ular subgoal), while other models view agents as representingindividual pro
essors, whi
h have to be repeatedly s
heduled to exe
ute di�erent instan
es of parallel workduring the exe
ution of the program. We will return to this distin
tion later on in Se
tion 9.1.Intuitively, or-parallelism and and-parallelism are largely orthogonal to ea
h other, as they parallelizeindependent points of non-determinism in the operational semanti
s of the language. Thus, one would expe
tthat the exploitation of one form form of parallelism does not a�e
t the exploitation of the other, and it shouldbe feasible to exploit both of them simultaneously. However, pra
ti
al experien
e has demonstrated thatthis orthogonality does not easily translate at the implementation level. For various reasons (e.g.,
on
i
tingmemory management requirements)
ombined and/or-parallel systems turned out to be extremely
ompli
ated,and so far no eÆ
ient parallel system has been built that a
hieves this ideal goal. At the implementationlevel, there is
onsiderable intera
tion between and- and or-parallelism and most proposed systems have beenfor
ed into restri
tions on both forms of parallelism (these issues are dis
ussed at length in Se
tion 6).On the other hand, one of the ultimate aims of resear
hers in parallel logi
 programming has been to extra
tthe best exe
ution performan
e from a given logi
 program. Rea
hing this goal of maximum performan
eentails exploiting multiple forms of parallelism to a
hieve best performan
e on arbitrary appli
ations. Indeed,various experimental studies (e.g., [Shen and Hermenegildo 1991; Pontelli, Gupta, Wiebe, Farwell 1998℄) seemto suggest that there are large
lasses of appli
ations whi
h are ri
h in either one of the two forms of parallelism,while others o�er modest quantities of both. In these situations, the ability to
on
urrently exploit multipleforms of parallelism be
omes essential.It is important to underline that the overall goal of resear
h in parallel logi
 programming is the a
hievementof higher performan
e through parallelism. A

omplishing good speedups may not ne
essarily translate toan a
tual improvement in performan
e with respe
t to state-of-the-art sequential systems|e.g., the
ost- 12 -

of managing the exploitation of parallelism
an make the performan
e of the system on a single pro
essor
onsiderably slower than a standard sequential system.In the rest of the paper, we dis
uss or-parallelism, independent and-parallelism and dependent and-parallelism in greater detail, des
ribing the problems that arise in exploiting them. We des
ribe the varioussolutions that have been proposed for over
oming these problems, followed by des
ription of a
tual parallellogi
 programming systems that have been built. We dis
uss the eÆ
ien
y issues in parallel logi
 program-ming, and
urrent and future resear
h in this area. We assume that the reader is familiar with sequentialimplementation te
hniques for logi
 programming languages. An ex
ellent des
ription of these
an be foundin [Ait-Ka
i 1992℄. A general familiarity with various
on
epts in parallelism is also assumed. An ex
ellentexposition of the needed
on
epts
an be found in [Gottlieb and Almasi 1994; Zima and Chapman 1991℄.The largest part of the body of resear
h in the �eld of parallel logi
 programming fo
used on the developmentof systems on Shared Memory ar
hite
tures|and indeed many of the te
hniques presented are spe
i�
allydesigned to take advantage of a single shared storage. Resear
h on exe
ution of logi
 programs on DistributedMemory ar
hite
tures (e.g., [Benjumea and Troya 1993; Ka
suk and Wise 1992℄) has been more sparse andless in
isive. The
urrent trend of resear
h indi
ates an in
reasing emphasis towards distributed memoryar
hite
tures [Araujo and Ruz 1998; Castro et al. 1998; Gupta and Pontelli 1999a℄, thanks to their in
reasedavailability at a�ordable pri
es and their s
alability. Nevertheless, the fo
us of this survey is on des
ribingexe
ution models for shared memory ar
hite
tures.3. OR-PARALLELISMOr-parallelism arises when a subgoal
an unify with the heads of more than one
lause. In su
h a
ase thebodies of these
lauses
an be exe
uted in parallel with ea
h other giving rise to or-parallelism. For example,
onsider the following simple logi
 program:f :- t(X, three), p(Y), q(Y).p(L) :- s(L, M), t(M, L).p(K) :- r(K).q(one).q(two).r(one).r(three).s(two, three).s(four, five).t(three, three).t(three, two).and the query ?- f. The
alls to t, p, and q are non-deterministi
 and lead to the
reation of
hoi
e-points.In turn, the exe
ution of p leads to the
all to the subgoal s(L,M), whi
h leads to the
reation of another
hoi
e-point. The multiple alternatives in these
hoi
e-points
an be exe
uted in parallel.A
onvenient way to visualize or-parallelism is through the or-parallel sear
h tree. Informally, an or-parallelsear
h tree (or simply an or-parallel tree or a sear
h tree) for a query Q and logi
 program LP is a tree ofnodes, ea
h with an asso
iated goal-list, su
h that:(1) the root node of the tree has Q as its asso
iated goal-list;(2) ea
h non-root node n is
reated as a result of su

essful uni�
ation of the �rst goal in (the goal-listof) n's parent node with the head of a
lause in LP , H :- B1; B2; : : : ; Bn. The goal-list of node n is(B1; B2; : : : ; Bn; L2; : : : ; Lm)�, if the goal-list of the parent of n is L1; L2; : : : ; Lm and � = mgu(H;L1).Figure 3 shows the or-parallel tree for the simple program presented above. Note that, sin
e we are
onsideringexe
ution of Prolog programs, the
onstru
tion of the or-parallel tree will follow the operational semanti
s ofProlog|at ea
h node we will
onsider
lauses appli
able to the �rst subgoal, and the
hildren of a node willbe
onsidered ordered from left to right a

ording to the order of the
orresponding
lauses in the program.- 13 -

Note that ea
h node of the or-parallel tree in Figure 3
ontains the variables found in its
orresponding
lause, i.e., it holds that
lause's environment. During sequential exe
ution this or-parallel tree is sear
hedin a depth-�rst manner. However, if multiple agents are available, then multiple bran
hes of the tree
anbe sear
hed simultaneously giving rise to or-parallelism. If the di�erent bran
hes are sear
hed in or-parallel,then note that one will be
onfronted with the following problem: the variable Y re
eives di�erent bindings indi�erent bran
hes of the tree all of whi
h will be a
tive at the same time. Storing and later a

essing thesebindings eÆ
iently is a problem. In sequential exe
ution the binding of a variable is stored in the memorylo
ation allotted to that variable. Sin
e bran
hes are explored one at a time, and bindings are untrailed duringba
ktra
king, no problems arise. In parallel exe
ution, multiple bindings exist at the same time, hen
e they
annot be stored in a single memory lo
ation allotted to the variable. This problem, known as the multipleenvironment representation problem, is a major problem in implementing or-parallelism and is dis
ussed inthe next se
tion.Or-parallelism manifests itself in a number of appli
ations [Klu�zniak 1990℄. It arises while exer
ising rules ofan expert systems where multiple rules
an be �red simultaneously to a
hieve a goal. It also arises in someappli
ations that involve natural language senten
e parsing. In su
h appli
ations the various grammar rules
an be applied in or-parallel to arrive at a parse tree for a senten
e. If the senten
e is ambiguous then themultiple parses would be found in parallel. Or-parallelism also frequently arises in database appli
ations, wherethere are large numbers of
lauses, and in appli
ations of generate-and-test nature|the various alternatives
an be generated and tested in or-parallel. This
an be seen for example in the following simple program tosolve the 8-queen problem:queens(Qs) :- queens(Qs, [℄, [1,2,3,4,5,6,7,8℄).queens([℄,_,[℄).queens([X|Xs℄, Pla
ed, Values):-delete(X, Values, New_values),noatta
k(X, Pla
ed),queens(Xs,[X|Pla
ed℄,New_values).delete(X, [X|Xs℄, Xs).delete(X, [Y|Ys℄, [Y|Zs℄) :- delete(X, Ys, Zs).noatta
k(X, Xs) :- noatta
k(X, Xs, 1).noatta
k(_, [℄, _).noatta
k(X, [Y|Ys℄, Nb) :-X =\= Y-Nb,X =\= Y+Nb,Nb1 is Nb + 1,noatta
k(X,Ys,Nb1).The
all to delete/3 in the se
ond
lause of queens/3 a
ts as a generator of bindings for the variable X and
reates a number of
hoi
e-points. The predi
ate delete/3 will be
alled again in the re
ursive invo
ations ofqueens/3,
reating yet more
hoi
e-points and yet more untried alternatives that
an be pi
ked up by agentsfor or-parallel pro
essing.3.1 Challenges in the Implementation of Or-parallelismIn prin
iple, or-parallelism should be easy to implement sin
e various bran
hes of the or-parallel tree areindependent of ea
h other, thus requiring little
ommuni
ation between agents. However, in pra
ti
e, imple-mentation of or-parallelism is diÆ
ult be
ause of the sharing of nodes in the or-parallel tree. That is, giventwo nodes in two di�erent bran
hes of the or-tree, all nodes above (and in
luding) the least
ommon an
estornode of these two nodes are shared between the two bran
hes. A variable
reated in one of these an
estor- 14 -

f:- t(X,three),p(Y),q(Y).
p(L):-s(L,M),t(M,L).
p(K):-r(K).
q(one).
q(two).

s(two,three).
s(four,five).
t(three,three).
t(three,two).
r(one).
r(three).
?-f.

?-f.

Y:
X:

Y:&L
M:

t(X,three),p(Y),q(Y)

s(L,M),t(M,L),q(Y)

Y:&K

r(K),q(Y)

[L <- Y]
[K <- Y]

[L <- two
M <- three]

[K <- one]

q(one)

success

t(three, two),q(two)

q(two)

success

Note: Each node contains
space for variables that
appear in its corresponding
clause. Each node also
contains the goal list,
or list of pending subgoals.
&X denotes pointer to var. X.

fail

q(three)

[K <- three]

fail

[L <- four
M <- five]

t(five,four),q(four)

[X<-three]

p(Y),q(Y)

Fig. 3. An Or-parallel Treenodes might be bound di�erently in the two bran
hes. The environments of the two bran
hes have to beorganized in su
h a fashion that, in spite of the an
estor nodes being shared, the
orre
t bindings appli
ableto ea
h of the two bran
hes are easily dis
ernible.Consider a variable V in node n1, whose binding b has been
reated in node n2. If there are no bran
h pointsbetween n1 and n2, then the variable V will have the binding b in every bran
h that is
reated below n2. Su
ha binding
an be stored in-pla
e in V|i.e., it
an be dire
tly stored in the memory lo
ation allo
ated to Vin n1. However, if there are bran
h points between n1 and n2, then the binding b
annot be stored in-pla
e,sin
e other bran
hes
reated between nodes n1 and n2 may impart di�erent bindings to V. The binding b isappli
able to only those nodes that are below n2. Su
h a binding is known as a
onditional binding and su
h avariable as a
onditional variable. For example, variable Y in Figure 3 is a
onditional variable. A binding thatis not
onditional, i.e., one that has no intervening bran
h points (or
hoi
e points) between the node wherethis binding was generated and the node
ontaining the
orresponding variable, is termed un
onditional. The
orresponding variable is
alled an un
onditional variable (for example, variable X in Figure 3).The main problem in implementing or-parallelism is the eÆ
ient representation of the multiple environmentsthat
o-exist simultaneously in the or-parallel tree
orresponding to a program's exe
ution. Note that themain problem in management of multiple environments is that of eÆ
iently representing and a

essing the
onditional bindings; the un
onditional bindings
an be treated as in normal sequential exe
ution of logi
programs (i.e., they
an be stored in-pla
e).Essentially, the problem of multiple environment management has to be solved by devising a me
hanism whereea
h bran
h has some private area where it stores
onditional bindings appli
able to itself. There are manyways of doing this [Warren 1987b; Gupta and Jayaraman 1993b℄. For example:� Storing the
onditional binding
reated by a bran
h in an array or a hash table private to that bran
h, fromwhere the binding is a

essed whenever it is needed.� Keeping a separate
opy of the environment for ea
h bran
h of the tree, so that every time bran
hing o

ursat a node the environment of the old bran
h is
opied or re
reated in ea
h new bran
h.- 15 -

� Re
ording all the
onditional bindings in a global data stru
ture and atta
hing a unique identi�er with ea
hbinding whi
h identi�es the bran
h a binding belongs to.Ea
h approa
h has its asso
iated
ost. This
ost is non-
onstant time and is in
urred either at the time ofvariable a

ess, or at the time of node
reation, or at the time a worker begins exe
ution of a new bran
h. In[Gupta and Jayaraman 1993b℄ three
riteria were derived for an ideal or-parallel system, namely:(1) The
ost of environment
reation should be
onstant-time;(2) The
ost of variable a

ess and binding should be
onstant-time; and(3) The
ost of task swit
hing4 should be
onstant-time.It has been shown that it is impossible to satisfy these three
riteria simultaneously [Gupta and Jayaraman1993b℄. In other words, the non-
onstant time
osts in managing multiple or-parallel environments
annot beavoided. Although this non-
onstant
ost
annot be avoided in supporting or-parallelism, it
an be signi�
antlyredu
ed by a
areful design of the s
heduler, whose fun
tion is to assign work to workers (where work in anor-parallel setting will mean an unexplored bran
h of the or-parallel tree represented as an untried alternativein a
hoi
e-point). The design of the s
heduler is very important in an or-parallel system, and is dis
ussed inthe
ontext of the various exe
ution models proposed (Se
tion 3.5).3.2 Or-parallel Exe
ution ModelsA number of exe
ution models have been proposed in the literature for exploiting or-parallelism (a listing ofabout 20 of them
an be found in [Gupta and Jayaraman 1993b℄). These models di�er in the te
hnique theyemploy for solving the problem of environment representation. The three
riteria mentioned in the previousse
tion allows us to draw a
lean
lassi�
ation of the di�erent models proposed|the models are
lassi�eddepending on whi
h
riteria they meet. This is illustrated in Figure 4; the di�erent models will be asso
iatedto one of the leaves of the tree, depending on whi
h
riteria they meet and whi
h
riteria they violate. Observethat the rightmost leave in the tree is ne
essarily empty, sin
e no model
an meet all the three
riteria (this isdis
ussed more formally in Se
tion 3.4). The
lassi�
ation of the models presented in this se
tion is summarizedin the table in Figure 4.For instan
e, the following models employ an environment representation te
hnique that satis�es
rite-ria 1 and 2 above (
onstant-time task
reation and variable a

ess): Versions Ve
tors S
heme [Hausman,Ciepielewski, Haridi 1987℄, Binding Arrays S
heme [Warren 1984; 1987a℄, Argonne-SRI Model [Warren 1987b℄,Man
hester-Argonne Model [Warren 1987b℄, Delphi Model [Clo
ksin and Alshawi 1988℄, Randomized Method[Janakiram, Agarwal, Malhotra 1988℄, BC-Ma
hine [Ali 1987℄, MUSE [Ali and Karlsson 1990a℄ (and its vari-ations, su
h as sta
k splitting [Gupta and Pontelli 1999a℄, SBA [Correia et al. 1997℄, PBA [Gupta and SantosCosta 1992
; Gupta, Santos Costa, Pontelli 1994℄), Virtual Memory Binding Arrays model [V�eron et al. 1993℄and, Kabu-Wake Model [Masuzawa et al. 1986℄; while the following models employs an environment rep-resentation te
hnique that satis�es
riteria 2 and 3 above (
onstant-time variable a

ess and task swit
h):Dire
tory Tree Method [Ciepielewski and Haridi 1983℄, and Environment Closing Method [Conery 1987b℄; andthe following models employs an environment representation te
hnique that satis�es
riteria 1 and 3 above(
onstant-time task-
reation and task-swit
h): Hashing Windows Method [Borgwardt 1984℄, Favored-BindingsModel [Disz et al. 1987℄, and Virtual Memory Hashing Windows model [V�eron et al. 1993℄. Likewise, ex-ample of a model that only satis�es
riterion 1 (
onstant time task-
reation) is the Time-Stamping Model[Tinker 1988℄, while the example of a model that only satis�es
riterion 3 (
onstant-time task swit
hing) is theVariable Import S
heme [Lindstrom 1984℄. We des
ribe some of these exe
ution models for or-parallelism ingreater detail below. A detailed study and derivation of some of the or-parallel models has also been done in[Warren 1987b℄. Some alternative models for or-parallelism, su
h as Sparse Binding Array and Paged BindingArrays, are separately des
ribed in Se
tion 6.3, sin
e their design is mostly motivated by the desire of integrateexploitation of or- and and-parallelism.As noted in Figure 4, we are also imposing an additional
lassi�
ation level, whi
h separates the modelsproposed into two
lasses. The �rst
lass
ontains all those models in whi
h the di�erent workers explore aunique representation of the
omputation tree|whi
h is shared between workers. The se
ond
lass
ontains4That is, the
ost asso
iated with updating the state of a worker when it swit
hes from one node of the tree to another.- 16 -

Task Creation Time

Task Switching Time Task Switching Time

Variable Access
Time

Variable Access
Time

Variable Access
Time

Variable Access
Time

constantnon-constant

constant

no
n-

co
ns

ta
ntconstant

no
n-

co
ns

ta
nt

? e.g., Variable Import e.g., Directory Tree e.g., Time Stamping e.g., Binding Arrays

e.g., Hashing Windows No Methods

no
n-

co
ns

ta
nt constant

constant

constant

no
n-

co
ns

ta
nt

no
n-

co
ns

ta
nt

no
n-

co
ns

ta
nt constant

MODEL
Constant-time

Task
Creation

Constant-time
Task

Switching

Constant-time
Variable
Access

Time Stamping

Directory Tree

Hashing Windows

Favored Bindings

Environment Closing

Binding Arrays

Version Vectors

MUSE

Kabu-Wake

Delphi

XX
X X

X
X X

X X
X X
X X
X X
X X

X X
Shared Tree

Non-Shared
Tree Fig. 4. Classi�
ation of Or-parallel Modelsthose models in whi
h every worker maintains a separate data stru
ture representing (part of) the
omputationtree.3.2.1 Shared Representation of Computation TreeA. Dire
tory Tree MethodIn the dire
tory tree method [Ciepielewski and Haridi 1983℄, developed by Ciepielewski and Haridi in the early80s for their or-parallel Token Ma
hine [Ciepielewski and Hausman 1986℄, ea
h bran
h of the or-tree has anasso
iated pro
ess. A pro
ess is
reated ea
h time a new node in the tree is
reated, and the pro
ess expireson
e the
reation of the
hildren pro
esses is
ompleted. The binding environment of a pro
ess
onsists of
ontexts. A new
ontext is
reated for ea
h
lause invoked. Ea
h pro
ess has a separate binding environmentbut allows sharing of some of the
ontexts in its environment by pro
esses of other bran
hes. The
ompletebinding environment of a pro
ess is des
ribed by a dire
tory|thus, a dire
tory is essentially a \summary"of a bran
h up to the node representing the pro
ess. A dire
tory of a pro
ess is an array of referen
es to
ontexts. The environment of the pro
ess
onsists of
ontexts pointed to by its dire
tory. The ith lo
ation inthe dire
tory
ontains a pointer to the ith
ontext for that pro
ess.When bran
hing o

urs, a new dire
tory is
reated for ea
h
hild pro
ess. For every
ontext in the parentpro
ess whi
h has at least one unbound variable, a new
opy is
reated, and a pointer to it is pla
ed at thesame o�set in the
hild dire
tory as in the parent dire
tory. Contexts
ontaining no unbound variable (
alled
ommitted
ontext)
an be shared and a pointer is simply pla
ed in the
orresponding o�set of the
hild'sdire
tory pointing to the
ommitted
ontext. - 17 -

A
onditional variable is denoted by the triple hdire
tory address,
ontext o�set, variable o�seti where thedire
tory address is the address of the base of the dire
tory,
ontext o�set is the o�set in the dire
tory arrayand variable o�set is the o�set within the
ontext. Noti
e that in this method all variables are a

essed in
onstant time, and pro
ess swit
hing (i.e., asso
iating one of the pro
esses to an a
tual pro
essor) does notinvolve any state
hange.A prototypi
al implementation of this s
heme was developed and some results
on
erning memory performan
eare reported in [Ciepielewski and Hausman 1986℄. The
ost of dire
tories
reation is potentially very high andthe method leads to large memory
onsumption and poor lo
ality [Crammond 1985℄.B. Hashing Windows MethodThe hashing windows s
heme, proposed by Borgwardt [Borgwardt 1984℄, maintains separate environments byusing hashing windows. The hashing window is essentially a hash table. Ea
h node in the or-tree has itsown hashing window where the
onditional bindings of that parti
ular node are stored. The hash fun
tion isapplied to the address of the variable to
ompute the address of the bu
ket in whi
h the
onditional bindingwould be stored in the hash window. Un
onditional bindings are not pla
ed in the hash window, rather theyare stored in-pla
e in the nodes. Thus, the hash window of a node re
ords the
onditional bindings generatedby that node. During variable a

ess the hash fun
tion is applied to the address of the variable whose bindingis needed and the resulting bu
ket number is
he
ked in the hash-window of the
urrent node. If no valueis found in this bu
ket, the hash-window of the parent node is sear
hed re
ursively until either a binding isfound, or the node where the variable was
reated is rea
hed. If the
reator node of the variable is rea
hedthen the variable is unbound. Hash windows need not be dupli
ated on bran
hing sin
e they are shared.The hashing windows s
heme has found implementation in the Argonne National Laboratory's ParallelProlog [Butler et al. 1986℄ and in the PEPSys system [Westphal, Robert, Chassin, Syre 1987; Chassin deKergommeaux and Robert 1990℄. The goal of the PEPSys (Parallel ECRC Prolog System) proje
t was todevelop te
hnology for the
on
urrent exploitation of and-parallelism and or-parallelism (details on how and-parallelism and or-parallelism are
ombined are dis
ussed in Se
tion 6.3.1). The implementation of hashingwindows in PEPSys is optimized w.r.t. what mentioned earlier. Bindings are separated into two
lasses[Chassin de Kergommeaux and Robert 1990℄:� Shallow Bindings: these are bindings whi
h are performed by the same pro
ess whi
h
reated the variables;su
h bindings are stored in-pla
e (in the environment). A stamp (
alled Or-Bran
h-Level (OBL)) is alsostored with the binding. The OBL keeps tra
k of the number of
hoi
e points present in the sta
k at ea
hpoint in time.� Deep Bindings: these are binding performed to variables whi
h lay outside of the lo
al
omputation. A

essto su
h bindings is performed using hashing windows.Variable look-up makes use of the OBL to determine whether the in-pla
e binding is valid or not|by
omparingthe OBL of the binding with the OBL existing at the
hoi
e point whi
h originated the
urrent pro
ess.Details of these me
hanisms are presented in [Westphal, Robert, Chassin, Syre 1987℄. A detailed study of theperforman
e of PEPSys has been provided in [Chassin de Kergommeaux 1989℄.C. Favored-Bindings MethodThe favored binding method [Disz et al. 1987℄ proposed by resear
hers at Argonne National Laboratory isvery similar to the hash-window method. In this method the or-parallel tree is divided into favored, private,and shared se
tions. Bindings imparted to
onditional variables by favored se
tion are stored in-pla
e in thenode. Bindings imparted by other se
tions are stored in a hash table
ontaining a
onstant number of bu
kets(32 in the Argonne implementation). Ea
h bu
ket
ontains a pointer to the linked list of bindings whi
h mapto that bu
ket. When a new binding is inserted, a new entry is
reated and inserted at the beginning of thelinked list of that bu
ket as follows: (i) The next pointer �eld of the new entry re
ords the old value of thepointer in the bu
ket. (ii) The bu
ket now points to this new entry. At a bran
h point ea
h new node is givena new
opy of the bu
kets (but not a new
opy of the lists pointed to by the bu
kets).- 18 -

When a favored bran
h has to look up the value of a
onditional variable it
an �nd it in-pla
e in thevalue-
ell. However, when a non-favored bran
h a

esses a variable value it
omputes the hash value usingthe address of the variable and lo
ates the proper bu
ket in the hash table. It then traverses the linked listuntil it �nds the
orre
t value. Noti
e how separate environments are maintained by sharing the linked list ofbindings in the hash tables.D. Time Stamping MethodThe time-stamping method, developed by Tinker and Lindstrom [Tinker 1988℄, uses time stamps to distinguishthe
orre
t bindings for an environment. All bindings for a variable are visible to all the workers (whi
h aredistin
t pro
esses
reated when needed). All bindings are stamped with the time at whi
h they were
reated.The bindings also re
ord the pro
ess-id of the pro
ess whi
h
reated them. The bran
h points are also stampedwith the time at whi
h they were
reated. An an
estor sta
k, whi
h stores the an
estor-pro
ess/binding-timepairs to disambiguate variables, is also kept with ea
h pro
ess. The an
estor sta
k re
ords the binding spansduring whi
h di�erent pro
esses worked on a bran
h. The an
estor sta
k is
opied when a new pro
ess is
reated for an untried alternative.To a

ess the value of a variable, a pro
ess has to examine all its bindings until the
orre
t one is found,or none qualify, in whi
h
ase the variable is unbound for that pro
ess. To
he
k if a parti
ular binding isvalid, the id of the pro
ess, say P, whi
h
reated it and the time stamp are examined. Next, one
he
ks ifthe time stamp falls in the time span of the pro
ess P in any one of its entries in the an
estor sta
k. If su
ha P/binding-span entry is found then the binding is valid, else the next binding is examined until there arenone left in whi
h
ase the variable is not bound.This s
heme was provided as part of the design of the BOPLOG system|an or-parallel Prolog systemfor BBN's Butter
y ar
hite
tures (a distributed memory ma
hine with global addressing
apabilities). Themethod suggests a potential for la
k of lo
ality of referen
e, as the global address spa
e is extensively sear
hedin a

essing bindings.E. Environment Closing MethodThe environment
losing method was proposed by Conery [Conery 1987b℄ and is primarily designed for dis-tributed memory systems. The idea behind
losing an environment is to make sure that all a

esses are onlyto variables owned by sear
h tree nodes that reside lo
ally. A node in the sear
h tree (Conery refers to nodesas frames) A is
losed with respe
t to another node B by eliminating all pointers from the environment ofnode A to the environment of node B (
hanging them from node B to node A instead). The pro
ess involvestraversing all the stru
tures in node B whi
h
an be rea
hed through the environment of node A. For ea
hunbound variable V in su
h a stru
ture a new variable V' is introdu
ed in A. The unbound variable is made topoint to this new variable. The stru
ture is
opied into A, with the variable V in that stru
ture being repla
edby the new variable V'. Note that multiple environments for ea
h
lause mat
hing a goal are represented inthis method through expli
it
opying of all unbound variables that are a

essible from the terms in the goal.During exe
ution, ea
h new node introdu
ed is
losed with respe
t to its parent node after the uni�
ation isdone. After the body of the
lause
orresponding to the node is solved the parent node is
losed with respe
tto its
hild node so that the
hild's sibling
an be tried. If the
hild node
orresponds to a unit
lause theparent node is immediately
losed with respe
t to its
hild after uni�
ation. Closing the
hild node ensuresthat no variables in an
estor nodes would be a

essed. Closing the parent node ensures that the variablebindings produ
ed by the exe
ution of its
hildren are imported ba
k into the parent node's environment.This method trades syn
hronization time required to ex
hange variable bindings during parallel
omputa-tions, with the extra time required to
lose the environment. The foundation of this method
an be tra
edba
k to the Variable Import method [Lindstrom 1984℄, where forward uni�
ation is used to
lose the environ-ment of a new
lause and ba
kward uni�
ation is used to
ommuni
ate the results at the end of a
lause. Thes
heme presented by Conery has also been adopted in the ROPM system [Kal�e, Ramkumar, Shu 1988℄.F. Binding Arrays Method - 19 -

In the binding arrays method [Warren 1984; 1987a℄ ea
h worker has an auxiliary data stru
ture
alled thebinding array.5 Ea
h
onditional variable along a bran
h is numbered sequentially outward from the root.To perform this numbering, ea
h bran
h maintains a
ounter; when bran
hing o

urs ea
h bran
h gets a
opy of the
ounter. When a
onditional variable is
reated it is marked as one (by setting a tag), and thevalue of the
ounter re
orded in it; this value is known as the o�set value of the variable.6 The
ounter isthen in
remented. When a
onditional variable gets bound, the binding is stored in the binding array of theworker at the o�set lo
ation given by the o�set value of that
onditional variable. In addition, the
onditionalbinding together with the address of the
onditional variable is stored in the trail. Thus, the trail is extendedto in
lude bindings as well. If the binding of this variable is needed later, then the o�set value of the variableis used to index into the binding array to obtain the binding. Note that bindings of all variables, whether
onditional or un
onditional, are a

essible in
onstant time. This is illustrated in Figure 5. Worker P1 isexploring the leftmost bran
h (with terminal su

ess node labeled n1). The
onditional variables X and M havebeen allo
ated o�sets 0 and 1 respe
tively. Thus, the bindings for X and M are stored in the lo
ations 0 and1 of the binding array. The entries stored in the trail in nodes are shown in square bra
kets in the �gure.Suppose the value of variables M is needed in node n1; M's o�set stored in the memory lo
ation allo
ated to itis then obtained. This o�set is 1, and is used by worker P1 to index into the binding array, and obtain M'sbinding. Observe that the variable L is un
onditionally aliased to X, and for this reason L is made point to X.The un
onditional nature of the binding does not require allo
ation of an entry in the binding array for L.To ensure
onsisten
y, when a worker swit
hes from one bran
h (say bi) of the or-tree to another (say bj), ithas to update its binding array by de-installing bindings from the trail of the nodes that are in bi and installingthe
orre
t bindings from the trail of the nodes that are in bj . For example, suppose worker P1 �nishes workalong the
urrent bran
h and de
ides to migrate to node n2 to �nish work that remains there. To be able todo so, it will have to update its binding array so that the state that exists along the bran
h from root nodeto node n2 is re
e
ted in its environment. This is a

omplished by making P1 to travel up along the bran
hfrom node n1 towards the least
ommon an
estor node of n1 and n2, and removing those
onditional bindingsfrom its binding array that it made on the way down. The variables whose bindings need to be removed arefound in the trail entries of intervening nodes. On
e the least
ommon an
estor node is rea
hed, P1 will movetowards node n2, this time installing
onditional bindings found in the trail entries of nodes passed along theway. This
an be seen in Figure 5. In the example, while moving up worker P1 untrails the bindings for X andM, sin
e the trail
ontains referen
es to these two variables. When moving down to node n2, worker P1 willretrieve the new bindings for X and M from the trail and install them in the binding array.The binding arrays method has been used in the Aurora or-parallel system, whi
h is des
ribed in more detailin Se
tion 3.5. Other systems have also adopted the binding arrays method (e.g., the Andorra-I system [SantosCosta, Warren, Yang 1991a℄). Furthermore, a number of variations on the idea of binding arrays have beenproposed|e.g., Paged Binding Arrays, Sparse Binding Arrays|mostly aimed to provide better support for
ombined exploitation of and-parallelism and or-parallelism. These are dis
ussed in Se
tions 6.3.6 and 6.3.7.G. Versions Ve
tors MethodThe versions ve
tors method [Hausman, Ciepielewski, Haridi 1987℄ is very similar to the binding arrays methodex
ept that instead of a
onditional variable being allo
ated spa
e in the binding array ea
h one is asso
iatedwith a versions ve
tor. A versions ve
tor stores the ve
tor of bindings for that variable su
h that the bindingimparted by a worker with pro
essor-id i (pro
essor ids are numbered from 1 to n, where n is the total numberof workers) is stored at o�set i in the ve
tor. The binding is also re
orded in the trail, as in the bindingarrays method. Like in the binding arrays method, on swit
hing to another bran
h a worker with pid j has toupdate the jth slots of versions ve
tors of all
onditional variables that lie in the intervening nodes to re
e
tthe
orre
t bindings
orresponding to the new site.5Note that the des
ription that follows is largely based on [Warren 1987a℄ rather than on [Warren 1984℄. The binding arrayste
hnique in [Warren 1984℄ is not primarily
on
erned with or-parallelism but rather with (primarily sequential) non-depth-�rstsear
h.6Most systems, e.g., Aurora, initially treat all the variables as
onditional, thus pla
ing them in the binding array.- 20 -

X: 0

L: &X
M: 1 L <- X

[X <- two
M <- three]

success

[X <- four
M <- five]

0

1

2

3

binding array

4

two

three
P1

binding array

0

1

2

3

4

four

five
P1

n1

counter=0

counter=0

counter=1

counter=2 counter=2

counter=2

success

n2

counter=2

counter=2

Fig. 5. The Binding Arrays MethodTo our knowledge the method has never been integrated in an a
tual prototype. Nevertheless, the modelhas the potential to provide good performan
e, in
luding the ability to support the orthogonality prin
iplerequired by
ombined exploitation of and-parallelism and or-parallelism (see Se
tion 6.3.7).3.2.2 Non-Shared Representation of Computation TreeA. Sta
k-
opying MethodIn the Sta
k-
opying method [Ali and Karlsson 1990a; 1990a℄ a separate environment is maintained by ea
hworker in whi
h it
an write without
ausing any binding
on
i
ts. In Sta
k-
opying even un
onditionalbindings are not shared, as they are in the other methods des
ribed above. When an idle worker P2 pi
ksan untried alternative from a
hoi
e-point
reated by another worker P1, it
opies all the sta
ks of P1. As aresult of
opying, ea
h worker
an
arry out exe
ution exa
tly like a sequential system, requiring very littlesyn
hronization with other workers.In order to avoid dupli
ation of work, part of ea
h
hoi
e point (spe
i�
ally the set of unexplored alter-natives) is moved to a frame
reated in an area easily a

essible by ea
h worker. This allows the system tomaintain a single list of unexplored alternatives for ea
h
hoi
e point, whi
h is a

essed in mutual ex
lusion bythe di�erent workers. A frame is
reated for ea
h shared
hoi
e point and is used to maintain various s
hedul-ing information (e.g., bitmaps keeping tra
k of workers working below ea
h
hoi
e point). This is illustratedin Figure 6. Ea
h
hoi
e point shared by multiple workers has a
orresponding frame in the separate SharedSpa
e. A

ess to the unexplored alternatives (whi
h are now lo
ated in these frames) will be performed inmutual ex
lusion, thus guaranteeing that ea
h alternative is exe
uted by exa
tly one worker.The
opying of sta
ks
an be made more eÆ
ient through the te
hnique of in
remental
opying. The ideaof in
remental
opying is based on the fa
t that the idle worker
ould have already traversed a part of thepath from the root node of the or-parallel tree to the least
ommon an
estor node, thus it does not need to
opy this part of sta
ks. In Figure 7 this is illustrated in an example. In Figure 7(i) we have two workersimmediately after a sharing operations whi
h has transferred three
hoi
e points from worker P1 to P2. In- 21 -

CP Env Heap Trail CP Env Heap Trail

Shared
Part

Root

a

b

a

b

Root

LOCAL SPACE OF P1 LOCAL SPACE OF P2

SHARED
SPACE

P1

P2

Processor P2 picks an untried alternative from choice-
point b created by P1. To begin execution along this
alternative, P2 first transfers the choice-points between
the root node and b (inclusive) in a shared global area,
and then copies P1’s local stacks from root node up
to node b. It untrails the appropriate variables to restore
the computation state that existed when b was first created
and begins the execution of the alternative that was picked.Fig. 6. Sta
k Copying and Choi
e Points

P1 P2
c
o
p
i
e
d

c
h
o
i
c
e

p
o
i
n
t
s

a1 a2

P1 P2

a1 a2

FAIL

P1 P2

c
o
p
i
e
d

c
h
o
i
c
e

p
o
i
n
t
s

a1 a1

(i) (ii) (iii)Fig. 7. In
remental Sta
k CopyingFigure 7(ii) worker P1 has generated two new (private)
hoi
e points while P2 has failed in its alternative.Figure 7(iii) shows the resulting situation after another sharing between the two workers; in
remental
opyinghas been applied, thus leading to the
opy of only the two new
hoi
e points.Re
ently, in
remental
opying have been proved to have some drawba
ks with respe
t to managementof
ombined and-parallelism and or-parallelism as well as management of spe
ial types of variables (e.g.,attributed variables). Re
ent s
hemes, su
h as the COWL models (des
ribed in Se
tion 6.3.5) over
ome manyof these problems.This model is an evolution of the work on BC-ma
hine by Ali [Ali 1987℄|a model where di�erent workers
on
urrently start the
omputation of the query and automati
ally sele
t di�erent alternatives when
hoi
epoints are
reated. It has also found a di�erent instantiation in the Kabu Wake model [Masuzawa et al. 1986℄.In this method, idle workers request work from busy ones, and work is transmitted by
opying environmentsbetween workers. The main di�eren
e w.r.t. the previously des
ribed approa
h is that the sour
e worker (i.e.,the busy worker from where work is taken) is required to \temporarily" ba
ktra
k to the
hoi
e point to besplit in order to undo bindings before
opying take pla
e.Sta
k
opying has found eÆ
ient implementation in a variety of systems, su
h as MUSE [Ali and Karlsson1990a℄ (dis
ussed in more detail in Se
tion 3.5.2), E
lipse [Walla
e, Novello, S
himpf 1997℄, and YAP [SantosCosta, Damas, Reis, Azevedo 1999℄. Sta
k
opying has also been adopted in a number of distributed memoryimplementations of Prolog, su
h as OPERA [Briat et al. 1992℄ and PALS [Villaverde, Guo, Pontelli, Gupta- 22 -

2000℄.B. Sta
k SplittingIn the sta
k-
opying te
hnique, ea
h
hoi
e-point has to be \shared"|i.e., transfered to a
ommon sharedarea a

essible by all the workers|to make sure that the sele
tion of its untried alternatives by various
on
urrent workers is serialized, so that no two workers
an pi
k the same alternative. The shared
hoi
epoint is lo
ked while the alternative is sele
ted to a
hieve this e�e
t. As dis
ussed in [Gupta and Pontelli1999a℄ this method allows the use of very eÆ
ient s
heduling me
hanisms|su
h as the s
heduling on bottom-most
hoi
e point used by Aurora and MUSE|but may
ause ex
essive lo
k
ontention, or ex
essive networktraÆ
 if realized on a distributed memory system. However, there are other simple ways of ensuring that noalternative is simultaneously sele
ted by multiple workers: the untried alternatives of a
hoi
e-point
an besplit between the two
opies of the
hoi
e-point sta
k. This operation is
alled Choi
e-point Sta
k-Splitting, orsimply Sta
k-splitting. This will ensure that no two workers pi
k the same alternative.Di�erent s
hemes for splitting the set of alternatives between the two (or more)
hoi
e-points
an beenvisioned|e.g., ea
h
hoi
e-point re
eives half of the alternatives, or the partitioning
an be guided byadditional information regarding the unexplored
omputation, su
h as granularity and likelihood of failure. Inaddition, the need for a shared frame, as a
riti
al se
tion to prote
t the alternatives from multiple exe
utions,has disappeared, as ea
h sta
k
opy has a
hoi
e-point, though their
ontents di�er in terms of whi
h unexploredalternatives they
ontain. All the
hoi
e-points
an be evenly split in this way during the
opying operation.The
hoi
e-point sta
k-splitting operation is illustrated in �gure 8.

Fig (i): Processor P1 is busy and P2 idle

a2 a3 a4

a1

b1
b2 b3 b4

c1
c2 c3 c4

P1

P2

idle

copied split choicepoint

untried alternative

Pi processor

LEGEND:

choicepoint

Fig (ii): P1’s Tree after Stack Splitting

a2
a1

b1
b2

c1

P1

c3

Fig (iii): P2’s Tree after Stack Splitting

a3 a4

a1

b1
b3 b4

c2 c4

P2Fig. 8. Sta
k-splitting based or-parallelismThe major advantage of sta
k-splitting is that s
heduling on bottom-most
an still be used without in-
urring huge
ommuni
ation overheads. Essentially, after splitting the di�erent or-parallel threads be
omefairly independent of ea
h other, and hen
e
ommuni
ation is minimized during exe
ution. This makes thesta
k-splitting te
hnique highly suitable for distributed memory ma
hines. The possibility of parameteriz-ing the splitting of the alternatives based on additional semanti
 information (granularity, non-failure, userannotations)
an further redu
e the likelihood of additional
ommuni
ations due to s
heduling.In [Gupta and Pontelli 1999a℄ results have been reported indi
ating that for various ben
hmarks, sta
ksplitting obtains better speedups than MUSE on shared memory ar
hite
tures|thanks to a better lo
ality of
omputation and redu
ed intera
tion between workers. Preliminary work on implementing sta
k-splitting ondistributed memory ma
hine has also provided positive results in terms of speedups and eÆ
ien
y [Villaverde,Guo, Pontelli, Gupta 2000℄.C. Re
omputation-based ModelsIn the sta
k-
opying s
hemes, an idle worker a
quires work by
opying the data stru
tures asso
iated toa given segment of the
omputation, in order to re
reate the state of the
omputation from where the newalternative will start. An alternative approa
h to
opying is to have idle workers re
reate su
h data-stru
tures- 23 -

by repeating the
omputation from the root of the or-tree all the way to the
hoi
e-point from where a newalternative will be taken. Thus, the
ontent of the sta
ks of the abstra
t ma
hine is re
onstru
ted, rather than
opied. This approa
h is at the base of the Delphi system [Clo
ksin and Alshawi 1988℄ and of the RandomizedParallal Ba
ktra
king method [Janakiram, Agarwal, Malhotra 1988℄.These re
omputation-based methods have the
lear advantage of redu
ing the intera
tions between workersduring the sharing operations. In Delphi, the ex
hange of work between workers boils down to the transfer ofan ora
le from the busy worker to the idle one. An ora
le
ontains identi�ers whi
h des
ribe the the path inthe or-tree that the worker needs to follow to rea
h the unexplored alternative. A
entralized
ontroller is in
harge of allo
ating ora
les to idle agents. The method has attra
ted
onsiderable attention, but has providedrelatively modest parallel performan
es on arbitrary Prolog programs. Variations of this method have beene�e
tively used to parallelize spe
ialized types of logi
 programming
omputations (e.g., in the parallelizationof Stable Logi
 Programming
omputations [Pontelli and El-Khatib 2001℄).3.3 Support for Full PrologMost of the models des
ribed above
onsider only pure logi
 programs (pure Prolog) for parallel exe
ution.However, to make logi
 programming pra
ti
al many extra-logi
al, meta-logi
al and input/output predi
ateshave been in
orporated in Prolog. Some resear
hers have taken the view that a parallel logi
 programmingsystem should transparently exe
ute Prolog programs in parallel [Lusk et al. 1990; Hausman, Ciepielewski,Calderwood 1988℄. That is, the same e�e
t should be seen by a user during parallel exe
ution of a Prologprograms, as far as input/output et
. are
on
erned (in
luding printing of the �nal solutions), as in itssequential exe
ution with Prolog
omputation and sele
tion rules. Su
h a system is said to support (observable)sequential Prolog semanti
s. The advantage of su
h an approa
h is that existing Prolog programs
an be takenand exe
uted in parallel without any modi�
ations. Two prominent or-parallel systems that have been built,namely MUSE and Aurora, do support sequential Prolog semanti
s by exe
uting an extra-logi
al predi
atesonly when the bran
h
ontaining it be
omes the leftmost in the sear
h tree. Di�erent te
hniques have beenproposed to dete
t when a bran
h of the or-parallel tree be
omes the leftmost a
tive bran
h in the tree [Aliand Karlsson 1990a; Kal�e, Padua, Sehr 1988; Sindaha 1993℄. Arguably, the te
hniques used in Aurora havebeen the most well resear
hed and su

essful [Hausman, Ciepielewski, Calderwood 1988; Hausman 1990℄. Inthis approa
h, the system maintains for ea
h node n in the sear
h tree a pointer to one of its an
estor nodesm,
alled the sub-root node, whi
h represents the highest an
estor (i.e.,
loser to the root) su
h that n lies inthe leftmost bran
h of the tree rooted at m. If m is equal to the root of the tree, then the node n is leftmostbran
h of the sear
h tree.In addition to this, various or-parallel Prolog systems (e.g., Aurora and MUSE) provide variants of thedi�erent order-sensitive predi
ates whi
h
an be exe
uted without requiring any form of syn
hronization|these are typi
ally
alled
avalier predi
ates. The use of
avalier extra-logi
al predi
ates leads to an operationalbehavior di�erent from that of Prolog|e.g., a
avalier write operation is going to be exe
uted immediatelyirrespe
tively of the exe
ution of the other extra-logi
al predi
ates in the sear
h tree.An issue that arises in the presen
e of pruning operators su
h as
uts and
ommits during or-parallelexe
ution is that of spe
ulative work [Hausman 1989; 1990; Ali and Karlsson 1992b; Beaumont and Warren1993; Sindaha 1992℄. Consider the following program:p(X, Y) :- q(X), !, r(Y).p(X, Y) :- g(X), h(Y)....and the goal:?- p(A, B).Exe
uting both bran
hes in parallel,
orresponding to the two
lauses that mat
h this goal, may result inunne
essary work, be
ause sequential Prolog semanti
s entail that if q(X) su

eeds then the se
ond
lause forp shall never be tried. Thus, in or-parallel exe
ution, exe
ution of the se
ond
lause is spe
ulative, in the sensethat its usefulness depends on the su

ess/failure out
ome of goal q.- 24 -

It is a good idea for a s
heduler designed for an or-parallel system that supports sequential Prolog semanti
s totake spe
ulative work into a

ount. Essentially, su
h a s
heduler should bias all the workers to pi
k work thatis within the s
ope of a
ut from bran
hes to the left in the
orresponding subtree rather than from bran
hesto the right [Ali and Karlsson 1992b; Beaumont 1991; Beaumont and Warren 1993; Sindaha 1992℄.A detailed survey on s
heduling and handling of spe
ulative work for or-parallelism is beyond the s
ope ofthis paper, and
an be found in [Ciepielewski 1992℄. One must note that the eÆ
ien
y and the design of thes
heduler has the biggest bearing on the overall eÆ
ien
y of an or-parallel system (or any parallel system forthat matter). We des
ribe two su
h systems in Se
tion 3.5, where a signi�
ant amount of e�ort has beeninvested in designing and �ne-tuning the or-parallel system and its s
hedulers.3.4 Problem Abstra
tion and Complexity3.4.1 Abstra
tion of the ProblemsIn this se
tion we provide a brief overview of the theoreti
al abstra
tion of the problems arising in or-parallelexe
ution of Prolog programs. Complete details regarding this study
an be found elsewhere [Ranjan, Pontelli,Gupta 1999℄. Exe
ution of a program
an be abstra
ted as building a (rooted, labeled) tree. For the sake ofsimpli
ity, we will assume that the trees are binary; this assumption does not lead to any loss of generalitybe
ause, for a given program, the number of bran
hes at any given node is bounded by some
onstant. Thepro
ess of building the tree
an be abstra
ted through the following three operations:(1)
reate tree(
) whi
h
reates a tree
ontaining only the root, with label
;(2) expand(u;
1;
2) whi
h, given one leaf u and two labels
1 and
2,
reates two new nodes (one for ea
hlabel) and adds them as
hildren of u (
1 as left
hild and
2 as right
hild);(3) remove(u) whi
h, given a leaf u of the tree, removes it from the tree.These three operations are assumed to be the only ones available to modify the \physi
al stru
ture" of thetree.The abstra
tion of an or-parallel exe
ution should a

ount for the various issues present in or-parallelism|e.g., management of variables and of their bindings,
reation of tasks et
. Variables that arise during exe
ution,whose multiple bindings have to be
orre
tly maintained,
an be modeled as attributes of the nodes in the tree.� denotes a set of M variables. If the
omputation tree has size N , then it is possible to assume M = O(N).At ea
h node u, three operations are possible:� assign a variable X to a node u.� dereferen
e a variable X at node u|that is, identify the an
estor v of u (if any) whi
h has been assignedX .� alias two variables X1 and X2 at node u; this means that for every node v an
estor of u, every referen
eto X1 in v will produ
e the same result as X2 and vi
e-versa.The previous abstra
tion assumed the presen
e of one variable binding per node. This restri
tion
an be madewithout loss of generality|it is always possible to assume that the number of bindings in the node is bound bya program dependent
onstant. The problem of supporting these dynami
 tree operations has been referredto as the OP problem [Ranjan, Pontelli, Gupta 1999℄.3.4.2 Complexity on Pointer Ma
hinesIn this se
tion we summarize the
omplexity results that have been developed for the abstra
tion of or-parallelism des
ribed in the previous se
tion. The
omplexity of the problem has been studied on pointerma
hines [Ben-Amram 1995; S
h�onhage 1980℄. Pointer ma
hine is a formal model for des
ribing algorithms,whi
h relies on an elementary ma
hine whose memory is
omposed only by re
ords
onne
ted via pointers.The interesting aspe
t of this model is that it allows a more re�ned
hara
terization of
omplexity than themore traditional RAM model.Lower Bound for OP: As mentioned earlier, the only previous work that deals with the
omplexity of theme
hanisms for or-parallelism is [Gupta 1994; Gupta and Jayaraman 1993b℄. This previous work provides aninformal argument to show that a generi
 OP problem with N variables and M operations has a lower bound- 25 -

whi
h is stri
tly worse than
(N +M). Intuitively, this means that no matter how good is an implementationmodel for or-parallelism, it will in
ur some
osts during the exe
ution whi
h are dependent on the size of the
omputation (e.g., the number of
hoi
e points
reated). This intuitive result has been formally proved tohold in [Ranjan, Pontelli, Gupta 1999℄, and
an be summarized by the following theorem:Theorem 3.1. On pointer ma
hines, the worst
ase time
omplexity of OP is
(lgN) per operation evenwithout aliasing.The basi
 idea of the proof is that sin
e there is no dire
t addressing in the pointer ma
hines starting froma parti
ular node only a \small" number of nodes
an be a

essed in a small number of steps. Thus, if we needto relate variables and
hoi
e points in a very large tree, we need to in
ur a
ost whi
h is dependent on thesize of the tree. Thus, at least one of the operations involved in the OP problem will take in the worst
ase anamount of time whi
h is at least as large as lgN (where N is the number of
hoi
e points in the
omputationtree).It is also interesting to point out that the result does not depend on the presen
e of the alias operation;this means that the presen
e of aliasing between unbound
onditional variables during an or-parallel exe
utiondoes not
reate any serious
on
ern (note that this is not the
ase for other forms of parallelism, where aliasingis a major sour
e of
omplexity).The result essentially states that, no matter how smart is the implementation s
heme sele
ted, there willbe
ases whi
h will lead to a non-
onstant time
ost. This proof
on�rms the result
onje
tured in [Gupta andJayaraman 1993b℄. This non-
onstant time nature is also evident in all the implementation s
hemes presentedin the literature|e.g., the
reation of the shared frames and the
opying of the
hoi
e points in MUSE [Aliand Karlsson 1990a℄, the installation of the bindings in Aurora [Lusk et al. 1990℄, management of time-stampsin various other models [Gupta 1994℄.Upper Bound for OP: The relevant resear
h on
omplexity of the OP problem has been limited to showingthat a
onstant time
ost per operation
annot be a
hieved in any implementation s
heme. Limited e�ort hasbeen pla
ed to supply a tight upper bound to this problem. Most of the implementation s
hemes proposed inthe literature
an be shown to have a worst
ase
omplexity of O(N) per operation. Currently, the best resulta
hieved is the following:Theorem 3.2. The OP problem with no aliasing
an be solved on a pointer ma
hine with a single operationworst{
ase time
omplexity of O(3pN(lgN)k) for a small k.Method ComplexityKnown Upper Bound ~O(K �N 13)Sta
k Copying [Ali and Karlsson 1990a℄ ~O(K �N)Dire
tory Tree Method [Gupta 1994℄ ~O(K �N lgN)Binding Arrays [Lusk et al. 1990℄ ~O(K �N)Environment Closing [Gupta 1994℄ ~O(K �N)Table I. Worst-
ase Complexity of Some Or-parallel S
hemes (K operations)The lower bound produ
ed, O(lgN) per operation, is a
on�rmation and re�nement of the results proposedby Gupta and Jayaraman [Gupta and Jayaraman 1993b℄, and a further proof that an ideal or-parallel system(where all the basi
 operations are realized with
onstant-time overhead)
annot be realized. The upper bound,~O(3pN), even if far from the lower bound, is of great importan
e, as it indi
ates that (at least theoreti
ally)there are implementation s
hemes whi
h have a worst
ase time
omplexity better than that of the existingmodels. Table I
ompares the worst
ase time
omplexity of performing a sequen
e of K operations, on an- 26 -

N node tree, for some of the most well known s
hemes for or-parallelism [Gupta 1994℄. The proof of theorem3.2 indeed provides one of su
h models|although it is still an open issue whether the theoreti
al superiorityof su
h model
an be translated into a pra
ti
al implementation s
heme.3.5 Experimental SystemsIn this se
tion we illustrate in more detail two of the most eÆ
ient or-parallel systems implemented.3.5.1 The Aurora Or-parallel Prolog SystemAurora is a prototype or-parallel implementation of the full Prolog language developed for UMA (UniformMemory A

ess) shared-memory multipro
essors su
h as the Sequent Symmetry and subsequently ported[Mudambi 1991℄ to NUMA (Non-Uniform Memory A

ess) ar
hite
tures su
h as the BBN TC-2000 (a s
alablear
hite
ture with Motorola 88000 pro
essors7). Let us remind that UMA ar
hite
tures are
hara
terized by thefa
t that ea
h pro
essor in the system guarantee the same average a

ess time to any memory lo
ation, whileNUMA ar
hite
tures (e.g.,
lusters of shared memory ma
hines) may lead to di�erent a

ess time dependingon the memory lo
ation
onsidered.Aurora was developed as part of an informal resear
h
ollaboration known as the \Gigalips Proje
t" withresear
h groups at Argonne National Laboratory, the University of Bristol (initially at the University ofMan
hester), the Swedish Institute of Computer S
ien
e, and IQSOFT SZKI Intelligent Software Co. Ltd.,Budapest as the main implementors.Aurora is based on the SRI model, as originally des
ribed in [Warren 1987a℄ and re�ned in [Lusk et al. 1990℄.The SRI-model employs binding arrays for representing multiple environment. In the SRI model, a group ofpro
essing agents
alled workers
ooperate to explore a Prolog sear
h tree, starting at the root (the topmostpoint). A worker has two
on
eptual
omponents: an engine, whi
h is responsible for the a
tual exe
utionof the Prolog
ode, and a s
heduler, whi
h provides the engine
omponent with work. These
omponents arein fa
t independent of ea
h other, and a
lean interfa
e between them has been designed [Szeredi, Carlsson,Yang 1991; Carlsson 1990℄ allowing di�erent s
hedulers and engines to be plugged in. To date, Aurora hasbeen run with �ve di�erent s
hedulers, and the same interfa
e has been used to
onne
t one of the s
hedulerswith the Andorra-I engine [Santos Costa, Warren, Yang 1991a℄ to support both and- and or-parallelism. TheAurora engine and
ompiler [Carlsson 1990℄ were
onstru
ted by adapting SICStus Prolog 0.6 [Carlsson et al.1995℄. Garbage
olle
tion for Aurora has been investigated by Weemeeuw [Weemeeuw and Demoen 1990℄.In the SRI model, the sear
h tree, de�ned impli
itly by the program, is expli
itly represented by a
a
tussta
k generalizing the sta
ks of sequential Prolog exe
ution. Workers that have gone down the same bran
hshare the data on that bran
h. Bindings of shared variables must of
ourse be kept private, and are re
ordedin the worker's private binding array. The basi
 Prolog operations of binding, unbinding, and dereferen
ingare performed with an overhead of about 25% relative to sequential exe
ution (and remain fast,
onstant-time operations). However, during task swit
hing the worker has to update its binding array by deinstallingbindings as it moves up the tree and installing bindings as it moves down another bran
h. This overheadin
urred,
alled migration
ost (or task-swit
hing
ost), is proportional to the number of bindings that aredeinstalled and installed. Aurora divides the or-parallel sear
h tree into a publi
 region and a private region.The publi
 region
onsists of those nodes from whi
h other workers
an pi
k up untried alternatives. Theprivate region
onsists of nodes private to a worker that
annot be a

essed by other workers. Exe
utionwithin the private region is exa
tly like sequential Prolog exe
ution. Nodes are transferred from the privateregion of a worker P to the publi
 region by the s
heduler, whi
h does so when another idle worker Q requestswork from worker P .One of the prin
ipal goals of Aurora has been the support of the full Prolog language. Preserving thesemanti
s of built-in predi
ates with side e�e
ts is a
hieved by syn
hronization: whenever a non-leftmostbran
h of exe
ution rea
hes an order-sensitive predi
ate, the given bran
h is suspended until it be
omesleftmost [Hausman 1990℄. This te
hnique ensures that the order-sensitive predi
ates are exe
uted in the sameleft-to-right order as in a sequential implementation, thus preserving
ompatibility with these implementations.7Although the porting did not involve modi�
ations of the system stru
ture to take full advantage of the ar
hite
ture's stru
ture.- 27 -

It is often the
ase that this stri
t form of syn
hronization is unne
essary, and slows down parallel exe
ution.Aurora therefore provides non-syn
hronized variants for most order-sensitive predi
ates whi
h
ome in two
avors: the asyn
hronous form respe
ting the
ut pruning operator, and the
ompletely relaxed
avalier form.Notably, non-syn
hronized variants are available for the dynami
 database update predi
ates (assert, retra
tet
.) [Szeredi 1991℄.A systemati
 treatment of pruning operators (
ut and
ommit) and of spe
ulative work has proved to be oftremendous importan
e in or-parallel implementations. Algorithms for these aspe
ts have been investigatedby Hausman [Hausman 1989; 1990℄ and in
orporated into the interfa
e and s
hedulers.Graphi
al tra
ing pa
kages have turned out to be essential for understanding the behavior of s
hedulersand parallel programs and �nding performan
e bugs in them [Disz and Lusk 1987; Herrarte and Lusk 1991;Carro et al. 1993℄.Several or-parallel appli
ations for Aurora were studied in [Klu�zniak 1990℄ and [Lusk, Mudambi, Overbeek,Szeredi 1993℄. The non-syn
hronized dynami
 database features have been exploited in the implementationof a general algorithm for solving optimization problems [Szeredi 1991℄.Three s
hedulers are
urrently operational. Two older s
hedulers were written [Butler et al. 1988; Brand1988℄, but have not been updated to
omply with the s
heduler-engine interfa
e:� The Man
hester S
heduler. The Man
hester s
heduler [Calderwood and Szeredi 1989℄ tries to mat
hworkers to available work as well as possible. The mat
hing algorithm relies on global arrays, indexedby worker number. One array indi
ates the work ea
h worker has available for sharing and its migration
ost, and the other indi
ates the status of ea
h worker and its migration
ost if it is idle. The Man
hesters
heduler was not designed for handling spe
ulative work properly. A detailed performan
e analysis of theMan
hester s
heduler was done in [Szeredi 1989℄.� The Bristol S
heduler. The Bristol s
heduler tries to minimize s
heduler overhead by extending thepubli
 region eagerly: sequen
es of nodes are made publi
 instead of single nodes, and work is taken fromthe bottommost live node of a bran
h. This idea was originally explored in the
ontext of the MUSE system,and su

essively integrated in a preliminary version of the Bristol S
heduler [Beaumont et al. 1991℄. Thepresent version of the s
heduler [Beaumont and Warren 1993℄ addresses the problem of eÆ
iently s
hedulingspe
ulative work. It a
tively seeks the least spe
ulative, sele
ting a leftmost bran
h if the work is spe
ulativeand a `ri
hest' bran
h (i.e., bran
h with most work) if the work is non-spe
ulative.� The Dharma S
heduler. The Dharma s
heduler [Sindaha 1993; 1992℄ is also designed for eÆ
ientlys
heduling spe
ulative work. It addresses the problem of qui
kly �nding the leftmost, thus least spe
ulative,available work, by dire
tly linking the tips of ea
h bran
h.The speed-ups obtained by all s
hedulers of Aurora for a diverse set of ben
hmark programs have beenvery en
ouraging. Some of the ben
hmark programs
ontain signi�
ant amount of spe
ulative work, in whi
hspeed-ups are measured for �nding the �rst (leftmost) solution. The degree of speedup obtained for su
hben
hmark programs depends on where in the Prolog sear
h tree the �rst solution is, and on the frequen
yof workers moving from right to left towards less spe
ulative work. There are other ben
hmark programsthat have little or no spe
ulative work be
ause they produ
e all solutions. The degree of speedup for su
hben
hmark programs depends on the amount of parallelism present and on the granularity of parallelism.More on the Aurora system, and a detailed dis
ussion of its performan
e results,
an be found in [Calderwoodand Szeredi 1989; Szeredi 1989; Beaumont et al. 1991; Beaumont and Warren 1993; Sindaha 1992℄. Re
ently,Aurora was also ported on distributed memory ar
hite
tures [Silva and Watson 2000℄.3.5.2 The MUSE Or-parallel Prolog SystemThe MUSE or-parallel Prolog system has been designed and implemented on a number of UMA and NUMA
omputers (Sequent Symmetry, Sun Galaxy, BBN Butter
y II, et
.) [Ali and Karlsson 1990a; 1990a; 1992a;Ali et al. 1992; Ali and Karlsson 1992b; Karlsson 1992℄. It supports the full Prolog language and programsrun on it with almost no user annotations. It is based on a simple extension of the state-of-the-art sequentialProlog implementation (SICStus WAM [Carlsson et al. 1995℄).The MUSE model assumes a number of extended WAMs (
alled workers, as in Aurora), ea
h with its ownlo
al address spa
e, and some global spa
e shared by all workers. The model requires
opying parts of the- 28 -

WAM sta
ks when a worker runs out of work or suspends its
urrent bran
h. The
opying operation is madeeÆ
ient by utilizing the sta
k organization of the WAM. To allow
opying of memory between workers withoutthe need of any pointer relo
ation operation, MUSE makes use of a sophisti
ated memory mapping s
heme.The memory is partitioned between the di�erent workers; ea
h worker is implemented as a separate pro
ess,and ea
h pro
ess maps its own lo
al partition to the same range of memory addresses|whi
h allows for
opying without pointer relo
ations. The partitions belonging to other pro
esses are instead lo
ally mappedto di�erent address ranges. This is illustrated in Figure 9. The partition of worker 1 is mapped at di�erentaddress ranges in di�erent workers; the lo
al partition reside at the same address range in ea
h worker.
Partition for

Worker 1

Partition for
Worker 2

Partition for
Worker 3

Memory
Worker 1

Memory Map
Worker 2

Memory Map
0x0000

0xvvvv

0xuuuu

0xwwww

0x0000

0xvvvv

0xuuuu

0xwwww

Partition for
Worker 1

Partition for
Worker 1

Partition for
Worker 2

Partition for
Worker 2

Partition for
Worker 3

Partition for
Worker 3Fig. 9. Memory Organization in MUSEWorkers make a number of
hoi
e-points sharable, and they get work from those shared
hoi
e-points (nodes)by the normal ba
ktra
king of Prolog. Like Aurora, the Muse system has two
omponents: the engine andthe s
heduler. The engine performs the a
tual Prolog work, while the s
hedulers working together, s
hedulethe work between engines and support the sequential semanti
s of Prolog.The �rst MUSE engine has been produ
ed by extending the SICStus Prolog version 0.6 [Carlsson et al.1995℄. Extensions are
arefully added to preserve the high eÆ
ien
y of SICStus leading to a negligible overheadwhi
h is signi�
antly lower than in other or-parallel models.The MUSE s
heduler supports eÆ
ient s
heduling of spe
ulative work and non-spe
ulative work [Ali andKarlsson 1992b℄. For purposes of s
heduling, the Prolog tree is divided into two se
tions: the right se
tion
ontains voluntarily suspended work and the left se
tion
ontains a
tive work. Voluntarily suspended workrefers to the work that was suspended be
ause the worker doing it found other work to the left of the
urrentbran
h that is less spe
ulative (re
all that following sequential Prolog semanti
s, the more a bran
h is to theright in the or-parallel tree the more spe
ulative it is be
ause its
han
es of being pruned away by a
ut arehigher). A
tive work is work that is non-spe
ulative and is a
tively pursued by workers. The available workers
on
entrate on the available non-spe
ulative work in the left se
tion. When the amount of work in the leftse
tion is not enough for the workers, some of the leftmost part of the voluntarily suspended se
tion (i.e.,spe
ulative work) will be resumed. A worker doing spe
ulative work will always suspend its
urrent work andmigrate to another node to its left if that node has less spe
ulative work.The s
heduling strategy for non-spe
ulative work, in general, is based on the prin
iple that when a workeris idle, its next pie
e of work will be taken from the bottommost (i.e., youngest) node in the ri
hest bran
h(i.e., the bran
h with maximum or-parallel work) of a set of a
tive non-spe
ulative bran
hes. When the workat the youngest node is exhausted, that worker will �nd more work by ba
ktra
king to the next youngest- 29 -

node. If the idle worker
annot �nd non-spe
ulative work in the system, it will resume the leftmost part ofthe voluntarily suspended se
tion of the tree.The MUSE system
ontrols the granularity of jobs at run-time by avoiding sharing very small tasks. Theidea is that when a busy worker rea
hes a situation at whi
h it has only one private parallel node, it will makeits private load visible to the other workers only when that node is still alive after a
ertain number of Prologpro
edure
alls. Without su
h a me
hanism the gains due to parallel exe
ution
an be lost as the number ofworkers is in
reased.A
lean interfa
e between the MUSE engine and the MUSE s
heduler has been designed and implemented.It has improved the modularity of the system and preserved its high eÆ
ien
y.Tools for debugging and evaluating the MUSE system have been developed. The evaluation of the systemon Sequent Symmetry and on BBN Butter
y ma
hines I and II shows very promising results in absolute speedand also in
omparison with results of the other similar systems. The speed-ups obtained are near linear forprograms with large amounts of or-parallelism. For programs that do not have enough or-parallelism to keepall available workers busy the speed-ups are (near) linear up to the point where all parallelism is exploited.The speed-up does not in
rease or de
rease thereafter with in
rease in number of workers. For programs withno or very low or-parallelism, the speed-ups obtained are
lose to 1 due to very low parallel overheads. Moredetails of the MUSE system and a dis
ussion of its performan
e results
an be found in referen
es
ited earlier[Ali and Karlsson 1992a; Ali et al. 1992; Ali and Karlsson 1992b; Karlsson 1992℄.MUSE
an be
onsidered one of the �rst
ommer
ial parallel logi
 programming systems to ever bedeveloped|MUSE has been in
luded for a number of years as part of the standard distribution of SICS-tus Prolog [Carlsson et al. 1995℄8.4. INDEPENDENT AND-PARALLELISMIndependent and-parallelism arises when two or more independent subgoals
an be exe
uted in parallel. Giventwo subgoals, they either have a data dependen
y between them (e.g., o

urren
e of the same variable in theargument terms of two subgoals at runtime) or they don't. If they don't have any data dependen
ies thenthey
an be freely exe
uted in parallel. This kind of and-parallelism is termed as independent and-parallelism.If they do have data dependen
ies then they
an still be exe
uted independently in parallel, although only upto a
ertain point be
ause unrestri
ted parallel exe
ution of two dependent subgoals
an be very ineÆ
ient,as will be dis
ussed in the next subse
tion.To take a simple example,
onsider the na��ve �bona

i program shown below:fib(0, 1).fib(1, 1).fib(M, N) :- [M1 is M - 1, fib(M1, N1) ℄,[M2 is M - 2, fib(M2, N2) ℄,N is N1 + N2.Assuming the exe
ution of this program by supplying the �rst argument as input, the two lists of goals,ea
h en
losed within square bra
kets above, have no data dependen
ies among themselves and hen
e
anbe exe
uted independently in parallel with ea
h other. But the last subgoal N is N1 + N2 depends on theout
omes of the two and-parallel subgoals, and should start exe
ution only after N1 and N2 get bound.Similarly to the
ase of or-parallelism, development of an and-parallel
omputation
an be depi
ted usinga tree stru
ture (and-tree). In this
ase, ea
h node in the tree is labeled by a
onjun
tion of subgoals andit
ontains as many
hildren as subgoals in the
onjun
tion. Figure 10 illustrates a simple and-tree for theexe
ution of fib(2,X) w.r.t. the above program. The dashed line in Figure 10 is used to denote the fa
t thatit is irrelevant whether the subgoal X is N1+N2 is a
hild of either of the two nodes above.Independent and-parallelism manifests itself in a number of appli
ation|those in whi
h a given problem
an be divided into a number of independent sub-problems. For example, it appears in divide and
onqueralgorithms, where the independent re
ursive
alls
an be exe
uted in parallel (e.g., matrix multipli
ation,qui
ksort, et
.).8MUSE is not supported anymore by SICS. - 30 -

fib(2,X)

[M1 is 2-1, fib(M1,N1)] , [M2 is 2-2, fib(M2,N2]

fib(1,N1) fib(0,N2)

X is N1+N2Fig. 10. An And-tree for And-parallelism4.1 Problems in Implementing Independent And-parallelismIn this se
tion we examine the problems asso
iated with implementing independent and-parallelism. Wedis
uss the various phases of an independent and-parallel system and examine the problems en
ountered inea
h.An independent and-parallel exe
ution
an be divided into three phases [Conery and Kibler 1983℄:i. Ordering Phase: deals with dete
tion of dependen
ies among goals.ii. Forward Exe
ution Phase: deals with the steps needed to sele
t the next subgoal for exe
ution and initiateits exe
ution.iii. Ba
kward Exe
ution Phase: deals with steps to be taken when a goal fails, i.e., the operation of ba
k-tra
king.4.1.1 Ordering PhaseThe ordering phase in independent and-parallel system is
on
erned with dete
ting data dependen
ies betweensubgoals. On
e it is determined that two (or more) subgoals do not have any data dependen
ies they
an beexe
uted in parallel. If an and-parallel exe
ution is initiated without
aring for data dependen
ies, then itmay lead to wasteful
omputation. Consider the following rules:solves(X) :- produ
er(X),
onsumer(X).and the goal?- solves(Z).Suppose X is an \output argument" for produ
er and \input argument" for
onsumer, i.e., there is a data de-penden
y between the two subgoals. Suppose we initiate their exe
ution in parallel and assume that produ
erprodu
es the binding X = a while
onsumer
on
urrently sear
hes for values of X. The goal
onsumer mightgenerate a number of bindings for X after a great deal of
omputation, very few of whi
h mat
h with a.There are two pla
es here where wasteful
omputation takes pla
e. Firstly,
onsumer
omputes bindings forX whi
h will eventually be dis
arded, hen
e these
omputations are wasted. If
onsumer had known that theonly permissible value of X is a, its sear
h spa
e would have been narrowed. Se
ondly, every time
onsumerprodu
es a binding for X the binding value has to be uni�ed with the binding value produ
ed by produ
er todetermine that they are identi
al. This uni�
ation, termed ba
k-uni�
ation [Wise 1986℄,
an introdu
e someextra overhead.Data dependen
ies
annot always be dete
ted at
ompile time, be
ause in many
ases they arise only duringprogram exe
ution. Consider the
lause: - 31 -

p(X, Y) :- r(X), s(Y).It may appear that the goals r and s are independent in the
lause for p and hen
e
an be exe
uted in parallel.However, it is possible that the variables X and Y may get aliased at runtime, making them dependent on ea
hother. For instan
e, if the query was ?- p(Z,Z), both X and Y would get aliased to ea
h other via Z.The example above
learly shows that synta
ti
 data dependen
y
he
ks are not suÆ
ient for exploitingindependent and-parallelism. We have to
he
k for independen
e of subgoals at runtime. However, the
ostin
urred in in
orporating
he
ks at runtime will slow down program exe
ution.A number of approa
hes have been proposed for dete
ting data dependen
ies. They range from purely
ompile-time te
hniques to purely runtime ones. There is a trade-o� between the amount of and-parallelism exploitedand data dependen
y analysis overhead in
urred at runtime|purely
ompile time te
hniques may miss manyinstan
es of independent and-parallelism but in
ur very little run-time overhead, while purely run time te
h-niques may
apture maximal independent and-parallelism at the expense of
ostly overhead. Data dependen-
ies
annot always be dete
ted entirely at
ompile time, although
ompile-time analysis tools
an un
over asigni�
ant number of them. The various approa
hes are brie
y des
ribed below:i. Input Output Modes: One way to over
ome the data dependen
y problem is to require the user to spe
ifythe `mode' of the variables, i.e., whether an argument of a predi
ate is an input variable or an outputvariable. Input variables of a subgoal are known to be
ome bound before the subgoal starts and outputvariables are variables that will be bound by the subgoal during its exe
ution.Modes have also been introdu
ed in the
ommitted
hoi
e languages [Ti
k 1995; Shapiro 1987℄ to a
tually
ontrol the and-parallel exe
ution (but leading to an operational semanti
s di�erent from Prolog's one).ii. Stati
 Data Dependen
y Analysis: In this te
hnique the goal and the program
lauses are globally analyzedat
ompile time, assuming a worst
ases for subgoal dependen
ies [Chang, Despain, DeGroot 1985℄. No
he
ks are done at runtime. Sin
e the analysis is done at
ompile-time, assuming a worst
ase s
enario, alot of parallelism may be lost. The advantage is, of
ourse, that no overhead is in
urred at run-time.iii. Run-time Dependen
y Graphs: Another approa
h is to generate the dependen
y graph at runtime. Thisinvolves examining bindings of relevant variables every time a subgoal �nishes exe
uting. This approa
h hasbeen adopted, e.g., by Conery in his AND/OR model [Conery and Kibler 1981; 1983; Conery 1987a℄. Thisapproa
h has prohibitive runtime
ost, sin
e variables may be bound to large stru
tures with embeddedvariables. The advantage of this s
heme is that maximal independent and-parallelism
ould be potentiallyexploited (but after paying a signi�
ant
ost at runtime). A simpli�ed version of this idea has also beenused in the APEX system [Lin and Kumar 1988℄. In this model a token-passing s
heme is adopted: a tokenexists for ea
h variable and is made available to the leftmost subgoal a

essing the variable. A subgoal isexe
utable as soon as it owns the tokens for ea
h variable in its binding environment.iv. A fourth approa
h, whi
h is midway between (ii) and (iii), en
apsulates the dependen
y information inthe
ode generated by the
ompiler|in the form of sour
e
ode annotations|along with the addition ofsome extra
onditions (tests) on the variables. In this way simple runtime
he
ks
an be done to
he
kfor dependen
y. This te
hnique was �rst devised by DeGroot and is
alled Restri
ted (or Fork/Join)And-Parallelism (RAP) [DeGroot 1984℄, and was formalized and enhan
ed by Hermenegildo and Nasr[Hermenegildo and Nasr 1986℄. Although it does not
apture all the instan
es of independent and-parallelismpresent in the program, it does manage to exploit a substantial part of it.The typi
al format used to des
ribe the annotations produ
ed to identify instan
es of independent and-parallelism is the following: (
onditions) goal1 & : : : & goaln)where `&' indi
ates a parallel
onjun
tion|i.e., subgoals that
an be solved
on
urrently (while the \," ismaintained to represent sequential
onjun
tion, i.e., to indi
ate that the subgoals should be solved sequen-tially). This form of annotation is dis
ussed in detail in Se
tion 4.3.Approa
h (i) di�ers from the rest in that the programmer has to expli
itly spe
ify the dependen
ies, usingannotations. Approa
h (iv) is a ni
e
ompromise between (ii), where extensive
ompile time analysis isdone to get sub-optimal parallelism, and (iii), where a
ostly runtime analysis is needed to get maximal- 32 -

parallelism. Moreover re
ent resear
h has shown that these annotations
an be generated via
ompile-timeanalysis [Muthukumar and Hermenegildo 1989a; 1991; Ja
obs and Langen 1989; Hermenegildo and Green1991℄ based on abstra
t interpretation [Cousot and Cousot 1977; 1992℄.4.1.2 Forward Exe
ution PhaseThe forward exe
ution phase follows the ordering phase. It sele
ts independent goals that
an be exe
uted inindependent and-parallel, and initiates their exe
ution. The exe
ution
ontinues like normal sequential Prologexe
ution until either failure o

urs, in whi
h
ase the ba
kward exe
ution phase is entered, or a solution isfound. It is also possible that the ordering phase might be entered again during forward exe
ution; for examplein the
ase of Conery's s
heme when a non-ground term is generated. Implementation of the forward exe
utionphase is relatively straightforward; the only major problem is the eÆ
ient determination of the goals that areready for independent and-parallel exe
ution. Di�erent models have adopted di�erent approa
hes to ta
klethis issue, and they are des
ribed in the su

essive subse
tions.Various works have pointed out the importan
e of good s
heduling strategies. Work by Hermenegildo et al.[Hermenegildo 1987℄ provided ideas on using more sophisti
ated s
heduling te
hniques aimed at guaranteeinga
orre
t mat
h between the logi
al organization of the
omputation and its physi
al distribution on thesta
ks|with the aim of simplifying ba
ktra
king. Related resear
h on s
heduling for independent and-parallelsystems has been proposed by Dutra [Dutra 1994℄. In [Pontelli and Gupta 1995a℄ a methodology is des
ribedwhi
h adapts s
heduling me
hanisms developed for or-parallel systems to the
ase of independent and-parallelsystem. In the same way in whi
h or-parallel system tries to s
hedule �rst work that is more likely to su

eed,and-parallel systems will gain from s
heduling �rst work that is more likely to fail. The advantage of doingthis
omes from the fa
t that most IAP systems supports intelligent forms of ba
ktra
king over and-parallel
alls, whi
h allow to qui
kly propagate failure of a subgoal to the whole parallel
all. Thus, if a parallel
alldoes not have solutions, the sooner we �nd a failing subgoal, the sooner ba
ktra
king
an be started. Someexperimental results have been provided in [Pontelli and Gupta 1995a℄ to support this perspe
tive. This notionis also
lose to the �rst-fail prin
iple widely used in
onstraint logi
 programming [Van Hentenry
k 1989b℄.4.1.3 Ba
kward Exe
ution PhaseThe need for a ba
kward exe
ution phase arises from the non-deterministi
 nature of logi
 programming|aprogram's exe
ution involves
hoosing at ea
h resolution step one of multiple
andidate
lauses, and this
hoi
emay potentially lead to distin
t solutions.The ba
kward exe
ution phase ensues when failure o

urs, or more solutions to the top-level query aresought after one is reported. The subgoal to whi
h exe
ution should ba
ktra
k is determined, the ma
hinestate is restored, and forward exe
ution of the sele
ted subgoal is initiated.In presen
e of IAP, ba
ktra
king be
omes
onsiderably more
omplex, espe
ially if the system strives toexplore the sear
h spa
e in the same order as in a sequential Prolog exe
ution; in parti
ular� IAP leads to the loss of
orresponden
e between logi
al organization of the
omputation and its physi
allayout; this means that logi
ally
ontiguous subgoals (i.e., subgoals whi
h are one after the other in theresolvent) may be physi
ally lo
ated in non-
ontiguous parts of the sta
k, or in sta
ks of di�erent workers.In addition, the order of subgoals in the sta
ks may not
orrespond to their ba
ktra
king order.This is illustrated in the example in Figure 11. Worker 1 starts with the �rst parallel
all, making b and
 available for remote exe
ution and lo
ally starting the exe
ution of a. Worker 2 immediately starts and
ompletes the exe
ution of b. In the meantime, Worker 1 opens a new parallel
all, lo
ally exe
uting d andmaking e available to other workers. At this point, Worker 2 may
hoose to exe
ute e, and then
. The �nalpla
ement of subgoals in the sta
ks of the two workers is illustrated on the right of Figure 11. As we
ansee, the physi
al order of the subgoals in the sta
k of Worker 2 does not mat
h the logi
al order. This will
learly
reate an hazard during ba
ktra
king, sin
e Prolog semanti
s require to explore �rst the alternativesof b before those of e, while the
omputation of b is trapped on the sta
k below that of e.� ba
ktra
king may need to
ontinue to the (logi
ally) pre
eding subgoal, whi
h may still be exe
uting at thetime ba
ktra
king takes pla
e.These problems are
ompli
ated by the fa
t that independent and-parallel subgoals may have nested indepen-dent and-parallel subgoals
urrently exe
uting whi
h have to be terminated or ba
ktra
ked over.- 33 -

a b c

d e

&

&

&

?- (a & b & c).
a :- (d & e).

Processor 1 Processor 2

a b

c

d e

Fig. 11. La
k of Corresponden
e between Physi
al and Logi
al ComputationConsiderably di�erent approa
hes have been adopted in the literature to handle the ba
kward exe
utionphase. The simplest approa
h, as adopted in models like Epilog, ROPM, AO-WAM [Wise 1986; Ramkumarand Kal�e 1989℄, is based on removing the need for a
tual ba
ktra
king over and-parallel goals through theuse of parallelism and solutions reuse. E.g., as shown in Figure 12, two threads of exe
ution are assignedto the distin
t subgoals, and they will be used to generate (via lo
al standard ba
ktra
king) all solutions toa and b. The ba
kward exe
ution phase is then repla
ed by a relatively simpler
ross produ
t operation.Although intuitively simple, this approa
h su�ers from major drawba
ks, in
luding the extreme
omplexityof re
reating Prolog semanti
s|i.e., the
orre
t order of exe
ution of order-sensitive predi
ates as well as the
orre
t repetition of side-e�e
t predi
ates as imposed in the re
omputation-oriented Prolog semanti
s. In this
ontext, by re
omputation-oriented semanti
s we indi
ate the fa
t that a subgoal is
ompletely re
omputed forea
h alternative of the subgoals on its left; e.g., in a goal su
h as ?- p,q, the goal q is
ompletely re
omputedfor ea
h solution of p.
1 2 3

a(X,Y) b(Y,Z)

Sequential Execution

1 2

a(X,Y)

b(Z,W)

Parallel ExecutionFig. 12. Solution ReuseIn the
ontext of independent and-parallel systems based on re
omputation (su
h as those proposed byDeGroot [DeGroot 1987℄, Hermenegildo [Hermenegildo 1986a℄, Kumar and Lin [Lin and Kumar 1988℄, andPontelli and Gupta [Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄), di�erent ba
ktra
king algorithmshave been proposed. In the past, ba
ktra
king algorithms have been proposed whi
h later turned out to bein
omplete [Woo and Choe 1986℄.The most popular
orre
t ba
ktra
king algorithm for IAP has been presented by Hermenegildo and Nasr[Hermenegildo and Nasr 1986℄ and eÆ
iently developed in &-Prolog [Hermenegildo and Green 1991℄ and&ACE/ACE [Pontelli and Gupta 1998℄. A relatively similar algorithm has also been used in APEX [Lin andKumar 1988℄ and the algorithm has been extended to handle dependent and-parallelism as well [Shen 1992a℄.Let us
onsider the following query:?- b1, b2, (q1 & q2 & q3), a1, a2and let us
onsider the possible
ases that
an arise whenever one of the subgoals in the query fails.(1) if either a2 or b2 fails, then standard ba
ktra
king is used and ba
ktra
king is
ontinued, respe
tively, ina1 or b1 (see Case 1 in Figure 13);(2) if a1 fails (outside ba
ktra
king) then ba
ktra
king should
ontinue inside the parallel
all, in the subgoalq3 (see Case 2 in Figure 13). The fa
t that a1 was exe
uting implies that the whole parallel
all (and in- 34 -

parti
ular q3) was
ompleted. In this
ase the major
on
ern is to identify the lo
ation of the
omputationq3, whi
h may lie in a di�erent part of the sta
k (not ne
essarily immediately below a1) or in the sta
kof a di�erent worker. If q3 does not o�er alternative solutions, then, as in standard Prolog, ba
ktra
kingshould propagate to q2 and eventually to q1. Ea
h one of these subgoals may lie in a di�erent part of thesta
k or in the sta
k of a di�erent worker. If none of the subgoals returns any alternative solution, thenultimately ba
ktra
king should be
ontinued in the sequential part of the
omputation whi
h pre
edes theparallel
all (b2). If qi su

eeds and produ
es a new solution, then some parallelism
an be re
overed byallowing parallel re
omputation of the subgoals qj for j > i.(3) if qi (i 2 f1; 2; 3g) fails (inside ba
ktra
king) during its exe
ution, then� the subgoals qj (j > i) should be removed;� as soon as the
omputation of qi�1 is
ompleted, ba
ktra
king should move to it and sear
h for newalternatives.This is illustrated in Case 3 of Figure 13. In pra
ti
e all these steps
an be avoided relying on the fa
t thatthe parallel subgoals are independent|thus failure of one of the subgoals
annot be
ured by ba
ktra
kingon any of the other parallel subgoals. Hermenegildo suggested a form of semi-intelligent ba
ktra
king, inwhi
h the failure of either one of the qi
auses the failure of the whole parallel
onjun
tion and ba
ktra
kingto b2.To see why independent and-parallel systems should support this form of semi-intelligent ba
ktra
king
onsiderthe goal:?- a, b,
, d.Suppose b and
 are independent subgoals and
an be exe
uted in independent and-parallel. Suppose thatboth b and
 are non-determinate and have a number of solutions. Consider what happens if
 fails. Innormal sequential exe
ution we would ba
ktra
k to b and try another solution for it. However, sin
e b and
 do not have any data dependen
ies, retrying b is not going to bind any variables whi
h would help
 tosu

eed. So if
 fails, we should ba
ktra
k and retry a. This kind of ba
ktra
king, based on the knowledge ofdata dependen
e, is
alled intelligent ba
ktra
king [Cox 1984℄. As should be obvious, knowledge about datadependen
ies is needed for both intelligent ba
ktra
king as well as independent and-parallel exe
ution. Thus,if an independent and-parallel system performs data dependen
y analysis for parallel exe
ution, it should takefurther advantage of it for intelligently ba
ktra
king as well. Note that the intelligent ba
ktra
king a
hievedmay be limited, sin
e, in the example above, a may not be able to
ure failure of
. Exe
ution modelsfor independent and-parallelism that exploit limited intelligent ba
ktra
king [Hermenegildo and Nasr 1986;Pontelli and Gupta 1998℄ as well as those that employ fully intelligent ba
ktra
king [Lin 1988; Codognet andCodognet 1989; Winsborough 1987℄ have been proposed and implemented. In parti
ular, the work Codognetand Codognet [Codognet and Codognet 1989℄ shows how to use a Dynami
 Con
i
t Graph (a uni�
ation graphre
ording for ea
h binding the literal responsible for it), designed to support sequential intelligent ba
ktra
king[Codognet, Codognet, Fil�e 1988℄ to support both forward and ba
kward and-parallel exe
ution.A further distin
tion has been made in the literature [Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄,regarding how outside ba
ktra
king is
arried out:� private ba
ktra
king: ea
h worker is allowed to ba
ktra
k only on the
omputations lying in their ownsta
ks. Thus, if ba
ktra
king has to be propagated to a subgoal lying in the sta
k of another worker P ,then a spe
i�
 message has be sent to P , and P will (typi
ally asyn
hronously)
arry out the ba
ktra
kinga
tivity;� publi
 ba
ktra
king: ea
h worker is allowed to ba
ktra
k on any
omputation, independently from where itresides|it
an also ba
ktra
k on
omputations lying on the sta
k of a di�erent workers.Private ba
ktra
king has been adopted in various systems [Hermenegildo and Green 1991; Shen 1992a℄. Ithas the advantage of allowing ea
h worker to have
omplete
ontrol of the parts of
omputation whi
h havebeen lo
ally exe
uted; in parti
ular, it fa
ilitates the task of performing garbage
olle
tion as well as lo
aloptimizations. On the other hand, ba
ktra
king be
omes an asyn
hronous a
tivity, sin
e a worker may not beready to immediately serve a ba
ktra
king request
oming from another worker. A proper management of this- 35 -

?- b1 b2 (q1, , & q2 & q3) , a1 , a2

killkill

backtrack
Case 3:

?- b1 b2 (q1, , & q2 & q3) , a1 , a2

backtrackbacktrackbacktrackCase 2:

?- b1 b2 (q1, , & q2 & q3) , a1 , a2

backtrack backtrack

Case 1:

Fig. 13. Ba
ktra
king on And-parallel Callsmessage passing a
tivities (e.g., to avoid the risk of deadlo
ks) makes the implementation very
omplex [Shen1992b; Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄. Furthermore, experiments performed in the &ACEsystem [Pontelli and Gupta 1998℄ demonstrated that publi
 ba
ktra
king is
onsiderably more eÆ
ient thanprivate ba
ktra
king|by allowing syn
hronous ba
ktra
king, without delays in the propagation of failures.At the implementation level, publi
 ba
ktra
king is also simpler|just requiring mutual ex
lusion in the a

essof
ertain memory areas. The disadvantage of publi
 ba
ktra
king is the o

asional inability of immediatelyre
overing memory during ba
ktra
king|sin
e in general we
annot allow one worker to re
over memorybelonging to a di�erent worker.4.2 Support for Full PrologLike in the
ase of or-parallel systems, some resear
hers have favored supporting Prolog's sequential semanti
sin independent and-parallel systems [Muthukumar and Hermenegildo 1989b; DeGroot 1987; Chang and Chiang1989℄. This imposes some
onstraints on how ba
ktra
king as well as forward exe
ution take pla
e. Essentially,the approa
h that has been taken is that if two independent goals are being exe
uted in parallel, both of whi
hlead to an order-sensitive predi
ate, then the order-sensitive predi
ate in the right goal
an only be performedafter the last order-sensitive predi
ate in the goal to the left has been exe
uted. Given that this property isunde
idable in general, it is typi
ally approximated by suspending the side e�e
t until the bran
h in whi
hit appears is the leftmost in the
omputation tree|i.e., all the bran
hes on the left have
ompleted. It alsomeans that intelligent ba
ktra
king has to be sa
ri�
ed, be
ause
onsidering again the previous example, if
fails and we ba
ktra
k dire
tly into a, without ba
ktra
king into b �rst, then we may miss exe
uting one ormore extra-logi
al predi
ate (e.g., input/output operations) that would be exe
uted had we ba
ktra
ked intob. Limited intelligent ba
ktra
king
an be maintained and applied to the subgoals lying on the right of thefailing one.The issue of spe
ulative
omputation also arises in independent and-parallel systems. Given two independentgoals a(X), b(Y) that are being exe
uted in and-parallel, if a eventually fails, then work put in for solving bwill go wasted (in sequential Prolog the goal b will not ever get exe
uted). Therefore, not too many resour
es(workers) should be invested on goals to the right. On
e again, it should be stressed, the design of thework-s
heduler is very important for a parallel logi
 programming system.4.3 Independent And-parallel Exe
ution ModelsIn this se
tion we brie
y des
ribe some of the methods that have been proposed for realizing an independentand-parallel system. These are:(1) Conery's abstra
t parallel implementation [Conery and Kibler 1981; 1983℄;(2) And-Parallel Exe
ution (APEX) Model of Lin and Kumar [Lin and Kumar 1988℄; and,- 36 -

(3) Restri
ted And-parallel (RAP) model, introdu
ed by DeGroot [DeGroot 1984℄, and extended by Hermenegildoand Nasr [Hermenegildo and Nasr 1986; Hermenegildo 1986a℄ and by Gupta and Pontelli [Pontelli, Gupta,Hermenegildo 1995; Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄.Conery's ModelIn this method [Conery and Kibler 1983℄ a data-
ow graph is
onstru
ted during the ordering phase makingthe produ
er-
onsumer relationships between subgoals expli
it. If a set of subgoals have an uninstantiatedvariable V in
ommon, one of the subgoals is designated as the produ
er of the value of V and is solved �rst. Itssolution is expe
ted to instantiate V. When the produ
er has been solved, the other subgoals, the
onsumers,may be s
heduled for evaluation. The exe
ution order of the subgoals is expressed as a data-
ow graph, inwhi
h an ar
 is drawn from the produ
er of a variable to all its
onsumers.On
e the data-
ow graph is determined, the forward exe
ution phase ensues. In this phase independentand-parallel exe
ution of subgoals whi
h do not have any ar
s in
ident on them in the data-
ow graph isinitiated. When a subgoal is resolved away from the body of a
lause (i.e., it is su

essfully solved), the
orresponding node and all of the ar
s emanating from it are removed from the data-
ow graph. If a produ
er
reates a non-ground term during exe
ution, the ordering algorithm must be invoked again to in
rementallyredraw the data-
ow graph.When exe
ution fails, some previously solved subgoal must be solved again to yield a di�erent solution.The ba
kward exe
ution phase pi
ks the last parent (as de�ned by a linear ordering of subgoals, obtained bya depth �rst traversal of the data-
ow graph) for the purpose of re-solving.Note that in this method data dependen
y analysis for
onstru
ting the data-
ow graph has to be
arriedout every time a non-ground term is generated, making its
ost prohibitive.APEX ModelThe APEX (And Parallel EXe
ution) model has been devised by Lin and Kumar [Lin and Kumar 1988℄.In this method forward exe
ution is implemented via a token passing me
hanism. A token is
reated forevery new variable that appears during exe
ution of a
lause. A subgoal P is a produ
er of a variable V if itholds the token for V. A newly
reated token for a variable V is given to the leftmost subgoal P in the
lausewhi
h
ontains that variable. A subgoal be
omes exe
utable when it re
eives tokens for all the uninstantiatedvariables in its
urrent binding environment. Parallelism is exploited automati
ally when there are more thanone exe
utable subgoals in a
lause.The ba
kward exe
ution algorithm performs intelligent ba
ktra
king at the
lause level. Ea
h subgoal Pidynami
ally maintains a list of subgoals (denoted as B-list(Pi))
onsisting of those subgoals in the
lausewhi
h may be able to
ure the failure of Pi, if it fails, by produ
ing new solutions. When a subgoal Pi startsexe
ution, B-list(Pi)
onsists of those subgoals that have
ontributed to the bindings of the variables in thearguments of Pi. When Pi fails, Pj = head(B-list(Pi)) is sele
ted as the subgoal to ba
ktra
k to. The tailof B-list(Pi) is also passed to Pj and merged into B-list(Pj) so that if Pj is unable to
ure the failure of Pi,ba
ktra
king may take pla
e to other subgoals in B-list(Pi).This method also has signi�
ant runtime
osts sin
e the B-lists are
reated, merged and manipulated atruntime. APEX has been implemented on shared memory multipro
essors for pure logi
 programs [Lin andKumar 1988℄.RAP ModelIn this method program
lauses are
ompiled into Conditional Graph Expressions (CGEs). Conditional GraphExpressions are expressions of the form(
ondition) goal1 & goal2 & : : : & goaln);meaning that, if
ondition is true, goals goal1 : : : goaln should be evaluated in parallel, otherwise they shouldbe evaluated sequentially. The
ondition is a
onjun
tion of
onstraints of the type: ground(v1; : : : ; vn), whi
h
he
ks whether all of the variables v1; : : : ; vn are bound to ground terms, or independent(v1; : : : ; vn), whi
h- 37 -

he
ks whether the set of variables rea
hable from ea
h of v1 : : : vn are mutually ex
lusive of one another. The
ondition
an also be the
onstant true, whi
h means the goals
an be un
onditionally exe
uted in parallel.The groundness and independen
e
onditions are evaluated at runtime. A simple te
hnique whi
h keepstra
k of groundness and independen
e properties of variables through tags asso
iated to the heap lo
ationsis presented in [DeGroot 1984℄. The method is
onservative in that it may type a term as nonground evenwhen it is ground|one reason why this method is regarded as \restri
ted." Another way in whi
h CGEs arerestri
tive is that they
annot
apture all the instan
es of independent and-parallelism present in a program,be
ause of their parentheti
al nature (the same reason why parbegin-parend expressions are less powerful thanfork-join expressions in exploiting
on
urren
y [Peterson and Silbers
hatz 1986℄). Experimental eviden
e hasdemonstrated that among all the models the RAP model
omes
losest to realizing the
riteria mentioned inthe previous se
tion. This model has been formalized and extended by Hermenegildo and Nasr, and has beeneÆ
iently implemented using WAM-like instru
tions [Hermenegildo 1986a; Pontelli, Gupta, Hermenegildo1995℄ as the &-Prolog/CIAO system [Hermenegildo and Green 1991℄, as the &ACE/ACE system [Pontelli,Gupta, Hermenegildo 1995; Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄, and as the dependent and-parallel DASWAM system [Shen 1992b; 1992a℄. The CGEs are generated at
ompile time [Muthukumar andHermenegildo 1989a; 1991; Ja
obs and Langen 1989℄ using the te
hnique of abstra
t interpretation [Cousot andCousot 1977; 1992℄. CGEs generated through this analysis at
ompile-time manage to
apture a substantialamount of independent and-parallelism [Muthukumar and Hermenegildo 1990℄.4.4 Experimental Systems4.4.1 The &-Prolog AND-Parallel Prolog System&-Prolog is a prototype Prolog implementation, relying on SICStus Prolog, and
apable of exploitingindependent and-parallelism automati
ally by means of a parallelizing
ompiler. Expli
it parallelization ofprograms by the user is also supported through the &-Prolog language extensions, and more
omplex forms ofand-parallelism (i.e., not just independent and-parallelism)
an also be expressed. The same language is usedto make the result of the automati
 parallelization visible to the user if so desired. The parallelizing
ompilerhas been integrated into the Prolog run-time environment in the standard way so that a familiar user interfa
ewith on-line interpreter and
ompiler is provided. Normally, users are unaware (ex
ept for the in
rease inperforman
e) of any di�eren
e with respe
t to a
onventional Prolog system. Compiler swit
hes (implementedas \prolog
ags") determine whether or not user
ode will be parallelized and through whi
h type of analysis.If the user
hooses to parallelize some of the
ode the
ompiler still helps by
he
king the supplied annotationsfor
orre
tness, and providing the results of global analysis to aid in the dependen
y analysis task.&-Prolog was originally designed for shared memory systems and it has been implemented on a number ofshared memory multipro
essors, in
luding Sequent Balan
e, Sequent Symmetry, and Sun Galaxy systems. The&-Prolog system
omprises a parallelizing
ompiler aimed at un
overing the parallelism in the program and anexe
ution model/run-time system aimed at exploiting su
h parallelism. There is also an on-line visualizationsystem (based on the X-windows standard) whi
h provides a graphi
al representation of the parallel exe
utionand has proven itself quite useful in debugging and performan
e tuning [Carro et al. 1993℄. The �rst versionof the &-Prolog system was developed
ollaboratively between The University of Texas and MCC. Newerversions have been developed at the Te
hni
al University of Madrid (UPM).&-Prolog Parallelizing Compiler: Input
ode is pro
essed by several
ompiler modules as follows: TheAnnotator, or \parallelizer", performs a (lo
al) dependen
y analysis on the input
ode. It re
eives informationfrom the Side-E�e
t Analyzer on whether or not ea
h non-builtin predi
ate and
lause of the given programis pure, or
ontains or
alls a side-e�e
t. This information is used to
orre
tly sequen
e su
h side-e�e
ts[Muthukumar and Hermenegildo 1989b℄. If the appropriate option is sele
ted, the annotator gets informationabout the possible run-time substitutions (\variable bindings") at all parts in the program as well as othertypes of information from the Global Analyzer (des
ribed below). Finally, it also re
eives information fromthe Granularity Analyzer regarding the size of the
omputation asso
iated with a given goal [Debray et al.1990℄. This information is used in an additional pass aimed at introdu
ing granularity
ontrol, implementedusing dynami
 term size
omputation te
hniques [Hermenegildo and Lopez-Gar
ia 1995℄. The annotator usesall available information to rewrite the input
ode for parallel exe
ution. Its output to the next stage is an- 38 -

annotated &-Prolog program. Some of the te
hniques and heuristi
s used in the annotator are des
ribed in[Muthukumar and Hermenegildo 1990; Codish et al. 1995; Cabeza and Hermenegildo 1994℄. A �nal pass (anextension of the SICStus
ompiler) produ
es
ode for a spe
ialized WAM engine (
alled PWAM and des
ribedbelow) from an already parallelized &-Prolog program.The global analysis mentioned above is performed by using the te
hnique of \abstra
t interpretation"[Cousot and Cousot 1992℄ to
ompute safe approximations of the possible run-time substitutions at all pointsin the program. Two generations of analyzers have been implemented, namely the \MA3" and \PLAI"analyzers. \MA3" [Hermenegildo, Warren, Debray 1992℄ uses the te
hnique of \abstra
t
ompilation" and adomain whi
h is
urrently known as \depth-K" abstra
tion. Its su

essor, PLAI, is a generi
 framework basedon that of Bruynooghe [Bruynooghe 1991℄ and the spe
ialized �xpoint algorithms des
ribed in [Muthukumarand Hermenegildo 1989a; Muthukuar et al. 1999; Muthukumar and Hermenegildo 1992℄. PLAI also in
ludesa series of abstra
t domains and uni�
ation algorithms spe
i�
ally designed for tra
king variable dependen
einformation. Other
on
epts and algorithms used in the global analyzer, the rest of the &-Prolog
ompiler,and the MA3 and PLAI systems are des
ribed in [Muthukumar and Hermengildo 1991; Hermenegildo, Warren,Debray 1992; Codish et al. 1995℄.&-Prolog Run-Time System: The &-Prolog run-time system is based on the Parallel WAM (PWAM)model [Hermenegildo and Green 1991℄, an evolution of RAP-WAM [Hermenegildo 1986b; 1986a; Ti
k 1991℄,itself an extension of the Warren Abstra
t Ma
hine (WAM) [Warren 1983℄. The a
tual implementation hasbeen performed by extending the SICStus-Prolog abstra
t ma
hine.The philosophy behind the PWAM design is to a
hieve similar eÆ
ien
y to a standard WAM for sequential
ode while minimizing the overhead of running parallel
ode. Ea
h PWAM is similar to a standard WAM.The instru
tion set in
ludes all WAM instru
tions (the behavior of some WAM instru
tions has to be modi�edto meet the needs of the PWAM|e.g., the instru
tions asso
iated to the management of
hoi
e points) andseveral additional instru
tions related to parallel exe
ution. The storage model in
ludes a
omplete set ofWAM registers and data areas,
alled a sta
k set, with the addition of a goal sta
k and two new types of sta
kframes: par
all frames and markers. While the PWAM uses
onventional environment sharing for sequentialgoals|i.e., an environment is
reated for ea
h
lause exe
uted, whi
h maintains the data lo
al to the
lause|ituses a
ombination of goal sta
king and environment sharing for parallel goals: for ea
h parallel goal, a goaldes
riptor is
reated and stored in the goal sta
k, but their asso
iated storage is in shared environments inthe sta
k. The goal des
riptor
ontains a pointer to the environment for the goal, a pointer to the
ode of thesubgoal, and additional
ontrol information. Goals whi
h are ready to be exe
uted in parallel are pushed onto the goal sta
k. The goals are then available to be exe
uted on any PWAM (in
luding the PWAM whi
hpushed them).Par
all frames are used for
oordinating and syn
hronizing the parallel exe
ution of the goals inside aparallel
all, both during forward exe
ution and during ba
ktra
king. A par
all frame is
reated as soon as aCGE (with a satis�able
ondition part) is en
ountered. The CGE
ontains, between the other things, a slotfor ea
h subgoal present in the parallel
all; these slots will be used to keep tra
k of the status of the exe
utionof the
orresponding parallel subgoal.Markers are used to delimit sta
k se
tions (horizontal
uts through the sta
k set of a given abstra
t ma
hine,
orresponding to the exe
ution of di�erent parallel goals) and they implement the storage re
overy me
hanismsduring ba
ktra
king of parallel goals in a similar manner to
hoi
e-points for sequential goals [Hermenegildo1987; Shen and Hermenegildo 1993℄. As illustrated in Figure 14, whenever a PWAM sele
ts a parallel subgoalfor exe
ution, it
reates an input marker in its
ontrol sta
k. The marker denotes the beginning of a newsubgoal. Similarly, as soon as the exe
ution of a parallel subgoal is
ompleted, an end marker is
reated onthe sta
k. As shown in the �gure, the input marker of a subgoal
ontains a pointer to the end marker of thesubgoal on its left; this is needed to allow ba
ktra
king to propagate from parallel subgoal to parallel subgoalin the
orre
t (i.e., Prolog) order.Figure 14 illustrates the di�erent phases in the forward exe
ution of a CGE. As soon as the CGE isen
ountered, a par
all frame is
reated by Worker 1. Sin
e the parallel
all
ontains three subgoals, Worker1 will keep one for lo
al exe
ution (p1) while the others will be made available to the other workers. Thisis a

omplished by
reating two new entries (one for p2 and one for p3) in the goal sta
k. Idle workers willdete
t the presen
e of new work and will extra
t subgoals from remote goal sta
ks. In the example, Worker 2- 39 -

takes p2 while Worker 3 takes p3. Ea
h idle worker will start the new exe
ution by
reating an input markerto denote the beginning of a new subgoal. Upon
ompletion of ea
h subgoal, the workers will
reate endmarkers. The last worker
ompleting a subgoal (in the �gure we have identi�ed Worker 2 as the last one to
omplete), will
reate the appropriate links between markers and pro
eed with the (sequential) exe
ution ofthe
ontinuation (p4).In pra
ti
e, the sta
k is divided into a separate
ontrol sta
k (for
hoi
e point and markers) and a separatelo
al sta
k (for environments, in
luding par
all frames), for reasons of lo
ality and lo
king. A goal sta
k ismaintained by ea
h worker and
ontains the subgoals whi
h are available for remote exe
ution.
?- p, (p1 & p2 & p3), p4

p

p1 & p2 & p3

p1
p2

p3

p4

Processor 1 Processor 2 Processor 3

Stack Stack Stack

Goal Stack

parcall
frame

p2

p3

Processor 1 Processor 2 Processor 3

Stack Stack Stack

Goal Stack

parcall
frame

p2

p3

p1

input
marker

input
marker

Processor 1 Processor 2 Processor 3

Stack Stack Stack

Goal Stack

parcall
frame

p2

p3

p1

input
marker

input
marker

end
marker

end
marker

end
marker

p4

Fig. 14. Computation's Organization in PWAMThe &-Prolog run-time system ar
hite
ture
omprises a ring of sta
k sets, a
olle
tion of agents, and ashared
ode area. The agents (Unix pro
esses) run programs from the
ode area on the sta
k sets. All agentsare identi
al (there is no \master" agent). In general, the system starts allo
ating only one sta
k set. Othersta
k sets are
reated dynami
ally as needed upon appearan
e of parallel goals. Also, agents are started andput to \sleep" as needed in order not to overload the system when no parallel work is available. Severals
heduling and memory management strategies have been studied for the &-Prolog system. For more detailsthe reader is referred to [Hermenegildo 1987; Hermenegildo and Green 1991; Shen and Hermenegildo 1993℄.Performan
e results: Experimental results for the &-Prolog system are available in the literature illustratingthe performan
e of both the parallelizing
ompiler and the run-time system. The
ost and in
uen
e of globalanalysis in terms of redu
tion in the number or run-time tests using the \MA3" analyzer was reported in[Hermenegildo, Warren, Debray 1992℄. MA3 is a �rst generation and-parallel analyzer, based on abstra
t
ompilation and eÆ
ient implementation te
hniques (e.g., extension tables), whi
h has been used to extra
tterm groundness and term independen
e information at the di�erent program points. These information arein turn used to generate
onditional graph expressions, and eventually simplify their
ondition part. Thenumber of CGEs generated, the
ompiler overhead in
urred due to the global analysis, and the result both interms of number of un
onditional CGEs and of redu
tion of the number of
he
ks per CGE were studied forsome ben
hmark programs. These results suggested that, even for this �rst generation system, the overheadin
urred in performing global analysis is fairly reasonable while the �gures obtained
lose to what is possiblemanually. - 40 -

Early experimental results regarding the performan
e of the se
ond generation parallelizing
ompiler in termsof attainable program speedups were reported in [Codish et al. 1995℄ both without global analysis and also withsharing and sharing+freeness analysis running in the PLAI framework [Ja
obs and Langen 1989; Muthukumarand Hermenegildo 1989a; Muthukuar et al. 1999; Muthukumar and Hermengildo 1991℄. Speedups wereobtained using the IDRA system [Fernandez, Carro, Hermenegildo 1996℄, whi
h
olle
ts tra
es from sequentialexe
utions and uses them to simulate an ideal parallel exe
ution of the same program..9 A mu
h moreextensive study
overing numerous domains and situations, a mu
h larger
lass of programs, and the e�e
tsof the three annotation algorithms des
ribed in [Muthukumar and Hermenegildo 1990℄ (UDG/MEL/CDG),
an be found in [Bueno, Gar
ia de la Banda, Hermenegildo 1999; Gar
ia de la Banda, Hermenegildo, Marriott1996℄. Although work still remains to be done, spe
ially in the area of dete
ting non-stri
t independen
e10,results
ompared en
ouragingly well with those obtained from studies of theoreti
al ideal speedups for optimalparallelizations, su
h as those given in [Shen and Hermenegildo 1991℄.Finally, experimental results regarding the run-time system
an be found in [Hermenegildo and Green 1991℄.A
tual speedups obtained on the Sequent Balan
e and Symmetry systems were reported for the parallelizedprograms for di�erent numbers of workers. Various ben
hmarks have been tested, ranging from simple prob-lems (e.g., matrix multipli
ation) to very large appli
ations (e.g., parts of the abstra
t interpreter). Parti
ularlygood results have been a
hieved on divide and
onquer programs with suÆ
iently large granularity. Resultswere also
ompared to the performan
e of the sequential programs under both &-Prolog, SICStus Prolog,and Quintus Prolog. Attained performan
e was substantially higher than that of SICStus for a signi�
antnumber of programs, even if running on only two workers. For programs showing no speedups, the sequentialspeed was preserved to within 10%. Furthermore, substantial speedups
ould even be obtained with respe
tto
ommer
ial systems su
h as Quintus, despite the sequential speed handi
ap of &-Prolog due to the use ofa C-based byte
ode interpreter.114.4.2 The &ACE SystemThe &ACE [Pontelli, Gupta, Hermenegildo 1995; Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄ systemis an independent and-parallel Prolog system developed at New Mexi
o State University as part of the ACEproje
t. &ACE has been designed as a next-generation independent and-parallel system and is an evolutionof the PWAM design (used in &-Prolog). Like &-Prolog, &ACE relies on the exe
ution of Prolog programsannotated with Conditional Graph Expressions.The forward exe
ution phase is arti
ulated in the following steps. As soon as a parallel
onjun
tion isrea
hed, a par
all frame is allo
ated in a separate sta
k|di�erently from &-Prolog, whi
h allo
ates par
allframes on the environment sta
k; this allows for easier memory management12 (e.g., does not prevent the useof last-
all optimization) and for appli
ation of various determina
y-driven optimizations [Pontelli, Gupta,Tang 1995℄ and alternative s
heduling me
hanisms [Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄. Slotsdes
ribing the parallel subgoals are allo
ated in the Heap and organized in a (dynami
) linked list, thus allowingtheir dynami
 manipulation at run-time. Subgoals in the goal sta
k (as in the PWAM model) are repla
ed bya simple frame pla
ed in the goal sta
k and pointing to the goal frame|this has been demonstrated [Pontelli,Gupta, Hermenegildo 1995℄ to be more e�e
tive and
exible than a
tual goal sta
king. These data stru
turesare des
ribed in Figure 15.The use of markers to identify segments of the
omputation has been removed in &ACE and repla
ed bya novel te
hnique
alled sta
k linearization whi
h allows to link
hoi
e points lying in di�erent sta
ks in the
orre
t logi
al order; this allows to limit to the minimum the
hanges to the ba
ktra
king algorithm, thusmaking ba
ktra
king over and-parallel goals very eÆ
ient. The only marker needed is the one whi
h indi
atesthe beginning of the
ontinuation of the parallel
all. Novel uses of the trail sta
k (by trailing status
ags in9Note that simulations are better than a
tual exe
utions for evaluating the amount of ideal parallelism generated by a givenannotation, sin
e the e�e
ts of the limited numbers of pro
essors in a
tual ma
hines
an be fa
tored out.10The notion of non-stri
t independen
e is des
ribed in Se
tion 5.3.3.11Performan
e of su
h systems ranges from about the same as SICStus to to about twi
e the speed, depending on the program.12&ACE is built on top of the SICStus WAM, whi
h frequently performs on-the-
y
omputation of the environment registers.The presen
e of par
all frames on the same sta
k
reates enormous
ompli
ations to the
orre
t management of su
h registers.- 41 -

GOAL
STACK

PF

B Goal Frame

GS

B

Choice Point

PF

Parcall Frame

PF

GS’
Status

PIP
of slots
of goals to wait on
of goals still to schedule

Trail End
Physical Top

Physical Top

Trail Section

Ph.Top

Control
Stack

List of Slots

Status
Environment
Code Pointer
Next

Continuation Pointer

Status
Environment
Code Pointer
NextFig. 15. Par
all Frames and Goals in &ACEthe subgoals slots) allows to integrate outside ba
ktra
king without any expli
it
hange in the ba
ktra
kingpro
edure.Ba
kward exe
ution represents another novelty in &ACE. Although it relies on the same general ba
ktra
k-ing s
heme developed in PWAM (the point ba
ktra
king s
heme des
ribed in Se
tion 4.1.3), it introdu
es theadditional
on
ept of ba
ktra
king independen
e whi
h allows to take full advantage of the semi-intelligentba
ktra
king phase during inside ba
ktra
king. Given a subgoal of the form:?� b; (g1&g2); aba
ktra
king independen
e requires that the bindings to the variables present in g1; g2 are posted either beforethe beginning of the parallel
all or at its end. This allows to kill subgoals and ba
ktra
k without havingto worry about untrailing external variables. Ba
ktra
king independen
e is realized through
ompile-timeanalysis and through the use of spe
ial run-time representation of global variables in parallel
alls [Pontelliand Gupta 1998℄.&ACE has been developed my modifying the SICStus WAM and
urrently runs on Sequent Symmetryand Sun Spar
 multipro
essors (Solaris). The use of the new memory management s
heme,
ombined with aplethora of optimizations [Gupta and Pontelli 1997; Pontelli, Gupta, Tang 1995; Pontelli, Gupta, Tang, Carro,Hermenegildo 1996℄, allows &ACE to be very e�e
tive in exploiting parallelism, even from rather �ne grainedappli
ations [Pontelli, Gupta, Hermenegildo 1995℄. The performan
e of the system is on average within 5%from the performan
e of the original sequential engine, thus denoting a very limited amount of overhead. Thepresen
e of an e�e
tive management of ba
ktra
king has also lead to various
ases of super-linear speedups[Pontelli and Gupta 1998℄.5. DEPENDENT AND-PARALLELISMDependent And-Parallelism (DAP) generalizes independent and-parallelism by allowing the
on
urrent exe-
ution of subgoals a

essing interse
ting sets of variables. The \
lassi
al" example of DAP is represented bya goal of the form ?- p(X) & q(X)13 where the two subgoals may potentially
ompete in the
reation of abinding for the unbound variable X.Unrestri
ted parallel exe
ution of the above query (in Prolog) is likely to produ
e non-deterministi
 behavior:the out
ome will depend on the order in whi
h the two subgoals a

ess X . Thus, the �rst aim of any systemexploiting dependent and-parallelism is to ensure that the operational behavior of dependent and-parallelexe
ution is
onsistent with the intended semanti
s|(sequential) Prolog semanti
s in this
ase. This amountsto� making sure that all the parallel subgoals agree on the values given to the shared variables;13As for independent and-parallelism, we will use \&" to denote parallel
onjun
tion, while \," will be kept to indi
ate sequential
onjun
tions. - 42 -

� guaranteeing that the order in whi
h the bindings are performed does not lead to any violation of theobservable behavior of the program (Prolog semanti
s).It is possible to show that the problem of determining the
orre
t moment in time when a binding
an beperformed without violating Prolog semanti
s is in general unde
idable. The di�erent models designed tosupport DAP di�er in the approa
h taken to solve this problem, i.e., they di�er in how they
onservativelyapproximate su
h unde
idable property.The question then arises whether dependent and-parallelism is fruitful at all. Be
ause typi
ally in a querysu
h as above, p will produ
e a binding for X while q will pro
ess (or
onsume) it. If this order betweenprodu
tion of binding and its
onsumption is to be preserved, q will be suspended until exe
ution of p is over.However, this is not always the
ase, and exe
ution of p and q
an be overlapped in
ertain situations:(1) q may �rst perform signi�
ant amount of
omputation before it needs the binding of X ; this
omputation
an be overlapped with
omputation of p, be
ause it doesn't depend on X ;(2) p may �rst partially instantiate X . In su
h a
ase q
an start working with the partially instantiatedvalue, while p is busy
omputing the rest of the binding for X .In the rest of this se
tion we will use the following terminology. Unbound variables whi
h are a

essible bydi�erent parallel subgoals are
alled shared (or dependent) variables. The SLD
omputation tree generatedby Prolog enfor
es an ordering between the subgoals whi
h appear in the tree. We will say that a subgoal Ais on the left of B if the subgoal A appears on the left of B in the SLD tree generated by Prolog.The s
ope for exploitation of dependent and-parallelism strongly depends on the semanti
s of the logi
language
onsidered. E.g., DAP exe
ution of pure Prolog|where no order-sensitive predi
ates appear|makesimplementation simple and
reates the potential for high speedups. Similarly, the semanti
s of languages likeParlog and other
ommitted-
hoi
e languages is designed to provide a relatively
onvenient management ofspe
ialized forms of DAP (stream parallelism), simplifying the dete
tion of dependen
ies. In the
ontextof this paper we will fo
us on the DAP exe
ution of Prolog programs|thus, the ultimate goal of the DAPexe
ution models, as far as this paper is
on
erned, is to speedup exe
ution of the programs through parallelismreprodu
ing the same observable behavior as in a sequential Prolog exe
ution.5.1 IssuesSupporting DAP requires ta
kling a number of issues. These in
lude:(1) dete
tion of parallelism: determination of whi
h subgoals should be
onsidered for DAP exe
ution.(2) management of DAP goals: a
tivation and management of parallel subgoals;(3) management of shared variables: validation and
ontrol of shared variables to guarantee Prolog semanti
s;(4) ba
ktra
king: management of non-determinism in presen
e of DAP exe
utions.In the rest of this se
tion we will deal with all these issues ex
ept for issue 2: management of subgoals doesnot present any new
hallenge w.r.t. the management of parallel subgoals in the
ontext of independentand-parallelism.5.2 Dete
tion of ParallelismAnnotating a program for fruitful DAP exe
ution resembles in some aspe
ts automati
 parallelization forIAP [Cabeza and Hermenegildo 1994; Muthukuar et al. 1999℄. This should
ome as no surprise: DAPis nothing else than a �ner grain instan
e of the general prin
iple of independen
e, applied to the level ofvariable bindings. Relatively little work is present in the literature for dete
ting and analyzing fruitful DAP.The �rst work on this spe
i�
 problem is that by Gia
obazzi [Gia
obazzi and Ri

i 1990℄, whi
h attempts abottom-up abstra
t interpretation to identify pipelined
omputations. Some similarities are also shared withthe various studies on partitioning te
hniques for de
larative
on
urrent languages [Traub 1989℄, that aim toidentify partitioning of the program
omponents into sequential threads, and the work on management ofparallel tasks in
ommitted-
hoi
e languages [Ueda and Morita 1993℄.Automati
 and semi-automati
 dete
tion of potential valid sour
es of DAP in logi
 programs has been di-re
tly ta
kled in [Pontelli, Gupta, Pulvirenti, Ferro 1997℄. This proposal generates
ode annotations whi
h are- 43 -

extensions of the CGE format (similar to those originally introdu
ed by Shen [Shen 1992a℄)|they additionallyidentify and make expli
it the variables that are shared between the goals in the parallel
onjun
tion. Giventhe goals : : : G1; : : : ; Gn : : :, in whi
h the subgoals G1; : : : ; Gn are to be exe
uted in DAP, the general stru
tureof an extended CGE is the following: : : : ; $mark([X1; : : : ; Xm℄);(hCondi =) $and goal(�1; G�11) & : : :& $and goal(�n; G�nn)); : : :where:� X1; : : : ; Xm are the shared variables for subgoals G1; : : : ; Gn, i.e., all those variables for whi
h di�erentsubgoals may attempt
on
i
ting bindings;� if Xj1 ; : : : ; Xjkj � fX1; : : : ; Xmg are the shared variables present in the subgoal Gj , then �j is a renamingsubstitution for the variables Xji (1 � i � kj)|i.e., a substitution whi
h repla
e ea
h Xji with a brand newvariable. This allows ea
h subgoal in the
onjun
tion to have a fresh and independent a

ess to ea
h sharedvariable.In this framework the mapping is des
ribed as a sequen
e of pairs [Xji ; Xnew(j)i ℄, where Xnew(j)i is the newvariable introdu
ed to repla
e variable Xji .� Cond is a
ondition, that will be evaluated at runtime (e.g., for
he
king groundness, independen
e,
om-paring dynami
ally
omputed grain-sizes to thresholds).A DAP annotated version of the re
ursive
lause in the program for naive reverse will look as follows:nrev([X|Xs℄, Y) :- $mark([Z℄),($and_goal([[Z,Z1℄℄,nrev(Xs, Z1)) &$and_goal([[Z,Z2℄℄,append(Z2, [X℄, Y))).The $mark/1 is a simple dire
tive to the
ompiler to identify shared variables. The shared variables aregiven di�erent names in ea
h of the parallel goals. The shared variable Z is a

essed through the variable Z1in nrev and through the variable Z2 in the append subgoal. The use of new names for the shared variablesallows the
reation of separate a

ess paths to the shared variables, whi
h in turn fa
ilitates more advan
edrun-time s
hemes to guarantee the
orre
t semanti
s (su
h as the Filtered Binding Model presented later inthis Se
tion).The pro
ess of annotating a program for exploitation of dependent and-parallelism des
ribed in [Pontelli,Gupta, Pulvirenti, Ferro 1997℄ operates through su

essive re�nements:(1) identi�
ation of
lauses having a stru
ture
ompatible with the exploitation of DAP|i.e., they
ontain atleast one group of
onse
utive non-builtin predi
ates. Ea
h maximal group of
ontiguous and non-builtingoals is
alled a partition.(2) use of sharing and freeness [Cabeza and Hermenegildo 1994; Muthukuar et al. 1999℄ information (deter-mined via abstra
t interpretation) to identify the set of shared variables for ea
h partition;(3) re�nement of the partition to improve DAP behavior through the following transformations:�
ollapsing of
onse
utive subgoals;� splitting of partitions in subpartitions;� removal of subgoals lying at the beginning or end of a partition.The transformations are driven by the following prin
iples:� parallel subgoals should display a suÆ
iently large grain size to over
ome the parallelization overhead;� dependent subgoals within a partition should demonstrate a good degree of overlapping in their exe
u-tions.The �rst aspe
t
an be dealt with through the use of
ost analysis [Debray et al. 1997b; Ti
k and Zhong1993℄, while the se
ond one is dealt with in [Pontelli, Gupta, Pulvirenti, Ferro 1997℄ through the use ofinstantiation analysis, based on the estimation of the size of the
omputation whi
h pre
edes the bindingof shared variables. - 44 -

Further improvements have been devised in [Pontelli, Gupta, Pulvirenti, Ferro 1997℄ through the use of sharingand freeness to dete
t at
ompile-time subgoals that will de�nitely bind dependent variables|i.e., automati
dete
tion of de�nite produ
ers.5.3 Management of Variables5.3.1 Introdu
tionThe management of shared variables in a dependent and-parallel exe
ution requires solving two key issues.The �rst issue is related to the need of guaranteeing mutual ex
lusion during the
reation of a binding for ashared variable. The se
ond, and more important, issue is
on
erned with the pro
ess of binding validation,i.e., guaranteeing that the out
ome of the
omputation respe
ts sequential observable Prolog semanti
s. Thesetwo issues are dis
ussed in the next two subse
tions.5.3.2 Mutual Ex
lusionThe majority of the s
hemes proposed to handle DAP rely on a single representation of ea
h sharedvariable|i.e., all the threads of
omputation a

ess the same memory area whi
h represents the shared vari-able. Considering that we are working in a Prolog-like model, at any time at most one of these threads willbe allowed to a
tually bind the variable. Nevertheless, the
onstru
tion of a binding for a variable is not anatomi
 operation|unless the value assigned to the variable is atomi
. Furthermore, in the usual WAM, theassignment of a value
an be realized through the use of get instru
tions, whi
h are
hara
terized by the fa
tthat they pro
eed top-down in the
onstru
tion of the term. This means that �rst the unbound variable is as-signed a template of the term to be
onstru
ted|e.g., through a get stru
ture instru
tion|and su

essivelythe subterms of the binding are
onstru
ted. This makes the binding of the variable a non-atomi
 operation.For example, if the two subgoals exe
uting in parallel are p(X) and q(X), whi
h are respe
tively de�ned bythe following
lauses:p(X) :- X = f(b,
),q(X) :- X = f(Y,Z), (var(Y) -> ... ; ...).The WAM
ode for the
lause for p will
ontain a sequen
e of instru
tions of the typeget_stru
ture f, A1unify_
onstant bunify_
onstant
...An arbitrary interleaving between the
omputations (at the level of WAM instru
tions)
an lead q to a

essthe binding for X immediately after the get stru
ture but before the su

essive unify
onstant|leading qto wrongfully su

eed in the var(Y) test. Clearly, as long as we allow
onsumers to have
ontinuous a

essto the bindings produ
ed by the produ
er, we need to introdu
e some me
hanisms
apable of guaranteeingatomi
ity of any binding to shared variables.The problem has been dis
ussed in various works. In the
ontext of the JAM implementation of Parlog[Crammond 1992℄ the idea is to have the
ompiler generate a di�erent order of instru
tions for what
on
ernsthe
onstru
tion of
omplex terms: the pointer to a stru
ture is not written until the whole stru
ture has been
ompletely
onstru
ted. This approa
h requires a radi
al
hange in the
ompiler. Furthermore, the use of thisapproa
h requires a spe
ial a
tion at the end of the uni�
ation, in order to make the stru
ture \publi
"|andthis overhead will be en
ountered in general for every stru
ture built, independently from whether this will beassigned to a dependent variable or not.Another solution has been proposed in Andorra-I [Santos Costa, Warren, Yang 1996℄; in this system, termswhi
h need to be mat
hed with a
ompound term (i.e., using the get stru
ture instru
tion in the WAM) arelo
ked|i.e., a mutual ex
lusion me
hanism is asso
iated to it|and a spe
ial instru
tion (last) is added bythe
ompiler at the end of the term
onstru
tion to release the lo
k|i.e., terminate the
riti
al se
tion.Another approa
h, adopted in the DASWAM system [Shen 1992b℄,
onsists of modifying the unify and getinstru
tions in su
h a way that they always overwrite the su

essive lo
ation on the heap with a spe
ial value.Every a

ess to term will inspe
t su
h su

essive lo
ation to verify whether the binding has been
ompletedor not. No expli
it lo
ks or other mutual ex
lusion me
hanisms are required. On the other hand:- 45 -

� while reading the binding for a dependent variable, every lo
ation a

essed needs to be
he
ked for validity;� an additional operation (pushing an invalid status on the su

essive free lo
ation) is performed during ea
hoperation involved in the
onstru
tion of a dependent binding.� a
he
k needs to be performed during ea
h operation whi
h
onstru
ts a term, in order to understandwhether the term has been assigned to a dependent variable or not|or, alternatively, the operation ofpushing the invalid status is performed indis
riminately during the
onstru
tion of any term, even if it willnot be assigned to a dependent variable.A novel solution [Pontelli 1997℄, whi
h does not su�er from most of the drawba
ks previously des
ribed, is tohave the
ompiler generate a di�erent sequen
e of instru
tions to fa
e this kind of situations. The get stru
tureand get list instru
tions are modi�ed, by adding a third argument:get stru
ture hfun
tori hregisteri hjump labeliwhere the hjump labeli is simply an address in the program
ode. Whenever the dereferen
ing of thehregisteri leads to an unbound shared variable, instead of entering write mode (as in standard WAM behav-ior), the abstra
t ma
hine performs a jump to the indi
ated address (hjump labeli). The address
ontains asequen
e of instru
tions whi
h performs the
onstru
tion of the binding in a bottom-up fashion|whi
h allowsfor the
orre
t atomi
 exe
ution.5.3.3 Binding ValidationA large number of s
hemes have been proposed to handle bindings to dependent variables su
h that Prologsemanti
s is respe
ted. We
an
lassify the di�erent approa
hes a

ording to two orthogonal
riteria [Pontelliand Gupta 1997b; 1997a℄:� Validation time: the existing proposals either� remove in
onsisten
ies on binding shared variables only on
e a
on
i
t appears and threatens Prologsemanti
s (
urative s
hemes)� prevent in
onsisten
ies by appropriately delaying and ordering shared variable bindings (preventive s
hemes)� Validation resolution: the existing proposals either� perform the validation a
tivity at the level of the parallel subgoals (goal-level validation)� perform the validation a
tivity at the level of the individual shared variable (binding-level validation)Curative Approa
hes: Curative approa
hes rely on validation of the bindings to shared variables after theyare performed.Performed at the goal level (see Figure 16), implies that ea
h and-parallel subgoal develops its
omputationon lo
al
opies of the environments, introdu
ing an additional \merging" step at the end of the parallel
all|toverify
onsisten
y of the values produ
ed by the di�erent
omputations for the shared variables. This approa
h,adopted mainly in some of the older pro
ess-based models, like Epilog [Wise 1986℄ and ROPM [Ramkumarand Kal�e 1992℄, has the advantage of being extremely simple, but it su�ers some serious drawba
ks:(1) it produ
es highly spe
ulative
omputations (due to the la
k of
ommuni
ation between parallel subgoals);(2) it may produ
e parallel
omputations that terminates in a time longer than the
orresponding sequentialones;(3) it makes extremely diÆ
ult to enfor
e Prolog semanti
s.Performed at the binding level (see Figure 17), validation does not preempt bindings from taking pla
e (i.e.,any goal
an bind a shared variable), but spe
ial rollba
k a
tions are needed whenever a violation of programsemanti
s is dete
ted. The two most signi�
ant proposals where this strategy is adopted are those madeby Tebra [Tebra 1987℄ and by Drakos [Drakos 1989℄. They
an be both identi�ed as instan
es of a generals
heme, named Optimisti
 Parallelism. In optimisti
 parallelism, validation of bindings is performed not atbinding time (i.e., the time when the shared variable is bound to a value), but only when a
on
i
t o

urs(i.e., when a produ
er attempts to bind a shared variable that had already been bound earlier by a
onsumergoal.) In
ase of a
on
i
t, the lower priority binding (made by the
onsumer), has to be undone, and the
onsumer goal rolled ba
k to the point where it �rst a

essed the shared variable. These model have various- 46 -

Conflict

p(X) q(X)

X=1

X=3

Time

Fig. 16. Goal Level Curative Approa
h Conflict

p(X) q(X)

X=1

X=3

Time

Roll-backFig. 17. Binding Level Curative Approa
hdrawba
ks, ranging from their highly spe
ulative nature to the limitations of some of the me
hanisms adopted(e.g., labeling s
hemes to re
ord binding priorities), and to the high
osts of rolling ba
k
omputations.Preventive Approa
hes: Preventive approa
hes are
hara
terized by the fa
t that bindings to sharedvariables are prevented unless they are guaranteed to not threaten Prolog semanti
s.Performed at the goal level, preventive s
hemes delay the exe
ution of the whole subgoal until its exe
utionwill not a�e
t Prolog semanti
s. Various models have embra
ed this solution:� Non-Stri
t Independent And-Parallelism (NSI): [Cabeza and Hermenegildo 1994℄ allows to extend the s
opeof independent and-parallelism to subgoals that have variables in
ommon, as long as at most one subgoal
an bind ea
h shared variable, and the binding will not a�e
t the
omputation of the remaining subgoals.� The Basi
 Andorra Model [Haridi 1990; Warren 1988; Santos Costa, Warren, Yang 1991a℄, Parallel NU-Prolog [Naish 1988℄, Pandora [Bahgat 1993℄, and P-Prolog [Yang 1987℄ are all
hara
terized by the fa
t thatparallel exe
ution is allowed between dependent subgoals only if there is guarantee that there exists at mostone single mat
hing
lause. In the Basi
 Andorra Model, goals
an be exe
uted ahead of their turn (\turn"in the sense of Prolog's depth �rst sear
h) in parallel if they are determinate, i.e., if at most one
lausemat
hes the goal (the determinate phase). These determinate goals
an be dependent on ea
h other. If nodeterminate goal
an be found for exe
ution, a bran
h point is
reated for the leftmost goal in the goal list(non-determinate phase) and parallel exe
ution of determinate goals along ea
h alternative of the bran
hpoint
ontinues. Dependent and-parallelism is obtained by having determinate goals exe
ute in parallel. Thedi�erent alternatives to a goal may be exe
uted in or-parallel. Exe
uting determinate goals (on whi
h othergoals may be dependent) eagerly also provides a
oroutining e�e
t whi
h leads to the narrowing of the sear
hspa
e of logi
 programs. A similar approa
h has been adopted in Pandora [Bahgat 1993℄, whi
h representsa
ombination of the Basi
 Andorra Model and the Parlog
ommitted-
hoi
e approa
h to exe
ution [Clarkand Gregory 1986℄; Pandora introdu
es non-determinism to an otherwise
ommitted
hoi
e language. InPandora,
lauses are
lassi�ed as either don't-
are or don't-know. Like the Basi
 Andorra Model, exe
utionalternates between the and-parallel phase and the deadlo
k phase. In the and-parallel phase, all goals in aparallel
onjun
tion are redu
ed
on
urrently. A goal for a don't-
are
lause may suspend on input mat
hingif its arguments are insuÆ
iently instantiated as in normal Parlog exe
ution. A goal for a don't-know
lauseis redu
ed if it is determinate, like in the Basi
 Andorra Model. When none of the don't-
are goals
anpro
eed further and there are no determinate don't-know goals, the deadlo
k phase is a
tivated (Parlogwould have aborted the exe
ution in su
h a
ase) that
hooses one of the alternatives for a don't-know goaland pro
eeds. If this alternative were to fail, ba
ktra
king would take pla
e and another alternative will betried (potentially, the multiple alternatives
ould be tried in or-parallel).Performed at the binding level, preventive s
hemes allow a greater degree of parallelism to be exploited.The large majority of su
h s
hemes rely on enfor
ing a stronger notion of semanti
s (Strong Prolog Semanti
s):- 47 -

bindings to shared variables are performed in the same order as in a sequential Prolog exe
ution. The mostrelevant s
hemes are:� Committed-Choi
e languages: we will only deal brie
y with the notion of
ommitted-
hoi
e languages inthis paper, sin
e they implement a semanti
s whi
h is radi
ally di�erent from Prolog. Committed-
hoi
elanguages [Ti
k 1995℄ disallow (to a large extent) non-determinism by requiring the
omputation to
ommitto the
lause sele
ted for resolution. Committed-
hoi
e languages support dependent and-parallel exe
utionand handle shared variables via a preventive s
heme based on the notion of produ
er and
onsumers.Produ
er and
onsumers are either expli
itly identi�ed at the sour
e level (e.g., via mode de
larations) orimpli
itly through stri
t rules on binding of variables that are external to a
lause.� DDAS-based s
hemes: these s
hemes o�er a dire
t implementation of strong Prolog semanti
s through thenotion of produ
er and
onsumer of shared variables. At ea
h point of the exe
ution only one subgoal isallowed to bind ea
h shared variable (produ
er), and this
orresponds to the leftmost a
tive subgoal whi
hhas a

ess to su
h variable. All remaining subgoals are restri
ted to read-only a

esses to the shared variable(
onsumers); ea
h attempt by a
onsumer of binding an unbound shared variable will lead to the suspensionof the subgoal. Ea
h suspended
onsumer will be resumed as soon as the shared variable is instantiated.Consumers may also be
ome produ
ers if they be
ome the leftmost a
tive
omputations. This
an happenif the designated produ
er terminates without binding the shared variable.Dete
ting produ
er and
onsumer status is a
omplex task. Di�erent te
hniques have been des
ribed inthe literature to handle this pro
ess. Two major implementation models have been proposed to handleprodu
er/
onsumer dete
tion, DASWAM and the Filtered-Binding Model, whi
h are des
ribed at the endof this se
tion. An alternative implementation model based on Attributed Variables [Le Huitouze 1990℄ hasbeen proposed in [Hermenegildo, Cabeza, Carro 1995℄: ea
h dependent variable X is split into multipleinstan
es, one for ea
h subgoal belonging to the parallel
all. Expli
it pro
edures are introdu
ed to handleuni�
ation and transfer bindings to the di�erent instan
es of ea
h shared variable. The idea behind thismodel is attra
tive, and it shares some
ommonalities with the Filtered Binding model presented in Se
tion5.5.3.Classi�
ation: As done for or-parallelism in Se
tion 3.4, it is possible to propose a
lassi�
ation of thedi�erent models for DAP based on the
omplexity of the basi
 operations. The basi
 operations required tohandle forward exe
ution in DAP are:� task
reation:
reation of a parallel
onjun
tion� task swit
hing: s
heduling and exe
ution of a new subgoal� variable a

ess/binding: a

ess and/or binding of a variableIt is possible to prove, by properly abstra
ting these operations as operations on dynami
 tree stru
tures, thatat least one of them requires a time
omplexity whi
h is stri
tly worse than
(1) [Pontelli, Ranjan, Gupta 1997;Ranjan,Pontelli,Gupta,Longpre 2000℄. Interestingly enough, this result
eases to hold if we disallow aliasing ofshared variables during the parallel
omputation|intuitively, aliasing of shared unbound variables may
reatelong
hains of shared variables bound to ea
h other, and the
hain has to be maintained (and traversed) todetermine exa
tly whether a binding for the variable is allowed or not. A similar restri
tion is a
tually presentin the DASWAM system, to simplify the implementation of the variables management s
heme. Nevertheless,the Filtered-binding Model is the only model proposed that su

eeds in a
hieving
onstant time
omplexityin all the key operations in absen
e of shared variables aliasing.The
lassi�
ation of the di�erent models a

ording to the
omplexity of the three key operations is illustratedin Figure 18. Unrestri
ted DAP means DAP with possible aliasing of unbound shared variables.5.4 Ba
ktra
kingMaintaining Prolog semanti
s during parallel exe
ution also means supporting non-deterministi

omputa-tions, i.e.,
omputations that
an potentially produ
e multiple solutions. In many approa
hes DAP has beenrestri
ted to only those
ases where p and q are deterministi
 [Bevemyr et al. 1993; Shapiro 1987; SantosCosta, Warren, Yang 1991a℄. This is largely due to the
omplexity of dealing with distributed ba
ktra
king.- 48 -

true false

CTS

CVA CVA

CTC CTC CTC CTC

CTS

CVA CVA

CTC CTC CTC CTC

no method
(theorem)

Filtered
Binding
Model(2)

DASWAM

Drakos
Model

Tebra’s
Model

Attrib-
uted Var.
Model

Linked
Model

t

t

t t t t t t t t

t

t

t f f

f
ffffff

f
f

f

t

f

f

CTC = Constant Time Task Creation

CTS = Constant Time Task Switching

CVA = Constant Time Variable Access/Binding

f = false

Epilog/
ROPM

Filtered
Binding
Model(1)

t = true

Unrestricted DAP

Fig. 18. Classi�
ation of DAP modelsNevertheless, it has been shown [Shen 1992b℄ that imposing this kind of restri
tion on DAP exe
ution mayseverely limit the amount of parallelism exploited. The goal is to exploit DAP even in non-deterministi
 goals.Ba
ktra
king in the
ontext of DAP is more
omplex than in the
ase of independent and-parallelism.While outside ba
ktra
king remains un
hanged, inside ba
ktra
king|i.e., ba
ktra
king within subgoals whi
hare part of a parallel
all|loses its \independent" nature, whi
h guaranteed the semi-intelligent ba
ktra
kingdes
ribed earlier. Two major issues emerge. First of all, failure of a subgoal within a parallel
onjun
tion doesnot lead to the failure of the whole
onjun
tion, but requires killing the subgoals on the right and ba
ktra
kingto be propagated to the subgoal immediately to the left|an asyn
hronous a
tivity, sin
e the subgoal on theleft may be still running;In addition, ba
ktra
king within a parallel subgoal may also a�e
t the exe
ution of other parallel subgoals.In a parallel
onju
tion like p(X) & q(X), ba
ktra
king within p(X) whi
h leads to a modi�
ation of the valueof X will require rolling ba
k the exe
ution of q(X) as well, sin
e q(X) may have
onsumed the value of X whi
hhas just been untrailed.Implementations of this s
heme have been proposed in [Shen 1992b; 1992a; Pontelli and Gupta 1997a℄;optimizations of this s
heme have also been des
ribed in [Shen 1994℄.5.5 Experimental SystemsIn this se
tion we present some representative systems whi
h support dependent and-parallelism. Some othersystems whi
h use dependent and-parallelism in
onjun
tion with other forms of parallelism (e.g., ROPM) willbe des
ribed in Se
tion 6. In this se
tion we do not dis
uss Committed-
hoi
e language|their sequential andparallel exe
ution model have been des
ribed in detail in other surveys (e.g., [Ti
k 1995℄).5.5.1 Andorra-IThe Andorra-I system is an implementation of the Basi
 Andorra Model. Andorra-I exploits determinatedependent and-parallelism together with or-parallelism. Implementation of or-parallelism is very similar tothat in Aurora and is based on Binding Arrays [Warren 1984; 1987a℄. Due to its similarity to Aurora as faras or-parallelism is
on
erned, Andorra-I is able to use the s
hedulers that have been built for Aurora. The- 49 -

urrent version of Andorra-I is
ompiled [Yang et al. 1993℄ and is a des
endent of the earlier interpretedversion [Santos Costa, Warren, Yang 1991a℄.As a result of exploitation of determinate dependent and-parallelism and the a

ompanying
oroutining,not only Andorra-I
an exploit parallelism from logi
 programs it
an also redu
e the number of inferen
esperformed to
ompute a solution. As mentioned earlier, this is be
ause exe
ution in the Basi
 Andorra Modelis divided into two phases|determinate and non-determinate|exe
ution of non-determinate phase is begunonly after all \for
ed
hoi
es"|i.e.,
hoi
es for whi
h only one alternative is left|have been made in thedeterminate phase, i.e., after all determinate goals in the
urrent goal list, irrespe
tive of their order in thislist, have been solved. Any goal that is non-determinate (that is, has more than one potentially mat
hing
lauses) will be suspended in the determinate phase. Solving determinate goals early
onstrains the sear
hspa
e mu
h more than if one used the standard sequential Prolog exe
ution order (for example, for the 8-queen's program the sear
h spa
e is redu
ed by 44%, for the zebra puzzle by 70%, et
.). Note that exe
utionof a determinate goal to the right may bind variables whi
h in turn may make non-determinate goals to theirleft determinate. The Andorra-I
ompiler performs an elaborate determina
y analysis of the program andgenerates
ode so that the determinate status of a goal is determined as early as possible at runtime [SantosCosta, Warren, Yang 1996; 1991b℄.The Andorra-I system supports full Prolog, in that exe
ution
an be performed in su
h a way that sequentialProlog semanti
s is preserved [Santos Costa, Warren, Yang 1996; 1991b℄. This is a
hieved by analysing theprogram at
ompile-time and preventing early (i.e., out of turn) exe
ution of those determinate goals thatmay
ontain extralogi
al predi
ates. These goals will be exe
uted only after all goals to the left of them havebeen
ompletely solved.14The Andorra-I system speeds-up exe
ution in two ways: (i) by redu
ing the number of inferen
es performedat run-time; and, (ii) by exploiting dependent and-parallelism and or-parallelism from the program. Very goodspeed-ups have been obtained by Andorra-I for a variety of ben
hmark programs. The Andorra-I engine [SantosCosta, Warren, Yang 1991
; Yang et al. 1993℄
ombines the implementation te
hniques used in implementingParlog, namely the JAM system [Crammond 1992℄, and the Aurora system [Lusk et al. 1990℄. The Andorra-Isystem had to over
ome many problems before an eÆ
ient implementation of its engine
ould be realized.Chief among them was a ba
ktra
kable representation of the goal list. Sin
e goals are solved out of order, theyshould be inserted ba
k in the goal list if ba
ktra
king were to take pla
e; re
all that there is no ba
ktra
kingin Parlog so this was not a problem in JAM. The Andorra-I system was the �rst one to employ the notion ofteams of workers, where available workers are divided into teams, and ea
h team shares all the data stru
tures(ex
ept the queue of ready-to-run goals). Or-parallelism is exploited at the level of teams (i.e., ea
h teambehaves like a single Aurora worker). Determinate dependent and-parallelism is exploited by workers within ateam, i.e., workers within a team will
o-operatively solve a goal along the or-bran
h that the team has pi
kedup. There are separate s
hedulers for or-parallel work and dependent and-parallel work, and overall workbalan
ing is a
hieved by a top-s
heduler (re
on�gurer) [Dutra 1994; 1996℄. The notion of teams of workerswas also adopted by the ACE [Gupta, Pontelli, Hermenegildo, Santos Costa 1994℄ and the PBA [Gupta andSantos Costa 1992
; Gupta, Santos Costa, Pontelli 1994; Gupta, Hermenegildo, and Santos Costa 1993℄ modelsthat
ombine or-parallelism with independent and-parallelism while preserving sequential Prolog semanti
s.A parallel system in
orporating the Basi
 Andorra Model has also been implemented by Palmer and Naish[Palmer and Naish 1991℄.5.5.2 DASWAMDASWAM [Shen 1992a; 1992b℄ is an implementation model for the DDAS exe
ution s
heme des
ribed inSe
tion 5.3.3. DASWAM has been designed as an extension of the PWAM model used for independent and-parallelism. Memory management is analogous to PWAM|and relies on the use of par
all frames to representparallel
onjun
tions, and on the use of markers to delimit segments of sta
ks asso
iated with the exe
utionof a given subgoal.Shared variables are represented as a new type of tagged
ell and ea
h shared variable is uniquely represented|thus all workers a

ess the same representation of the shared variable. Produ
er and
onsumer status is deter-14In spite of this, there are
ases where Andorra-I and Prolog leads to di�erent behavior; in parti
ular, there are non-terminatingProlog programs whi
h will terminate in Andorra-I and vi
e versa.- 50 -

mined via a sear
h operation, performed at the time of variable binding. Ea
h dependent variable identi�esthe par
all frame whi
h introdu
ed the variable (home par
all); a traversal of the
hain of nested parallel
allsis needed to determine whether the binding attempt lies in the leftmost a
tive subgoal. The knowledge of thesubgoal is also needed to
reate the ne
essary suspension re
ord|where information regardinga suspended
onsumer is re
orded. The pro
ess is illustrated in Figure 19. Ea
h dependent
ell maintains pointers tothe par
all frame whi
h introdu
ed that dependent variable. Additionally, the par
all frames are linked toea
h other to re
reate the nesting relation of the parallel
onjun
tions. This arrangement implies a
omplex-ity whi
h is linear in the size of the
omputation tree in order to determine produ
er/
onsumer status andsubgoals on whi
h to suspend [Shen 1992b; 1992a℄.

Previous Parcall

Previous Parcall

Previous Parcall

Previous Slot

Previous Slot

Previous Slot

Creation Parcall Frame

Creation Slot

Dependent Cell

Current Parcall FrameFig. 19. DASWAM Implementation5.5.3 ACEThe Filtered Binding Model is an instan
e of the
lass of models whi
h use binding-level validation and arepreventive. The spe
i�
 approa
h assumes a program stati
ally annotated to identify the promising sour
esof parallelism. Ea
h subgoal maintains an independent a

ess path to the shared variable. The idea of theFiltered Binding model is to dire
tly en
ode in the a

ess path itself the information (the �lter or view) thatallows a subgoal to dis
riminate between produ
er and
onsumer a

esses. The di�erent a

ess paths are
reated via spe
ialized WAM instru
tions, whi
h are introdu
ed via the $mark predi
ate introdu
ed by theparallelizing
ompiler (see Se
tion 5.2).Figure 20 presents an intuitive s
hema of this idea. Ea
h subgoal has a lo
al path to a

ess the shared obje
t(in this
ase a heap lo
ation allo
ated to hold the value of the shared variable) and the path
ontains a �lter.In the �gure the �lter is linked to information stored in the subgoal des
riptor|this
ommon information willbe used to verify when the subgoal is a viable produ
er (i.e., it is the leftmost a
tive subgoal in the parallel
all).Every a

ess to a shared variable by a subgoal will go through the �lter
orresponding to that subgoal,whi
h will allow it to determine the \type" of the a

ess (produ
er or
onsumer).By properly organizing the uni�
ation pro
ess, as long as there is guarantee that no aliasing between sharedvariables o

urs (unless they are both produ
er a

esses), it
an be proved that at any time a variable a

esswill require traversal of at most one �lter|whi
h means
onstant-time validation of any a

ess. The setupof a parallel
all and the dete
tion of the
ontinuation also do not require any non
onstant-time operation(the
ost is always bounded by the number of dependent variables dete
ted by the
ompiler in that parallel- 51 -

filter

?- (p(X) & q(X)).

HEAP

X:

X2:X1:

 Proc 1 Proc 2

p & q descriptor

p’s info.

q’s info.

filter

 Parallel Call
Descriptor Area

Processor 1
executes p

Processor 2
executes q

X1 represents
p’s view of X,
X2 represents
q’s.

Fig. 20. The Filtered Binding Model
all15). An additional step is required when a subgoal terminates: if it is a produ
er goal, then on terminationit should transfer the produ
er status to the next a
tive subgoal in the parallel
all by
hanging its �lter. Thisis also a
onstant-time operation, as the next goal to the right
an be found by looking at the des
riptor ofthe parallel
all.Thus, the Filtered Binding model is a model that exploits restri
ted DAP and performs all operations in
onstant-time. The restri
tion is that unbound shared variables are not allowed to be bound to ea
h other(unless the goal doing the aliasing is a produ
er for both). If this restri
tion is relaxed then a non-
onstantoverhead will be produ
ed in the variable a

ess operation|in su
h a
ase a non-
onstant time overhead isunavoidable. The
urrent implementation, realized in the ACE system [Gupta, Pontelli, Hermenegildo, SantosCosta 1994; Pontelli, Gupta, Hermenegildo 1995℄, represents �lters as a word in the subgoal des
riptor, andpaths as a pair of words, one pointing to the a
tual variable and one pointing to the �lter. Lo
al paths relatedto shared variables introdu
ed in the same parallel
all share the same �lter. Consumer a

esses suspend inpresen
e of unbound variables. Variable suspensions have been implemented using the traditional suspensionlists [Crammond 1992℄.The implementation of the Filtered Binding Model in the ACE system [Pontelli and Gupta 1997a℄ supportsboth busy-waiting and goal suspension (e.g. release of suspended
omputation). The two methods are alter-nated during exe
ution depending on the granularity of the
omputation and on the amount of time the goalhas been suspended.6. COMBINING OR-PARALLELISM AND AND-PARALLELISM6.1 IssuesAs one
an gather, parallel systems that exploit only one form of parallelism from logi
 programs have beeneÆ
iently implemented and rea
hed a mature stage. A number of prototypes have been implemented andsu

essfully applied to the development and parallelization of very large real-life appli
ations (see also Se
tion10). Publi
 domain parallel logi
 programming systems are available (e.g., CIAO [Hermenegildo 1994℄, whi
hin
ludes &-Prolog, YapOr [Santos Costa, Damas, Reis, Azevedo 1999℄, KLIC [Chikayama et al. 1994℄). For15We are also working under the assumption that the
ompiler marks goals for DAP exe
ution
onservatively, i.e., during exe
utionif a shared variable X is bound to a stru
ture
ontaining an unbound variable Y before the parallel
onjun
tion
orresponding toX is rea
hed then both X and Y are marked as shared. Otherwise, for
orre
tness, the stru
ture X is bound to will have to betraversed to �nd all unbound variables o

urring in it and mark them as shared.- 52 -

some time, a number of
ommer
ial strength parallel Prolog systems have also appeared on the market,in
luding SICStus Prolog, whi
h in
ludes the or-parallel MUSE system, and ECLiPSe, whi
h in
ludes an or-parallel version of ElipSys. In spite of the fa
t that these
ommer
ial strength Prolog systems have progressivelydropped their support for parallelism (this is mostly due to
ommer
ial reasons|the high
ost of maintainingthe parallel exe
ution me
hanisms), these systems demonstrate that we possess the te
hnology for developinge�e
tive and eÆ
ient Prolog systems exploiting a single form of parallelism.Although, very general models for parallel exe
ution of logi
 programs have been proposed, e.g., the Ex-tended Andorra Model (EAM) (des
ribed later in this se
tion), they have not yet been eÆ
iently realized. A
ompromise approa
h that many resear
hers have been pursuing, long before the EAM was
on
eived, is thatof
ombining te
hniques that have been e�e
tive in single-parallelism systems to obtain eÆ
ient systems thatexploit more than one sour
e of parallelism in logi
 programs16. The implementation of the Basi
 AndorraModel [Haridi 1990; Warren 1988℄, namely, Andorra-I [Santos Costa, Warren, Yang 1991
℄
an be viewed inthat way sin
e it
ombines (determinate) dependent and-parallelism, implemented using te
hniques from JAM[Crammond 1992℄, with or-parallelism, implemented using Binding Arrays te
hnique [Lusk et al. 1990; Warren1987a℄. Likewise, the PEPSys model [Westphal, Robert, Chassin, Syre 1987; Baron et al. 1988℄, the AO-WAM[Gupta and Jayaraman 1993a℄, ROPM [Kal�e 1985; Ramkumar and Kal�e 1989; Kal�e and Ramkumar 1992℄,ACE [Gupta, Pontelli, Hermenegildo, Santos Costa 1994; Gupta, Hermenegildo, and Santos Costa 1993℄, thePBA models [Gupta and Santos Costa 1992
; Gupta, Santos Costa, Pontelli 1994; Gupta, Hermenegildo, andSantos Costa 1993℄, SBA [Correia et al. 1997℄, FIRE [Shen 1997℄, and the COWL models [Santos Costa 1999℄have attempted to
ombine independent and-parallelism with or-parallelism; these models di�er with ea
hother in the environment representation te
hnique they use for supporting or-parallelism and in the
avorof and-parallelism they support. One should also note that, in fa
t, Conery's model des
ribed earlier is anand-or parallel model [Conery 1987a℄ sin
e solutions to goals may be found in or-parallel. Models
ombiningindependent and-parallelism, or-parallelism and (determinate) dependent and-parallelism have also been pro-posed [Gupta, Santos Costa, Yang, Hermenegildo 1991℄. The abstra
t exe
ution models that these systemsemploy (in
luding those that only exploit a single sour
e of parallelism)
an be viewed as subsets of the EAMwith some restri
tions imposed, although this is not how they were
on
eived. In subsequent subse
tions, wereview these various systems that have been proposed for
ombining more than one sour
e of parallelism.The problems fa
ed in implementing
ombined and- and or-parallel system are unfortunately not only thesum of problems fa
ed in implementing and-parallelism and or-parallelism individually. In the
ombined systemthe problems fa
ed in one may worsen those fa
ed in the other, espe
ially those regarding
ontrol of exe
ution,representation of environment, and memory management. This should
ome as no surprise. The issues whi
hare involved in handling and-parallelism and or-parallelism impose requirements that are antitheti
al to ea
hother on the resulting exe
ution model. For example, or-parallelism fo
uses on improving the separationbetween the parallel
omputations, by assigning separate environments to the individual
omputing agents;and-parallelism relies on the ability of di�erent
omputing agents to
ooperate and share environments to
onstru
t a single solution to the problem.An issue that
ombined systems also have to fa
e is whether they should support sequential Prolog semanti
s.The alternatives to supporting Prolog semanti
s are: (i)
onsider only pure Prolog programs for parallelexe
ution; this was the approa
h taken by many early proposals, e.g., AO-WAM [Gupta and Jayaraman1993a℄ and ROPM [Kal�e 1985℄; or, (ii) devise a new language that will allow extra-logi
al features but ina
ontrolled way, e.g., PEPSys [Rat
li�e and Syre 1987; Westphal, Robert, Chassin, Syre 1987; Chassinde Kergommeaux and Robert 1990℄. The disadvantage with both these approa
hes is that existing Prologprograms
annot be immediately parallelized. Various approa
hes have been proposed that allow support forProlog's sequential semanti
s even during parallel exe
ution [Santos Costa 1999; Correia et al. 1997; Castroet al. 1998; Ranjan, Pontelli, Gupta 2000; Gupta, Pontelli, Hermenegildo, Santos Costa 1994; Gupta, SantosCosta, Pontelli 1994; Santos Costa, Warren, Yang 1991b℄.Another issue that arises in systems that exploit independent and-parallelism is whether to re
ompute solutionsof independent goals, or to reuse them. For example,
onsider the following program for �nding \
ousins at16Simulations have shown that indeed better speed-ups will be a
hieved if more than one sour
e of parallelism are exploited [Shen1992b; Shen and Hermenegildo 1991℄. - 53 -

the same generation" taken from [Ullman 1989℄:sg(X, X) :- person(X).sg(X, Y) :- parent(X, Xp), parent(Y, Yp), sg(Xp, Yp).In exe
uting a query su
h as ?- sg(fred, john) under a (typi
al) purely or-parallel or a purely independentand-parallel or a sequential implementation, the goal parent(john, Yp) will be re
omputed for every solutionto parent(fred, Xp)17. This is
learly redundant sin
e the two parent goals are independent of ea
h other.Theoreti
ally, it would be better to
ompute their solutions separately, take a
rossprodu
t (join) of thesesolutions, and then try the goal sg(Xp, Yp) for ea
h of the
ombinations. In general, for two independentgoals G1 and G2 with m and n solutions respe
tively, the
ost of the
omputation
an be brought downfrom m � n to m + n by
omputing the solutions separately and
ombining them through a
rossprodu
t|assuming the
ost of
omputing the
rossprodu
t is negligible18. However, for independent goals with verysmall granularity, the gain from solution sharing may be overshadowed by the
ost of
omputing the
ross-produ
t et
., therefore, su
h goals should either be exe
uted serially, or they should be re
omputed insteadof being shared [14℄. Independent goals that
ontain side-e�e
ts and extra-logi
al predi
ates should also betreated similarly [14, 16℄. This is be
ause the number of times, and the order in whi
h, these side-e�e
ts willbe exe
uted in the solution sharing approa
h will be di�erent from that in sequential Prolog exe
ution, alteringthe meaning of the logi
 program. Thus, if we were to support Prolog's sequential semanti
s in su
h parallelsystems, independent goals will have to be re
omputed. This is indeed the approa
h adopted by systems su
has ACE [Gupta, Pontelli, Hermenegildo, Santos Costa 1994℄ and the PBA model [Gupta, Hermenegildo, andSantos Costa 1993℄, whi
h are based on an abstra
tion
alled Composition-tree that represents Prolog's sear
htree in a way that or-parallelism and independent and-parallelism be
ome expli
itly apparent in the stru
tureof the tree itself [Gupta, Santos Costa, Pontelli 1994; Gupta, Hermenegildo, and Santos Costa 1993℄.6.2 S
heduling in And/Or-Parallel SystemsThe
ombination of and- and or-parallelism o�ers additional
hallenges. During and-parallel exe
ution, thes
heduler is in
harge of assigning subgoals to the workers. In presen
e of or-parallelism, the s
heduler isin
harge of assigning alternatives to the di�erent workers. When allowing both kinds of parallelism to beexploited at the same time, the system needs to deal with an additional level of s
heduling, i.e., determiningwhether an idle worker should perform or-parallel work or and-parallel work. The problem has been studied indepth by Dutra [Dutra 1994; 1996℄. The solution, whi
h has been integrated in the Andorra-I system [SantosCosta, Warren, Yang 1991a℄, relies on organizing workers into teams, where ea
h team exploits or-parallelismwhile ea
h worker within a team exploits and-parallelism. The top-level s
heduler dynami
ally manages thestru
ture of the teams, allowing migration of workers from one team to the other|used to perform load-balan
ing at the level of and-parallelism|as well as allowing the dynami

reation of new teams|used toload-balan
e or-parallelism. Di�erent strategies have been
ompared to de
ide how to re
on�gure the teams.For example, in [Dutra 1994℄ two strategies are
ompared:� work-based strategy: in whi
h task sizes are estimated at run-time and used to de
ide workers' allo
ation;� eÆ
ien
y-based strategy: in whi
h allo
ation of workers is based on their
urrent eÆ
ien
y|i.e., the per-
entage of time they spent doing useful
omputation.The two strategies have been
ompared in Andorra-I and the results have been reported in [Dutra 1994;1996℄. The
omparison suggests that work-based strategies works well when the estimate of the task size issuÆ
iently pre
ise; furthermore, if the grain size is small the re
on�gurer tends to be
alled too frequentlyand/or the s
heduler
auses ex
essive task swit
hes. The eÆ
ien
y-based strategies seems to s
ale up betterwith in
reasing number of workers, redu
ing idle time and number of re
on�gurations.6.3 Models for And/Or-ParallelismWe now brie
y des
ribe the systems that
ombine more than one sour
es of parallelism in logi
 program.17Respe
ting Prolog semanti
s, a purely independent and-parallel system
an avoid re
omputation of independent goals but mostexisting ones do not.18This, as pra
ti
e suggests, may not always be the
ase. - 54 -

p

r1 r2 s1 s2

p p p p

Clause p consists of the AND-parallel goals r and s with
two solutions each. The join cells are marked by double
horizontal bars and their least-common-hash-window.Fig. 21. Join Cells6.3.1 The PEPSys ModelThe PEPSys model [Westphal, Robert, Chassin, Syre 1987; Baron et al. 1988; Chassin de Kergommeauxand Robert 1990℄
ombines and- and or-parallelism using a
ombination of te
hniques of time-stamping andhashing windows for maintaining multiple environments. In PEPSys (as already dis
ussed in Se
tion 3.2),ea
h node in the exe
ution tree has a pro
ess asso
iated with it. Ea
h pro
ess has its own hash-window.All the bindings of
onditional variables generated by a pro
ess are time-stamped and stored in that pro
ess'hash-window. Any PEPSys pro
ess
an a

ess the sta
ks and hash-windows of its an
estor pro
esses. Thetime-stamp asso
iated with ea
h binding permits it to distinguish the relevant binding from the others in thean
estor pro
esses' sta
ks and hash-windows.Independent and-parallel goals have to be expli
itly annotated by the programmer. The model
an handleonly two and-parallel subgoals at a time. If more than two subgoals are to be exe
uted in and-parallel,the subgoals are nested in a right asso
iative fashion. If or-parallelism is nested within and-parallelism thenand-parallel bran
hes
an generate multiple solutions. In this
ase the
ross-produ
t (join) of the left-handand right-hand solution sets has to be formed. A pro
ess is
reated for ea
h
ombination of solutions in the
ross-produ
t set. Ea
h su
h pro
ess
an
ommuni
ate with its two an
estor pro
esses (one
orresponding tothe left and-bran
h and other
orresponding to the right and-bran
h) that
reated the
orresponding solution.A

ess to the bindings of these an
estor pro
esses is handled by join
ells. A join
ell
ontains a pointer tothe hash-window of the left and-bran
h pro
ess and to the hash-window of the right and-bran
h pro
ess. Italso
ontains a pointer to the hash-window that was
urrent at the time of the and-parallel split (Figure 21).Looking up a variable binding from a goal after the and-parallel join works as follows: the linear
hain ofhash-windows is followed in the usual way until a join
ell is rea
hed. Now a bran
h be
omes ne
essary. Firstthe right-hand pro
ess is sear
hed by following the join-
ell's right hand side hashed window
hain. Whenthe least-
ommon-hash-window is en
ountered
ontrol boun
es ba
k to the join-
ell and the left bran
h issear
hed.The basi
 s
heme for forming the
ross-produ
t, gathering the left-hand solutions and the right-hand solu-tions in solution-lists and eagerly pairing them, relies on the fa
t that all solutions to ea
h side are
omputedin
rementally and
o-exist at the same time in memory to be paired with newly arriving solutions to the otherside. However, if all solutions to the and-parallel goal on the right have been found and ba
ktra
ked over,and there are still more solutions for the and-parallel goal to the left remaining to be dis
overed, then theexe
ution of the right goal will be restarted after dis
overy of more solutions of the goal to the left (hen
ePEPSys uses a
ombination of goal-reuse and goal-re
omputation).The PEPSys model uses time-stamping and hash windows for environment representation. This doesn'tpermit
onstant time a

ess to
onditional variables. Therefore, a

ess to
onditional variables is expensive.However, environment
reation is a
onstant time operation. Also a worker does not need to update any statewhen it swit
hes from one node to another sin
e all the information is re
orded with the or-tree. In PEPSys- 55 -

sharing of and-parallel solutions is not
omplete be
ause the right hand and-parallel subgoal may have to bere
omputed again and again. Although re
omputing leads to e
onomy of spa
e, its
ombination with
ross-produ
t
omputation via join
ells makes the
ontrol algorithm very
omplex. Due to this
omplexity, thea
tual implementation of PEPSys limited the exploitation of and-parallelism to the
ase of deterministi
 goals[Chassin de Kergommeaux 1989℄. PEPSys was later modi�ed and evolved into the ElipSys System [V�eron etal. 1993℄: the hashed windows have been repla
ed with Binding Arrays and it has also been extended to handle
onstraints. In turn, ElipSys evolved into the parallel support for the ECLiPSe
onstraint logi
 programmingsystem|where or-parallelism only is exploited, using a
ombination of
opying and re
omputation [Herold1995℄.6.3.2 The ROPM ModelROPM (Redu
e-Or Parallel Model) [Kal�e 1991℄ was devised by Kal�e in his Ph.D. Thesis [Kal�e 1985℄. Themodel is based on a modi�
ation of the And-Or tree,
alled the Redu
e-Or Tree. There are two types of nodesin the a Redu
e-Or tree, the Redu
e-nodes and the Or-nodes. The Redu
e nodes are labeled with a query(i.e., a set of goals) and the or-nodes are labeled with a single literal. To prevent global
he
king of variablebinding
on
i
ts every node in the tree has a partial solution set (PSS) asso
iated with it. The PSS
onsistsof a set of substitutions for variables that make the subgoal represented by the node true. Every node in thetree
ontains the bindings of all variables that are either present in the node or are rea
hable through thisnode. The Redu
e-Or tree is de�ned re
ursively as follows [Kal�e 1991℄:1. A Redu
e node labeled with the top level query and with an empty PSS is a Redu
e-Or tree.2. A tree obtained by extending a Redu
e-Or tree using one of the rules below is a Redu
e-Or tree:� Let Q be the set of literals in the label of a Redu
e node R. Corresponding to any literal L in Q, one mayadd an ar
 from R to a new Or-node O labeled with an instan
e of L. The literal must be instantiated witha
onsistent
omposition of the substitutions from the PSS of subgoals pre
eding L in Q.� To any Or-node, labeled with a goal G, one may add an ar
 to a new REDUCE node
orresponding to some
lause of the program, say C, whose head uni�es with G. The body of C with appropriate substitutionsresulting from the head uni�
ation be
omes the label of the new Redu
e node (say) R. If the query is empty,i.e., the
lause is a `fa
t', the PSS asso
iated with R be
omes a singleton set. The substitution that uni�esthe goal with the fa
t be
omes the only member of the set.� Any entry from the PSS of the Redu
e node
an be added to the PSS of its parent Or-node. A substitution
an be added to the PSS of a Redu
e node R representing a
omposite goal Q if it is a
onsistent
ompositionof the substitutions, one for ea
h literal of Q, from the PSS's of the
hildren (Or-nodes) of R.ROPM asso
iates a Redu
e Pro
ess with every Redu
e node and an Or Pro
ess with every Or-node. Theprogram
lauses in ROPM are represented as Data Join Graphs (DJGs), in whi
h ea
h ar
s of the graphdenotes a literal in the body of the
lause (Figure 22).DJGs are a means of expressing and-parallelism and are similar in spirit to Conery's data-
ow graph. Aset of variable binding tuples,
alled a relation (PSS), is asso
iated with ea
h ar
 and ea
h node of the DJG.The head of a
lause is mat
hed with a subgoal by an Or pro
ess. A redu
e pro
ess is spawned to exe
utethe body of the
lause. In the redu
e pro
ess, whenever a binding tuple is available in the relation of a nodek, subgoals
orresponding to ea
h of the ar
s emanating from k will be started, whi
h leads to the
reation ofnew Or pro
esses. When a solution for any subgoal arrives, it is inserted in
orresponding ar
 relation. Thenode relation asso
iated with a node n is a join of the ar
-relations of all its in
oming ar
s. So when a solutiontuple is inserted in an ar
-relation, it is joined with all the solution tuples in the ar
 relations of its parallelar
s that originated from the same tuple in the lowest
ommon an
estor node of the parallel ar
s [Ramkumarand Kal�e 1990℄. A solution to the top level query is found, when the PSS of the root-node be
omes non-empty.In ROPM multiple environments are represented by repli
ating them at the time of pro
ess
reation. Thusea
h Redu
e- or Or-pro
ess has its own
opy of variable bindings (the Partial Solution Set above) whi
h isgiven to it at the time of spawning. Thus pro
ess
reation is an expensive operation. ROPM is pro
ess basedmodel rather than a sta
k based one. As a result, there is no ba
ktra
king, and hen
e no memory re
lamation- 56 -

quicksort(L, Sorted) :- partition(L, L1, L2),
quicksort(L1, Sorted1), quicksort(L2, Sorted2),
append(Sorted1, Sorted2, Sorted).

0 1 2 3
partition(...)

quicksort(L1,...)

quicksort(L2,...)

append(....)

Fig. 22. An Example Data Join Graphthat is normally asso
iated with ba
ktra
king. Computing the join is an expensive operation sin
e the a
tualbindings of variables have to be
ross-produ
ed to generate the tuple relations of the node (as opposed to usingsymboli
 addresses to represent solutions, as done in PEPSys [Westphal, Robert, Chassin, Syre 1987℄ and AO-WAM [Gupta and Jayaraman 1993a℄), and also sin
e the sets being
ross-produ
ed have many redundantelements. Mu
h e�ort has been invested in eliminating unne
essary elements from the
onstituent sets duringjoin
omputation [Ramkumar and Kal�e 1990℄. However, eÆ
ien
y of the
omputation of the join has beenmade more eÆ
ient by using stru
ture sharing. One advantage of the ROPMmodel is that if a pro
ess swit
hesfrom one part of the redu
e-or tree to another, it doesn't need to update its state at all sin
e the entire stateinformation is stored in the tree.ROPM model has been implemented in the ROLOG system on a variety of platforms. ROLOG is a
ompleteimplementation, whi
h in
ludes support for side e�e
ts [Kal�e, Padua, Sehr 1988℄. However, although ROLOGyields very good speed-ups, its absolute performan
e does not
ompare very well with other parallel logi
programming systems,
hie
y be
ause it is a pro
ess based model and uses the expensive me
hanism ofenvironment
losing [Ramkumar and Kal�e 1989; Conery 1987b℄ for multiple environment representation.ROLOG is probably the most advan
ed pro
ess-based model proposed to handle
on
urrent exploitationof and-parallelism and or-parallelism. Other systems based on similar models have also been proposed in theliterature, e.g., OPAL [Conery 1992℄|where exe
ution is governed by a set of And and Or pro
esses: Andpro
esses solve the set of goals in the body of a rule, and Or pro
esses
oordinate the solution of a single goalwith multiple mat
hing
lauses. And and Or pro
esses
ommuni
ate solely via messages.6.3.3 The AO-WAM modelThe AO-WAM model [Gupta and Jayaraman 1993a; Gupta 1994℄
ombines or-parallelism and independentand-parallelism. Independent and-parallelism is exploited in the same way as in &-Prolog and &ACE, andsolutions to independent goals are reused (and not re
omputed). To represent multiple or-parallel environmentsin the presen
e of independent and-parallelism, the AO-WAM extends the binding arrays te
hnique [Warren1984; 1987a℄.The model works by
onstru
ting an Extended And-Or Tree. Exe
ution
ontinues like a standard or-parallelsystem until a CGE is en
ountered, at whi
h point a
ross-produ
t node that keeps tra
k of the
ontrolinformation for the and-parallel goals in the CGE is added to the or-parallel tree. New or-parallel sub-treesare started for ea
h independent and-parallel goal in the CGE. As solutions to goals are found, they are
ombined with solutions of other goals to produ
e their
ross-produ
t. For every tuple in the
ross-produ
tset, the
ontinuation goal of the CGE is exe
uted (i.e., its tree is
onstru
ted and pla
ed as a des
endent ofthe
ross-produ
t node).As far as maintenan
e of multiple environments is
on
erned, ea
h worker has its own binding array. Inaddition, ea
h worker has a base array. Conditional variables are bound to a pair of numbers
onsisting ofan o�set in the base array and a relative o�set in the binding array. Given a variable bound to the pair <i,v>, the lo
ation binding array[base array[i℄ + v℄ will
ontain the binding for that variable. For ea
h- 57 -

and-parallel goal in a CGE, a di�erent base-array index is used. Thus the binding array
ontains a numberof smaller binding arrays, one for ea
h and-parallel goal, that are a

essible through the base array. Whena worker produ
es a solution for an and-parallel goal and
omputes its
orresponding
ross-produ
t tuples,then before it
an
ontinue exe
ution with the
ontinuation goal of the CGE, it has to load all the
onditionalbindings made by other goals in the CGE that are present in the sele
ted tuple (See Figure 23). Also, onswit
hing nodes, a worker must update its binding array and base array with the help of the trail, like inAurora.6.3.4 The ACE ModelACE (And/Or-parallel Copying-based Exe
ution of logi
 programs) [Gupta, Pontelli, Hermenegildo, San-tos Costa 1994; Pontelli and Gupta 1997b℄ is another model that has been proposed for exploiting or- andindependent and-parallelism simultaneously. ACE19 employs sta
k-
opying developed for MUSE to representmultiple environments. And-parallelism is exploited via CGEs. ACE employs goal re
omputation and thus
an support sequential Prolog semanti
s. ACE
an be
onsidered as subsuming &-Prolog/&ACE and MUSE.The implementation
an be envisaged as multiple
opies of &-Prolog [Hermenegildo and Green 1991℄ run-ning in parallel with ea
h other, where ea
h
opy
orresponds to a di�erent solution to the top-level query(analogous to the view of MUSE as multiple sequential Prologs running in or-parallel). When there is onlyand-parallelism or or-parallelism, ACE behaves exa
tly like &-Prolog and MUSE respe
tively. When there isor-parallelism and independent and-parallelism present together, both are simultaneously exploited.Multiple environments are maintained by sta
k-
opying as in MUSE. In ACE, available workers are dividedinto teams like Andorra-I, where di�erent teams exe
ute in or-parallel with ea
h other while di�erent workerswithin a team exe
ute in independent and-parallel with ea
h other. A team exe
utes the top level query inand-parallel like &-Prolog until a
hoi
epoint is
reated, at whi
h point other teams may steal the untriedalternatives from this
hoi
epoint. Before doing so, the stealing team has to
opy the appropriate sta
ksfrom the team from whi
h the alternative was pi
ked. When the
hoi
epoint from whi
h the alternative ispi
ked is not in the s
ope of any CGE, all the operations are very similar to those in MUSE. However, thesituation is slightly more
omplex when an alternative from a
hoi
epoint in the s
ope of a CGE is stolen bya team. To illustrate this,
onsider the
ase where a team sele
ts an untried alternative from a
hoi
e point
reated during exe
ution of a goal gi inside the CGE (true) g1& : : :&gn). This team will
opy all the sta
ksegments in the bran
h from the root to the CGE in
luding the par
all frame20. It will also have to
opy thesta
k segments
orresponding to the goals g1 : : : gi�1 (i.e., goals to the left). The sta
k segments up to theCGE need to be
opied be
ause ea
h di�erent alternative within gi might produ
e a di�erent binding for avariable, X, de�ned in an an
estor goal of the CGE. The sta
k segments
orresponding to goals g1 throughgi�1 have to be
opied be
ause exe
ution of the goals following the CGE might bind a variable de�ned inone of the goals g1 : : : gi�1 di�erently. The sta
k segments of the goal gi from the CGE up to the
hoi
epointfrom where the alternative was taken also need to be
opied (note that be
ause of this, an alternative
anbe pi
ked up for or-parallel pro
essing from a
hoi
epoint that is in the s
ope of the CGE only if goals tothe left, i.e., g1 : : : gi�1, have �nished). The exe
ution of the alternative in gi is begun, and when it �nishes,the goals gi+1 : : : gn are started again so that their solutions
an be re
omputed. Be
ause of re
omputationof independent goals ACE
an support sequential Prolog semanti
s [Gupta, Hermenegildo, and Santos Costa1993; Gupta, Pontelli, Hermenegildo, Santos Costa 1994; Gupta and Santos Costa 1992a℄.This is also illustrated in Figure 24. The four frames represent four teams working on the
omputation.The se
ond team re
omputes the goal b, while the third and fourth teams takes the se
ond alternative of brespe
tively from the �rst and se
ond team.6.3.5 The COWL ModelsThe a
tual development of an or-parallel system based on sta
k-
opying requires a very
areful design ofthe memory management me
hanisms. As mentioned in Se
tion 3.5.2 whenever a
opy operation takes pla
e,we would like to transfer data stru
tures between agents without the need to perform any pointer-relo
ation19Note that the ACE platform has been used to experiment with both
ombined and/or-parallelism as well as dependent and-parallelism, as illustrated in Se
tion 5.5.3.20The par
all frame [Hermenegildo 1986a℄ re
ords the
ontrol information for the CGE and its independent and-parallel goals.- 58 -

Key:

and-node

choice point

or-node
(environment)

solution-node

Crossproduct node

Pi ith processor

Fig (i): Binding array and Base Array
of processor P1 after generating the left
and-branch.

Fig (ii): Binding array and Base array of processor
P2 after generating the right and-branch, and the
Binding array and Base array of processor P1 after
loading the bindings from the right and-branch. P1 is
now ready to proceed with the sequential goal after
the CGE that gave rise to the cross-product node.

X

Y

A

B

C

M

next-free-loc

0

1

2

3

NIL

NIL

Bdg array

base array

20

unb

15

30

unb

unb

P1

P

Q

R

S

X

Y

A

B

C

M

next-free-loc

0

1

2

3 NIL

Bdg array

base array

20

40

15

30

80

5

unb

unb

unb

unb

P1

X: <0,0>
Y: <0,1>

id = 0

id = 1 id = 2

X <- 20

P <- 80

B <- 30
A <- 15

P1

A: <1,0>
B: <1,1>
C: <1,2>

M: <1,3>

P: <2,0>
Q: <2,1>

R: <2,2>
S: <2,3> Q <- 5

P2

Y <- 40

P
1
’
s

ex
ec
ut
io
n

p
a
t
h

P
1
’
s

e
x
e
c
u
t
i
o
n

path

P
2
’
s

t
r
a
v
e
r
s
a
l

path

X

Y

P

Q

R

S

next-free-loc

0

1

2

3 NIL

NIL

Bdg array

base array

40

80

unb

unb

unb

5

P2

Fig. 23. Exe
ution in the AO-WAM
- 59 -

a1
b1

P1 P2 P3 P4

P5
P6

b1

b2 b2

a2

a2(i) (ii) (iii)

a1

a2

(a & b) (a & b)

 =
=

b2

 =
=

b2

 =
=

a2

 =
=

branch executed locally copied branch

embryonic branch
(untried alternative)===== choice point

(branch point)

(iv)

(a & b) (a & b)

Fig. 24. Exe
ution in ACEoperation. In systems like MUSE and ACE, this has been a
hieved by using memory mapping te
hniqueswhi
h allow the di�erent workers to map their sta
ks at the same virtual addresses. This te
hnique workswell for purely or-parallel systems, but tends to break down when or-parallelism is paired with
on
urrentexploitation of independent and-parallelism. Sta
k-
opying takes advantage of the fa
t that the data to betransferred are o

upying
ontiguous memory lo
ations. In a team-based system organization, we need totransfer data stru
tures whi
h have been
reated by di�erent team members; su
h data stru
tures are likelyto be not
ontiguous in memory, thus requiring a
omplex sear
h pro
ess to determine the relevant areas tobe
opied. Furthermore, possible
on
i
ts may arise during
opying if parts of the address spa
e of a teamhave been used for di�erent purposes in di�erent teams.A simple solution to these issues have been re
ently proposed by V. Santos Costa in the Copy-On-Writefor Logi
 Programs (COWL) methods [Santos Costa 1999℄. In COWL, ea
h team o

upy a di�erent segmentof the overall address spa
e (thus, avoiding
on
i
ts between members of di�erent teams during
opying),
alled team workspa
e. Whenever
opying is required, one team simply
opies the other team's spa
e into itsown. Copying is performed using operating system support for
opy-on-write|two workers share the samedata until one of the tries to write on them; at that point a
opy of the data is made and the two workers gotheir separate ways with private
opies of su
h data. Copying only at \write" time makes
opies of data areas(parti
ularly read-only
opies) very inexpensive. Thus, in COWL, when
opying is required, the destinationteam releases its own memory mapping and maps (as
opy-on-write) the sour
e team's spa
e. Thus, a
tualdata are not
opied immediately, but they are automati
ally transferred by the operating system wheneverthey are needed. The basi
 COWL s
heme (also known as �COWL) has been also extended to optimizethe
opying by avoiding wasting
omputation lo
ally performed in the team and reusable after the
opyingoperation (i.e., avoid one team to
opy data stru
tures from its own workspa
e), leading to a se
ond model,
alled �COWL.6.3.6 Paged Binding Array based ModelACE
an be seen as
ombining &-Prolog with MUSE, while preserving Prolog semanti
s. In a similarvein, one
an
ombine &-Prolog with Aurora while preserving Prolog semanti
s. However, as in the
ase ofAO-WAM, the binding array te
hnique has to be extended to a

ommodate independent and-parallelism. ThePaged Binding Array (PBA) based model does this by dividing the binding array into pages and maintaininga Page Table with a binding array. Like ACE, available workers are divided into teams, where di�erent teamswork in or-parallel with ea
h other, while di�erent workers within a team work in independent and-parallel.Di�erent and-parallel
omputations within an or-parallel
omputation share the same binding array (thus the- 60 -

P2P1

0
1
2
3

0
1
2
3
.
.

P3

0
1
2
3

pa
ge

 1
pa

ge
 2

 Paged
Binding
 Array

 Page
Table

.

.

An and-parallel computation (delimited by
a rectangular box) is performed by a team
of three processors which share a common
paged binding array and page table. The
branches that are part of and-parallel
computation are shown in dark in the fig.Fig. 25. The Paged Binding Arraypaged binding array and the page table is
ommon to all workers in a team), however, ea
h one of them willuse a di�erent page, requesting a new page when it runs out of spa
e in the
urrent one. Like AO-WAM,
onditional variables are bound to a pair of numbers where the �rst element of the pair indi
ates the pagenumber in the binding array, and the se
ond element indi
ates the o�set within this page.The PBA based model also employs re
omputation of independent goals, and therefore
an support Prologsemanti
s [Gupta, Hermenegildo, and Santos Costa 1993; Gupta and Santos Costa 1992a℄. Thus, when a teamsteals an alternative from a goal inside a CGE, then it updates its binding array and page table so that the
omputation state that exists at the
orresponding
hoi
epoint is re
e
ted in the stealing team. The teamthen restarts the exe
ution of that alternative, and of all the goals to the right of the goal in the CGE thatled to that alternative. In
ases, where the alternative stolen is from a
hoi
epoint outside the s
ope of anyCGE, the operations involved are very similar to those in Aurora.The Paged Binding Array is a very versatile data stru
ture and
an also be used for implementing other formsof and-or parallelism [Gupta, Santos Costa, Pontelli 1994℄.So far we have only
onsidered models that
ombine or- and independent and-parallelism. There are modelsthat
ombine independent and-parallelism and dependent and-parallelism su
h as DDAS [Shen 1992a℄, de-s
ribed earlier, as well as models that
ombine or-parallelism and dependent and-parallelism su
h as Andorra-I[Santos Costa, Warren, Yang 1991a℄. Other
ombined independent and- and -or parallel models have also beenproposed [Biswas et al. 1988; Gupta, Santos Costa, Yang, Hermenegildo 1991℄.6.3.7 The Prin
iple of OrthogonalityOne of the overall goals that has been largely ignored in the design of and-or parallel logi
 programmingsystems is the prin
iple of orthogonality [Correia et al. 1997℄. In an orthogonal design, or-parallel exe
utionshould be unaware of and-parallel exe
ution and vi
e-versa. Thus, orthogonality allows the separate design ofthe data stru
tures and exe
ution me
hanisms for or-parallelism and and-parallelism. A
hieving this goal is avery ambitious: orthogonality implies that� ea
h worker should be able to ba
ktra
k to a shared
hoi
e point and be aware only of or-parallelism;� whenever a worker enters the publi
 part of the or-tree, the other workers working in the team should beable to
ontinue una�e
ted their and-parallel
omputations.Most existing proposals for
ombined and/or-parallelism do not meet the prin
iple of orthogonality. Let us
onsider for example the PBA model and let us
onsider the
omputation as shown in Figure 26.- 61 -

a & b a & b

W1,1

W1,2

W2,1

W2,2

C1

C2 Fig. 26. La
k of Orthogonality in PBALet us assume the following
on�guration:� workers W1,1 and W1,2
ompose the �rst team whi
h is operating on the parallel
all on the left; workerW1,1 makes use of pages 1 and 3|page 1 used before
hoi
e point C1 while page 3 is used after that
hoi
epoint|while worker W1,2 makes use of page 2.� worker W2,1 and W2,2
ompose team number 2 whi
h is working on the
opy of the parallel
all (on theright). The
omputation originates from stealing one alternative from
hoi
e point C1. In this
ase, workerW2,2 makes use of both pages 2 and 3.If worker W2,1 ba
ktra
ks and asks for a new alternative from the �rst team (one of the alternatives of C2),then it will need to use page 3 for installing the bindings
reated by the team 1 after the
hoi
e point C1.But for team 2 the page 3 is not available (being used by W2,2). Thus worker W2,2 will be \a�e
ted" byba
ktra
king of W2,1 on a shared
hoi
e point.Various solutions are
urrently under exploration to support orthogonality. Between the s
hemes proposed:� the Shared Paged Binding Array (SPBA) [Gupta, Santos Costa, Pontelli 1994℄ extends the PBA s
heme byrequiring the use of a global and shared paged binding array;� the Sparse Binding Array [Correia et al. 1997℄ ea
h
onditional variable is guaranteed to have a bindingarray index whi
h is unique in the whole
omputation tree and relying on operating system te
hniques tomaintain the large address spa
e that ea
h worker needs to
reate (ea
h worker needs virtual a

ess to theaddress spa
e of ea
h worker in the system);� the COWL methods presented in Se
tion 6.3.5.A
omparison between these three s
hemes has been presented in [Santos Costa, Ro
ha, Silva 2000℄.6.3.8 The Extended Andorra ModelThe Extended Andorra Model [Warren 1988; Haridi and Jason 1990; Gupta and Warren 1992℄ and the AndorraKernel Language (AKL) (later renamed Agent Kernel Language) [Haridi and Jason 1990℄
ombine exploitationof or-parallelism and dependent and-parallelism. Intuitively, both models rely on the
reation of
opies of the
onsumer goal for every alternative of the produ
er and vi
e versa (akin to
omputing a join) and lettingthe
omputation pro
eed in ea
h su
h
ombination. Note that the Extended Andorra Model (EAM) and theAndorra Kernel Language are very similar in spirit to ea
h other, the major di�eren
e being that while theEAM strives to keep the
ontrol as impli
it as possible, AKL gives the programmer
omplete
ontrol overparallel exe
ution through wait guards. In the des
ription below we use the term Extended Andorra Model ina generi
 sense, to in
lude models su
h as AKL as well.- 62 -

The Extended Andorra Model is an extension of the Basi
 Andorra Model. The Extended Andorra Modelgoes a step further and removes the
onstraint that goals be
ome determinate before they
an exe
ute aheadof their turn. However, goals whi
h do start
omputing ahead of their turn must
ompute only as far as the(multiple) bindings they produ
e for the uninstantiated variables in their arguments are
onsistent with thoseprodu
ed by the \outside environment." If su
h goals attempt to bind a variable in the outside environment,they suspend. On
e a state is rea
hed where exe
ution
annot pro
eed, then ea
h suspended goal whi
h isa produ
er of bindings for one (or more) of its argument variables \publishes" these bindings to the outsideenvironment. For ea
h binding published, a
opy of the
onsumer goal is made and its exe
ution
ontinued.(This operation of \publi
ation" and
reation of
opies of the
onsumer is known as a \non-determinatepromotion" step.) The produ
er of bindings of a variable is typi
ally the goal where that variable o

urs �rst.However, if a goal produ
es only a single binding (i.e., it is determinate) then it doesn't need to suspend, it
an publish its binding immediately, thus automati
ally be
oming the produ
er for that goal irrespe
tive ofwhether it
ontains the left most o

urren
e of that variable or not (as in Basi
 Andorra Model). An alternativeway of looking at the EAM is to view it as an extension of the Basi
 Andorra model where non-determinategoals are allowed to exe
ute lo
ally so far as they do not in
uen
e the
omputation going on outside them.This amounts to in
luding in the Basi
 Andorra Model the ability to exe
ute independent goals in parallel.There have been di�erent interpretations of the Extended Andorra Model, but the essential ideas are summa-rized below. Consider the following very simple program:p(X, Y) :- X = 2, m(Y).p(X, Y) :- X = 3, n(Y).q(X, Y) :- X = 3, t(Y).q(X, Y) :- X = 3, s(Y).r(Y) :- Y = 5.?- p(X, Y), q(X, Y), r(Y).When the top-level goal begins exe
ution, all three goals will be started
on
urrently. Note that variables X,and Y in the top-level query are
onsidered to be in the environment \outside" of goals p, q, and r (this isdepi
ted by existential quanti�
ation of X and Y in �gure 27). Any attempt to bind these variables from insidethese goals will lead to the suspension of these goals. Thus, as soon as these three goals begin exe
ution, theyimmediately suspend sin
e they try to
onstrain either X or Y. Of these, r is allowed to pro
eed and
onstrainY to value 5, be
ause it binds Y determinately. Sin
e p will be re
koned the produ
er goal for the bindingof X, it will
ontinue as well and publish its binding. The goal q will, however, suspend sin
e it is neitherdeterminate nor the produ
er of bindings of either X or Y. To resolve the suspension of q and make it a
tiveagain, the non-determinate promotion step will have to be performed. The non-determinate promotion stepwill mat
h all alternatives of p with those for q, resulting in only two
ombination remaining a
tive (the resthaving failed be
ause of non-mat
hing bindings of X). These steps are shown in �gure 27.The above is a very
oarse des
ription of the Extended Andorra Model, a full des
ription of the model isbeyond the s
ope of this paper. More details
an be found elsewhere [Warren 1988; Haridi and Jason 1990;Gupta and Warren 1992℄. The EAM is a very general model, more powerful than the Basi
 Model, sin
e it
annarrow down the sear
h even further by lo
al sear
hing. It also exploits more parallelism sin
e it exploits allmajor forms of parallelism present in logi
 programs: or-, independent-and, and dependent-and parallelism,in
luding both determinate and non-determinate dependent-and parallelism. A point to note is that the EAMdoes not distinguish between independen
e and dependen
e of
onjun
tive goals: it tries to exe
ute themin parallel whenever possible. Also note that the Extended Andorra Model subsumes both the
ommitted
hoi
e logi
 programming (with non-
at as well as
at guards) and non-deterministi
 logi
 programming|i.e.,general Prolog.The generality and the power of the Extended Andorra Model makes its eÆ
ient implementation quite diÆ
ult.A sequential implementation of one instan
e of the EAM (namely, the Andorra Kernel Language or AKL)has been implemented at Swedish Institute of Computer S
ien
e [Janson and Montelius 1991℄. A parallelimplementation has also been undertaken by Moolenaar and Demoen [Moolenar and Demoen 1993℄. A veryeÆ
ient parallel implementation of AKL has been proposed by Montelius in the Penny system [Montelius 1997;- 63 -

suspend suspend suspend suspend

Binding of Y in r
is determinately
promoted.

Non-determinate
promotion is
performed.

X, Y p(X, Y), q(X, Y), r(Y)

X = 2, m(Y) X = 3, n(Y) X = 3, t(Y) X = 3, s(Y)

Y=5

n(5), t(5) n(5), s(5)

X=3, Y=5 X=3, Y=5

X p(X, 5), q(X, 5)

X = 2, m(5) X = 3, n(5) X = 3, t(5) X = 3, s(5)

 Y=5

Step 1.

Step 2. Step 3.
Execution
continues
along the
2 branches

Fig. 27. Exe
ution in EAMMontelius and Ali 1996℄. This implementation
ombines te
hniques from or-parallelism and
ommitted-
hoi
elanguages. Although AKL in
ludes non-determinism, it di�ers from Prolog both in syntax and semanti
s.However, automati
 translators that transform Prolog program into AKL programs have been
onstru
ted[Bueno and Hermengildo 1992℄. The development of AKL has been dis
ontinued, although many of the ideasexplored in the AKL proje
t have been reused in the development of the
on
urrent
onstraint language Oz[Haridi, Van Roy, Brand, S
hulte 1998; Popov 1997℄.More faithful models to support the exe
ution of the EAM have been re
ently des
ribed and are
urrentlyunder implementation|e.g., the BEAM model [Lopes and Santos Costa 1999℄. The literature also
ontainsproposals of extensions of Prolog that tries to more naturally integrate EAM-style of
omputations. One ex-ample is represented by the Extended Dynami
 Dependent s
heme [Gupta and Pontelli 1999
℄. This model hasbeen developed as an extension of the Filtered-Binding model used in the ACE system to support dependentand-parallelism. The model extends Prolog-like dependent and-parallelism by allowing the deterministi
 pro-motion step of EAM. This typi
ally allows improved termination properties, redu
ed number of suspensionsduring parallel exe
ution, and simple forms of
oroutining. These results
an be a
hieved reusing most ofthe existing (and eÆ
ient) te
hnology developed for pure dependent and-parallelism, thus avoiding dramati

hanges in the language semanti
s and novel and
omplex implementation me
hanisms.7. DATA PARALLELISM VS. CONTROL PARALLELISMMost of the resear
h has fo
used on exploiting parallelism only on MIMD ar
hite
tures, viewing or-parallelismand and-parallelism as forms of
ontrol-parallelism. Intuitively, this means that parallelism is exploited by
reating multiple threads of
ontrol, whi
h are
on
urrently performing di�erent operations. An alternativeview has been to treat spe
ialized forms of or- and and-parallelism as data parallelism. Data parallelism relieson the idea of maintaining a single thread of
ontrol, whi
h
on
urrently operates on multiple data instan
es.Similarly to what we have
onsidered so far, we
an talk about data or-parallelism and data and-parallelism.In both
ases, the fo
us is on the parallelization of repetitive operations whi
h are simultaneously applied toa large set of data. This pattern of exe
ution is very frequent in logi
 programs, as exempli�ed by frequently- 64 -

used predi
ates su
h as map: map([℄,[℄).map([X|Y℄,[X1|Y1℄) :-pro
ess(X,X1),map(Y,Y1).where the
omputation indi
ated by pro
ess is repeated for ea
h element of the input list. In this
ontext, dataparallelism implies that exploitation of parallelism is driven by the
omputation data-
ow, in
ontrast withstandard and- and or-parallelism, whi
h relies on the parallelization of the
ontrol stru
ture of the
omputation(i.e., the
onstru
tion of the derivation tree).Exploitation of data parallelism has been shown to lead to good performan
e on both SIMD and MIMDar
hite
tures; the relatively regular format of the parallelism exploited allows simpler and more eÆ
ientme
hanisms, thus leading to redu
ed overhead and improved eÆ
ien
y even on MIMD ar
hite
tures.7.1 Data Or-ParallelismIn a data or-parallel system, exempli�ed by the MultiLog system [Smith 1996℄, or-parallelism of a highlyregular nature is exploited on a SIMD ar
hite
ture. There is one
ontrol thread but multiple environments.Data or-parallelism as exploited in MultiLog is useful in appli
ations of generate-and-test nature, where thegenerator binds a variable to di�erent values taken from a set. Consider the following program:member(X, [X|T℄).member(X, [Y|T℄) :- member(X, T).?- member(Z, [1,2,..,100℄), pro
ess(Z).In a standard Prolog exe
ution the solutions to member/2 are enumerated one by one via ba
ktra
king, andea
h solution is separately pro
essed by pro
ess. The member goal will be identi�ed as the generator in theMultiLog system. For su
h a goal, a sub
omputation is begun, and all solutions are
olle
ted and turned into adisjun
tion of substitutions for variable Z. The pro
ess goal is then exe
uted in data parallel for ea
h bindingre
eived by Z. Note that the exe
utions of the various pro
ess goals di�er only in the value of the variable Z.Therefore, only one
ontrol thread is needed whi
h operates on data that is di�erent on di�erent workers, withuni�
ation being the only data parallel operation. It is also important to observe that pro
ess/1 is exe
utedon
e, rather than on
e per solution of the member/2 predi
ate.Multilog provides a single synta
ti
 extension w.r.t. Prolog: the disj annotation allows the
ompiler toidentify the generator predi
ate. Thus, for a goal of the form ?- disj generate(X) Multilog will produ
e a
omplete des
ription of the set of solutions (as a disjun
tion of bindings for X) before pro
eeding with the restof the exe
ution.For a (restri
ted) set of appli
ations|e.g., generate and test programs|a data or-parallel system su
h asMultiLog has been shown to produ
e good speed-ups.Te
hniques, su
h as the Last Alternative Optimization [Gupta and Pontelli 1999b℄, have been developedto allow traditional or-parallel systems to perform more eÆ
iently in presen
e of
ertain instan
es of dataor-parallelism.7.2 Data And-ParallelismThe idea of data parallel exe
ution
an also be also naturally applied to and-parallel goals:
lauses that
ontainre
ursive
alls
an be unfolded and the resulting goals exe
uted in data parallel. This approa
h, also knownas re
ursion parallelism, has been su

essfully exploited through the notion of Reform Compilation [Millroth1990℄. Consider the following program:map([℄,[℄).map([X|Y℄,[X1|Y1℄) :- pro
(X,X1), map(Y,Y1).?- map([1, 2, 3℄, Z).Unfolding this goal we obtain:Z = [X1,X2,X3|Y℄, pro
(1,X1), pro
(2,X2), pro
(3,X3),map([℄,Y).- 65 -

Note that the three pro
 goals are identi
al ex
ept for the data values and
an be exe
uted in data parallel|i.e., with a single thread of
ontrol and multiple data values. Thus, the answer to the above query
an beexe
uted in two data parallel steps.In more general terms, given a re
ursively de�ned predi
ate pp(�X) : � �:p(�X) : � �; p(�X 0);	:if a goal p(�a) is determined to perform at least n re
ursive
alls to p, then the se
ond
lause
an be unfoldedas: p(�X) : ��1; : : : ;�n| {z }(1) ; p(�b)|{z}(2) ;	n; : : : ;	1| {z }(3) :where �i and 	i are the instan
es of goals � and 	 obtained at the ith level of re
ursion. This
lause
an beexe
uted by �rst running, in parallel, the goals �1; : : : ;�n, then exe
uting p(�b) (typi
ally the base
ase of there
ursion), and �nally running the goals 	n; : : : ;	1 in parallel as well. In pra
ti
e the unfolded
lause is nota
tually
onstru
ted, instead the head uni�
ation for the n levels of re
ursion is performed at the same timeas the size of the re
ursion is determined, and the body of the unfolded
lause is
ompiled into parallel
ode.Reform Prolog [Bevemyr et al. 1993℄ is an implementation of a restri
ted version of the reform
ompilationapproa
h. In parti
ular only predi
ates performing integer-re
ursion or list-re
ursion and for whi
h the sizeof the re
ursion is known at the time of the �rst
all are
onsidered for parallel exe
ution.To a
hieve eÆ
ient exe
ution, Reform Prolog requires the generation of deterministi
 bindings to the ex-ternal variables, thus relieving the system from the need to perform
omplex ba
ktra
king on parallel
alls.Sophisti
ated
ompile-time analysis tools have been developed to guarantee the
onditions ne
essary for theparallel exe
ution and to optimize exe
ution [Lindgren 1993℄. Reform Prolog has been ported on di�erentMIMD ar
hite
tures, su
h as Sequent [Bevemyr et al. 1993℄ and KSR-1 [Lindgren, Bevemyr, Millroth 1995℄.Exploitation of data and-parallelism expli
itly through bounded quanti�
ation has also been proposed [Bark-lund and Millroth 1992℄. In this
ase, the language is extended with
onstru
ts used to express bounded formsof universal quanti�
ation (e.g., 8(X 2 S)'). Parallelism is exploited by
on
urrently exe
uting the bodyof the quanti�ed formula (e.g., ') for the di�erent values in the domain of the quanti�ers (e.g., the di�erentvalues in the set S).Re
ently, various works have also attempted to
reate a bridge between and-parallelism and data and-parallelism. The obje
tive of these works is to allow the identi�
ation of instan
es of data and-parallelism ingeneri
 and-parallel programs, and the use of spe
ialized and more eÆ
ient exe
ution me
hanisms to these
ases [Pontelli and Gupta 1995b; Hermenegildo and Carro 1995℄.8. PARALLEL CONSTRAINT LOGIC PROGRAMMINGAlthough the main fo
us of this survey is parallel exe
ution of Prolog programs, we would like to brie
yoverview in this se
tion the most relevant e�orts whi
h have been made towards parallel exe
ution of ConstraintLogi
 Programming (CLP). This is of interest sin
e many of the te
hniques adopted for parallel exe
ution ofCLP are dire
tly derived from those used in the parallelization of Prolog
omputations.The notion of data parallelism has been also adapted to exe
ute Finite Domain Constraint Logi
 Program-ming. The two most representative examples are the parallel implementation of Chip [Van Hentenry
k 1989a℄and the Firebird system [Tong and Leung 1993℄.The parallel implementation of Chip [Van Hentenry
k 1989a℄ has been realized using the PEPSys or-parallelsystem. In this implementation, parallelism is exploited from the
hoi
e-points generated by the labeling phaseintrodu
ed during resolution of �nite domain
onstraints. The results reported in [Van Hentenry
k 1989a℄ areen
ouraging, and prove that or-parallel te
hnique are quite suitable to support also CLP exe
utions.Firebird [Tong and Leung 1993℄ is a data parallel extension of
at GHC (a
ommitted-
hoi
e language)with �nite domain
onstraints, relying on the data or-parallel exe
ution obtained from the parallelizationof the labeling phase of CLP. Exe
ution in
ludes non-deterministi
 steps, leading to the
reation of parallel
hoi
e-points, and indeterministi
 steps, based on the usual
ommitted-
hoi
e exe
ution behavior. Arguments- 66 -

of the predi
ates exe
uted during an indeterministi
 step
an possibly be ve
tor of values|representing thepossible values of a variable|and are explored in data parallel. The overall design of Firebird resembles themodel des
ribed earlier for Multilog.The implementation of Firebird has been developed on a DECmpp SIMD parallel ar
hite
ture, and hasshown
onsiderable speedups for sele
ted ben
hmarks (e.g., about two orders of magnitude of speedup for then-queens ben
hmark using 8,192 pro
essors) [Tong and Leung 1995℄.A number of other proposals have appeared in the literature whi
h instead provide parallelization of
on-straint logi
 programs based on the ideas of
ontrol parallelism (instead of data parallelism). One of the �rstworks in this �eld is [Gregory and Yang 1992℄, in whi
h �nite domain
onstraint solving operations are mappedto the parallel exe
ution me
hanisms of Andorra-I.Another proposal is represented by GDCC [Terasaki et al. 1992℄, an extension of KL1 (running on the PSIar
hite
ture) with
onstraint solving
apabilities|
onstru
ted following the

 model proposed by Saraswat[Saraswat 1989℄. GDCC provides two levels in the exploitation of parallelism: (i) the gd

 language is anextension of the
on
urrent KL1 language, whi
h in
ludes ask and tell of
onstraints; this language
an beexe
uted in parallel using the parallel support provided by KL1; (ii) gd

 has been interfa
ed to a numberof
onstraint solvers (e.g., algebrai
 solvers for non-linear equations), whi
h are themselves
apable of solving
onstraint in parallel.Re
ently, the fo
us have shifted on the dire
t parallelization of the sour
es of non-determinism inherentin the operational semanti
s of CLP. The work in [Pontelli and El-Khatib 2001℄ presents a methodology forexploring in parallel the alternative elements of a
onstraint domain, while [Ruiz-Andino, Araujo, Saenz,Ruz 1999℄ revisits the te
hniques used to parallelize ar
-
onsisten
y algorithms (e.g., parallel AC3 [Samaland Henderson 1987℄ and AC4 [Nguyen and Deville 1998℄) and applies them to the spe
i�

ase of indexi
al
onstraints in CLP over �nite domains.9. IMPLEMENTATION AND EFFICIENCY ISSUES IN PARALLEL LPEngineering an eÆ
ient, pra
ti
al parallel logi
 programming system is by no means an easy task21. Thereare numerous issues one has to
onsider, some of the broad ones are dis
ussed below:9.1 Pro
ess-based vs. Pro
essor-basedBroadly speaking there are two approa
hes that have been taken in implementing parallel logi
 programmingsystems whi
h we loosely
all the Pro
ess-based approa
h and the Pro
essor-based approa
h respe
tively.In the pro
ess-based approa
hes, prominent examples of whi
h are Conery's And-Or Pro
ess Model [Conery1987a℄ and the Redu
e-Or Pro
ess Model [Kal�e 1985℄, a pro
ess is
reated for every goal en
ountered duringexe
ution. These pro
esses
ommuni
ate bindings and
ontrol information to ea
h other to �nally produ
e asolution to the top-level query. Pro
ess-based approa
hes have also been used for implementing
ommitted
hoi
e languages [Shapiro 1987℄. Pro
ess-based approa
hes are suited for implementation on non-shared mem-ory MIMD pro
essors22, at least from a
on
eptual point of view, sin
e di�erent pro
esses
an be mapped todi�erent pro
essors at runtime quite easily.In pro
essor-based approa
hes, multiple threads are
reated that are exe
uted in parallel to produ
e answersto the top level query. Typi
ally, ea
h thread is a WAM-like pro
essor. Examples of pro
essor-based systemsare Aurora, MUSE, &-Prolog, Andorra-I, PEPSys, AO-WAM, DDAS, ACE, PBA, et
. Pro
essor-basedsystems are more suited for shared memory ma
hines, although te
hniques like sta
k-
opying and sta
k-splitting show a high degree of lo
ality in memory referen
e behavior and hen
e are suited for non-sharedmemory ma
hines as well [Ali 1987; Ali et al. 1992℄. As has been shown by the ACE model, MUSE's sta
k-
opying te
hnique
an be applied to and-or parallel systems as well, so one
an envisage implementing apro
essor-based system on a non-shared memory ma
hine using sta
k-
opying [Gupta, Hermenegildo, SantosCosta 1992; Gupta and Pontelli 1999a℄. Alternatively, one
ould employ s
alable virtual shared memory21For instan
e, many person-years of e�orts have been spent in building some of the existing systems, su
h as MUSE, Aurora,Andorra-I, ACE, and &-Prolog.22Some more proposals for distributed exe
ution of logi
 programs
an be found in [Ka
suk 1990℄.- 67 -

ar
hite
tures that have been proposed [Warren and Haridi 1988℄ and built (e.g., KSR, SGI Origin, IBMNUMA-Q).A parallel logi
 programming system should possess the following two properties:� On a single pro
essor, the performan
e of the parallel system should be
omparable to sequential logi
programming implementations (i.e., there should not be limited slow down
ompared to a sequential system).Systems su
h as MUSE, ACE, Aurora and &-Prolog indeed get very
lose to a
hieving this goal.� The parallel system should be able to take advantage of the sequential
ompilation te
hnology [Warren 1983;Ait-Ka
i 1992; Van Roy 1990℄ that has advan
ed rapidly in the last two de
ades.Experien
e has shown that pro
ess-based system lose out on both the above
ounts. Similar a

ounts havebeen reported also in the
ontext of
ommitted-
hoi
e languages (where the notion of pro
ess-based mat
heswell with the view of ea
h subgoal as an individual pro
ess whi
h is enfor
ed by the
on
urrent semanti
s of thelanguage)|indeed the fastest parallel implementation of
ommitted-
hoi
e languages (e.g., [Crammond 1992;Rokusawa, Nakase, Chikayama 1996℄) rely on a pro
essor-based implementation. In the
ontext of Prolog, thepresen
e of ba
ktra
king makes the pro
ess model too
omplex for non-deterministi
 parallel logi
 program-ming. Further, the pro
ess-based approa
h exploits parallelism at a level that is too �ne grained, resulting inhigh parallel overhead and unpromising absolute performan
es (but good speed-ups be
ause the large paralleloverhead gets evenly distributed!). Current pro
essor-based systems are not only highly eÆ
ient, they
aneasily assimilate any future advan
es that will be made in the sequential
ompilation te
hnology. However, itmust be pointed out that in
reasing the granularity of pro
esses to a
hieve better absolute performan
e hasbeen attempted for pro
ess-based models with good results [Kal�e and Ramkumar 1992; Ramkumar and Kal�e1992℄.9.2 Memory ManagementMemory management, or managing the memory spa
e o

upied by run-time data stru
tures su
h as sta
ks,heaps, et
., is an issue that needs to be ta
kled in any parallel system. In parallel logi
 programming systemsmemory management is further
ompli
ated due to the presen
e of ba
ktra
king that may o

ur on failure ofgoals.In sequential Prolog implementations, memory is eÆ
iently utilized be
ause the sear
h tree is
onstru
ted ina depth-�rst order, so that at any given moment a single bran
h of the tree resides in the sta
k. The followingtwo rules always hold in a traditional sequential systems:(1) If a node n1 in the sear
h tree is in a bran
h to the right of another bran
h
ontaining node n2, then thedata stru
tures
orresponding to node n2 would be re
laimed before those of n1 are allo
ated.(2) If a node n1 is the an
estor of another node n2 in the sear
h tree, then the data stru
tures
orrespondingto n2 would be re
laimed before those of n1.As a result of these two rules, spa
e is always re
laimed from the top of the sta
ks during ba
ktra
king in logi
programming systems whi
h perform a depth-�rst sear
h of the
omputation tree, as Prolog does. However,in parallel logi
 programming systems, these rules may not hold, be
ause two bran
hes may be simultaneouslya
tive due to or-parallelism (making rule 1 diÆ
ult to enfor
e), or two
onjun
tive goals may be simultaneouslya
tive due to and-parallelism (making rule 2 diÆ
ult to enfor
e). Of
ourse, in a parallel logi
 system, usually,ea
h worker has its own set of sta
ks (the multiple sta
ks are referred to as a
a
tus sta
k sin
e ea
h sta
k
orresponds to a part of the bran
h of the sear
h tree), so it is possible to enfor
e the two rules in ea
h sta
kto ensure that spa
e is re
laimed only from the top of individual sta
ks. If this restri
tion is imposed, thenwhile memory management be
omes easier, some parallelism may be lost sin
e an idle worker may not beable to pi
k available work in a node be
ause doing so will violate this restri
tion. If this restri
tion is notimposed, then it be
omes ne
essary to deal with the \garbage slot" problem|namely, a data stru
ture thathas been ba
ktra
ked over is trapped in the sta
k below a goal that is still in use|and the \trapped goal"problem|namely, an a
tive goal is trapped below another, and there is no spa
e
ontiguous to this a
tive goalto expand it further [Hermenegildo 1987℄, whi
h results in the LIFO nature of sta
ks being destroyed.- 68 -

The approa
h taken by many parallel systems (e.g., the ACE and DASWAM and-parallel systems and theAurora or-parallel system) is to allow trapped goals and garbage slots in the sta
ks. Spa
e needed to expanda trapped goal further is allo
ated at the top of the sta
k (resulting in \sta
k-frames"|su
h as
hoi
e-pointsand goals des
riptors|
orresponding to a given goal be
oming non-
ontiguous). Garbage slots
reated aremarked as su
h, and are re
laimed when everything above them has also turned into garbage. This te
hniqueis employed in the Aurora, &-Prolog, and Andorra-I systems. In Aurora the garbage slot is referred to asa ghost node. If garbage slots are allowed, then the system will use up more memory, but work-s
hedulingbe
omes simpler and pro
essing resour
es are utilized more eÆ
iently.While
onsiderable e�ort has been invested in the design of garbage
olle
tion s
hemes for sequential Prologimplementations (e.g., [Pittomvils, Bruynooghe, Willems 1985; Appleby, Carlsson, Haridi, Sahlin 1988; Olderand Rummell 1992; Bekkers, Ridoux, Ungaro 1992℄),
onsiderably more limited e�ort has been pla
ed onadapting these me
hanisms to the
ase of parallel logi
 programming systems. Garbage
olle
tion is indeed aserious
on
ern, sin
e parallel logi
 programming systems tend to
onsume more memory than sequential ones(e.g., use of additional data stru
tures, su
h as par
all frames, to manage parallel exe
utions). For example,results reported for the Reform Prolog system indi
ates that on average 15% of the exe
ution time is spentin garbage
olle
tion. Some early work on parallelization of the garbage
olle
tion pro
ess (applied mostlyto basi

opying garbage
olle
tion methods)
an be found in the
ontext of parallel exe
ution of fun
tionallanguages (e.g., [Halstead 1984℄). In the
ontext of parallel logi
 programming, two relevant e�orts are:� the proposal by Ali [Ali 1995℄, whi
h provides a parallel version of a
opying garbage
olle
tor, re�ned toguarantee avoidan
e of unne
essary
opying (e.g.,
opy the same data twi
e) and load balan
ing betweenworkers during garbage
olle
tion;� the proposal by Bevemyr [Bevemyr 1995℄, whi
h extends the work by Ali into a generational
opying garbage
olle
tor (obje
s are divided in generations, where newer generations
ontains obje
ts more re
ently
reated;the new generation is garbage
olle
ted more often then the old one).Generational garbage
olle
tion algorithms have also been proposed in the
ontext of parallel implementationof
ommitted-
hoi
e languages (on PIM ar
hite
tures) [Ozawa, Hosoi, Hattori 1990; Xu, Koike, Tanaka 1989℄.9.3 OptimizationsA system that builds an and-or tree to solve a problem with non-determinism may look trivial to implement at�rst, but experien
e shows that it is quite a diÆ
ult task. A naive parallel implementation may lead to a slowdown, or, may in
ur a severe overhead
ompared to a
orresponding sequential system. The parallelism presentin these frameworks is typi
ally very irregular and unpredi
table; for this reason, parallel implementations ofnon-deterministi
 languages typi
ally rely on dynami
 s
heduling. Thus, most of the work for partitioning andmanaging parallel tasks is performed during run-time. These duties are absent from a sequential exe
utionand represent parallel overhead. Ex
essive parallel overhead may
ause a naive parallel system to run manytimes slower on one pro
essor
ompared to a similar sequential system.A large number of optimizations have been proposed in the literature to improve the performan
e of individ-ual parallel logi
 programming systems (e.g., [Ramkumar and Kal�e 1989; Shen 1994; Pontelli, Gupta, Tang,Carro, Hermenegildo 1996℄). Nevertheless, limited e�ort has been pla
ed in determining overall prin
ipleswhi
h
an be used to design over-the-border optimization s
hemes for entire
lasses of systems. A proposalin this dire
tion has been put forward by Gupta & Pontelli [Gupta and Pontelli 1997; Pontelli, Gupta, Tang1995℄. The proposal presents a number of general optimization prin
iples that
an be employed by implemen-tors of parallel non-deterministi
 systems to keep the overhead in
urred for exploiting parallelism low. Theseprin
iples have been used to design a number of optimization s
hemes|su
h as the Last Parallel Call Opti-mization [Pontelli, Gupta, Tang 1995℄ (used for independent and-parallel systems) and the Last AlternativeOptimization [Gupta and Pontelli 1999b℄ (used for or-parallel systems).Parallel exe
ution of a logi
 programming system
an be viewed as the parallel traversal/
onstru
tion of anand-or tree. Given the and-or tree for a program, its sequential exe
ution amounts to traversing the and-ortree in a pre-determined order. Parallel exe
ution is realized by having di�erent workers
on
urrently travers-ing di�erent parts of the and-or tree in a way
onsistent with the operational semanti
s of the programminglanguage. By operational semanti
s we mean that data-
ow (e.g., variables bindings) and
ontrol-
ow (e.g.,- 69 -

input/output operations) dependen
ies are respe
ted during parallel exe
ution (similar to loop parallelizationof Fortran programs, where
ow dependen
ies have to be preserved). Parallelism allows overlapping of explo-ration of di�erent parts of the and-or tree. Nevertheless, as mentioned earlier, this does not always translateto an improvement in performan
e. This happens mainly be
ause of the following reasons:� the tree stru
ture developed during the parallel
omputation needs to be expli
itly maintained, in orderto allow for proper management of non-determinism and ba
ktra
king|this requires the use of additionaldata stru
tures, not needed in sequential exe
ution. Allo
ation and management of these data stru
turesrepresent overhead during parallel
omputation with respe
t to sequential exe
ution;� the tree stru
ture of the
omputation needs to be repeatedly traversed in order to sear
h for multiplealternatives and/or
ure eventual failure of goals, and su
h traversal often requires syn
hronization betweenthe workers. The tree stru
ture may be traversed more than on
e be
ause of ba
ktra
king, and be
auseidle workers may have to �nd nodes that have work after a failure takes pla
e or a solution is reported(dynami
 s
heduling). This traversal is mu
h simpler in a sequential
omputation, where the managementof non-determinism is redu
ed to a linear and fast s
an of the bran
hes in a predetermined order.Based on this it is possible to identify ways of redu
ing these overheads.Traversal of Tree Stru
ture: there are various ways in whi
h the pro
ess of traversing the
omplex stru
tureof a parallel
omputation
an be made more eÆ
ient:(1) simpli�
ation of the
omputation's stru
ture: by redu
ing the
omplexity of the stru
ture to be traversed itshould be possible to a
hieve improvement in performan
e. This prin
iple has been rei�ed in the alreadymentioned Last Parallel Call Optimization and the Last Alternative Optimization, used to
atten the
omputation tree by
ollapsing
ontiguous nodes lying on the same bran
h if some simple
onditions hold.(2) use of the knowledge about the
omputation (e.g., determina
y) in order to guide the traversal of the
omputation tree: information
olle
ted from the
omputation may suggest the possibility of avoidingtraversing
ertain parts of the
omputation tree.This has been rei�ed in various optimizations, in
luding the Determinate Pro
essor Optimization [Pontelli,Gupta, Tang 1995℄.Data Stru
ture Management: sin
e allo
ating data stru
tures is generally an expensive operation, the aimshould be to redu
e the number of new data stru
tures
reated. This
an be a
hieved by:(1) reusing existing data stru
tures whenever possible (as long as this does preserve the desired exe
utionbehavior).This prin
iple has been implemented, for example, in the Ba
ktra
king Families Optimization [Pontelli,Gupta, Tang, Carro, Hermenegildo 1996℄.(2) avoiding allo
ation of unne
essary stru
tures: most of the new data stru
tures introdu
ed in a parallel
omputation serve two purposes: (i) support the management of the parallel parts of the
omputation;(ii) support the management of non-determinism.This prin
iple has been implemented in various optimizations, in
luding the shallow ba
ktra
king opti-mization [Carlsson 1989℄ and the Shallow Parallelism Optimization [Pontelli, Gupta, Tang 1995℄.This suggests possible
onditions under whi
h one
an avoid
reation of additional data stru
tures: (i) noadditional data stru
tures are required for parts of the
omputation tree whi
h are potentially parallel butare a
tually explored by the same
omputing agent (i.e., potentially parallel but pra
ti
ally sequential); (ii)no additional data stru
tures are required for parts of the
omputation that will not
ontribute to the non-deterministi
 nature of the
omputation (e.g., deterministi
 parts of the
omputation).9.4 Work S
hedulingThe Work S
heduler, or the software that mat
hes available work with workers, is a very important
omponentof a parallel system. Parallel logi
 programming systems are no ex
eptions. If a parallel logi
 system is toobey Prolog semanti
s|in
luding supporting exe
ution of pruning and other order-sensitive operations|thens
heduling be
omes even more important, be
ause in su
h a
ase, for or-parallelism, the s
heduler should prefer- 70 -

goals in the left bran
hes of the sear
h tree to those in the bran
hes to the right, while for and-parallelismprefer goals to the left over those to right. In parallel systems that support
uts, work that is not in the s
opeof any
ut should be preferred over work that is in the s
ope of a
ut, be
ause it is likely that the
ut may beexe
uted
ausing a large part of the work in its s
ope to go wasted [Ali and Karlsson 1992b; Beaumont andWarren 1993; Sindaha 1992; Beaumont 1991℄.The s
heduler is also in
uen
ed by how the system manages its memory. For instan
e, if the restri
tion ofonly re
laiming spa
e from the top of a sta
k is imposed and garbage slots/trapped goals are not allowed,then the s
heduler has to take this into a

ount and at any given moment s
hedule only those goals that meetthese
riteria.S
hedulers in systems that
ombine more than one form of parallelism have to �gure out how mu
h of theresour
es should be
ommitted to exploiting a parti
ular kind of parallelism. For example, in Andorra-I andACE systems, that divide available workers into teams, the s
heduler has to determine the sizes of the teams,and de
ide when to migrate a worker from a team that has no work left to another that does have work, andso on [Dutra 1994; 1995℄.The fa
t that Aurora, quite a su

essful or-parallel system, has about �ve s
hedulers built for it [Calderwoodand Szeredi 1989; Beaumont et al. 1991; Sindaha 1992; Butler et al. 1988℄, is a testimony to the importan
eof work-s
heduling for parallel logi
 programming systems. Design of eÆ
ient and
exible s
hedulers is still atopi
 of resear
h [Dutra 1991; Ueda and Montelius 1996℄.9.5 GranularityGranularity of
omputation, or the average amount of work done between two
alls to the s
heduler by theworker, is another aspe
t that is important for parallel system design. It is desirable to have a large granularityof
omputation, so that the s
heduling overhead is a small fra
tion of the total work done by a worker. Thegeneral idea is that if the gain obtained by exe
uting a task in parallel is less than the overheads required tosupport the parallel exe
ution, then the task is better exe
uted sequentially. Granularity issues have a dire
tbearing on the s
heduler. It is the s
heduler's responsibility to �nd work for a worker that is of large enoughsize.The Aurora and MUSE or-parallel systems, keep tra
k of granularity by tra
king the ri
hness of nodes, i.e.,the amount of work|measured in terms of number of untried alternatives in
hoi
e-points|that is availablein the subtree rooted at a node. Workers will tend to pi
k work from nodes that have high ri
hness. Auroraand MUSE systems also make a distin
tion between private and publi
 part of the tree to keep granularityhigh. Essentially, work
reated by another worker
an only be pi
ked up from the publi
 region. In theprivate region, the worker that owns that region is responsible for all the work generated, thereby keepingthe granularity high. In the private region exe
ution is very
lose to sequential exe
ution, resulting in higheÆ
ien
y. Only when the publi
 region runs out of work, a part of the private region of some worker is madepubli
. In these systems, granularity
ontrol is
ompletely performed at run-time.Modern systems implement granularity
ontrol using a two-phase pro
ess [Shen, Santos Costa, King 1998;Ti
k and Zhong 1993; Debray et al. 1990℄:(1) at
ompile-time a global analysis tool performs an a
tivity typi
ally
alled
ost estimation. Cost esti-mates are parametri
 formulae expressing lower or upper bounds to the time
omplexity of the di�erent(potentially) parallel tasks.(2) at run-time the
ost estimates are instantiated, before task's exe
ution, and
ompared with predeterminedthresholds; parallel exe
ution of the task is allowed only if the
ost estimate is above the threshold.For instan
e, the two-phase granularity
ontrol has been integrated in the generation of CGEs for and-parallelism [Muthukumar and Hermenegildo 1989a; Ja
obs and Langen 1989℄, by adding the threshold test inthe
ondition part of the graph expression:(
ost estimate(n1; : : : ; nk) > �) goal1 & : : : & goalm)the m subgoals will be allowed in a parallel exe
ution only if the result of the
ost estimate is above thethreshold � . The parameters of
ost estimate are those goals input arguments whi
h dire
tly determine the- 71 -

time-
omplexity of the parallel subgoals|as identi�ed by the global analysis phase. For example, a modi�edannotation for the re
ursive
lause of Fibona

i may look as follows:fib(N,Res) :-N1 is N-1, N2 is N-2,(N > 5 => fib(N1,R1) & fib(N2,R2) ;fib(N1,R1), fib(N2,R2)),R is R1 + R2.(under the simplisti
 assumption that for values of N larger than 5 it is deemed worthwhile to exploit par-allelism). The key problem in this two-phase approa
h is the automati
 derivation of those fun
tions whi
hbound the time-
omplexity of given tasks.The �rst proposals in this regard are those made by Ti
k & Zhong [Ti
k and Zhong 1993℄ and by Lin,Debray, and Hermenegildo [Debray et al. 1990℄. Both the s
hemes are
apable of deriving
ost estimationwhi
h represent upper bounds for the time-
omplexity of the sele
ted tasks.The use of upper-bounds is sub-optimal in the
ontext of granularity
ontrol|the fa
t that the upper boundis above a threshold does not guarantee that the a
tual time-
omplexity of the task is going to be above thethreshold. For this reason more re
ent e�orts have fo
used on the derivation of lower-bound estimates [King,Shen, Benoy 1997; Debray et al. 1997b℄. A very e�e
tive implementation of some of these te
hniques havebeen realized in the CASLOG system [Debray et al. 1990℄ and integrated in the CIAO logi
 programmingsystem [Hermenegildo 1994℄. Lower bound analysis is
onsiderably more
omplex than upper-bound analysis.First of all, it requires the ability of determining properties of tasks with respe
t to failure [Debray et al.1997a℄. If we fo
us on the
omputation of a single solution, then for a
lause C : H : �B1; : : : ; Bk one
anmake use of the relation CostC(n) � rXi=1 CostBi(�i(n)) + h(n)where� n is the representation of the size of the input arguments to the
lause C� �i(n) is the (lower bound) of the relative size of the input arguments to Bi� Br is the rightmost literal in C whi
h is guaranteed to not fail� h(n) is the lower bound of the
ost of head uni�
ation and tests for the
lause CThe lower bound Costp for a predi
ate p is obtained by taking the minimum of the lower bounds for the
lauses de�ning p.For the more general
ase of estimation of lower bound for the
omputation of all the solutions, it be
omesne
essary to estimate the lower bound to the number of solutions that ea
h literal in the
lause will return.In [Debray et al. 1997b℄ the problem is redu
ed to the
omputation of the
hromati
 polynomial of a graph.In [King, Shen, Benoy 1997℄ bottom-up abstra
t interpretation te
hniques are used to evaluate lower-bound inequalities (i.e., inequalities of the type dmin � tmin(l), where dmin represents the threshold to allowspawning of parallel
omputations, while tmin(l) represents the lower bound to the
omputation time for inputof size l) for large
lasses of programs.Metri
s di�erent from task
omplexity have been proposed to support granularity
ontrol. A related e�ortis the one by Shen, Costa, and King [Shen, Santos Costa, King 1998℄, whi
h makes use of the amount of workperformed between major sour
es of overheads|
alled distan
e metri
|to measure granularity.9.6 Parallel Exe
ution VisualizationVisualization of exe
ution has been found to be of tremendous help in debugging and �ne-tuning generalparallel programs. Parallel exe
ution of logi
 programs is no ex
eption. In fa
t, in spite of the emphasis onimpli
it exploitation of parallelism, speedups and exe
ution times
an be a�e
ted by the user through theuse of user annotations (e.g., CGEs) and/or simple program transformations|su
h as folding/unfolding ofsubgoals or modi�
ation of the order of subgoals and program
lauses.- 72 -

The goal of a visualization tool is to produ
e a visual representation of
ertain observable
hara
teristi
sof the parallel exe
ution. Ea
h observable
hara
teristi
 is denoted by an event ; the parallel exe
ution is thusrepresented by a
olle
tion of time-annotated events, typi
ally
alled a tra
e. Many tools have already beendeveloped to visualize parallel exe
ution of logi
 programs. The large majority of the tools developed so farare post-mortem visualization tools: they work by logging events during parallel exe
ution, and then usingthis tra
e for
reating a graphi
al representation of the exe
ution.Di�erent design
hoi
es have been
onsidered in the development of the di�erent tools [Carro et al. 1993;Vaupel, Pontelli, Gupta 1997℄. The existing systems
an be distinguished a

ording to the following
riteria:� Stati
 vs. Dynami
: stati
 visualization tools produ
e a stati
 representation of the observable
hara
-teristi
s of the parallel
omputation; on the other hand, dynami
 visualization tools produ
e an animatedrepresentation, syn
hronizing the development of the representation with the time-stamps of the events inthe tra
e.� Global vs. Lo
al: global visualization tools provide a single representation whi
h
aptures all the di�erentobservable
hara
teristi
s of the parallel exe
ution; lo
al visualization tools instead allow the user to fo
uson spe
i�
 observable
hara
teristi
s.The �rst visualization tools for parallel logi
 programs were developed for the Argonne Model [Lusk andDisz 1987℄ and for the ElipSys system [Doro
hevsky and Xu 1991℄. The former was subsequently adoptedby the Aurora System under the name Aurora Tra
e. The MUSE group also developed visualization tools,
alled Must, for visualizing or-parallel exe
ution|whi
h is itself based on the Aurora Tra
e design. All thesevisualizers for or-parallel exe
ution are dynami
 and show the dynami
ally growing or-parallel sear
h tree.Figure 28 shows a snapshot of Must|
ir
les denote
hoi
e points and the numbers denote the position of theworkers in the
omputation tree.

Fig. 28. Snapshot of Must Fig. 29. Snapshot of VisAndOrStati
 representation tools have been developed for both or- and and-parallelism. Notable e�orts arerepresented by VisAndOr [Carro et al. 1993℄ and ParSee [Kusalik and Prestwi
h 1996℄. Both the tools are
apable of representing either or- or and-parallelism|although neither of them
an visualize the
on
urrentexploitation of the two forms of parallelism|and they are aimed at produ
ing a stati
 representation of thedistribution of work between the available workers. Figure 29 shows a snapshot of VisAndOr's exe
ution.VisAndOr's e�ort is parti
ularly relevant, sin
e it is one of the �rst tools with su
h
hara
teristi
s to be- 73 -

developed, and be
ause it de�ned a standard in the design of tra
e format|adopted by various other systems[Vaupel, Pontelli, Gupta 1997; Kusalik and Prestwi
h 1996; Fonse
a et al. 1998℄. Must and VisAndOr havebeen integrated in the ViMust system; a time-line moves on the VisAndOr representation syn
hronized withthe development of the
omputation tree in Must [Carro et al. 1993℄.Other visualization tools have also been developed for dependent and-parallelism in the
ontext of
om-mitted
hoi
e languages, for example those for visualizing KL1 and GHC exe
ution [Ti
k 1992; Aikawa et al.1992℄.Tools have also been developed for visualizing
ombined and/or-parallelism, as well as to provide a betterbalan
e between dynami
 and stati
 representations|e.g., VACE [Vaupel, Pontelli, Gupta 1997℄, based onthe notion of C-trees [Gupta, Pontelli, Hermenegildo, Santos Costa 1994℄, and VisAll [Fonse
a et al. 1998℄.Figure 30 shows a snapshot of VACE.

Fig. 30. Snapshot of VACE Fig. 31. Snapshot of VisAllA �nal note is for the VisAll system [Fonse
a et al. 1998℄. VisAll provides a universal visualization toolwhi
h subsumes the features o�ered by most of the existing ones|in
luding the ability to visualize
ombinedand/or-parallel exe
utions. VisAll re
eives as input a tra
e together with the des
ription of the tra
e format|thus allowing it to pro
ess di�erent tra
e formats. Figure 31 shows a snapshot of VisAll representing anand-parallel
omputation.The importan
e of visualization tools in the development of a parallel logi
 programming system
annotbe stressed enough. They help not only the users in debugging and �ne-tuning their programs, but alsothe system implementors who need to understand exe
ution behavior for �ne-tuning their agent s
hedulingsoftware.9.7 Compile-time SupportCompile-time support is
ru
ial for eÆ
ien
y of parallel logi
 programming systems. Compile-time analysistools based on Abstra
t Interpretation te
hniques [Cousot and Cousot 1992℄ have been extensively used inmany parallel logi
 programming systems. For instan
e, &-Prolog, AO-WAM, ACE, and PBA all rely on shar-ing and freeness analysis for automati
 generation of CGEs at
ompile-time [Muthukumar and Hermenegildo1989a; 1991; Ja
obs and Langen 1989℄. ACE makes use of abstra
t interpretation te
hniques to build ex-tended CGEs for dependent and-parallelism [Pontelli, Gupta, Pulvirenti, Ferro 1997℄. The Andorra-I systemrelies on determina
y analysis done at
ompile-time for dete
ting determina
y of goals at runtime [Santos- 74 -

Costa, Warren, Yang 1991b; Debray and Warren 1989℄. Compile-time analysis
an hen
e be used for makingmany de
isions, whi
h would have otherwise been taken at run-time, at
ompile-time itself, e.g., dete
tionof determina
y, generation of CGEs, et
. Compile-time analysis has also been used for transforming Prologprograms into AKL [Haridi and Jason 1990℄ programs [Bueno and Hermengildo 1992℄, and has also been usedfor supporting Prolog semanti
s in parallel systems that
ontain dependent and-parallelism, e.g., Andorra-I[Santos Costa, Warren, Yang 1991b℄. Compile-time analysis has also been employed to estimate granularityof goals, to help the s
heduler in making better de
isions as to whi
h goal to pi
k [Zhong et al. 1992; Debrayet al. 1990℄, to improve independen
e in and-parallel
omputations [Pontelli and Gupta 1998℄, et
.Compile-time analysis has a number of potential appli
ations in parallel logi
 programming, in addition tothose already mentioned: for instan
e, in dete
ting spe
ulative and non-spe
ulative regions at
ompile-time,dete
ting whether a side-e�e
t will be ever exe
uted at run-time or not, dete
ting produ
er and
onsumerinstan
es of variables, dete
ting whether a variable is
onditional or not, et
. Compiler support will play a
ru
ial role in future parallel logi
 programming systems. However, a great deal of resear
h is still needed inbuilding more powerful
ompile-time analysis tools that
an infer more properties of the program at
ompile-time itself to make parallel exe
ution of logi
 program more eÆ
ient.9.8 Ar
hite
tural In
uen
eAs for any parallel system, also in the
ase of parallel logi
 programming the
hara
teristi
s of the underlyingar
hite
ture have profound impa
t on the performan
e of the system.A number of experimental works have been
ondu
ted to estimate the in
uen
e of di�erent ar
hite
turalparameters on individual parallel systems. Relevant work has been proposed by� Hermenegildo and Ti
k [Hermenegildo and Ti
k 1989; Ti
k 1987℄ proposed various studies estimating theperforman
e of and-parallel systems on shared memory ma
hines;� Montelius and Haridi [Montelius and Haridi 1997; Montelius 1997℄ have proposed detailed performan
eanalysis of the Penny system, mostly using the SIMICS Spar
 pro
essor simulator;� Gupta and Pontelli [Gupta and Pontelli 1999a℄ have used simulation studies (based on the use of the SIMICSsimulator) to validate the
laim that sta
k-splitting improves the lo
ality of an or-parallel
omputation basedon sta
k
opying;� Bian
hini, Costa, and Dutra [Santos Costa, Bian
hini, Dutra 1997℄ have also analyzed the performan
e ofparallel logi
 programming systems (spe
i�
ally Aurora and Andorra-I) using pro
essor simulators (spe
i�-
ally a simulator of the MIPS pro
essor). Their extensive work has been aimed at determining the behaviorof parallel logi
 programming systems on parallel ar
hite
tures (with a parti
ular fo
us on highly s
alablear
hite
tures, e.g., distributed shared memory ma
hines). In [Santos Costa, Bian
hini, Dutra 1997℄ the sim-ulation framework adopted is presented, along with the development of a methodology for understanding
a
he performan
e. The results obtained have been used to provide
on
rete improvements to the imple-mentation of the Andorra-I system [Santos Costa, Bian
hini, Dutra 2000℄. The impa
t of
a
he
oheren
eproto
ols on the performan
e of parallel Prolog systems is studied in more detail in [Dutra, Santos Costa,Bian
hini 2000; Silva, Dutra, Bian
hini, Santos Costa 1999; Calegario and Dutra 1999℄.These works tend to agree on the importan
e of
onsidering ar
hite
tural parameters in the design of aparallel logi
 programming systems. For example, the results a
hieved by Costa et al. for the Andorra-Isystems indi
ate that:� or-parallel prolog systems provide a very good lo
ality of
omputation, thus the system does not seem torequire very large
a
he sizes;� small
a
he blo
ks appear to provide better behavior, espe
ially in presen
e of or-parallelism|the experi-mental work by [Dutra, Santos Costa, Bian
hini 2000℄ indi
ates a high-risk of false-sharing in presen
e ofblo
ks larger than 64 bytes;� in [Dutra, Santos Costa, Bian
hini 2000℄
ompares the e�e
t of Write Invalidate vs. Write Update as
a
he
oheren
e proto
ols. The study underlines the superiority of a parti
ular version of the Write updatealgorithm (an hybrid method where ea
h node independently de
ides upon re
eiving an update requestwhether to update the lo
al
opy of data or simply invalidate it).- 75 -

Similar results have been reported in [Montelius and Haridi 1997℄, whi
h underlines the vital importan
e ofgood
a
he behavior and avoidan
e of false sharing for exploitation of �ne-grain parallelism in Penny.10. APPLICATIONS AND APPLICABILITYOne
an
on
lude from the dis
ussion in the previous se
tions, a large body of resear
h has been developed inthe design of parallel exe
ution models for Prolog programs. Unfortunately, relatively modest emphasis hasbeen pla
ed on the study of the appli
ability of these te
hniques to real-life problems.A relevant study in this dire
tion has been proposed in [Shen and Hermenegildo 1991; Shen 1992b℄. Thiswork
onsidered a large pool of appli
ation and studied their behavior with respe
t to the exploitation of or-parallelism, independent and-parallelism and dependent and-parallelism. The pool of appli
ations
onsideredin
ludes traditional toy ben
hmark programs (e.g., n-queens, matrix multipli
ation) as well as larger Prologappli
ations (e.g., Warren's WARPLAN planner, Boyer-Moore's Theorem Prover, the Chat NLP appli
ation).The results
an be summarized as follows:� Depending on their stru
ture, there are appli
ations that are very ri
h in either forms of parallelism|i.e.,either they o�er
onsiderable or-parallelism and almost no and-parallelism or vi
e-versa.� Neither of the two forms of parallelism is predominant over the other.� There are a large number of appli
ations whi
h o�er moderate quantities of both forms of parallelism. Inparti
ular, the real-life appli
ations
onsidered o�ered limited amounts of both forms of parallelism. In these
ases, experimental results showed that
on
urrent exploitation of both forms of parallelism will bene�t overexploitation of a single form of parallelism.The various implementations of parallel logi
 programming systems developed have been e�e
tively appliedto speedup exe
ution of various large real-life appli
ations. These in
lude:� independent and dependent and-parallelism has been su

essfully extra
ted from Prolog-to-WAM
ompilers(e.g., the PLM
ompiler) [Pontelli, Gupta, Tang, Carro, Hermenegildo 1996℄;� Stati
 Analyzers for Prolog programs [Pontelli, Gupta, Tang, Carro, Hermenegildo 1996; Hermenegildo andGreen 1991℄� Natural Language Pro
essing appli
ations have been very su

essfully parallelized extra
ting both or- andand-parallelism|e.g., the Chat system [Santos Costa, Warren, Yang 1991a; Shen 1992b℄, the automati
translator Ultra [Pontelli, Gupta, Wiebe, Farwell 1998℄, the word-disambiguation appli
ation Artwork [Pon-telli, Gupta, Wiebe, Farwell 1998℄.� Computational Biology appli
ations|e.g., the Aurora or-parallel system has been used to parallelize Prologappli
ations for DNA sequen
ing [Lusk, Mudambi, Overbeek, Szeredi 1993℄.� both Aurora and ACE have been applied to provide parallel and
on
urrent ba
kbones for Internet-relatedappli
ations [Szeredi, Moln�ar, S
ott 1996; Pontelli 2000℄.� Andorra-I has been used in the development of advan
ed traÆ
 management systems [Hasenberger 1995℄,used by British Tele
om to
ontrol traÆ

ow on their telephony network.� Tele
ommuni
ation appli
ations [Crabtree 1991; Santos Costa, Warren, Yang 1991
℄.� Aurora has been used to develop a number of
on
rete appli
ations. Parti
ularly important are thosedeveloped in the
ontext of the Cubiq proje
t:� the EMRM system, a medi
al re
ord management system, whi
h supports
olle
tion of medi
al informa-tion following the SOAP medi
al knowledge model [Szeredi and Farkas 1996℄.� The CONSULT
redit rating system, whi
h makes use of rule-based spe
i�
ation of
redit assessmentpro
edures [IQSoft 1992℄.This body of experimental work indi
ates that the existing te
hnology for parallel exe
ution of logi
 pro-grams is e�e
tive when applied to large and
omplex real-life Prolog appli
ations. Further push for appli
ationof parallelism
omes from the realm of
onstraint logi
 programming. Preliminary work on the Chip andECLiPSe systems has demonstrated that the te
hniques des
ribed in this paper
an be easily applied to par-allelization of the relevant phases of
onstraint handling. Considering that most
onstraint logi
 programmingappli
ations are extremely
omputation-intensive, the advantages of parallel exe
ution are evident.- 76 -

11. CONCLUSIONS AND FUTURE OF PARALLEL LOGIC PROGRAMMINGIn this survey arti
le we des
ribed the di�erent sour
es of impli
it parallelism present in logi
 programminglanguages and the many problems en
ountered in exploiting them in the
ontext of parallel exe
ution of Prologprograms. Di�erent exe
ution models proposed for exploiting these many kinds of parallelism were surveyed.We also dis
ussed some eÆ
ien
y issues that arise in parallel logi
 programming.Parallel logi
 programming is a
hallenging area of resear
h and will
ontinue to be so, until the dream ofeÆ
iently exploiting all sour
es of parallelism present in logi
 programs in the most
ost e�e
tive way is realized.The
urrent state-of-the-art is that there are very eÆ
iently engineered systems that exploit only a single formof parallelism, e.g., MUSE, Aurora, Yap, and Elipsys (or-parallelism), &-Prolog and &ACE (independentand-parallelism), DASWAM and ACE (dependent and-parallelism), and many eÆ
ient implementations of
ommitted
hoi
e languages [Shapiro 1987; Hirata et al. 1992℄. There are a fewer systems that eÆ
ientlyexploit more than one sour
e of parallelism, su
h as Andorra-I [Santos Costa, Warren, Yang 1991a℄, andothers that are being built [Gupta, Pontelli, Hermenegildo, Santos Costa 1994; Correia et al. 1997; SantosCosta 1999℄. However, there are none that exploit all sour
es of parallelism present in logi
 programs. E�ortsare already under way to remedy this [Montelius 1997; Santos Costa 1999; Gupta, Santos Costa, Pontelli 1994;Pontelli and Gupta 1997b; Correia et al. 1997; Castro et al. 1998℄, and we believe that that is where the bulkof the parallel logi
 programming resear
h in the future will lie.The orthogonality prin
iple [Correia et al. 1997℄ and the duality prin
iple [Pontelli and Gupta 1995a℄ di
tatethat the ideal parallel logi
 programming should be a \plug-and-play" system, where a basi
 Prolog kernelengine
an be in
rementally extended with di�erent modules implementing di�erent parallelization strategies,s
heduling strategies, et
., depending on the needs of the user (Figure 32). We hope that with enough resear
he�ort this ideal will be a
hieved.
Prolog Engine

IAP Component

OrP Component

A
n

d
-s

ch
ed

u
le

r O
r-S

ch
ed

u
ler

DAP Component

Other E
xtensions

Fig. 32. Plug-and-Play Parallel Prolog SystemsFurther Resear
h is still needed in other aspe
ts of parallel logi
 programming; for example, in �nding outhow best to support sequential Prolog semanti
s on parallel logi
 programming systems of the future; buildingbetter and smarter s
hedulers; �nding better memory management strategies; building
ompile-time tools thatwill redu
e the overhead at run-time by relegating many of the operations to
ompile-time; and building toolsfor visualizing parallel exe
ution. It should be noted that while most of these problems arise in any parallelsystem, in the
ase of parallel logi
 programming systems they are harder to solve due to the presen
e ofnon-determinism and ba
ktra
king.The
urrent evolutionary trend in the design of parallel
omputer systems is towards building heterogeneousar
hite
tures that
onsist of a large number of relatively small-sized shared memory ma
hines
onne
tedthrough fast inter
onne
tion networks. Taking full advantage of the
omputational power of su
h ar
hite
turesis known to be a very diÆ
ult problem [Bader and JaJa 1997℄. Parallel Logi
 programming systems
onstitute- 77 -

a viable solution to this problem; however,
onsiderable resear
h on design and implementation of parallel logi
programming systems on distributed memory multipro
essors is needed before parallel logi
 programming
anbe indeed regarded as a viable solution. Distributed implementation of parallel logi
 programming systems isone dire
tion where we feel future resear
h e�ort should be invested.Finally, te
hnology developed for parallel exe
ution of Prolog programs has progressively expanded andfound appli
ation in the parallelization of other logi
-based paradigms and/or in the parallelization of alter-native strategies for exe
ution of Prolog programs. This in
ludes:�
ombination of parallelism and tabled exe
ution of Prolog programs [Guo and Gupta 2000; Guo 2000;Freire, Hu, Swift, Warren 1995; Ro
ha, Silva, Santos Costa 1999℄, whi
h opens the doors to parallelizationof appli
ations in a number of interesting appli
ation areas, su
h as model
he
king and database
leaning.� parallelization of models
omputation in the
ontext of non-monotoni
 reasoning [Pontelli and El-Khatib2001; Finkel, Marek, Moore, Trusz
ynski 2001℄.� use of parallelism in the exe
ution of indu
tive logi
 programs [Page 2000; Ohwada, Nishiyama, Mizogu
hi2000℄.A
knowledgmentsThanks are due to Bharat Jayaraman for helping with an earlier arti
le on whi
h this arti
le is based. Thanksto Manuel Carro who read drafts of this paper. Our deepest thanks to the anonymous referees whose
ommentstremendously improved the paper. Gopal Gupta and Enri
o Pontelli are partially supported by NSF GrantsCCR 98-75279, CCR 98-20852, CCR 99-00320, CDA 97-29848, EIA 98-10732, CCR 96-25358, HRD 99-06130,and by a grant from the US-Spain Resear
h Commission.REFERENCESAikawa, S., et al. 1992. ParaGraph: A Graphi
al Tuning Tool for Multipro
essor Systems. In ICOT Sta� (eds.), InternationalConferen
e on Fifth Generation Computer Systems, Tokyo, pages 286{293.A��t-Ka
i, H. 1992. Warren's Abstra
t Ma
hine: A Tutorial Re
onstru
tion. MIT Press. www.isg.sfu.
a/~hak/do
uments/wam.html.A��t-Ka
i, H. 1993. An introdu
tion to LIFE: Programming with Logi
, Inheritan
e, Fun
tions, and Equations. In D. Miller (ed.)International Logi
 Programming Symposium, MIT Press, pages 52{68.Ali, K.A.M. 1988. Or-parallel exe
ution of Prolog on BC-ma
hine. In R. Kowalski and K. Bowen (eds.) Pro
eedings of 5thInternational Conferen
e and Symposium on Logi
 Prog. Seattle, MIT Press, pp. 1531{1545.Ali, K.A.M. 1995. A Parallel Copying Garbage Colle
tion S
heme for Shared-memory Multipro
essors. In E. Ti
k and T.Chikayama (eds.) Pro
eedigns of the ICOT/NSF Workshop on Parallel Logi
 Programming and its Programming Environ-ments, Te
hni
al Report CSI-TR-94-04, University of Oregon, pp. 93{96.Ali, K.A.M. and Karlsson, R. 1990a. The MUSE Approa
h to Or-Parallel Prolog. In International Journal of ParallelProgramming, 19(2): 129{162.Ali, K.A.M. and Karlsson, R., 1990b. Full Prolog and S
heduling Or-Parallelism in MUSE. In International Journal of ParallelProgramming, 19(6): 445{475.Ali, K.A.M. and Karlsson, R. 1992a. OR-parallel Speedups in a Knowledge Based System: on MUSE and Aurora. In ICOTSta� (eds.) the Pro
eedings of the International Conferen
e on Fifth Generation Computer Systems, pages 739{745.Ali, K.A.M. and Karlsson, R., 1992b. S
heduling Spe
ulative Work in MUSE and Performan
e Results. In InternationalJournal of Parallel Programming, 21(6).Ali, K.A.M., Karlsson, R., and Mudambi, S. 1992. Performan
e of MUSE on Swit
h-Based Multipro
essor Ma
hines. In NewGeneration Computing, 11(1,4): 81{103.Apar��
io, N.J., Cunha, J., Monteiro, L., and Pereira, L.M., 1986. Delta-Prolog: a Distributed Ba
ktra
king Extension withEvents. In E. Shapiro (ed.) Pro
. 3rd International Conferen
e on Logi
 Programming, Le
ture Notes in Computer S
ien
e225, Springer Verlag, pages 225{240.Appleby, K., Carlsson, M., Haridi, S., and Sahlin, D. 1988. Garbage Colle
tion for Prolog based on WAM. In Communi
ationsof the ACM, 31(6):719{741.Araujo, L. and Ruz, J., 1998. A Parallel Prolog System for Distributed Memory. In Journal of Logi
 Programming, Vol. 33,No. 1, pages 49{79.Bader, D.A. and JaJa, J., 1997. SIMPLE: a Methodology for Programming High Performan
e Algorithms on Clusters ofSymmetri
 Multipro
essors. Te
hni
al Report, University of Maryland.Bahgat, R., 1993. Pandora: Non-Deterministi
 Parallel Logi
 Programming. PhD Thesis, Department of Computing, ImperialCollege of S
ien
e and Te
hnology, Published by World S
ienti�
 Publishing Co.- 78 -

Bansal, A.K. and Potter, J. 1992. An Asso
iative Model for Minimizing Mat
hing and Ba
ktra
king Overhead in Logi
Programs with Large Knowledge Bases. In Engineering Appli
ations of Arti�
ial Intelligen
e, Volume 5, Number 3, pp.247-262.Barklund, J., 1990. Parallel Uni�
ation. Ph.D. Thesis, Uppsala Theses in Computing S
ien
e 9, Uppsala University.Barklund, J. and Millroth, H., 1992. Providing Iteration and Con
urren
y in Logi
 Program through Bounded Quanti�
ations.In ICOT Sta� (eds.) Pro
. International Conf. on Fifth Generation Computer Systems, pages 817{824.Baron, U., Chassin de Kerommeaux, J., Hailperin, M., Rat
liffe, M., Robert, P., Syre, J-C., and Westphal, H., 1988.The Parallel ECRC Prolog System PEPSys: An Overview and Evaluation of Results. In ICOT Sta� (eds.) Pro
eedings of theInternational Conferen
e on Fifth Generation Computer Systems, Tokyo, pages 841{850.Beaumont, A.J. 1991. S
heduling Strategies and Spe
ulative Work. In Parallel Exe
ution of Logi
 Programs, Beaumont &Gupta (Eds), Springer Verlag, Le
ture Notes in Computer S
ien
e 569, pages 120{131.Beaumont, A.J., Muthu Raman, S., Szeredi, P., and Warren, D.H.D., 1991. Flexible s
heduling or-parallelism in Aurora:the Bristol s
heduler. In E. Aarts, J. van Leeuwen, M. Rem (eds.) PARLE 91, Conferen
e on Parallel Ar
hite
tures andLanguages Europe, Springer-Verlag, Le
ture Notes in Computer S
ien
e 506, pages 421{438.Beaumont, A.J. and Warren, D.H.D., 1993. S
heduling spe
ulative work in or-parallel Prolog systems. In D.S. Warren (ed.)Pro
eedings of the Tenth International Conferen
e on Logi
 Programming. MIT Press, pages 135{149.Bekkers, Y., Ridoux, O., and Ungaro, L. 1992. Dynami
 Memory Management for Sequential Logi
 Programming Languages.In Y. Bekkers, J. Cohen (eds.) Pro
eedings of the International Workshop on Memory Management, Springer Verlag, pp.82{102.Ben-Amram, A.M. 1995. What is a Pointer Ma
hine? Te
hni
al Report, DIKU, University of Copenhagen.Benjumea, V. and Troya, J.M. 1993. An OR Parallel Prolog Model for Distributed Memory Systems. In M. Bruynoogheand J. Penjam (eds.) Symposium on Programming Languages Implementation and Logi
 Programming, Springer Verlag, pages291{301.Bevemyr, J. 1995. A Generational Parallel Copying Garbage Colle
tion for Shared Memory Prolog. In Workshop on ParallelLogi
 Programming Systems, Portland, Oregon, 1995.Bevemyr, J., Lindgren, T., and Millroth, H. 1993. Reform Prolog: The Language and its Implementation. In D.S. Warren(ed.) Pro
eedings of the Tenth International Conferen
e on Logi
 Programming. MIT Press, pages 283{298.Biswas, P., Su, S.C., and Yun, D.Y.Y. 1988. A S
alable Abstra
t Ma
hine Model to Support Limited-OR (LOR)/Restri
ted-AND Parallelism (RAP) in Logi
 Programs. In R. Kowalski and K. Bowen (eds.) Fifth International Logi
 ProgrammingConferen
e, Seattle, WA., pages 1160{1179.Borgwardt, P. 1984. Parallel Prolog using Sta
k Segments on Shared Memory Multipro
essors. In Pro
eedings of the Interna-tional Symposium on Logi
 Programming, IEEE Computer So
iety, Atlanti
 City, NJ, pages 2{11.Brand, P. 1988. Wavefront s
heduling. Internal Report, Gigalips Proje
t.Briat, J., Favre, M., Geyer, C., and Chassin de Kergommeaux, J. 1992. OPERA: Or-Parallel Prolog System on Supernode.In Ka
suk and Wise eds., Implementations of Distributed Prolog, J. Wiley & Sons, pp. 45{64.Bruynooghe, M. 1991. A Pra
ti
al Framework for the Abstra
t Interpretation of Logi
 Programs. Journal of Logi
 Programming,10:91{124.Bueno, F., Gar
��a de la Banda, M., and Hermenegildo, M.V. 1999. E�e
tiveness of Abstra
t Interpretation in Automati
aParallelization: a Case Study in Logi
 Programming. In Transa
tion on Programming Languages and Systems, ACM, 21(2):189{239.Bueno, F. and Hermenegildo, M.V. 1992. An Automati
 Translation S
heme from Prolog to the Andorra Kernel Language.In ICOT Sta� (eds.) Pro
. International Conferen
e on Fifth Generation Computer Systems, pages 759{769.Butler, R., Lusk, E., M
Cune, W., and Overbeek, R. 1986. Paralle Logi
 Programming for Numeri
al Appli
ations. In E.Shapiro (ed.) Pro
eedings of the Third International Conferen
e on Logi
 Programming, Springer Verlag, pp. 357{388.Butler, R., Disz, T., Lusk, E., Olson, R., Overbeek, R., and Stevens, R. 1988. S
heduling OR-parallelism: an Argonneperspe
tive. In R. Kowalski and K. Bowen (eds.) Pro
eedings of the Fifth International Conferen
e on Logi
 Programming,MIT Press, pages 1590{1605.Cabeza, D. and Hermenegildo, M.V. 1994. Extra
ting Non-stri
t Independent And-parallelism Using Sharing and FreenessInformation. In B. Le Charlier (ed.) International Stati
 Analysis Symposium, Springer Verlag, pages 297{313.Calderwood, A. and Szeredi, P. 1989. S
heduling or-parallelism in Aurora|the Man
hester s
heduler. In G. Levi and M.Martelli (eds.) Pro
eedings of the Sixth International Conferen
e on Logi
 Programming, MIT Press, pages 419{435.Calegario, V.M. and Dutra, I. 1999. In P. Amestoy et al. (eds.) Pro
eedings of EuroPar, Springer Verlag, pp. 1484{1491.Carlsson, M. 1989. On the EÆ
ien
y of Optimizing Shallow Ba
ktra
king in Compiled Prolog. In G. Levi and M. Martelli(eds.) International Conferen
e on Logi
 Programming, MIT Press, pages 3{16.Carlsson, M. 1990. Design and Implementation of an OR-Parallel Prolog Engine. PhD thesis, The Royal Institute of Te
hnology,Sto
kholm.Carlsson, M. et al. 1995. SICStus Prolog User's Manual. Te
hni
al Report, Swedish Institute of Computer S
ien
e, ISBN91-630-3648-7.Carro, M., G�omez, L., and Hermenegildo, M.V. 1993. Some event-driven paradigms for the visualization of logi
 programs.In D.S. Warren (ed.) Pro
eedings of the Tenth International Conferen
e on Logi
 Programming. MIT Press, pages 184{200.- 79 -

Carro, M. and Hermenegildo, M.V. 1999. Con
urren
y in Prolog Using Threads and a Shared Database. In D. De S
hreye(ed.) International Conferen
e on Logi
 Programming, MIT Press, pages 320{334.Castro, L.F., Santos Costa, V., Geyer, C.F.R., Silva, F., Vargas, P.K., and Correia, M.E. 1999. DAOS: S
alable And-OrParallelism. In D. Prit
hard and J. Reeve (eds.) Pro
eedings of EuroPar, Springer Verlag, pp. 899{908.Chang, S-E. and Chiang, Y.P. 1989. Restri
t And-Parallelism Model with Side E�e
ts. In E. Lusk and R. Overbeek (eds.)Pro
eedings of North Ameri
an Conferen
e on Logi
 Programming, MIT Press, pages 350{368.Chang, J-H., Despain, A.M., and DeGroot, D. 1985. And-Parallelism of Logi
 Programs based on Stati
 Data Dependen
yAnalysis. In Digest of Papers of COMPCON Spring 1985, pages 218{225.Chassin de Kergommeaux, J. 1989. Measures of the PEPSys Implementation on the MX500. Te
hni
al Report, CA-44, ECRC.Chassin de Kergommeaux, J. and Codognet, P. 1994. Parallel Logi
 Programming Systems. In ACM Computing Surveys,26(3):295{336.Chassin de Kergommeaux, J. and Robert, P. 1990. An Abstra
t Ma
hine to Implement Or-And Parallel Prolog EÆ
iently.In Journal of Logi
 Programming, 8(3):249{264.Chikayama, T., Fujise, T., and Sekit, D. 1994. A Portable and EÆ
ient Implementation of KL1. In M. Hermenegildo andJ. Penjam (eds.) Pro
eedings of the Sixth International Symposium on Programming Languages Implementation and Logi
Programming, Springer Verlag, pp. 25{39.Cian
arini, P. 1993. Bla
kboard Programming in Shared Prolog. In Languages and Compilers for Parallel Computing. MITPress.Ciepielewski, A. 1992. S
heduling in Or-parallel Prolog Systems: Survey, and Open Problems. In International Journal ofParallel Programming.Ciepielewski, A. and Hausman, B. 1986. Performan
e Evaluation of a Storage Model for OR-parallel Exe
ution of Logi
Programs. In Symposium on Logi
 Prog., IEEE Computer So
iety, pages 246{257.Ciepielewski, A. and Haridi, S. 1983. A Formal Model for Or-parallel Exe
ution of Logi
 Programs. In R. Mason (ed.) IFIP83, North Holland, P.C. Mason (ed.), pages 299{305.Clark, K. and Gregory, S. 1986. Parlog: Parallel Programming in Logi
. In Transa
tion on Programming Languages andSystems, ACM, Vol. 8, No. 1, pages 1{49.Clo
ksin, W.F. and Alshawi, H. 1988. A Method for EÆ
iently Exe
uting Horn Clause Programs Using Multiple Pro
essors.In New Generation Computing, No. 5, pages 361{376.Codish, M., Mulkers, A., Bruynooghe, M., Gar
��a de la Banda, M.J., and Hermenegildo, M.V. 1995. Improving Abstra
tInterpretations by Combining Domains. In Transa
tions on Programming Languages and Systems, ACM, 17(1):28{44.Codognet, C. and Codognet, P. 1989. Non-Deterministi
 Stream And-Parallelism based on Intelligent Ba
ktra
king. In G.Levi and M. Martelli (eds.) Pro
eedings of the International Conferen
e on Logi
 Programming, MIT Press, pp. 63{79.Codognet, C., Codognet, P., and Fil�e, G. 1988. Yet Another Intelligent Ba
ktra
king Method. In R. Kowalski and K. Bowen(eds.) Pro
eedings of the Fifth International Conferen
e and Symposium on Logi
 Programming, MIT Press, pp. 447-465.Conery, J.S. 1987a. Parallel Interpretation of Logi
 Programs. Kluwer A
ademi
 Press.Conery, J.S. 1992. The OPAL Ma
hine. In Ka
suk and Wise (eds.) Implementations of Distributed Prolog, J. Wiley & Sons.Conery, J.S. 1987b. Binding Environments for Parallel Logi
 Programs in Non-Shared Memory Multipro
essors. In InternationalSymposium in Logi
 Programming, IEEE Computer So
iety, San Fran
is
o, pages 457{467.Conery, J.S. and Kibler, D.F. 1981. Parallel Interpretation of Logi
 Programs. In Pro
eedings of the Conferen
e on Fun
tionalLanguages and Computer Ar
hite
ture, pages 163{170.Conery, J.S. and Kibler, D.F. 1983. And Parallelism in Logi
 Programs. In A. Bundy (ed.) Pro
eedings of the InternationalJoint Conferen
e in AI, William Kaufmann, pages 539{543.Correia, E., Silva, F., and Santos Costa, V. 1997. The SBA: Exploiting Orthogonality in And-Or Parallel System. In J.Maluszynski (ed.) International Logi
 Programming Symposium, MIT Press, pages 117{131.Cousot, P. and Cousot, R. 1977. Abstra
t Interpretation: A Uni�ed Model for Stati
 Analysis of Programs for Constru
tionor Approximation of Fix-points. In Conferen
e Re
ord of the 4th ACM Symposium on Prin
iples of Programming Languages,pages 238{252.Cousot, P. and Cousot, R. 1992. Abstra
t Interpretation and Appli
ation to Logi
 Programs. In Journal of Logi
 Programming,13(1/4):103{179.Cox, P.T. 1984. Finding Ba
ktra
k Points for Intelligent Ba
ktra
king. In J. Campbell (ed.) Implementations of Prolog, EllisHorwood/Halsted Press/Wiley.Crabtree, B. 1991. A Clustering System to Network Control. Te
hni
al Report, British Tele
om.Crammond, J. 1985. A Comparative Stufy of Uni�
ation Algorithms for Or-Parallel Exe
ution of Logi
 Languages. In IEEETransa
tion on Computers, 34(10):911{971.Crammond, J.A. 1992. The Abstra
t Ma
hine and Implementation of Parallel Parlog. In New Generation Computing 10(4):385{422.de Boss
here, K. and Tarau, P. 1996. Bla
kboard-based Extensions in Prolog. In Software Pra
ti
e and Experien
e, 26(1):49{69. - 80 -

Debray, S.K. and Warren, D.S. 1989. Fun
tional Computations in Logi
 Programs. In ACM Transa
tions on ProgrammingLanguages and Systems, 11(3):451{481.Debray, S.K., Lin, N-W., and Hermenegildo, M.V. 1990. Task Granularity Analysis in Logi
 Programs. In Pro
. of the 1990ACM Conf. on Programming Language Design and Implementation. ACM Press, pages 174{188.Debray, S.K., L�opez-Gar
��a, P., and Hermenegildo, M.V. 1997a. Non-failure Analysis of Logi
 Programs. In L. Naish (ed.)Pro
. International Conferen
e on Logi
 Programming, MIT Press, pages 48{62.Debray, S.K., L�opez-Gar
��a, P., Hermenegildo, M.V., and Lin, N-W. 1997b. Lower Bound Cost Estimation for Logi
Programs. In J. Maluszynski (ed.) Pro
. of International Logi
 Programming Symposium, MIT Press, pages 291{305.DeGroot, D. 1984. Restri
ted AND-parallelism. In ICOT Sta� (eds.) International Conferen
e on Fifth Generation ComputerSystems, Ohmsha Ltd., pages 471{478.DeGroot, D. 1987. Restri
ted And-Parallelism and Side-e�e
ts. In International Symposium on Logi
 Programming, IEEEComputer So
iety, San Fran
is
o, pages 80{89.Delgado-Rannauro, S.A. 1992a. Or-Parallel Logi
 Computational Models. In P. Ka
suk and M. Wise (eds.) Implementationsof Distributed Prolog, J. Wiley & Sons, pp. 3{26.Delgado-Rannauro, S.A. 1992b. Restri
ted And- and And/Or-Parallel Logi
 Computational Models. In P. Ka
suk and M.Wise (eds.) Implementations of Distributed Prolog, J. Wiley & Sons, pp. 121{141.Disz, T. and Lusk, E. 1987. A graphi
al tool for observing the behavior of parallel logi
 programs. In Symposium on Logi
Programming, IEEE Computer So
iety Press, pages 46{53, 1987.Disz, T., Lusk, E., and Overbeek, R. 1987. Experiments with OR-parallel Logi
 Programs. In International Symposium inLogi
 Programming, IEEE Computer So
iety, San Fran
is
o, pages 46{53.Doro
hevsky, M. and Xu, J. 1991. Parallel Exe
ution Tra
er. Internal Report, ECRC.Drakos, N. 1989. Unrestri
ted And-Parallel Exe
ution of Logi
 Programs with Dependen
y Dire
ted Ba
ktra
king. In N.Sridharan (ed.) International Joint Conferen
e on Arti�
ial Intelligen
e, Morgan Kaufmann, pages 157{162.Dutra, I. 1991. A Flexible S
heduler for the Andorra-I System. In G. Gupta and A. Beaumont (eds.) ICLP'91 Workshop onParallel Exe
ution of Logi
 Programs. Springer Verlag, LNCS 569. pages 70{82.Dutra, I. 1994. Strategies for S
heduling And- and Or-Parallel Work in Parallel Logi
 Programming Systems. In M. Bruynooghe(ed.) International Logi
 Programming Symposium, MIT Press, pp. 289-304.Dutra, I. 1995. Distributing And- and Or-Work in the Andorra-I Parallel Logi
 Programming System. Ph.D. Dissertation,University of Bristol, 1995.Dutra, I. 1996. Distributing And-Work and Or-Work in Parallel Logi
 Programming Systems. In Pro
eedings of the 29th HawaiiInternational Conferen
e on System S
ien
es, IEEE Computer So
iety, pp. 646{655.Dutra, I., Santos Costa, V., and Bian
hini, R. 2000. The Impa
t of Ca
he Coheren
e Proto
ols on Parallel Logi
 ProgrammingSystems. In J. Lloyd et al. (eds.) Pro
eedings of the International Conferen
e on Computational Logi
, Springer Verlag, pp.1285{1299.Fern�andez, M.J., Carro, M., and Hermenegildo, M.V. 1996. IDRA (IDeal Resour
e Allo
ation): Computing Ideal Speedupsin Parallel Logi
 Programming. In L. Bouge et al. (eds.) Pro
eedings of Euro-Par, Springer Verlag, pp. 724{733.Finkel, R., Marek, V., Moore, N., Trusz
ynski, M. 2001. Computing Stable Models in Parallel. In A. Provetti and S. Tran(eds.) Pro
eedings of the AAAI Spring Symposium on Answer Set Programming, AAAI.Fonse
a, N., Santos Costa, V., and Dutra, I. 1998. VisAll: a Universal Tool to Visualize the Parallel Exe
ution of Logi
Programs. In J. Ja�ar (ed.) Pro
. Joint International Conferen
e and Symposium on Logi
 Programming, MIT Press, pages100{114.Freire, J., Hu, R., Swift, T., and Warren, D.S. 1995. Exploiting Parallelism in Tabled Evaluations. In M. Hermenegildoand S. Swierstra (eds.) Pro
eedings of the Symposium on Programming Languages Implementations and Logi
 Programming,Springer Verlag, pp. 115{132.Fut�o, I. 1993. Prolog with Communi
ating Pro
esses: From T-Prolog to CSR-Prolog. In D.S. Warren (ed.) Pro
eedings of theTenth International Conferen
e on Logi
 Programming, MIT Press, pages 3{17.Ganguly, S., Silbers
hatz, A., and Tsur, S. 1990. A Framework for the Parallel Pro
essing of Datalog Queries. In H.Gar
ia-Molina and H. Jagadish (eds.) Pro
eedings of the SIGMOD Conferen
e on Management of Data, ACM, pages 143{152.Gar
�ia de la Banda, M.J., Hermenegildo, M.V., and Marriott, K. 1996. Independen
e in Dynami
ally S
heduled Logi
Languages. In M. Hanus and M. Rodriguez-Artalejo (eds.) Pro
eedings of the International Conferen
e on Algebrai
 and Logi
Programming, Springer Verlag, pp. 47{61.Gia
obazzi, R. and Ri

i, L. 1990. Pipeline Optimizations in And-parallelism by Abstra
t Interpretation. In D.H.D. Warrenand P. Szeredi (eds.) International Conferen
e on Logi
 Programming, MIT Press, pages 291{305.Gottlieb, G. and Almasi, G. 1994. Highly Parallel Computing. 2nd Edition. Benjamin Cummings Publishing Company.Gregory, S. and Yang, R. 1992. Parallel Constraint Solving in Andorra-I. In ICOT Sta� (eds.) Pro
eedings of the InternationalConferen
e on Fifth Generation Computer Systems, ICOT, pp. 843{850.Guo, H-F. 2000. High Performan
e Logi
 Programming. Ph.D. Thesis, New Mexi
o State University.Guo, H-F. and Gupta, G. 2000. A simple s
heme for implementing tabled LP systems based on dynami
 reordering of alternatives.In Pro
eedings of the Workshop on Tabling in Parsing and Dedu
tion, Vigo, Spain.- 81 -

Gupta, G. 1994. Multipro
essor Exe
ution of Logi
 Programs. Kluwer A
ademi
 Press.Gupta, G., Hermenegildo, M.V., and Santos Costa, V. 1992. Generalized Sta
k-
opying for And-Or Parallel Implementations.In JICLP'92 Workshop on Distributed and Parallel Implementations of Logi
 Programming Systems.Gupta, G., Hermenegildo, M.V., and Santos-Costa, V. 1993. And-Or Parallel Prolog: A Re
omputation Based Approa
h.New Generation Computing, 11(3-4):297{323.Gupta, G. and Jayaraman, B. 1993a. And-Or Parallelism on Shared Memory Multipro
essors. In Journal of Logi
 Programming,17(1):59{89.Gupta, G. and Jayaraman, B. 1993b. Analysis of Or-parallel Exe
ution Models. In ACM Transa
tions on ProgrammingLanguages. 15(4):659{680.Gupta, G. and Pontelli, E. 1997. Optimization S
hemas for Parallel Implementation of Nondeterministi
 Languages andSystems. In International Parallel Pro
essing Symposium, IEEE Computer So
iety.Gupta, G. and Pontelli, E. 1999a. Sta
k-splitting: A Simple Te
hnique for Implementing Or-Parallelism and And-Parallelismon Distributed Ma
hines. In D. De S
hreye (ed.) Pro
. International Conferen
e on Logi
 Programming, MIT Press, pages290{304.Gupta, G. and Pontelli, E. 1999b. Last Alternative Optimization for Or-parallel Logi
 Programming Systems. In Parallelismand Implementation Te
hnology for Constraint Logi
 Programming, Nova S
ien
e Eds., pages 107{132.Gupta, G. and Pontelli, E. 1999
. Extended Dynami
 Dependent And-Parallelism in ACE. In Journal of Fun
tional and Logi
Programming, MIT Press, Vol. 99, Spe
ial Issue #1.Gupta, G., Pontelli, E., Hermenegildo, M.V, and Santos Costa, V. 1994. ACE: And/Or-parallel Copying-based Exe
utionof Logi
 Programs. In P. van Hentenry
k (ed.) Pro
eedings of the International Conferen
e on Logi
 Programming, MIT Press,pages 93{109.Gupta, G. and Santos Costa, V. 1992b. A Systemati
 Approa
h to Exploiting Parallelism in Logi
 Programs. In Pro
eedingsof 26th Hawaii International Conferen
e on System S
ien
es, IEEE press, Vol II, pages 417{426.Gupta, G. and Santos Costa, V. 1992
. And-Or Parallelism in Full Prolog with Paged Binding Arrays. In Pro
eedings ofParallel Ar
hite
tures and Languages Europe (PARLE), Springer Verlag, pp. 617{632.Gupta, G. and Santos Costa, V. 1992a. Cut and Side-E�e
ts in And-Or Parallel Prolog. In Journal of Logi
 Programming,27(1):45{71.Gupta, G., Santos Costa, V., and Pontelli, E. 1994. Shared Paged Binding Arrays: A Universal Data-stru
ture for ParallelLogi
 Programming. In E. Ti
k (ed.) Pro
. NSF/ICOT Workshop on Parallel Logi
 Programming and its Environments,University of Oregon.Gupta, G., Santos-Costa, V., Yang, R., and Hermenegildo, M.V. 1991. IDIOM: Integrating Dependent and-, Independentand-, and Or-parallelism. In V. Saraswat and K. Ueda (eds.) International Logi
 Programming Symposium, MIT Press, pages152{166.Gupta, G. and Warren, D.H.D. 1992. An Interpreter for the Extended Andorra Model. Te
hni
al Report 92-CS-24, Departmentof Computer S
ien
e, New Mexi
o State University.Halstead, R.H. 1984. Implementation of Multilisp: Lisp on a Multipro
essor. In Pro
eedings of the Symposium on LISP andFun
tional Programming, ACM, pp. 9{17.Haridi, S. 1990. A Logi
 Programming Language Based on the Andorra Model. In New Generation Computing, Vol. 7, No. 2-3,pages 109{125.Haridi, S. and Janson, S. 1990. Kernel Andorra Prolog and its Computation Model. In D.H.D. Warren and P. Szeredi (eds.)Pro
eedings of International Conferen
e on Logi
 Prog., MIT Press, pages 31{46.Haridi, S., Van Roy, P., Brand, P., and S
hulte, C. 1998. Programming Languages for Distributed Appli
ations. In NewGeneration Computing, 16(3):223{261.Hasenberger, J. 1995. Modelling and Redesign the Advan
ed TraÆ
 Management System in Andorra-I. In V. Santos Costa(ed.) Pro
eedings of the Workshop on Parallel Logi
 Programming Systems, Portland, Oregon.Hausman, B. 1989. Pruning and s
heduling spe
ulative work in or-parallel Prolog. In E. Odijk, M. Rem, J-C. Syre (eds.) PARLE,Conferen
e on Parallel Ar
hite
tures and Languages Europe. Springer-Verlag, pp. 133{150.Hausman, B. 1990. Pruning and Spe
ulative Work in OR-Parallel PROLOG. PhD thesis, The Royal Institute of Te
hnology,Sto
kholm.Hausman, B., Ciepielewski, A., and Calderwood, A. 1988. Cut and Side-E�e
ts in Or-Parallel Prolog. In ICOT Sta� (eds.)International Conferen
e on Fifth Generation Computer Systems, Springer Verlag, Tokyo, pages 831{840.Hausman, B., Ciepielewski, A., and Haridi, S. 1987. Or-Parallel Prolog Made EÆ
ient on Shared Memory Multipro
essors. InPro
eedings of the International Symposium on Logi
 Programming, IEEE Computer So
iety, San Fran
is
o, CA, pages 69{79.Herold, A. 1995 The Handbook of Parallel Constraint Logi
 Programming Appli
ations. Te
hni
al Report, ECRC.Hermenegildo, M.V. 1986a. An Abstra
t Ma
hine for Restri
ted AND-parallel Exe
ution of Logi
 Programs. In E. Shapiro(ed.) Third International Conferen
e on Logi
 Programming, Le
ture Notes in Computer S
ien
e 225, Springer-Verlag, pages25{40.Hermenegildo, M.V. 1986b. An Abstra
t Ma
hine Based Exe
ution Model for Computer Ar
hite
ture Design and EÆ
ientImplementation of Logi
 Programs in Parallel. PhD thesis, Dept. of Ele
tri
al and Computer Engineering (Dept. of ComputerS
ien
e TR-86-20), University of Texas at Austin, Austin, Texas 78712.- 82 -

Hermenegildo, M.V. 1987. Relating Goal S
heduling, Pre
eden
e, and Memory Management in AND-Parallel Exe
ution ofLogi
 Programs. In J-L. Lassez (ed.) Fourth International Conferen
e on Logi
 Programming, MIT Press, pages 556{575.Hermenegildo, M.V. 1994. Towards EÆ
ient Parallel Implementation of Con
urrent Constraint Logi
 Programming. In E. Ti
k(ed.) Pro
. ICOT/NSF Workshop on Parallel Logi
 Programming and its Programming Environments, University of Oregon.Hermenegildo, M.V. 1994. Some Methodologi
al Issues in the Design of CIAO, a Generi
, Parallel Con
urrent ConstraintLogi
 Programming System. In A. Borning (ed.) Pro
eedings of the Conferen
e on Prin
iples and Pra
ti
es of ConstraintProgramming, Springer Verlag, pp. 123-133.Hermenegildo, M.V., Cabeza, D., and Carro, M. 1995. Using Attributed Variables in the Implementation of Parallel andCon
urrent Logi
 Programming Systems. In L. Sterling (ed.) International Conferen
e on Logi
 Programming, MIT Press,pages 631{645.Hermenegildo, M.V. and Carro, M. 1995. Relating Data Parallelism and And-Parallelism in Logi
 Programs. In S. Haridiand P. Magnusson (eds.) Pro
eedings of EuroPar, Springer Verlag, pp. 27{41.Hermenegildo, M.V. and Greene, K. 1991. The &-Prolog System: Exploiting Independent And-Parallelism. New GenerationComputing, 9(3,4):233{257.Hermenegildo, M.V. and L�opez-Gar
�ia, P. 1995. EÆ
ient Term Size Computation for Granularity Control. In L. Sterling(ed.) Pro
eedings of the International Conferen
e on Logi
 Programming, MIT Press, pp. 647{661.Hermenegildo, M.V. and Nasr, R.I. 1986. EÆ
ient Implementation of ba
ktra
king in AND-parallelism. In E. Shapiro (ed.)3rd International Conferen
e on Logi
 Programming, Le
ture Notes in Computer S
ien
e 225, Springer Verlag, London, pages40{54.Hermenegildo, M.V. and Ti
k, E. 1989. Memory Performan
e of AND-Parallel Prolog on Shared-Memory Ar
hite
tures. InNew Generation Computing, Vol. 7, No. 1.Hermenegildo, M.V., Warren, R., and Debray, S.K. 1992. Global Flow Analysis as a Pra
ti
al Compilation Tool. In Journalof Logi
 Programming, 13(4):349{367.Herrarte, V. and Lusk, E. 1991. Studying parallel program behavior with UPSHOT. Te
hni
al Report ANL-91/15, ArgonneNational Laboratory.Hi
key, T. and Mudambi, S. 1989. Global Compilation of Prolog. In Journal of Logi
 Programming, 7(3):193{230.Hirata, K. et al. 1992. Parallel and Distributed Implementation of Logi
 Programming Language KL1. In ICOT Sta� (eds.)International Conferen
e on Fifth Generation Computer Systems, Ohmsha Ltd., Tokyo, pages 436{459.Le Huitouze, S. 1990. A New Data Stru
ture for Implementing Extensions to Prolog. In P. Deransart and J. Maluszynski (eds.)Symposium on Programming Languages Implementation and Logi
 Programming, Springer Verlag, pages 136{150.IQSoft, 1992. CUBIQ - Development and Appli
ation of Logi
 Programming Tools for Knowledge Based Systems. http://www.iqsoft.hu/proje
ts/
ubiq/
ubiq.html.Janakiram, V., Agarwal, D., and Malhotra, R. 1988. A Randomized Parallel Ba
ktra
king Algorithm. In IEEE Transa
tionson Computers, 37(12), pages 1665{1676.Ja
obs, D. and Langen, A. 1992. Stati
 Analysis of Logi
 Programs for Independent And-Parallelism. In Journal of Logi
Programming, 13(1/4):291{314.Janson, S. and Montelius, J. 1991. A Sequential Implementation of AKL. In T. Beaumont and G. Gupta (eds.) Pro
eedingsof ILPS'91 Workshop on Parallel Exe
ution of Logi
 Programs.Ka
suk, P. 1990. Exe
ution Models of Prolog for Parallel Computers. Resear
h Monograph, MIT Press.Ka
suk, P. and Wise, M. 1992. Implementation of Distributed Prolog. J. Wiley & Sons.Kal�e, L.V. 1985. Parallel Ar
hite
tures for Problem Solving. Ph.D. Thesis, Dept. of Computer S
ien
e, SUNY-Stony Brook.Kal�e, L.V. 1991. The REDUCE OR Pro
ess MOdel for Parallel Exe
ution of Logi
 Programming. In Journal of Logi
 Program-ming, 11(1):55{84.Kal�e, L.V., Padua, D.A., and Sehr, D.C. 1988. Or-Parallel Exe
ution of Prolog with Side E�e
ts. In Journal of Super
omputing.Kal�e, L.V. and Ramkumar, B. 1992. Ma
hine Independent AND and OR Parallel Exe
ution of Logi
 Programs: Part I | TheBinding Environment. In IEEE Transa
tions on Parallel Distributed Systems. 5(2):170-192.Kal�e, L.V., Ramkumar, B., and Shu, W.W. 1988. A Memory Organization Independent Binding Environment for AND and ORParallel Exe
ution of Logi
 Programs. In R. Kowalski and K. Bowen (eds.) Pro
eedings of the Fifth International Conferen
eand Symposium on Logi
 Programs, MIT Press, pp. 1223{1240.Karlsson, R. 1992. A High Performan
e OR-parallel Prolog System. PhD thesis, The Royal Institute of Te
hnology, Sto
kholm.Kasif, S., Kohli, M., and Minker, J. 1983. PRISM: A Parallel Inferen
e System for Problem Solving. In A. Bundy (ed.)Pro
eedings of the International Joint Conferen
e on Arti�
ial Intelligen
e, pp. 544-546.King, A., Shen, K., and Benoy, F. 1997. Lower-bound Time-
omplexity Analysis of Logi
 Programs. In J. Maluszynski (ed.)Pro
. International Logi
 Programming Symposium, MIT Press, pages 261{276.Klu�zniak, F. 1990. Developing appli
ations for Aurora. Te
hni
al Report TR-90-17, University of Bristol, Computer S
ien
eDepartment.Kowalski, R. 1979. Logi
 for Problem Solving. North Holland.Masuzawa, H., Kumon, K., Itashiki, A., Satoh, K., and Sohma, Y. 1986. Kabu-Wake Parallel Inferen
e Method and itsEvaluation. In Pro
eedings of the Fall Joint Computer Conferen
e, IEEE Computer So
iety, pp. 955{962.- 83 -

Kusalik, A.J. and Prestwi
h, S. 1996. Visualizing Parallel Logi
 Program Exe
ution for Performan
e Tuning. In M. Maher(ed.) Pro
. Joint International Conferen
e and Symposium on Logi
 Programming, MIT Press, pages 498{512.Lin, Y-J. 1988. A Parallel Implementation of Logi
 Programs. PhD thesis, Dept. of Computer S
ien
e, University of Texas atAustin, Austin, Texas 78712.Lin, Y-J. and Kumar, V. 1988. AND-parallel exe
ution of Logi
 Programs on a Shared Memory Multipro
essor : A Summaryof Results. In R. Kowalski and K. Bowen (eds.) Fifth International Logi
 Programming Conferen
e, MIT Press, Seattle, WA,pages 1123{1141.Lindgren, T. 1993. The Compilation and Exe
ution of Re
ursion Parallel Logi
 Programs for Shared Memory Multipro
essors.Ph.D. Dissertation, Uppsala University.Lindgren, T., Bevemyr, J., and Millroth, H. 1995. Compiler Optimizations in Reform Prolog: Eperiments on the KSR-1Multipro
essor. In S. Haridi and P. Magnusson (eds.) Pro
. of EURO-PAR Conferen
e, Springer Verlag.Lindstrom, G. 1984. Or-Parallelism on Appli
ative Ar
hite
tures. In International Logi
 Programming Conferen
e, Uppsala,Sweden, pages 159{170.Lloyd, J.W. 1987. Foundations of Logi
 Programming. Springer Verlag.Lopes, R.S. and Santos Costa, V. 1999. The BEAM: Towards a First EAM Implementation. In Parallelism and Implementationof Logi
 and Constraint Programming, Nova S
ien
e.Lusk, E. and Disz, T. 1987. A Graphi
al Tool for Observing the Behavior of Parallel Logi
 Programs. In Pro
eedings of theSymposium on Logi
 Programming, IEEE Computer So
iety, pages 46{53.Lusk, E., Mudambi, S., Overbeek, R., and Szeredi, P. 1993. Appli
ations of the Aurora parallel Prolog system to
omputationalmole
ular biology. In D. Miller (ed.) International Logi
 Programming Symposium, MIT Press, pages 353{369.Lusk, E., Warren, D.H.D., Haridi, S., et al. 1990. The Aurora or-parallel Prolog system. New Generation Computing,7(2,3):243{271.M
Bryan, O. 1994. The KSR1 Computer. Te
h. Report, University of Colorado, http://wwwm
b.
s.
olorado.edu/home/
app/ksr.html.Millroth, H. 1990. Reforming Compilation of Logi
 Programs. Ph.D. Dissertation, Uppsala Theses in Computing S
ien
e 10,Uppsala University.Montelius, J. 1997. Exploiting Fine-grain Parallelism in Con
urrent Constraint Languages. Ph.D. Dissertation, Uppsala Thesesin Computing S
ien
e 28, Uppsala University.Montelius, J. and Ali, K.M. 1996. A Parallel Implementation of AKL. In New Generation Computing, Vol. 14, No. 1, pages31{52.Montelius, J. and Haridi, S. 1997. An Evaluation of Penny: A System for Fine Grain Impli
it Parallelism. In InternationalSymposium on Parallel Symboli
 Computation, ACM Press.Moolenaar, R. and Demoen, B. 1993. A Parallel Implementation for AKL. In M. Bruynooghe and J. Penjam (eds.) Pro
. Con-feren
e on Programming Language Implementation and Logi
 Programming, 5th International Symposium, Tallinn, Estonia,LNCS 714, Springer Verlag, pages 246{261.Mudambi, S. 1991. Performan
e of Aurora on NUMA ma
hines. In Vijay Saraswat and Kazunori Ueda, editors, Pro
eedings ofthe International Logi
 Programming Symposium, MIT Press, pages 793{806.Muthukumar, K. and Hermenegildo, M.V. 1989a. Determination of Variable Dependen
e Information through Abstra
tInterpretation. In E. Lusk and R. Overbeek (eds.) Pro
eedings of the North Ameri
an Conferen
e on Logi
 Programming,MIT Press, pages 166{185.Muthukumar, K. and Hermenegildo, M.V. 1989b. EÆ
ient Methods for Supporting Side E�e
ts in Independent And-parallelism and Their Ba
ktra
king Semanti
s. In G. Levi and M. Martelli (eds.) International Conferen
e on Logi
 Pro-gramming. MIT Press, pages 80{97.Muthukumar, K. and Hermenegildo, M.V. 1990. The CDG, UDG, and MEL Methods for Automati
 Compile-time Paral-lelization of Logi
 Programs for Independent And-parallelism. In D.H.D. Warren and P. Szeredi (eds.) Pro
eedings of theInternational Conferen
e on Logi
 Programming, MIT Press, pages 221{237.Muthukumar, K. and Hermenegildo, M.V. 1991. Combined Determination of Sharing and Freeness of Program VariablesThrough Abstra
t Interpretation. In K. Furukawa (ed.) Pro
eedings of the International Conferen
e on Logi
 Programming,MIT Press, pages 49{63.Muthukumar, K. and Hermenegildo, M.V. 1992. Compile-Time Derivation of Variable Dependen
y Using Abstra
t Interpre-tation. In Journal of Logi
 Programming, 13(2-3):315{347.Muthukumar, K., Bueno, F., Gar
��a de la Banda, M.J., and Hermenegildo, M.V. 1999. Automati
 Compile-time Par-allelization of Logi
 Programs for Restri
ted, Goal-level, Independent And-parallelism. In Journal of Logi
 Programming,38(2):165{218.Naish, L. 1988. Parallelizing NU-Prolog. In R. Kowalski and K. Bowen (eds.) Pro
eedings of the International Conferen
e onLogi
 Programming, MIT Press, pp. 1546{1564.Nguyen, T. and Deville, Y. 1998. A Distributed Ar
-Consisten
y Algorithm. In S
ien
e of Computer Programming, 30:227{250.Ohwada, H., Nishiyama, H., and Mizogu
hi, F. 2000. Con
urrent Exe
ution of Optimal Hypothesis Sear
h for Inverse Entail-ment. In J. Cussens and A. Fris
h (eds.) Pro
eedings of the Indu
tive Logi
 Programming Conferen
e, Springer Verlag, pp.165{173. - 84 -

Older, W.J. and Rummell, J.A. 1992. An In
remental Garbage Colle
tor for WAM-Based Prolog. In K. Apt (ed.) Pro
eedingsof the Joint International Conferen
e and Symposium on Logi
 Programming, MIT Press, pp. 369{383.Ozawa, T., Hosoi, A., and Hattori, A. 1990. Generation Type Gargabe Colle
tion for Parallel Logi
 Languages. In S. Debrayand M. Hermenegildo (eds.) Pro
eedings of the North Ameri
an Conferen
e on Logi
 Programming, MIT Press, pp.291{305.Page, D. 2000. ILP: Just Do It. In J. Cussens and A. Fris
h (eds.) Pro
eedings of the Indu
tive Logi
 Programming Conferen
e,Springer Verlag, pp. 21{39.Palmer, D. and Naish, L. 1991. NUA Prolog: An Extension of the WAM for Parallel Andorra. In K. Furukawa (ed.) Logi
Programming: Pro
eedings of the 8th International Conferen
e, MIT Press, pages 429{442.Peterson, J.L. and Silbers
hatz, A. 1986. Operating Systems Con
epts. 2nd Edition, Addison Wesley Publishing Co.Pittomvils, E., Bruynooghe, M., and Willems, Y.D. 1985. Towards a Real-Time Garbage Colle
tor for Prolog. In Pro
eedingsof the Symposium on Logi
 Programming, IEEE Computer So
iety, pp. 185{198.Pollard, G.H. 1981. Parallel Exe
ution of Horn Clause Programs. Ph.D. Thesis, Dept. of Computing, Imperial College.Pontelli, E. 1997. High-Performan
e Parallel Logi
 Programming. Ph.D. Thesis, New Mexi
o State University.Pontelli, E. 2000. Con
urrent Web Programming in CLP(WEB). In Hawaian International Conferen
e of Computers andSystems S
ien
e, IEEE Computer So
iety.Pontelli, E. and El-Khatib, O. 2001. Experiments in Parallel Exe
ution of Answer Set Programs. In A. Provetti and S. Tran(eds.) AAAI Spring Symposium on Answer Set Programming, AAAI.Pontelli, E. and Gupta, G. 1995a. On the Duality Between And-parallelism and Or-parallelism. In S. Haridi and P. Magnusson(eds.) Euro-Par, Springer Verlag, pages 43{54.Pontelli, E. and Gupta, G. 1995b. Data And-Parallel Logi
 Programming in &ACE. In Pro
eedings of the Symposium onParallel and Distributed Pro
essing, IEEE Computer So
iety.Pontelli, E. and Gupta, G. 1997a. Implementation Me
hanisms for Dependent And-Parallelism. In L. Naish (ed.) InternationalConferen
e on Logi
 Programming, MIT Press, pages 123{137.Pontelli, E. and Gupta, G. 1997b. Parallel Symboli
 Computation with ACE. In Annals of AI and Mathemati
s, Volume 21,Number 2{4, pages 359{395.Pontelli, E. and Gupta, G. 1998. EÆ
ient Ba
ktra
king in And-Parallel Implementations of Non-deterministi
 Languages. InT. Lai (ed.) International Conferen
e on Parallel Pro
essing, IEEE Computer So
iety, pp. 338{345 .Pontelli, E., Gupta, G., and Hermenegildo, M.V. 1995. A High-Performan
e Parallel Prolog Systems. In InternationalParallel Pro
essing Symposium, IEEE Computer So
iety, pp. 564{571.Pontelli, E., Gupta, G., Pulvirenti, F., and Ferro, A. 1997. Automati
 Compile-time Parallelization of Prolog Programs forDependent And-Parallelism. In L. Naish (ed.) International Conferen
e on Logi
 Programming, MIT Press, pages 108{122.Pontelli, E., Gupta, G., and Tang, D. 1995. Determina
y Driven Optimizations of Parallel Prolog. In L. Sterling (ed.)International Conferen
e on Logi
 Programming, MIT Press, pages 615{629.Pontelli, E., Gupta, G., Tang, D., Carro, M., and Hermenegildo, M.V. 1996. Improving the EÆ
ien
y of Nondeterministi
Independent And-Parallel Systems. Computer Languages, Vol. 22, No. 2/3, pages 115{142.Pontelli, E., Gupta, G., Wiebe, J., and Farwell, D. 1998. Natural Language Multipro
essing: a
ase study. In 15th NationalConferen
e on Arti�
ial Intelligen
e, AAAI, pages 76{82.Pontelli, E., Ranjan, D., and Gupta, G. 1997. On the Complexity of Parallel Implementation of Logi
 Programs. In S.Ramesh and G. Sivakumar (eds.) International Conferen
e on Foundations of Software Te
hnology and Theoreti
al ComputerS
ien
e, Springer Verlag, pages 123{137.Popov, K. 1997. A Parallel Abstra
t Ma
hine for the Thread-Based Con
urrent Language Oz. In E. Pontelli and V. SantosCosta (eds.) Pro
eedings of the Workshop on Parallelism and Implementation Te
hnology for Constraint Logi
 Programming,Port Je�erson, NY.Ramkumar, B. and Kal�e, L.V. 1989. Compiled Exe
ution of the REDUCE-OR Pro
ess Model. In E. Lusk and R. Overbeek(eds.) Pro
eedings of the North Ameri
an Conferen
e on Logi
 Programming, MIT Press, pages 313{331.Ramkumar, B. and Kal�e, L.V. 1990. Joining And Parallel Solutions in And/Or Parallel Systems. In E. Lusk and R. Overbeek(eds.) Pro
. of N. Ameri
an Conferen
e on Logi
 Programming, MIT Press, pages 624{641.Ramkumar, B. and Kal�e, L.V. 1992. Ma
hine Independent AND and OR Parallel Exe
ution of Logi
 Programs: Part I and II.In IEEE Transa
tions on Parallel and Distributed Systems, Volume 2, Number 5.Ranjan, D., Pontelli, E., and Gupta, G. 1999. The Complexity of Or-Parallelism. In New Generation Computing, Vol. 17,No. 3, pp. 285-308.Ranjan, D., Pontelli, E., and Gupta, G. 2000. Data Stru
tures for Order-Sensitive Predi
ates in Parallel Nondeterministi
Systems. In A
ta Informati
a, 37(1):21{43.Ranjan, D., Pontelli, E., Gupta, G., and Longpre, L. 2000. The Temporal Pre
eden
e Problem. In Algorithmi
a, Vol. 28,pp. 288{306.Rat
liffe, M. and Syre, J.C. 1987. A Parallel Logi
 Programming Language for PEPSys. In J. M
Dermott (ed.) Pro
eedingsof IJCAI, Milan, pages 48{55.Ro
ha, R., Silva, F., and Santos Costa, V. 1999. Or-Parallelism within Tabling. In G. Gupta (ed.) Pro
eedings of theWorkshop on Pra
ti
al Aspe
ts of De
larative Languages, Springer Verlag, pp. 137{151.- 85 -

Rokusawa, K., Nakase, A., and Chikayama, T. 1996. Distributed Memory Implementation of KLIC. In New GenerationComputing, 14(3):261{280.Ruiz-Andino, A., Araujo, L., S�aenz, F., and Ruz, J.J. 1999. Parallel Exe
ution Models for Constraint Programming overFinite Domains. In G. Nadathur (ed.) Pro
eedings of the Conferen
e on Prin
iples and Pra
ti
e of De
larative Programming,Springer Verlag, pp. 134{151.Samal, A. and Henderson, T. 1987. In International Journal of Parallel Programming, 16(5):341{364.Santos Costa, V. 1999 COWL: Copy-On-Write for Logi
 Programs. In Pro
eedings of IPPS/SPDP, IEEE Computer So
iety,pp. 720{727.Santos Costa, V., Bian
hini, R., and Dutra, I. 1997. Parallel Logi
 Programming Systems on S
alable Multipro
essors. InPro
eedings of the International Symposium on Parallel Symboli
 Computation, pp. 58{67.Santos Costa, V., Bian
hini, R., and Dutra, I. 2000. In Journal of Parallel and Distributed Computing, 60(7):835{852.Santos Costa, V., Damas, L., Reis, R., and Azevedo, R. 1999. YAP User's Manual. www.n

.up.pt/~vs
/Yap.Santos Costa, V., Ro
ah, R., and Silva, F. 2000. Novel Models for Or-Parallel Logi
 Programs: A Performan
e Analysis. InA. Bode et al. (eds.) Pro
eedings of Euro-Par, Springer Verlag, pp. 744{753.Santos Costa, V., Warren, D.H.D., and Yang, R. 1991a. Andorra-I: A parallel Prolog system that transparently exploitsboth and- and or-parallelism. In Pro
eedings of the Third ACM SIGPLAN Symposium on Prin
iples and Pra
ti
e of ParallelProgramming, ACM Press, pp. 83{93.Santos Costa, V., Warren, D.H.D, and Yang, R. 1991b. The Andorra-I Prepro
essor: Supporting full Prolog on the Basi
Andorra model. In K. Furukawa (ed.) Logi
 Programming: Pro
eedings of the 8th International Conferen
e, MIT Press, pages443{456.Santos Costa, V., Warren, D.H.D., and Yang, R. 1991
. The Andorra-I Engine: A parallel implementation of the Basi
Andorra model. In K. Furukawa (ed.) Logi
 Programming: Pro
eedings of the 8th International Conferen
e, MIT Press, pages825{839.Santos Costa, V., Warren, D.H.D., and Yang, R. 1996. Andorra-I Compilation. In New Generation Computing, 14(1):3{30.Saraswat, V. 1989. Con
urrent Constraint Programming Languages. Ph.D. Dissertation, Carnegie-Mellon University.S
h�onhage, A. 1980. Storage Modi�
ation Ma
hines. In SIAM Journal of Computing, Vol. 9, No. 3, pages 490{508.Shapiro, E. 1987. Con
urrent Prolog : Colle
ted Papers. MIT Press.Shapiro, E. 1989. The Family of Con
urrent Logi
 Programming Languages. In ACM Computing Surveys, Vol 21, No. 3, pages413{510.Shen, K. 1992a. Exploiting Dependent And-Parallelism in Prolog: The Dynami
, Dependent And-Parallel S
heme. In K. Apt(ed.) Pro
eedings of the Joint International Conferen
e and Symposium on Logi
 Programming, MIT Press, pages 717{731.Shen, K. 1992b. Studies in And/Or Parallelism in Prolog. Ph.D. Dissertation, University of Cambridge.Shen, K. 1994. Improving the Exe
ution of the Dependent And-parallel Prolog DDAS. In C. Halatsis et al. (eds.) PARLE:Parallel Ar
hite
tures and Languages Europe, Springer Verlag, pages 438{452.Shen, K. 1997. A New Implementation S
heme for Combining And/Or Parallelism. In E. Pontelli and Santos Costa (eds.)Pro
eedings of the Workshop on Parallelism and Implementation Te
hnology for Constraint Logi
 Programming, Port Je�erson,NY.Shen, K. and Hermenegildo, M.V. 1991. A Simulation Study of Or- and Independent And-parallelism. In V. Saraswat and K.Ueda (eds.) Pro
eedings of the International Logi
 Programming Symposium. MIT Press, pages 135{151.Shen, K. and Hermenegildo, M.V. 1993. A Flexible S
heduling and Memory Management S
heme for Non-Deterministi
,And-parallel Exe
ution of Logi
 Programs. Te
hni
al report, U. of Madrid (UPM), Fa
ultad Inform�ati
a UPM, 28660-Boadilladel Monte, Madrid-Spain.Shen, K., Santos Costa, V., and King, A. 1998. Distan
e: a New Metri
 for Controlling Granularity for Parallel Exe
ution.In J. Ja�ar (ed.) Pro
. Joint International Conferen
e and Symposium on Logi
 Programming, MIT Press, pages 85{99.Silva, M.G., Dutra, I., Bian
hini, R., and Santos Costa, V. 1999. The In
uen
e of Computer Ar
hite
tural Parameters onParallel Logi
 Programming Systems. In G. Gupta (ed.) Pro
eedings of the Workshop on Pra
ti
al Aspe
ts of De
larativeLanguages, Springer Verlag, pp. 122{136.Silva, F. and Watson, P. 2000. Or-Parallel Prolog on a Distributed Memory Ar
hite
ture. Journal of Logi
 Programming,North-Holland, Vol. 43, No. 2, pp. 173{186.Sindaha, R. 1992. The Dharma S
heduler|De�nitive S
heduling in Aurora on Multipro
essors Ar
hite
ture. In Pro
eedings ofthe Fourth IEEE Symposium on Parallel and Distributed Pro
essing, pages 296{303. IEEE Computer So
iety Press.Sindaha, R. 1993. Bran
h-Level S
heduling in Aurora: The Dharma S
heduler. In D. Miller (ed.) Pro
eedings of InternationalLogi
 Programming Symposium, MIT Press, pp. 403{419.Singhal, A. and Patt, Y. 1989. Uni�
ation Parallelism: How mu
h
an be Exploited? In E. Lusk and R. Overbeek (eds.)Pro
eedings of North Ameri
an Conferen
e on Logi
 Programming. MIT Press, pages 1135{1148.Smith, D.A. 1996. MultiLog and Data Or-Parallelism. In Journal of Logi
 Programming, 29(1-3):195-244.Smolka, G. 1995. The Oz Programming Model. In Computer S
ien
e Today, Springer Verlag, pages 324{343.Sterling, L. and Shapiro, E. 1994. The Art of Prolog. MIT Press.- 86 -

Szeredi, P. 1989. Performan
e analysis of the Aurora or-parallel Prolog system. In E. Lusk and R. Overbeek (eds.) Pro
eedingsof the North Ameri
an Conferen
e on Logi
 Programming, MIT Press, pages 713{732.Szeredi, P. 1991. Using dynami
 predi
ates in an or-parallel Prolog system. In V. Saraswat and K. Ueda (eds.) Pro
eedings ofthe International Logi
 Programming Symposium, MIT Press, pages 355{371.Szeredi, P., Carlsson, M., and Yang, R. 1991. Interfa
ing engines and s
hedulers in or-parallel Prolog systems. In E. Aarts etal. (eds.) PARLE 91, Conferen
e on Parallel Ar
hite
tures and Languages Europe. Springer-Verlag, Le
ture Notes in ComputerS
ien
e 506, pages 439{453.Szeredi, P. and Farkas, Z. 1996. Handling Large Knowledge Bases in Parallel Prolog. In Pro
eedings of the Workshop on HighPerforman
e Logi
 Programming Systems, ESSLLI, Prague.Szeredi, P., Moln�ar, K., and S
ott, R. 1996. Serving Multiple HTML Clients from a Prolog Appli
ation. In Pro
eedings ofthe JICSLP'96 Post-Conferen
e Workshop on Logi
 Programming Tools for Internet Appli
ations, Bonn.Takeu
hi, A. 1992. Parallel Logi
 Programming 1992. Kluwer A
ademi
 Press.Tarau, P. 1998. Inferen
e and Computation Mobility with Jinni. Te
hni
al Report, University of North Texas.Taylor, A. 1991. High-Performan
e Prolog Implementation. Ph.D. Thesis, University of Sydney.Tebra, H. 1987. Optimisti
 And-Parallelism in Prolog. In J. de Bakker, A. Nijman, P. Treleaven (eds.) Parallel Ar
hite
turesand Languages Europe, Springer Verlag.Terasaki, S., Hawley, D.J., Sawada, H., Satoh, K., Menju, S., Kawagishi, T., Iwayama, N., and Aiba, A. 1992. ParallelConstraint Logi
 Programming Language GDCC and its Parallel Constraint Solvers. In ICOT Sta� (eds.) Pro
eedings of theConferen
e on Fifth Generation Computing Systems, ICOT, pp. 330{346.Ti
k, E. 1987. Memory Performan
e of Prolog Ar
hite
tures. Kluwer A
ademi
 Press.Ti
k, E. 1991. Parallel Logi
 Programming. MIT Press.Ti
k, E. 1992. Visualizing Parallel Logi
 Programming with VISTA. In ICOT Sta� (eds.) Pro
. International Conferen
e onFifth Generation Computer Systems, Ohmsha Ltd., Tokyo, pages 934{942.Ti
k, E. 1995. The Deevolution of Con
urrent Logi
 Programming Languages. In Journal of Logi
 Programming, 23(2):89{123.Ti
k, E. and Zhong, X. 1993. A Compile-time Granularity Analysis Algorithm and its Performan
e Evaluation. In NewGeneration Computing, 11(3):271{295.Tinker, P. 1988. Performan
e of an OR-parallel Logi
 Programming system. In International Journal of Parallel Programming,17(1), pages 59{92.Tong, B. and Leung, H. 1993. Con
urrent Constraint Logi
 Programming on Massively Parallel SIMD Computers. In D. Miller(ed.) Pro
. International Logi
 Programming Symposium, MIT Press, pages 388{402.Tong, B. and Leung, H. 1995. Performan
e of a Data Parallel Con
urrent Constraint Programming System. In K. Kan
hanasutand J-J. Levy (eds.) Asian Computing S
ien
e Conferen
e, Springer Verlag, pages 319{334.Traub, K.R. 1989. Compilation as Partitioning: a New Approa
h to Compiling Non-stri
t Fun
tional Languages. In Conf. onFun
tional Programming Languages and Computer Ar
hite
ture, ACM Press, pages 75{88.Ueda, H. and Montelius, J. 1996. Dynami
 S
heduling in an Impli
it Parallel System. In Pro
eedings of the ISCA 9thInternational Conferen
e on Parallel and Distributed Computing Systems, ISCA.Ueda, K. 1986. Guarded Horn Clauses. Ph.D. Thesis, University of Tokyo.Ueda, K. and Morita, M. 1993. Moded Flat GHC and its Message-oriented Implementation Te
hnique. In New GenerationComputing, Volume 11, Number 3/4, pages 323{341.Ullman, J.D. 1989. Prin
iples of Database and Knowledge-base Systems. Computer S
ien
e Press.Van Hentenry
k, P. 1989a. Parallel Constraint Satisfa
tion in Logi
 Programming: Preliminary Results of CHIP within PEPSys.In G. Levi and M. Martelli (eds.) Pro
. of the Sixth International Conferen
e on Logi
 Programming, MIT Press, pages 165{180.Van Hentenry
k, P. 1989b. Constraint Satisfa
tion in Logi
 Programming. MIT Press.Van Hentenry
k, P., Saraswat, V., and Deville, Y. 1998. Design, Implementation, and Evaluation of the Constraint Language

(FD). In Journal of Logi
 Programming, 37(1-3), pages 139{164.Van Roy, P. 1990. Can Logi
 Programming Exe
ute as Fast as Imperative Programming?. Ph.D. Thesis, University of Californiaat Berkeley.Van Roy, P. 1994. 1983-1993: The Wonder Years of Sequential Prolog Implementation. In Journal of Logi
 Programming, Vol.19/20, pages 385{441.Van Roy, P. and Despain, A.M. 1992. High-Performan
e Logi
 Programming with the Aquarius Prolog Compiler. In IEEEComputer, 25(1):54{68.Vaupel, R., Pontelli, E., and Gupta, G. 1997. Visualization of And/Or-Parallel Exe
ution of Logi
 Programs. In L. Naish(ed.) Pro
. International Conferen
e on Logi
 Programming, MIT press, pages 271{285.V�eron, A., S
huerman, K., Reeve, M., Li, L-L. 1993. Whya dn How in the ElipSys Or-Parallel CLP System. In A. Bode, M.Reeve, G. Wolf (eds.) PARLE93: Conferen
e on Parallel Ar
hite
tures and Languages Europe, Springer Verlag, pp. 291{303.Villaverde, K., Guo, H-F., Pontelli, E., and Gupta, G. 2000. In
remental Sta
k Splitting. In I. Dutra (ed.) Pro
eedings ofthe Workshop On Parallelism and Implementation Te
hnology for Constraint Logi
 Programming, London.Walla
e, M., Novello, S., and S
himpf, J. 1997. ECLiPSe: A Platform for Constraint Logi
 Programming. Te
hni
al Report,IC-Par
, Imperial College, London. - 87 -

Warren, D.S. 1984. EÆ
ient Prolog Memory Management for Flexible Control Strategies. In Int. Symp. on Logi
 Programming,IEEE Computer So
iety, Atlanti
 City, pages 198{202.Warren, D.H.D. 1980. An Improved Prolog Implementation whi
h Optimizes Tail Re
ursion. Te
hni
al Report 156, Universityof Edinburgh.Warren, D.H.D. 1983. An Abstra
t Instru
tion Set for Prolog. Te
h. Note 309, SRI International.Warren, D.H.D. 1987a. The SRI model for or-parallel exe
ution of Prolog|abstra
t design and implementation issues. InPro
eedings of the 1987 Symposium on Logi
 Programming, IEEE Computer So
iety Press, pages 92{102.Warren, D.H.D. 1987b. Or-Parallel Exe
ution Models of Prolog. In H. Ehrig et al. (eds.) Pro
eedings of TAPSOFT '87, Le
tureNotes on Computer S
ien
e 250, Springer Verlag, pages 243{259.Warren, D.H.D. 1988. The Andorra Prin
iple. Seminar given at Gigalips Workshop, SICS, Sweden.Warren, D.H.D. and Haridi, S. 1988. The Data Di�usion Ma
hine { a Shared Virtual Memory Ar
hite
ture for ParallelExe
ution of Logi
 Programs. In ICOT Sta� (eds.) Pro
eedings of International Conferen
e on Fifth Generation ComputerSystems, Springer Verlag, pages 943{952.Weemeeuw, P. and Demoen, B. 1990. Memory
ompa
tion for shared memory multipro
essors, design and spe
i�
ation. In S.Debray and M. Hermenegildo (eds.) Pro
eedings of the North Ameri
an Conferen
e on Logi
 Programming. MIT Press, pages306{320.Westphal, H., Robert, P., Chassin, J., and Syre, J. 1987. The PEPSys Model: Combining Ba
ktra
king, AND- and OR-parallelism. In International Symposium in Logi
 Prog., IEEE Computer So
iety, San Fran
is
o, pages 436{448.Winsborough, W. 1987. Semanti
ally Transparent Reset for And Parallel Interpreters based on the Origin of Failure. InPro
eedings of the Fourth Symposium on Logi
 Programming, IEEE Computer So
iety, pp. 134{152.Wise, D.S. 1986. Prolog Multipro
essors. Prenti
e-Hall.Wolfson, O. and Silbers
hatz, A. 1988. Distributed Pro
essing of Logi
 Programs. In H. Boral and P. Larson (eds.) Pro
eedingsSIGMOD Conferen
e on Management of Data, ACM, pages 329{336.Woo, N.S. and Choe, K-M. 1986. Sele
ting the Ba
ktra
k Literal in the AND/OR Pro
ess Model. In Symposium on Logi
Programming, IEEE Computer So
iety, pages 200{210.Xu, L., Koike, H., and Tanaka, H. 1989. Distributed Garbage Colle
tion for the Parallel Inferen
e Engine PIE64. In E. Luskand R. Overbeek (eds.) Pro
eedings of the North Ameri
an Conferen
e on Logi
 Programming, MIT Press, pp. 922{943.Yang, R. 1987. P-Prolog: A Parallel Logi
 Programming Language. Ph.D. Thesis. Keio University. Published by World S
ienti�
Publishers.Yang, R., Beaumont, T., Dutra, I., Santos Costa, V., and Warren, D.H.D. 1993. Performan
e of the Compiler-basedAndorra-I System. In D.S. Warren (ed.) Pro
eedings of the Tenth International Conferen
e on Logi
 Programming. MITPress, pages 150{166.Zhong, X., Ti
k, E., et al. 1992. Towards an EÆ
ient Compile-time Granularity Algorithm. In ICOT Sta� (eds.) InternationalConferen
e on Fifth Generation Computer Systems, Ohmsha Ltd., Tokyo, pages 809{816.Zima, H. and Chapman, B. 1991. Super
ompilers for Parallel and Ve
tor Computers. ACM Press.

- 88 -

