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Abstract

SLG resolution [3] uses tabling to evaluate non-floundering normal logic programs according to
the well-founded semantics. As reported in [22, 25] the SLG-WAM, which forms the engine of the
XSB system, can compute in-memory recursive queries an order of magnitude faster than current
deductive databases. At the same time, the SLG-WAM tightly integrates Prolog code with tabled
SLG code, and can execute Prolog code with minimal overhead compared to the WAM. As a result,
the SLG-WAM brings to logic programming important termination and complexity properties of
deductive databases.

This paper describes the architecture of the SLG-WAM for a powerful class of programs, the
class of fized-order dynamically stratified programs. We offer a detailed description of the algorithms,
data structures, and instructions that the SLG-WAM adds to the WAM, and a performance analysis
of engine overhead due to the extensions.

*Preliminary papers presenting initial designs of this abstract machine appeared in the following conference pro-
ceedings. In Proceedings of the 1994 International Symposium on Logic Programming (The MIT Press): “An Abstract
Machine for SLG resolution: Definite Programs” pp. 633-652; and “Analysis of SLG Evaluation of Definite Programs”
pp- 219-235. In Proceedings of the Thirteenth Conference on Automated Deduction, (Springer-Verlag): “An Abstract
Machine for Fixed-Order Dynamically Stratified Programs”.
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1 Introduction

The lack of termination of SLDNF resolution, even on simple programs such as transitive closure, is
a well-known problem. So is the fact that SLDNF may repeatedly evaluate the same subgoal, leading
to unacceptable complexity and performance. Much research has aimed at addressing these issues.
Until recently, the majority of such research has focussed on set-at-a-time strategies such as those
based on magic-style evaluation. Tabled resolution offers an alternative approach to the limitations of
SDLNF. One such formulation, SLG resolution (Linear resolution with Selection function for General
logic programs [3]), offers advantages in its ability to evaluate queries to programs in accordance with
the well-founded semantics [30], and to do so with polynomial data complexity (as defined in [33, 30])
if these queries are ground and the programs restricted to Datalog with negation.

Despite the limitations of SLDNF and the availability of newer evaluation methods such as magic
and tabling, Prolog is still by far the most popular logic programming language. The persistent
popularity of Prolog arguably arises from two causes. First, robust implementations are available
for Prolog which are suitable for practical, and even commercial purposes. Secondly, Prolog offers a
number of well-known programming constructs, along with a proven programming environment.

One would like to have the best of both worlds: to handle termination and negation according to the
well-founded semantics, but with the speed of Prolog and within its environment. Research on the XSB
system [22] is geared exactly towards these goals. The termination and complexity properties of XSB
have been central to its use for Program Analysis [6, 4], for Natural Language processing [11, 10] and
for concurrency analysis [14]. Furthermore inclusion of these termination and complexity properties
adds little performance overhead to the engine underlying most Prolog systems, the WAM (Warren
Abstract Machine [35, 1]). As a result, XSB has also been used by thousands of people around the
world to develop Prolog as well as tabled logic programs.

XSB is based on an extended WAM-style engine, the SLG-WAM. This paper describes the data
structures, algorithms, instruction set and performance of the SLG-WAM on the important class of
left-to-right dynamically stratified (LRD-stratified) programs [23]. This class properly includes other
stratification classes such as (left-to-right) modular stratification [20], and may be the largest class of
normal logic programs that can be evaluated using a fixed-order computation rule.

The structure of the paper is as follows. Section 2 reviews a variant of SLG suitable for definite
programs. Section 3 presents in detail an abstract machine for definite programs. Sections 4 and 5
define the class of LRD-stratifled programs and tabling operations needed to evaluate this class;
Section 6 presents extensions to the definite engine that are needed to evaluate this class of programs.
Finally, Section 7 presents performance results on the overhead incurred by the tabling extensions and
on the speed of tabled evaluation compared to SLDNF evaluation. We point out that, while we use
the terminology of SLG, the differences between SLG and other table-based evaluation strategies such
as OLDT [26] or SLD-AL [34] are minor for definite programs. We also note that while much of this
paper assumes a knowledge of the WAM, whenever possible we have tried to present algorithms and
data structures of the SLG-WAM in a manner that assumes only a modest familiarity with the WAM.
We thus hope that this detailed description will enable other implementors to incorporate various
types of tabling in their own systems.

Related Implementations of Tabling It is natural to ask whether engine modifications are really
required to implement tabling, or whether an SLG interpreter (or preprocessor) could be written in
Prolog. If so, then Prolog itself could compute SLG. Such interpreters can and in fact have been
written by using Prolog’s dynamic database as a table store, (for instance the Extension Tables of [7]



preprocess tabling operations for definite programs), but their speeds and robustness have usually
turned out to be unacceptable for general programming. As will be described in Section 2, certain
tabled subgoals resolve against answers rather than against program clauses. The branches of the
search tree corresponding to these subgoals must either be maintained or reconstructed. Subgoals that
are to be resolved against answers must be retained until the fixpoint is reached: until all applicable
answers have been derived and resolved against the subgoals. Likewise, newly derived answers must
be queued to resolve against subgoals arbitrarily far away in the search tree. These actions require
scheduling and suspension features that are not easily implementable without appropriate extensions
to the WAM. A recent alternative approach implements SLG by transforming a program using a
continuation passing style and then employs foreign function calls from SICStus Prolog to access
tables [18]. This approach has the advantage of portability — foreign function calls are less system-
dependent than engine redesign — but compromises on speed, flexibility, and robustness.

2 Basic Definitions and Notation of SLG Resolution

In this section we present the terminology and basic definitions of SLG resolution [3]. We do so
through a simplified version which is sufficient to model finite computations of definite and fixed-order
stratified logic programs. In general, we assume the usual terminology of logic programs from [12].
We also assume that programs are evaluated using a fixed left-to-right literal selection strategy. We
define subgoals as atoms, and treat variant atoms as identical. In our version of SLG a tabled program
is a program augmented with tabling declarations of the form

:- table p1/ni1,...,Pk/Nk.-

where p; is a predicate symbol and n; is an integer. These declarations ensure that all queries to the
predicate p; of arity n; will be executed using SLG. Other predicates are implicitly assumed as non-
tabled in which case SLD resolution is used for queries to these predicates. Slightly abusing terminology,
we will speak of tabled subgoals and literals as well as tabled predicates. Also for simplicity, if a literal
(not)S is selected for resolution in node of an SLG tree, we will speak of S as the selected subgoal of
a node.

Tabling methods such as SLG evaluate programs by maintaining tables of subgoals and their
answers, and by resolving repeated occurrences of subgoals against answers from the table rather
than against program clauses. By resolving answers in this manner, rather than repeatedly using
program clause resolution as in SLD, SLG avoids looping and thus terminates for all programs with
the bounded term-size property (see e.g. [29, 3]). SLG systems capture the states of an SLG evaluation
of a query against a program and have two components: an SLG forest, which is a set of SLG trees, and
a table. Before providing formal definitions, we introduce some aspects of SLG evaluation informally
through an example.

Example 2.1 Consider the evaluation of the query 7- p(a,Z) with respect to the program in Fig-
ure 1. The declaration :- table p/2 indicates that SLG resolution is to be used for calls to predicate
p/2. An SLG system consisting of a forest of SLG trees and a table is depicted in Figure 1 near
the end of the evaluation. A root node of a tree in the forest consists of a tabled subgoal, and,
for definite programs, a non-root node consists of a clause: Answer_Template :— Goal_List, where
Answer_Template accumulates substitutions for the variables of the subgoal, while Goal List contains
literals that remain in order to derive an answer.



0.p(a,z
p@2) :- table p/2.

p(X!Z) - p(XvY)vp(Y!Z)
1. p(az):- p(aY).p(Y.2) 2. p(a,2) :- e(a,2),q(2) p(X,2) :- (X,2),9(2).

e(a,b). e(a,d). e(b,c).

6.p(a2) :- p(b.2) 3. p(ab) :- q(b) 5. p(a,d) :- q(d) d(@). q(b). a(c).
Subgoal | Answers | State
11. p(ac) :- 4. p(a,b) :-
p(a,2) P@b) | |ncomplete
p(a.c)
6a. p(b,2) p(b,Z) p(b,c) Incomplete
/\ p(c,2) Incomplete
7. p(b,Z) :- p(b,Y),p(Y.2) 8. p(b,2) :- e(b,2),q(2)
12a. p(c,2)
12. p(b,2) :- p(c.2) 9.p(b.c) - q(2)
13. p(c,Z) :- p(c,Y),p(Y,2) 14. p(c,2):- e(c,2),9(2)
10. p(b,c) :-

Figure 1: Program and SLG System for the query 7- p(a,Z).

Let us examine operations of the SLG evaluation in detail. The evaluation begins with a system
containing a tree with root node p(a,Z) and an entry ({p(a, Z),0,incomplete)) in the table. In the
above table entry, the first argument represents the tabled subgoal, the second its current set of
answers, and the third its state. This system initialization can be thought of as being performed by
the NEW SUBGOAL operation which is applicable to a subgoal S if no entry for 5 exists in the table. In
this case, NEW SUBGOAL creates a tree with root S, and an entry for S in the table 1. The evaluation
of query p(a,Z) then uses PROGRAM CLAUSE RESOLUTION to generate children for this subgoal. The
program clause p(X,Z) :- p(X,Y),p(Y,Z) is first resolved against the new subgoal, creating node 1
in Figure 1. In node 1, the selected literal p(a,Y) is tabled, so the node is termed active, and its
selected literal will be resolved away using answers. Since (a variant of) p(a,Y) has an entry in the
table, the NEW SUBGOAL operation is not applicable. If answers for this subgoal were present, children
for node 1 could be produced via ANSWER RETURN operations. However, since there are no answers,
the only alternative is to suspend this branch of the computation to wait for their possible generation.
The only applicable operation for the forest at this point is to resolve the second program clause
(p(X,Z) :- e(X,2),q(Z)) against p(a,Z) in node 0. This resolution produces node 2. Since the
selected literal for node 2 is non-tabled, node 2 is termed an interior node, and SLD-style program
clause resolution is used on this literal. SLD-style resolution continues, eventually producing node 4
which contains no further literals to resolve. The NEW ANSWER operation adds p(a,b) to the table
as an answer for p(a,Z). Further program clause resolution is performed for the subtree rooted at
node 2, leading to node 5. Next, the answer produced in node 4, p(a,b), is returned to all active
nodes suspended on p(a,Z) via the ANSWER RETURN operation. In this example, the only such node

'S1,G operations are denoted in the font of NEW SUBGOAL throughout the paper, while engine-level instructions are
denoted in the font of tabletry.



is node 1 and through ANSWER RETURN node 6 is created.

The evaluation eventually gives rise to two other tabled subgoals, p(b,Z) and p(c,Z), each of
which is entered in the table and forms the root of its own SLG tree. In general, the process of
expanding nodes, adding new answers and returning them to consuming subgoals, continues until
further resolution will produce no new answers for a mutually dependent set of tabled subgoals, called
Strongly Connected Components (or SCCs). At such a stage, the subgoals in the SCC are completely
evaluated. Because answers for a completely evaluated subgoal S are in the table, the tree for S is of
no further use to a computation and can be disposed. In the SLG system of this example there are no
mutual dependencies among subgoals, and so there are three singleton SCC’s {p(a,Z)}, {p(b,Z)}, and
{p(c,Z)}. Using the SLG COMPLETION operation the trees for p(c,Z) and p(b,Z) can be disposed
once it is determined that they are completely evaluated: that no NEW SUBGOAL, ANSWER RETURN,
PROGRAM CLAUSE RESOLUTION, or NEW ANSWER operations are applicable for any node on the tree.
In this example that condition occurs after node 14 was created. The SLG system after completing
these subgoals is shown in Figure 2. After node 15 has been created, {p(a,Z)} is also completely

0.p(a,2)
1.p(@2) :-p(aY)p(y.2) 2. p(az) - e@2).q(2) Subgoal | Answers | State
p(a,2) p(a.b) Incomplete
p(a.c)
6-p@2):-pb.2) 15. p(a2):-p(c2) 3. p(ab):-q(b) 5. p(ad) :- q(d) pb.2) | plb.c) | Complete
p(c,2) Complete
11. p(a,c) :- 4.p(a,b) :-

Figure 2: SLG System for the query ?- p(a,Z) on creation of node 15.
evaluated, and all subgoals can be completed and their trees safely disposed.

From Example 2.1, it can be seen that over the class of definite programs, SLG resolution does not
greatly differ from other tabled-based formulations. SLG, however, is a variant-based tabling method:
a tree for a new subgoal is created, or an answer added to the table depending whenever the subgoal
or answer is different (up to variance) from those previously derived. Other tabling methods, such
as OLDT [26] check whether a new subgoal or answer is subsumed by one previously derived in the
evaluation. A variant-based tabling method preserves observables for Prolog; while a subsumption-
based method may have better termination or complexity properties for certain programs and queries.

We now present the formal definitions of terms used in the example.

Definition 2.1 (SLG System) An SLG system is a forest of SLG trees, along with an associated
table. Root nodes of SLG trees are subgoals of tabled predicates. Non-root nodes either have the form
fail or

Answer _Template :— Goal_List.
The Answer_Template is an atom, and Goal_List is a possibly empty sequence of literals.

The table is a set of ordered triples of the form

(Subgoal, Answer_Set, State)



where the first element is a subgoal, the second a set of atoms, and the third either the constant
complete or incomplete. a

As terminology, if (S, AS, St) is an entry in the table and A € AS, we say that S is a subgoal in
the table, that A is an answer in the table for S and St is the state of the subgoal.

Definition 2.2 (SLG evaluation) Given a tabled program P, an SLG evaluation & for a subgoal G
of a tabled predicate is a sequence of systems So, S, ..., Sy such that:

e Sp is the forest consisting of a single SLG tree rooted by G and the table {(G, 0, incomplete)};

e for each finite ordinal &k, Sg41 is obtained from Sk by an application of one of the operations in
Definitions 2.3 or 5.1.

If no operation is applicable to S,,, S, is called a final system of £. In a final SLG system S,, of a non-
floundered evaluation &£ (i.e., where no non-ground negative literal of a tabled predicate is selected),
if all its subgoals are completely evaluated, we say that S, (and &) is complete; otherwise we say that
Sy is flummozed. a

In our version of SLG, tabling operations affect both forests and tables. Trees can be created and
extended, and subgoals and answers copied into the table. If a subcomputation has derived all possible
answers for a subgoal S and copied these answers to the table, the tree with root S is no longer needed
and can be disposed. The subgoals in the table of a system & thus are root nodes of SLG trees in S,
or of trees in a predecessor of S that are now disposed.

It is convenient to describe a node of an SLG tree by its status. The root node of an SLG tree has
status generator. Non-root nodes may have status interior if its selected literal is non-tabled, answer,
if its Goal_List is empty, or active if its selected literal is tabled and the node does not have fail as
an immediate child. In the last case, we will speak of positive or negative active nodes, depending
on whether the selected literal is positive or negative. We call a subgoal S a consumer subgoal in a
system § if it is the selected subgoal of a positive active node, and the state of S in the table is not
complete. fail nodes are used only in programs with negation and we postpone their discussion until
Section 5. Using this terminology, we define tabling operations for definite programs.

Definition 2.3 (SLG operations for Definite Programs) Given a system S of an SLG evalua-
tion of a tabled program P and subgoal G, Si+1 may be produced by one of the following operations.

[NEW sUBGOAL | Given an active node N with selected subgoal S, where S is not present in the table
of Sk, create a new SLG tree with root S and add the entry (S, 0, incomplete) to the table.

|[PROGRAM CLAUSE RESOLUTION | Let N be a node in S that is either a root node S or interior node
Answer _Template :— S, Goals. Let C = Head :— Body be a program clause such that Head
unifies with S with mgu 6 and assume that C has not been used for resolution at node N. Then

e if N is a root node, produce a child of N: (S :— Body)#.
e if N is an interior node, produce a child of N: (Answer_Template :— Body, Goals)6.

ANSWER RETURN | Let N be a positive active node Answer Template : — S,Goals. Let A be an
answer for S in Sy and assume that A has not been used for resolution against N. Then produce
a child of N: (Answer_Template :— Goals)f where 8 is the mgu of § and A.




[INEW ANSWER | Let A :— be a node in a tree rooted by a subgoal S, such that A is not an answer in
the table entry for S in Sg. Then add A to the set of answers for S in the table.

If Set is a set of subgoals that is completely evaluated (according to Definition 2.5),

remove all trees whose root is a subgoal in Sef, and change the state of all table entries for
subgoals in Set from incomplete to complete. a

Further operations to handle negative literals are presented in Section 5.

Returning to Example 2.1 it can be seen that the operation NEW SUBGOAL is used to create
nodes 6a and 12a. PROGRAM CLAUSE RESOLUTION is used to create nodes 1, 2, 7, 8, 13 and 14 via
resolution against generator nodes, and to create nodes 3, 4, 5, 9 and 10 via resolution with selected
literals of interior nodes. ANSWER RETURN creates nodes 6, 11, 12 and 15 through resolution against
selected atoms of active nodes. NEW ANSWER is used to intern answer nodes 4, 10 and 11 into the
table.

The COMPLETION operation in Definition 2.3 relies on the notion of a set of subgoals being com-

pletely evaluated. In order to define this latter notion we introduce the notion of subgoal dependencies
in an SLG system.

Definition 2.4 (Subgoal Dependency Graph) Let Sg be an SLG system and F its SLG forest.
We say that a tabled subgoal S directly depends on a tabled subgoal S’ iff the tree rooted by S
contains an active node whose selected literal is (not)S’. If (not)S’ is a positive (negative) literal, then
we say that S directly depends positively (negatively) on S'. The dependence may be both positive
and negative at the same time.

The Subgoal Dependency Graph SDG(S) = (V, E) of Sk is a directed graph in which V' is the set
of root goals for trees in F and (S, S’) € E iff subgoal S directly depends on subgoal S’. The edges
are labeled positively, negatively, or both depending on the sign of the direct dependencies. a

Because the subgoal dependency graph of a given system is a directed graph, strongly connected
components can be defined on it in the usual manner. Throughout the paper, we denote a set of SCCs
as an Approximate SCC, or ASCC. An ASCC is termed independent if it depends on no other ASCCs
which it does not contain. Using these notions, we can provide an operational definition of when a set
of subgoals has been completely evaluated.

Definition 2.5 (Completely Evaluated Set of Subgoals) Given an SLG system Sk, a set Set of
subgoals is completely evaluated iff either of the following conditions is satisfied:

1. Setis an independent ASCC of SDG(Sk), and for each subgoal S in Set:

o All applicable SLG operations other than COMPLETION have been performed for nodes in
the tree rooted by S according to Definitions 2.3 and 5.1.

e No active node in the tree rooted by S contains a selected negative literal.

2. Set = {S} and § contains an answer identical to itself in the table entry for S.

We say that a subgoal S is completely evaluated iff Set is a completely evaluated set of subgoals and
S € Set. O

The second condition, introduced in [23], will sometimes be referred to as early completion of subgoals.
In a given system, a subgoal S may have an answer S, but there could be SLG operations such as



PROGRAM CLAUSE RESOLUTION which would otherwise be applicable to the tree for §. § would thus
be completely evaluated according to condition 2, but not to condition 1. Early completion is necessary
to evaluate certain stratified programs using a fixed computation rule and will be further discussed in
Section 5.

3 The Abstract Machine for Definite Programs

Having introduced basic tabling definitions and operations, we now consider the main extensions made
by the SLG-WAM to the WAM to support tabling of definite programs.

1. The engine must be able to suspend a computation when encountering a consumer subgoal and
resume the consumer subgoal at a later point to return answers (e.g. nodes 1, 7 and 13 in
Example 2.1). The need to resume computations requires that the environment corresponding
to an active node of an SLG tree be efficiently restored. Section 3.1 describes extensions to the
WAM that support the ability to suspend and resume computations.

2. A space for tables themselves must be designed, and their access methods must be tightly
integrated with WAM data structures. These issues are covered in Section 3.2.

3. The choice of when to return an answer to an active node gives rise to several possible scheduling
strategies. Naturally, different scheduling strategies require different amounts of time and space,
and influence the architecture of the abstract machine. We discuss issues related to scheduling
of SLG operations in Section 3.3.

4. The preceding features must be compiled into WAM-like code. The design of the SLG-WAM
instruction set is described in detail in Sections 3.4 and 3.5.

5. Since environments are needed for the ANSWER RETURN operation, space for active nodes cannot
be reclaimed upon backtracking, but only when the strongly connected component to which
they belong is completed, i.e., only when it is known that no more answers will be produced.
A mechanism must be developed to detect completion of subcomputations in order to reclaim
space. Section 3.5 describes how this is done for definite programs.

3.1 Suspending and Resuming Computations

A tabled evaluation like that of Example 2.1 cannot be implemented using the pure depth-first search
of the WAM. Rather, the computation path of an active node may have to suspend when it has
exhausted all answers in the table, and resume when new answers have been derived. (In Example 2.1,
computation must suspend in nodes 1, 7, and 13). Suspension is performed in the WAM framework by
creating a choice point to represent the suspended environment, and then failing to a previous choice
point without reclaiming any stack space. Suspended choice points thus freeze the stack, prohibiting
memory reclamation before completion of a subgoal. Resuming uses a forward trail to restore variable
bindings along the path to the suspended subgoal. We consider data structures and algorithms to
support suspending and resuming computations.

3.1.1 SLG Search Trees

Rather than a forest of trees, the memory layout of the SLG-WAM resembles a single SLG search
tree which can be constructed by using a first-call optimization. This optimization has the effect of



inserting the tree with root goal G as a subtree below the first node Ng whose selected literal is G,
and sharing their environments.? Figure 3 illustrates how the SLG search tree for the program of
Example 2.1 is constructed from the forest of SLG trees shown in Figures 1 and 2 with the first-call
optimization occurring at nodes 6 and 12. First-call optimization merges a generator and an active
node; the resulting node produces answers like a generator and does not require an explicit instruction
to perform an ANSWER RETURN operation.

0.p(a,2)
1.p(a,2) :- p(a, Y) p(Y.2) 2.p(a,2) - e(a,2),q(2)
6. p(aZ) p(b Z) 5. p(a,2):- p(c.2) 3. p(a,b) - q(b) 5. p(a,d) :- q(d)
11. p(ac)
4. p(a,b) :-
7.p(b,2) :- (b Y),p(Y,2) 8.p(b,2) :- e(bZ ,4(2)
12. p(b, Z)- p(c.2) 9. p(b.c):- Q(C)
A 0000 -
13. p(c,2) :- p(c,Y),p(Y,2) 14. p(c,2) :- e(c,Y),q(Y)

Figure 3: The SLG Forest of Figures 1 and 2 as a single SLG Search Tree.

3.1.2 Preserving Environments through Freeze Registers

To ensure that environments for suspended active nodes of the SLG tree may be later resumed,
the SLG-WAM freezes the stacks using a freeze register for each stack of the WAM 3. Space is not
reclaimed below these freeze registers until completion of the appropriate generator node. In definite
programs, stacks are frozen whenever a consumer subgoal is encountered, since consumer subgoals
need to suspend either to obtain new answers, or to ensure the consumption of all relevant answers.
Figure 4 shows states of the choice point stack while executing the program of Example 2.1, where
choice points for generator and consumer subgoals are denoted explicitly. Note that on calling the
consumer subgoal p(a,Y) in node 1, the computation is suspended, a freeze point is set (denoted as
freezel in Figure 4(a)), computation continues with node 2 of the tree, and the next choice point (for
e(a,Z)) is allocated above the choice point freeze register.

The introduction of freeze registers affects the placement of choice points by the WAM try and trust
instructions: a choice point is placed at the maximum of the B register and the choice point freeze
register (BF register). Similarly, for local environments, freeze registers affect the allocate instruction

2First-call optimization is also used implicitly in the OLDT dichotomy of solution and lookup nodes (see [26]).
3Throughout the paper, we assume a WAM model with environment and choice point stacks separated rather than
combined as in the original WAM. We also assume throughout the paper that stacks grow upwards.
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(a) At node 4 (b) At nodes 7-10 (c) At nodes 13-14 (d) After complet-

ing p(c,Z)

(e) After complet-
ing p(b,Z)

Figure 4: Choice Point Stack States for Program of Figure 1.

which must determine the greatest of the environment register (E register), the environment backtrack
register (EB register), and the environment freeze register (EF register). Likewise, the allocation of
new trail entries requires a check of the trail freeze register (TRF register), as well as the WAM
trail register (TR register). In addition to their use for allocation, both the B register and the TR
register are used to store information about the environment of a node. The B register points to the
continuation to take upon failure, and the TR register is used to untrail appropriate variables when
that failure continuation is taken. However, because the H register is used only for allocation, its
effect on the SLG-WAM can be reduced. Upon backtracking and execution of a trust instruction, the
H register is reset to the HB register only if the HB register is greater than the heap freeze (HF)
register; otherwise no change is made to the H register. This ensures that the H register is always
above the HF register and points to an unfrozen portion of the heap. Thus, heap information is not
overwritten and instructions can build information on the heap just as in the WAM. Note that with
this updating scheme, the significant overhead of checking two registers at every write to the heap is
avoided.

The introduction of freeze registers necessitates another change in stack management from the
WAM. Consider the SLG system represented by the choice point stack in Figure 4(a). The parent
of node 2 (p(a,Z):- e(a,Z),q(Z)) is the generator node, p(a,Z). However, due to the use of freeze
registers, the (Prolog) choice point for (p(a,Z):-e(a,Z),q(Z)) does not lie immediately above the
generator choice point for p(a,Z). To handle cases such as this, each choice point must maintain an
explicit pointer to the proper failure continuation to take upon backtracking out of the choice point
(e.g. when all applicable program clauses have been resolved against a subgoal). Freeze registers also
add an extra pointer to trail frames, as will be seen in the next section.

Frozen segments in the stacks can be deallocated only when it is known that a set of consumer
subgoals has no further need to be resumed. This condition holds when it is determined that the
subgoals are completely evaluated, and that their SLG trees, as represented in the SLG-WAM stacks
as generator choice points and consumer choice points, can be safely disposed. Deallocation of freeze
registers after completion of subgoals p(c,Z) and p(b,Z) is represented in Figures 4(d) and (e).



3.1.3 Resuming Suspended Computations by Restoring Environments

To resume computation at an active node, all variable bindings and WAM register values are restored
to their state at the time that the node was suspended (as saved using a consumer choice point,
Section 3.2, or a negation suspension choice point, Section 6.3). The appropriate action is then taken
(e.g. returning an answer) and execution continues with the success continuation (as represented by
the CP register) of the suspended computation.

Restoring variable bindings for a resumed computation is done in the SLG-WAM through a forward
trail [37, 36], whose frame format is shown in Figure 5. Recall that the WAM trail contains (local or
global stack) variables that must be unbound upon backtracking. In fact, only conditional bindings
that affect a variable existing before the creation of the current choice point need to be trailed*. The
SLG-WAM trail must keep addresses of conditionally bound variables as in the WAM. However, the
trail must also contain information about the value to which the variable was bound so that bindings
of suspended nodes can be restored. Furthermore, as the trail is also a tree rather than a stack, each
trail frame has to maintain an explicit pointer to the previous trail frame (using its Parent cell). The
overhead incurred by the forward trail, compared to the simple trailing of the WAM, is measured in
Section 7.1.

Parent | Pointer to Parent trail frame
Value | Value to which the variable was bound

Addr Address of the trailed variable

Figure 5: Format of (Forward) Trail Frames.

The algorithm restore_bindings (Figure 6) uses the forward trail to reconstitute the environment of
an active node, as represented by a consumer choice point. Specifically, restore_bindings starts from

Algorithm restore_bindings(new _breg)
start_trreg := trreg; /* current TR register */
end_trreg := choice_point_trreg(new_breg);
trreg := choice_point_trreg(new_breg);
while (start_trreg != end_trreg)
while (start_trreg > end_trreg)
untrail(trail_addr(start_trreg));
start_trreg := trail_parent(start_trreg);

while (end_trreg > start_trreg)
end_trreg := trail_parent(end_trreg);
end_trreg := trreg;
while (start_trreg < end_trreg)
* trail_addr(end_trreg) := trail_value(end_trreg);
end_trreg := trail_parent(end_trreg);

Figure 6: The restore_bindings procedure.

*In get-style instructions, the WAM checks the E register and the HB register to determine whether a binding is
conditional. The SLG-WAM must also check the corresponding freeze registers, EF and HF. Other than that, these
instructions remain unchanged.
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the current environment, and switches variable bindings to those of the active node represented by the
choice point designated by new_breg. Both start_trreg and end_trreg follow their parent chains until
a common ancestor is reached, with start_trreg untrailing as it goes. Then, variables on the path from
end_trreg to the common ancestor are rebound. The bindings are applied in the opposite order in
which they happened. This is safe since no node can have more than one entry on each branch of the
trail. Note that since restore_bindings is used to reconstitute environments for returning answers, each
tabled predicate is compiled using a choice point, even if the predicate is defined by a single clause.

3.1.4 Generator and Consumer Choice Points

We end our discussion of mechanisms to suspend and resume computations by presenting the format of
generator and consumer choice points. The format of a generator choice point is depicted in Figure 7.
Cells that are not found in WAM choice points are marked with an asterisk, while cells marked with
a — symbol are not necessary for definite programs (we will use these conventions throughout the rest
of the paper). Figure 7 is divided into three sections. The top section contains state information that
the SLG-WAM must restore on backtracking for any subgoal, whether tabled or not. This information
includes the cells of a WAM choice point along with an explicit pointer of the failure continuation to
take upon backtracking out of the choice point (Breg_Chain), and a cell, RSreg, that records the value
of a new global register, called the RS register . The middle section is not found in Prolog choice

FailCont The Failure Continuation

EBreg Environment Backtrack Point
Hreg Top of Global Stack (Heap)
TRreg Top of Trail

CPreg Success Continuation for Subgoal
Ereg Parent Environment

RSreg*— Root Subgoal Choice Point
Breg_Chain* | Failure Continuation on Backtracking out of this CP
SubgFr* Pointer to the Subgoal Frame
BPFreg* Choice Point Freeze Register
HPFreg* Heap Freeze Register

TRFreg* Trail Freeze Register

EFreg* Local Stack Freeze Register

A, Argument Register n

A Argument Register 1

VarNum* Number of Variables: m

Vi * Substitution Factor Variable m
Vi* Substitution Factor Variable 1

Figure 7: Format of Generator Choice Points.

points in the SLG-WAM. It contains a pointer to the table entry of the subgoal (the Subgoal Frame,
Section 3.2), and the values of the freeze registers at the time of choice point creation. Although
creating a generator choice point frame does not require freezing the stacks, the values of the freeze
registers must be recorded so that they can be properly reset when the subgoal associated with a

®This new register and choice point cell are used to determine exact subgoal dependencies for programs with negation
(see Section 6.4).
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choice point is completed. The bottom section contains argument registers of the subgoal along with
its substitution factor, the set of free variables which exist in the terms in the argument registers. Use
of the substitution factor is explained in Section 3.2.

Consumer choice points are created to store environments for consumer subgoals, and their format
is shown in Figure 8. As their name implies, these frames are stored on the choice point stack and
contain the same WAM state registers as any choice point. However, answers are resolved using a
substitution factor (Section 3.2) which replaces the usual argument registers for consumer choice point
frames. A consumer choice point for a tabled subgoal also maintains the following information.

FailCont Pointer to answer_return instruction

EBreg Environment Backtrack Point

Hreg Top of Global Stack (Heap)

TRreg Top of Trail

CPreg Success Continuation

Ereg Parent Environment

RSreg*— Root Subgoal Choice Point

Breg_Chain* | Failure Continuation on Backtracking out of this CP
LastAnswer* | Pointer to Last Consumed Answer

PrevCCP* Pointer for Consumer Choice Point Chain

VarNum* Number of Variables: m
Vi * Substitution Factor Variable m
Vi* Substitution Factor Variable 1

Figure 8: Format of Consumer Choice Points.

1. A pointer, LastAnswer, to the last answer resolved by the consumer choice point (using the
answer return list of Section 3.2).

2. A pointer PrevCCP, used to chain together all consumer choice points for the same subgoal.
For instance, in Figure 1 of Example 2.1 active nodes 12 and 13 have selected literal p(c,Z).
In the SLG-WAM, consumer choice points for these nodes would be chained together using the
consumer choice point chain for p(c,Z), as would nodes 6 and 7 for p(b,Z). The consumer
choice point chain is needed for scheduling the return of answers and will be discussed fully in
Section 3.3.

3.2 Interfacing Table Space to Run-Time Stacks

The SLG-WAM adds two memory areas to those of the WAM: a completion stack and table space.
The completion stack is used to detect when a set of subgoals has been completely evaluated and is
described in Section 3.5. The Table Space stores information about tabled subgoals and their answers.
The design and implementation of data structures and algorithms for efficient access to table space
is a critical issue for the performance of any implementation of tabling. In this paper, we provide
only a brief description of the layout of the table space; full details are presented in [15]°. Elements
of the table space may need to be repeatedly accessed in several different ways during the course of
evaluation. First, to implement the NEW SUBGOAL operation, a check must be made to determine

8Implementation of the table access routines is primarily due to Prasad Rao.
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whether each tabled subgoal is present in the table, and the subgoal must be inserted if not; this mode
of access is called subgoal check/insert. An analogous mode, called answer check/insert, is needed to
implement NEW ANSWER. Furthermore, the mode of answer backiracking is also needed during the
course of ANSWER RETURN. In principle, tables can be implemented using any data structure that
supports these three types of access: such as hashing, tries, or discrimination nets. Experience has
demonstrated the superiority of tries as the basis for table space. Tries not only provide complete
discrimination of terms, but also permit a check and possible insertion to be performed in the same
pass through a term. Subgoals and answers are copied from the execution stacks to the table space
during subgoal check/insert and answer check/insert, while answers are copied from the table to
the execution stacks during answer backtracking. This copying is performed so that (i) variables in
subgoals and in answers do not share bindings when they are used in different nodes of the search
forest; and (ii) information about subgoals and answers may survive the effects of backtracking and
possible space reclamation (i.e. so that tabled information is persistent).

Figure 9 represents elements of the table space for the SLG system in Figure 2. At the entry point
for p/2 an operand of a tabletry SLG-WAM instruction (discussed in Section 3.4.2) points to a node of
its subgoal trie which is designated as the trie’s root. In our example, the subgoal trie of p/2 contains
subgoals p(a,Z), p(b,Z), and p(c,Z). Each of these subgoals may have an associated answer trie,
although that of p(c,Z) is empty. Each root-to-leaf path through a subgoal trie corresponds to a
single subgoal, and leaf nodes of the subgoal trie have a special form and are called subgoal frames.
Root-to-leaf paths through an answer trie also correspond to an answer. However, answer tries for

Table Space
SLG-WAM code
code for a b c
p/2 -
! Subgoal Trie
code for
el? Var_1 Var_1 Var_1
code for e #
g/l
Subgoal Subgoal Subgoal
,,,,,,, Frame ~| Frame Frame

I

‘f

‘\

‘l

o

o

.

‘l .
) Answer Ties
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I

I

I

Answer Return List

Figure 9: Relationships between elements of the Table Space.

incomplete subgoals also have their leaves chained together via an answer return list. The need for
the answer return list arises to support the mode of answer backtracking. Since the generation and
consumption of answers are asynchronous, and new answers may be inserted anywhere in a trie, it
is not possible to perform answer backtracking by sequentially backtracking through an answer trie
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of an incomplete subgoal. To address this, the elements of the answer return list point to answers
(identified by leaf nodes of the answer trie), in the order of their creation times. Using this list, it is
guaranteed that no answer is skipped, and that no answer is returned to the same consumer choice
point more than once.

Substitution Factoring As Figure 9 shows, an answer trie stores only bindings that are not present
in the associated tabled subgoal. This optimization is called substitution factoring [15]. Substitution
factoring uses the following observation to optimize the answer check/insert and answer backtrack-
ing access modes. In a variant-based tabling method, all answers to a tabled subgoal are subsumed
by the subgoal itself. For instance, p(a,Z) subsumes both p(a,b) and p(a,c), while p(b,Z) sub-
sumes p(b,c). Thus, each answer A of a tabled subgoal G can be represented as Gng, where n4
is an answer substitution for G. The core idea of substitution factoring is to store only the answer
substitution, and to create a mechanism of returning answers to consumer subgoals that is propor-
tional to the size of 774 rather than the size of A. The set of unbound variables of a tabled subgoal
is determined as part of the subgoal check/insert procedure. This procedure must fully traverse the
subgoal either to check if it is in the table or to insert it if not. As the procedure traverses the subgoal,
it factors out dereferenced pointers to variables from the subgoal and places them in the choice point
stack. We refer to this set of dereferenced variable pointers as the substitution factor (see Figures 7
and 8). The values in cells of the substitution factor thus point to variables on the local or global
stack. The substitution factor is used by generator choice points to add answer substitutions to the
table, and by consumer choice points to backtrack through answers. Furthermore, because the subgoal
check/insert procedure must be performed to determine whether a subgoal is new to an evaluation
(and by extension, whether a generator or consumer choice point is to be created), the substitution
factor is placed before the rest of a generator choice point or consumer choice point.

Subgoal Frames Subgoal frames contain general information about the state of a tabled subgoal,
and their format is shown in Figure 10. To access answers for a subgoal, subgoal frames contain a
pointer to the root of the associated answer trie. To facilitate the COMPLETION operation, subgoal
frames have a ComplSF cell which points to a completion stack frame (described in Section 3.5) when
a subgoal is incomplete, and when set to null, indicates that the subgoal is complete. To facilitate
memory management of subgoal frames and of the answer tries which are accessed through them,
subgoal frames are maintained in a doubly linked list (see Figure 9). The foregoing information must
persist after subgoals are determined as completely evaluated, but the subgoal frames also contain
information that can be reclaimed after their completion. This consists of the following pointers: (1) a
pointer (CCP_Chain) to the head of the consumer choice point chain for the subgoal; (2) a pointer
(NS_Chain) to an analogous negation suspension chain of choice points for negative active nodes (the
negation suspension chain is discussed in Section 6.3); (3) a pointer to the head of the answer return
lzst in the answer trie, which is used for answer backtracking when a consumer choice point is created;
and (4) a pointer to the tail of the answer return list, used in the new_answer instruction to efficiently
add answers in their proper generation sequence.

3.3 An Overview of Batched Evaluation for Definite Programs

It is usually possible to apply more than one operation to a particular SLG system. For instance,
there may be program clauses to resolve with generator or interior nodes, answers to return to active
nodes, or completion operations to be performed on sets of trees. The decision of when to perform
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AnsTrieRoot | Pointer to the Root of the Answer Trie

ComplSF Pointer to the Associated Completion Stack Frame
NeztSF Pointer to Next Subgoal Frame

PreviousSF | Pointer to Previous Subgoal Frame

AnsRetListH | Pointer to the Head of the Answer Return List
AnsRetListT | Pointer to the Tail of the Answer Return List
CCP_Chain | Pointer to the Head of the Consumer Choice Point Chain
NS_Chain— | Pointer to the Head of the Negation Suspension Chain

Figure 10: Format of Subgoal Frames.

such operations is determined by a scheduling strategy. This section overviews a particular scheduling
strategy, called Batched Evaluation [8], which forms the default scheduling strategy of version 1.7 of
XSB”. Later sections provide instruction-level details of the implementation of Batched Evaluation,
as well as its extension to programs with negation.

Batched Evaluation takes its name because it tries to avoid resuming an active node until there are
several answers to return to that node. For in-memory Datalog queries, Batched Evaluation has been
shown to be superior in terms of time and space to three other scheduling strategies (see [8]). As an
aside, we note that it is unlikely that a single scheduling strategy can be uniformly faster that all others
for all applications. For instance, the breadth-first evaluation of [9] is extremely efficient for queries to
disk-resident data, giving disk-access properties comparable to those of the semi-naive evaluation of a
magic-transformed program. Batched Evaluation is a highly optimized scheduling strategy, which we
present through the series of rules in Figure 11. We begin by considering actions of Batched Evaluation
in Example 2.1, where the numbers associated with the nodes in Figure 1 correspond to the order of
generation by that strategy.

Batched Evaluation schedules PROGRAM CLAUSE RESOLUTION in a depth-first manner as does the
WAM as can be seen (from e.g, nodes 2 and 8) in Example 2.1. The advantages of this strategy are
well-known: for instance backtracking can be used to reclaim space, reducing the need for garbage
collection. Furthermore, the WAM’s strategy gives a good locality of reference so that cache misses
are also reduced [28, 31]. This design decision is shown in Rule 1 of Figure 11.

When an active node, N, is created with selected subgoal §, scheduling of ANSWER RETURN
operations varies depending on whether S is complete or incomplete. In the case where S is complete,
a completed table optimization can be performed (Rule 2 of Figure 11). The node can be treated as if
it were an interior node, and need not be suspended; rather, the engine backtracks through answers
for § as if they were unit program clauses. An example of this optimization occurs on node 15 in
Example 2.1. In this case, node 15, whose selected subgoal is completed, immediately fails. We
mention in passing that nodes of the trie data structure are in fact SLG-WAM instructions which are
directly executed for completed tables. Surprisingly, execution of unit clauses compiled into an answer
trie can sometimes outperform that of unit clauses compiled into standard WAM code mainly due to
factoring of common prefixes and possible avoidance of unnecessary bingings and unbindings (see [15]
for further explanation).

If the table for S is incomplete, then N might not be able to consume all answers for S in a
depth-first manner. This situation is portrayed in Example 3.1.

Example 3.1 Figure 12 presents an example of mutually recursive predicates a/2 and b/2 each of

"This scheduling strategy was primarily implemented by Juliana Freire.
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In the following, let N be an active node, Answer_ Template :— S, Goal List, in an SLG tree.

1. The SLG-WAM schedules PROGRAM CLAUSE RESOLUTION as does the WAM: clauses are re-
solved according to their textual order and literals are selected by a fixed left-to-right rule. This
applies to both interior and generator nodes.

2. If §is complete, the node N need not be suspended and, answers can be returned to it as if
they were program clauses. Support for this strategy is called the completed table optimization.

3. If § is incomplete, any answers for S are returned to N under a model that approximates
program clause scheduling: the first answer is immediately returned upon the creation of N,
and a consumer choice point frame is set up to return any further answers to N. Only when N
exhausts all answers (currently) in the table for S will it suspend.

4. Answers may also be scheduled for return to N during the procedure fixpoint_check performed
by the leader S; of the scheduling ASCC of S. This fixpoint_check is executed during the
completion instruction for St,.

Figure 11: Rules of the Batched Evaluation scheduling strategy.

which produces answers consumed by the other. An SLG system is shown for the evaluation of the
query a(0,X). While details of this evaluation will be presented below, note in particular that answers
for b(0,Y) are returned to node 3 only when no other operations are applicable in the tree for b(0,X).

In Example 3.1, the children of node 6 cannot be derived in a depth-first manner because the
answer a(0,2) is not derived until a(0,1) has been been resolved against the selected atom of node 6.
Rather, node 6 needs to suspend so that answers may be derived, and later to resume to return those
answers. Suspension is performed using the mechanisms described in Sections 3.1 and 3.2: a consumer
choice point is created and stacks are frozen. If no answers for § are present in the table when N is
created, the engine goes on to other resolution by picking up the Breg Chain failure continuation in the
consumer choice point of N. If there are answers for S, the consumer choice point of N will backtrack
through them, approximating a depth-first search. At an operational level, answer backtracking is
done using the answer return list (Section 3.2) which causes the set of answers to be traversed in the
order of their derivation and helps ensure that each answer is returned exactly once to an active node.
Whether there are answers present in the table or not, N will be suspended when it has exhausted all
answers present in the table. Rule 3 of Figure 11 summarizes these actions.

In order to completely evaluate subgoals, the engine must ensure that all appropriate answers
are returned to all consumer subgoals in an (Approximate) SCC. The subgoals a(0,X) and b(0,X)
in Example 3.1 form a non-trivial ASCC. In evaluating this ASCC, the first batch of answers for
a(0,X), {a(0,1)} is returned to node 6 creating node 7. Later, in nodes 9 and 11, the first batch
of answers for b(0,X), {b(0,1),b(0,2)} is returned to node 3. Finally, the second batch of answers
for a(0,X), {a(0,2)} is returned to node 6, this time creating node 12. It can thus be seen that
the process of resuming an active node, backtracking through answers, performing program clause
resolution, suspending and then resuming another active node is an iterative process which repeats
until a fixpoint is reached for a set of subgoals. Precisely, this fixpoint is reached when an ASCC is
completely evaluated (Definition 2.5). At a general level, the fixpoint is controlled by backtracking
into generator choice points which causes a fixpoint_check to schedule resumption of active nodes via
consumer choice points (Rule 4 of Figure 11).

16



0. a(0,X) - table a/2, b/2.

1. a(0,X) :- c(0,X) 3. a(0,X) :- b(0,Y), c(Y,X) a(x,Y) :- c(X,Y).
‘ a(X,Y) :- b(X,2),c(Z,Y).

2. a(0,1) :-
9. a(0,Xx) :- ¢(1,X) 11. a(0,X) :- c(2,X) b(X,Y) :- d(X,Y).

‘ b(X,Y) :- a(X,2),c(Z,Y).
10. a(0,2) :-

c(0,1). d(0,1).
3a. b(0,X) c(1,2). d(1,2).

/\

4.b(0,X) :- d(0,X) 6. b(0,X) :- a(0,Y), d(Y,X) Subgoal | Answers | State
‘ a(0,Xx) a(0,1)

5. b(0,1) :- 7.b(0,X) :- d(1,X) 12.b(0,X) :- d(2,X) 202) Incomplete
‘ b(0,X) | b(0,1)
8.b(0,2) :- b(0.2) Incomplete

Figure 12: Illustration of Batched Evaluation

Specifically, fixpoint_check is part of the SLG-WAM completion instruction which is invoked for
a subgoal S when the engine backtracks into the generator choice point for S after all applicable
PROGRAM CLAUSE RESOLUTION steps for S have been applied. The completion instruction actually
executes a fixpoint_check only when a given subgoal is designated as leader, or oldest subgoal, of its
scheduling ASCC. Scheduling ASCCs are oriented toward space reclamation in a stack-based system
and their representation and maintenance is presented in Section 3.5. For now, a scheduling ASCC
can be thought of as a unique ASCC to which every incomplete tabled subgoal belongs.

The fixpoint_check procedure determines whether the subgoals in a scheduling ASCC have been
completely evaluated or whether further answers need to be returned to consumer choice points for
subgoals in the scheduling ASCC. This determination is made by calling the procedure schedule_resumes
for each subgoal in the scheduling ASCC. Given a subgoal S, the procedure schedule_resumes traverses
the consumer choice point chain (Section 3.5) to find the first consumer choice point for S with
unresolved answers (if any). If there is such a choice point, say C, it is resumed by setting the B
register to point to C and failing. After failing, the engine executes answer_return instructions for C
for as long there are unconsumed answers for C', and then suspends C as in Rule 3, failing into the
next choice point on the consumer choice point chain for S. The consumer choice point chain is set
so that the engine will backtrack to fixpoint_check after returning answers to the last consumer choice
point on the chain. The schedule_resumes procedure is presented in Figure 18 and is discussed fully in
Section 3.4; the fixpoint_check procedure is discussed in Section 3.5.

3.4 Extending the Abstract Machine Instruction Set

We present the set of SLG-WAM tabling instructions in two steps: first we motivate a naive instruction
set from the SLG operations for definite programs, and then we present the actual instruction set in
detail.
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3.4.1 A Reconstruction of the Instruction Set for Tabling

Consider the tabling instructions that need to be generated for the &k clauses of a tabled predicate t/n.
Using the program transformation shown below, WAM indexing code is pushed one level down to a

:— table t/n.
t(Xl,...,Xn) L= p(Xl,,Xn)
p{t1,1,...,t1,n) - Bi.

:— table t/n.

t(tl,l, .. -;tl,n) - Bj.

—

t(tk,l, .. -;tk,n) - Bg.

P{tr,1,- .y thn) - Bg.

new predicate p/n which is evaluated using Prolog-style resolution. Notice that these two programs
are equivalent with respect to observables.

The Prolog predicate p/n can be compiled using the instruction set of the WAM. We concentrate
on the instructions needed for the tabled evaluation of predicate t/n defined by the single rule:

t(Xl,. . .,Xn) — P(Xl,. . .,Xn).

A pseudo-compilation of such a tabled predicate is shown in Figure 13. Roughly, the first portion of
this pseudocode, instructions labeled Li—L7, checks whether subgoals are in the table and inserts them
if not, derives answers for these subgoals by performing program clause resolution, and records these
answers into the table. The second portion schedules the return of answers to consumer choice points,
essentially performing the functionality of the fixpoint_check procedure, and completes subgoals once
the fixpoint is reached (Rule 4 of Figure 11).

Ly : try_me_else Lg

Ly : new_subgoal_check_insert n  Trie_Root
L3 : allocate

Ly : call 1 p/n

Ly : new_answer_check_insert n v

Lg : deallocate

L7 : proceed

Lg : retry_me
Lg : schedule_answer_returns
L1o: completion_check

Figure 13: SLG-WAM pseudocode for tabled predicates.

The pseudo-instructions new_subgoal_check _insert, new_answer_check_insert, schedule_answer _returns,
and completion_check perform functions of the SLG operations NEW SUBGOAL, NEW ANSWER, ANSWER
RETURN, and COMPLETION, respectively. The procedures that implement these instructions rely on
information that is dynamic in nature (checking whether a particular subgoal or answer is new or
already exists in the table, whether all answers have been returned to appropriate active nodes, and
whether it can be determined that subgoals are completely evaluated).

Finally, note that t/» requires both a choice point and a local environment, even though the
predicate comnsists of a single clause and none of the variables in the clause are permanent, in the
WAM classification.
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Need for a Choice Point Choice point creation is necessary since checking for fixpoint and com-
pletion may require information from the choice point frame in order to schedule the return of
answers or to mark the table for a subgoal as complete. This requirement explains the unortho-
dox use of a retry_me in the second block of code, followed by an explicit deallocation of the
choice point once fixpoint is reached.

Need for an Environment The local environment in the first block of code is used by the
new_answer_check_insert instruction which needs access to the generator choice point, GC P, of
the subgoal for which the answer is derived. As shown in Figure 7, this choice point contains
both the substitution factor (which provides the answer substitution) and a pointer to the sub-
goal frame — and through the subgoal frame, a pointer to the corresponding answer trie. It is
not possible in general to efficiently find GC P at the time of new_answer_check_insert because
any number of choice point frames may have been placed between the top of the choice point
stack and GCP. To address this, a local environment is created for all tabled subgoals. This
environment contains a GCP_pointer to GCP, denoted as v, in Figure 13 — or in general
Um+1 for a clause with m permanent variables. Because the GCP_pointer is required whenever
an answer is derived, the deallocate instruction has to occur after the new_answer_check_insert
instruction. Consequently, the last call optimization is not applicable to tabled predicates; other
optimizations like environment trimming, however, can be applied.

3.4.2 Optimizing the Instruction Set for Tabling

Note that using the transformation and instruction set presented in the previous section, tabled pred-
icates defined by more than one clause require two choice points instead of one. Also, this initial
instruction set contains fixed sequences of instructions: a new_subgoal _check_insert instruction is al-
ways preceded by a try-type instruction and followed by an allocate; similarly, a new_answer_check_insert
instruction is always followed by a deallocate and a proceed instruction. The SLG-WAM provides the
following optimizations:

e Tabled predicates defined by a single rule are compiled using a tabletrysingle tabling instruction
rather than the transformation presented above. tabletrysingle includes the functionality of a
try_me_else, new_subgoal_check_insert, and allocate sequence of instructions.

e Tabled predicates defined by more than one clause are compiled using the tabletry, tableretry, and
tabletrust SLG-WAM instructions, rather than the transformation presented above. The tabletry
includes the functionality of the try_me_else, new_subgoal_check_insert, and allocate sequence. The
tableretry and tabletrust differ from the WAM retry and trust instructions in that they restore a
generator choice point and substitution factor rather than a WAM-style choice point.

e The functionality of the new_answer_check_insert, deallocate, and proceed sequence of instructions
is folded into a single SLG-WAM instruction called new_answer.

e During run-time, upon execution of tabletrysingle and tabletrust instructions for a subgoal 5, the
FailCont cell of the generator choice point for § is made to point to a completion instruction
which includes the functionality of the schedule_answer_returns and completion_check sequence of
Figure 13. This instruction determines whether S is the leader of its scheduling ASCC, and

— if S is the leader of its scheduling ASCC
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% calls the procedure schedule_resumes as part of performing the fixpoint_check for all
subgoals in the scheduling ASCC of §; and
x if the ASCC of § is completely evaluated, deallocates the generator choice points for

subgoals in the ASCC of S along with any frozen portions of the stack that are asso-
ciated with the ASCC.

The completion instruction and space reclamation is presented fully in Section 3.5.

Following these principles, the compiled SLG-WAM code for the predicate p/2 in the program of
Example 2.1 is shown in Figure 14. As mentioned in Section 3.1.2, the allocate instruction must now

L, : tabletry 2 L TR %

Ly :  tabletrust 2 Lo %

Lz : getpvar vy T % p(X,Z) :-

Ly: putpvar vy Ty % p(X,Y
Ly : call 3 p/2 % )
Le¢ : putpval v T % p(Y,
L7 : putpval V1 T % Z
Lg: call 3 p/2 % )
Lo : new_answer 2 V3 %

Lio: getpvar V1 T % p(X,Z) :-

Ly call 2  e/2 % e(X,Z),
Liy:  putpval v T % q(Z
Li3:  call 2 q/1 % )
Lis: new_answer 2 V3 %

Figure 14: SLG-WAM code for predicate p/2 of Figure 1.

use the EF register to check for the top of the local stack, in addition to the E and EB registers. Also,
get- and unify- instructions must be changed to use a forward trail and to allocate trail frames above
freeze registers. We note, however, that the substitution factor, which is used to efficiently access
answer substitutions, does not affect the unification instructions. This is because the substitution
factor does not contain variables, but only pointers to variables which occur in the tabled subgoal.
These variables are constructed as part of constructing the call to the subgoal and afterwards reside
in the local and global stack. We now turn to the newly introduced instructions.

3.4.3 Instructions for the SLG Operations

[NEW SUBGOAL| The pseudocode for the tabletrysingle instruction is shown in Figure 15. The argu-
ments of the subgoal are in the WAM argument registers (the Arity of the subgoal is a parameter).
Using a pointer to the root of the trie for an input subgoal S, as a second parameter, the instruction

first checks whether S already exists in table or is new to the evaluation. If S is new (case a in
Figure 15), the instruction creates a subgoal frame for the subgoal, pushes a generator choice point
onto the choice point stack, and a completion stack frame onto the completion stack, initializing all
cells in these frames. tabletrysingle also allocates a local environment and initializes the appropriate
permanent variable as the GC P_pointer. Furthermore, tabletrysingle places a completion instruction
in the FailCont cell of the generator choice point. Recall that in the WAM the FailCont cell points to
the instruction to be executed upon failure of the current clause; thus, the completion instruction will
be executed after all program clause resolution has been performed for the subtree stemming from
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this generator choice point. After setting up bookkeeping, tabletrysingle branches to the appropriate
instructions for program clause resolution.

Instruction tabletrysingle( Arity, Subgoal Trie_Root) /* Subgoal is in argument registers */
If (subgoal_check_insert(Subgoal,Subgoal Trie_Root) == new) /* Subgoal is new and added */

(a) Create and set up a subgoal frame SF for the Subgoal;

Set up a generator choice point GCP to perform program clause resolution;

Set the failure continuation FailCont cell of GCP to point to a completion instruction;

Push a new completion stack frame ComplSF onto the Completion Stack;

Associate ComplSF with SF; /* see Section 3.5 */

Allocate a local environment and initialize the GCP_pointer, vy,41;

Branch to the next instruction to perform program clause resolution;
else /* Subgoal was not new to the evaluation — already existed in the Subgoal Trie */
If (SF_ComplSF(Subgoal) == complete) /* The subgoal frame has been marked as complete */
(8) Answer_Root := SF_AnsTrieRoot(Subgoal);
Branch to Answer_Root to perform answer clause resolution
by executing the code in the answer trie;
else  /* Subgoal was not new but it is still incomplete */
(7) Create a consumer choice point CC P for Subgoal,
and add CCP to the head of Subgoal’s consumer choice point chain;
Set the failure continuation FailCont cell of CCP to point to an answer _return instruction;
Call update_dependencies(Subgoal);  /* for scheduling ASCCs: see Figure 20 */
Freeze stacks and fail into CC P to execute answer_return instructions;

Figure 15: The tabletrysingle instruction.

On the other hand if S already exists in the table the instruction checks whether S is completed.
If so, (case B), execution immediately branches to the root of the subgoal’s answer trie to begin
backtracking through answers implementing the completed table optimization (Rule 2 of Figure 11).
As mentioned in Section 3.3, these answers have been dynamically compiled into SLG-WAM code. On
the other hand, if the subgoal is still incomplete (case ), a consumer choice point is added to the head
of the consumer choice point chain, dependency information is updated for maintenance of scheduling
ASCCs, and the stacks are frozen. The computation then fails into the consumer choice point, which
will execute answer_return instructions as long as any unconsumed answers for S are available,® and
then will suspend by failing into the choice point designated by the Breg Chain cell of the consumer
choice point.

The tabletry instruction is similar to the tabletrysingle instruction, but it also has a Label as an
argument (cf. Figure 14) which is used to branch to the next program clause for the predicate.

INEW ANSWER| The new_answer instruction (Figure 16) is the final instruction of each clause of a
tabled predicate. When this instruction is reached, the body of the clause has been resolved away and
the dereferenced values of the substitution factor constitute an answer substitution, which uniquely

8 This step is slightly optimized in XSB version 1.7 by returning the first answer, if any, directly by the ta bletry(single)
instruction.
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identifies an answer for a subgoal. The instruction begins by using the GC P_pointer of the local

Instruction new_answer( Arity,vm11) /* Um41 is the GCP_pointer */
answer_table := SF_AnsTrieRoot(GCP _SubgFr(vm+1));
N4 = locate_substitution_factor( Arity, vmy1); /* na is a pointer to an answer substitution */
if (answer_check_insert(n4,answer _table) == new) /* the answer substitution was inserted */
Deallocate local environment:
Set the program pointer P to the continuation pointer CP; /* continue forward execution */
else

fail; /* the answer substitution pointed by 74 was already present in the answer table */

Figure 16: The new_answer instruction (for Definite Programs).

environment to access the answer substitution and the root of the answer trie. The answer substitution
(i.e. the substitution factor) can be found as the value of the GC P_pointer minus an offset (Arity
plus the size of a generator choice point, see Figure 7). The generator choice point also provides
access to the subgoal frame which, in turn, contains pointers to the root of the subgoal’s answer trie
and to the answer return list (see Figure 10). Using the answer substitution, 74, and the root of
the answer trie, new_answer checks whether 74 already exists in the answer trie and inserts it (in
the same pass) if not. If the 74 exists in the trie, the derivation path fails, a vital step for ensuring
termination. On the other hand, if 774 is new, a new element is added to the end of the answer return
lzst which points to the leaf of the answer trie whose path corresponds to 74, a step which will support
answer backtracking by consumer choice points. The new_answer instruction will then deallocate the
environment and proceed, by setting the WAM program register to the local environment continuation
pointer. This action effectively returns the new answer to the generator node. It is in this manner that
the SLG-WAM executes first-call optimization and avoids freezing stacks for generator choice points.

|[ANSWER RETURN| As mentioned, derived answers are immediately returned to the generator node.
They also need to be returned to active nodes of the SLG search tree, an action which is performed
by the answer_return instruction of consumer choice points. The answer_return instruction is shown
in Figure 17 and is executed by failing into a consumer choice point. The instruction begins by
restoring the computation state of a consumer choice point, CCP, (i.e., restoring the WAM registers
and variable bindings) using information in the consumer choice point and forward trail. If the last
answer consumed by this active node (identified by the LastAnswer cell of CCP) is not the last
element of the answer return list, the next unconsumed answer substitution, 7, is loaded into the
substitution factor of CCP, and the LastAnswer cell is updated, implicitly marking 7 as consumed
by this consumer choice point. The computation then continues by taking the forward continuation
of the consumer choice point. Whenever the engine backtracks into CC P, if an unconsumed answer
is present in the table, it is returned to the active node; otherwise, if there are no more answers for
the active node at the time of backtracking, execution fails to the choice point designated by the

Breg_Chain cell of CCP.

Conceptually, the Breg_Chain cell of a consumer choice point, CC P, can designate two types
of information: the choice point of the parent node in the SLG search tree, and a choice point on
the consumer choice point chain. A consumer choice point is originally created by a tabletry(single)
instruction, and the parent of CC P is initialized to the value of the B register when CC P is created.
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Instruction answer_return
CCP := breg; /* B register points to a consumer choice point */

Call restore_bindings( CCP); /* restore environment of the suspended consumer */
Restore values of WAM registers as saved in cells of the CCP;
if (the last answer consumed by this CCP is not the last answer of the answer return list)

/* let answer be the first unconsumed answer of the answer return list */

CCP_LastAnswer( CCP) := answer; /* mark answer as consumed by CCP */

Load answer from the answer trie into the substitution factor of CCP;

Set the program pointer P to the continuation pointer CP; /* continue forward execution */

else /* backtrack to another choice point */
breg := CCP_Breg_Chain( CCP); /* backtrack */
fail; /* Suspend the node to await further answers */

Figure 17: The answer_return instruction.

In this case, the engine returns answers to CC' P upon backtracking into it in accordance with Rule 3 of
Figure 11, until no more answers remain to be returned in this manner. As discussed in Section 3.3, a
fixpoint-style computation may be necessary in order to completely evaluate all subgoals in a scheduling
ASCC. If so, CC' P may be resumed after backtracking through its initial batch of answers, and in this
case its Breg_Chain cell will contain a pointer to a choice point on the consumer choice point chain
set by the procedure schedule_resumes.

The functionality of schedule_resumes was introduced in Section 3.3 as part of the fixpoint_check
routine in the completion instruction; its pseudocode is shown in Figure 18. The schedule_resumes

Procedure schedule_resumes(Subg Fr)
/* SubgFr is a pointer to the subgoal frame for subgoal S */
CCP_Head := SF_CCPChain(SubgFr); /* consumer choice point chain for § */
First_CCP := NULL;
Starting from CCP_Head traverse the consumer choice point chain and
set First_ CCP to point to the first consumer choice point with unconsumed answers, if any;
if (First_.CCP!'= NULL)
Create a consumer choice point backtracking chain, and
set the Breg Chain cell of its last element to point to the Choice Point currently pointed by breg;
/* breg is B register */
breg := First_ CCP;
fail; /* to execute answer_return instructions by picking up the failure continuation */

Figure 18: Pseudo-Code to implement Schedule_Resumes.
procedure for a subgoal S checks whether any consumer subgoal of S has unconsumed answers. Recall

that consumer subgoals are represented via consumer choice points, maintained in a consumer choice
point chain. The head of this chain is accessed via the CCP_Chain cell of the subgoal frame, and links
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of the chain are maintained by the Prev_CCP cell of the consumer choice points. Also recall from the
description of the tabletrysingle instruction that new consumer choice points are added to the head of
the list during tabletry(single). Procedure schedule_resumes begins by constructing a consumer choice
point backtracking chain for S. The backtracking chain contains all consumer choice points for §
that have unresolved answers at the time of fixpoint_check. The elements of the consumer choice point
backtracking chain are linked by their Breg_Chain so that a new consumer choice point is resumed upon
backtracking out of another (as opposed to the consumer choice point chain which uses the Prev_.CCP
cells to link consumer choice points). Figure 18 shows the first element of the consumer choice point
backtracking chain as First. CCP, and indicates that the Breg Chain failure continuation of the last
element on the chain points back to the choice point that initiated the fixpoint_check. Thus, once
schedule_resumes has performed an iteration for a subgoal S, fixpoint_check is reinvoked to determine
whether another iteration of schedule_resumes is needed for any subgoals in the scheduling ASCC. As
a final point, note that performing schedule_resumes for a subgoal does not have any effect on the
computation state unless some consuming choice points for that subgoal have unresolved answers.

3.5 Completion in Definite Programs

In this section we first present the algorithms that the SLG-WAM uses to maintain scheduling ASCCs,
and then turn to a detailed description of the completion instruction for definite programs.

Implementing Incremental Completion by Approximating Subgoal Dependencies

Incremental completion is necessary for the SLG-WAM to be efficient in terms of space and to be
effective on large programs. Incremental completion was first introduced in [2] to reclaim the stack
space occupied by sets of subgoals when they are determined to be completely evaluated. For example,
incremental completion affects the choice point stack of Example 2.1 shown in Figure 4, unfreezing
and reclaiming stack space for the subgoals p(c,Z) and p(b,Z). Furthermore, incremental completion
of subgoals enables the completed table optimization described in Section 3.3.

To efficiently perform incremental completion, the SLG-WAM contains an area of memory new to
the WAM, the Completion Stack, which is used to efficiently keep track of scheduling ASCCs. Specifi-
cally, the completion stack maintains, for each subgoal S, a representation of the deepest subgoal Sgep
upon which § or any subgoal on top of § may depend. When S and all subgoals on top of S have
exhausted all program and answer clause resolution, S is checked for completion. If S depends on
no subgoals deeper than itself, S and all subgoals on top of § are completely evaluated. Otherwise,
if Sgep is deeper in the completion stack than S, S may depend upon subgoals that appear below
it in the completion stack, and cannot be completed. As an aside, we note that for the program
of Figure 1, each tabled subgoal can be completed after fixpoint_check and failure over its generator
choice point since each component consists of a singleton set of subgoals, but this situation is not the
case in general, as will be shown in Example 3.2.

A completion stack frame is pushed onto the completion stack when a new tabled subgoal is added
to the system (see Figure 15), and is popped off when that subgoal is determined to be completely
evaluated by execution of a completion instruction. There is thus a one-to-one correspondence between
completion stack frames and generator choice point frames. For definite programs, the format of the
completion stack frame is shown in Figure 19 and its cells can be described as follows:

The Subg# is a unique number representing the chronological order of encountering the subgoal
(assigned through a global counter), DirLink keeps track of the deepest direct subgoal dependency
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SubgFr | Pointer to Subgoal Frame
Subg# | Unique Subgoal Number
DirLink | Deepest Direct Dependency

Figure 19: Format of Completion Stack Frames.

(information which is propagated when a consumer choice point is created). In addition, we define for
a given state of an SLG evaluation, the function MinLink(S), which is the minimum DirLink value
for all subgoals on the completion stack whose Subg# is greater or equal to Subg#(S). We briefly
present how fields of the completion stack are updated:

e When a new tabled subgoal S is called, a unique number is assigned to Subg#(S), a new frame
is pushed onto the completion stack, and DirLink(S) is initialized to Subg#(S).

o When a tabled subgoal S is called and S is neither new to the evaluation nor complete, let S;op
represent the subgoal whose frame is on top of the completion stack, and set

DirLink(Stop) := min(Dir Link(Stop), Dir Link(S))

Procedure update_dependencies(Subgoal)
/* Let ComplS Fy,p, be the topmost frame of the completion stack */
ComplSF := SF_ComplSF(Subgoal);
/* Completion stack frames are accessed through the corresponding subgoal frame */
ComplSF_DirLink(ComplS Fiop) :=
min(ComplSF _Dirlink(C ompl S F,p), ComplSF_DirLink(ComplS F));

Figure 20: Updating ASCC information on encountering Consumer Subgoals.

Figure 20 shows the steps performed by the tabletry and tabletrysingle instructions when creating a
consumer choice point (cf. Figure 15). Based on these rules and the format of the completion frame,

we define Scheduling ASCCs through their leaders as follows.

Definition 3.1 (Leader of a Scheduling ASCC) A subgoal S is called a leader of a scheduling
ASCC iff the completion frame associated with § is either the deepest one in the completion stack,
or satisfies the condition:

Subg#(Sprev) < min(DirLink(S), MinLink(S))
where Sprey is the predecessor of S on the completion stack.

The completion stack can thus be partitioned into scheduling ASCCs, A4,..., A,, with the property
that no subgoal in a given scheduling ASCC depends on any subgoal in a scheduling ASCC deeper
in the stack. As a result, the leader of the topmost scheduling ASCC can be used to determine when
subgoals in that ASCC can be completed. This property is the basic idea behind the SLG-WAM’s
implementation of incremental completion. Example 3.2 indicates a further property of incremental
completion.
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Example 3.2 ([2]) For the program in Figure 21(a) and query ?- p(X,Y)., Figure 21(b) depicts
the subgoal dependency graph and completion stack at the time of completion of p(X,Y). The order
of entries in the Completion Stack reflects the Subg# of the subgoals. Subgoal q(X), with Subg# 2,

:- table p/2, r/1, q/1. D(X.Y)

p(X,Y) - q(X), r(¥).

p(c,a). » + rY) |3 | 1 1
a(a). + qX) | 2 2 1
q(®). 40 ™ p(x.Y) | 1 1 1
r(c). Subgoal Subg#  DirLink  MinLink(9
r(X) :- p(X,Y).

(b) Subgoal Dependency Graph and Completion Stack
(a) Program

Figure 21: A Trapped Component (consisting of a single subgoal).

is trapped below r(Y) with Subg# 3, because its MinLink is low due to the DirLink value from
subgoal r(Y). As a result, p(X,Y) is the only leader, all three subgoals end up in the same scheduling
ASCC and will be completed simultaneously.

Example 3.2 illustrates both a disadvantage and an advantage of scheduling ASCCs. Clearly, q(X)
is not detected to be completely evaluated as soon as it can be. However, in terms of space reclamation,
the detection of completion of q(X) is not useful for a stack-based engine. To see this, recall that the
order of subgoals in the completion stack reflects that of generator nodes in the choice point stack.
Thus if r(Y), which is above q(X), depends on p(X,Y) below q(X), there must be an active node
with selected literal p(X,Y) above q(X) in the choice point stack. As a result, all WAM stacks remain
frozen by the active node regardless of whether q(X) is completed. Space frozen by q(X) therefore
cannot be unfrozen until the leader of the scheduling ASCC, p(X,Y), is completed. Scheduling ASCCs
are efficiently maintainable, and have good space reclamation properties. Section 6.5 will discuss how
to extend the rules presented here so that exact detection of SCCs can be performed when necessary
for stratified programs.

The Completion Instruction for Definite Programs

Figure 22 presents the completion instruction for definite programs. Section 3.4 discussed how the
scheduling of answer_return instructions is performed by the fixpoint_check procedure as part of the
completion instruction for the leader of a scheduling ASCC. A call to this procedure is made in step 1.1
of Figure 22. The fixpoint_check procedure, shown in Figure 23, simply traverses completion stack
frames to call schedule_resumes for subgoals in a scheduling ASCC. If there are unconsumed answers
for a particular subgoal, schedule_resumes breaks the loop of fixpoint_check by causing the engine to
fail and return answers by backtracking through consumer choice points for that subgoal. When this
batch of answers has been consumed, the engine once again backtracks to the completion instruction
for Subgoal. Thus, step 1.2.1 is reached only if all answers have been returned to each subgoal in
the scheduling ASCC. In this case, stacks are unfrozen and space is reclaimed (step 1.2.2). More
precisely, the stacks are restored to their state at the time Subgoal was first called by adjusting the
WAM stack and freeze registers (i.e., B, BF, E, EF, ...) to their values as saved in the generator
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Instruction completion
0  SubgCSF := SF_ComplSF(GCP_SubgFr(breg));
/* B register (breg) points to the Generator CP of Subgoal */
1 If (Subgoal is the leader of a scheduling ASCC, A)
/* using SubgC S F according to Definition 3.1 */

1.1 Call fixpoint_check(SubgC S F);

1.2.1 Mark as complete all subgoals in A;

1.2.2 Reclaim the stack space of subgoals in A and adjust the freeze registers;
2 breg := GCP_BregChain(breg);

3 fail;

Figure 22: The completion instruction (for Definite Programs).

choice point of Subgoal (see Figure 7). In addition, subgoals in the ASCC of Subgoal are removed
from the completion stack. When this is done, or if Subgoal is not a leader, execution fails to the
previous choice point.

Procedure fixpoint_check(SubgCSF)  /* SubgCSF is a pointer to the completion stack frame */
while (SubgC S F is less than or equal to the top of the completion stack)
SubgFr := CSF_SubgFr(SubgCSF);
Call schedule_resumes(SubgFr); /* a failure continuation is taken if any consumer choice */
/* point associated with SubgFr has unconsumed answers (cf. Figure 18) */
Increment SubgC S F by the size of a completion stack frame;

Figure 23: The Fizpoint_Check Procedure.

4 A Review of Left-to-Right Dynamic Stratification

Stratification theories share a common thread: that a program can be broken up into strata, and that
elements of a given stratum may depend negatively only on elements in lower strata. These elements
may be predicates or atoms or a mixture of both; and their division into strata may take place either
statically or during the program’s evaluation. In Dynamic Stratification [13], the elements are atoms
and their division into strata takes place dynamically during a program’s evaluation. The power of
dynamic stratification arises from a theorem that a program has a two-valued well-founded model if
and only if it is dynamically stratified.

Evaluation of dynamically stratified programs cannot be done using a fixed computation rule [13].
Within SLG, the ability to alter a computation rule is addressed by DELAYING and SIMPLIFICATION
operations. These operations can be expensive and can deeply affect the SLG-WAM. However, by
restricting the definition of dynamic stratification to fixed-order computations, the useful subclass of
Left-to- Right Dynamically Stratified programs (LRD-stratified programs) arises. As we will show, this
class can be efficiently evaluated without elaborate modifications of the definite engine. LRD-stratified
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programs were introduced in [23], along with the variant of SLG, SLGq; that we use throughout
the remaining part of this paper. It can be shown that the class of LRD-stratifled programs properly
contains the class of left-to-right weakly stratified programs, which in turn properly contains the
class of left-to-right modularly stratified programs. Further, it was shown in [20] that all modularly
stratified programs are statically reorderable into this later class. Figure 24 provides an example of
a left-to-right dynamically stratified program and a dynamically stratified (but not LRD-stratified)
program. We note that the LRD-stratified program in Figure 24(a) is neither modularly nor weakly
stratified.

p :- q, not r, not s. p :- not s, not r, q.

q :- r, not p. q :- r, not p.

r :- p, not q. r :- p, not q.

s :- not p, not g, not r. s :- not p, not q, not r.
(a) LRD-Stratified (b) Dynamically Stratified

Figure 24: Program Fzamples for Dynamically Stratified Negation.

Intuitively, LRD-stratified programs are those with two-valued well-founded models that can be
evaluated using a fixed left-to-right literal selection strategy. Formally, these programs are defined
by adapting Przymusinski’s iterated fixed point for the well-founded semantics [13] to a fixed left-to-
right computation rule. Qur single modification is the introduction of the failing prefiz constraint in
Definition 4.1. This constraint restricts false facts from being included in F;(F'), unless their falsity
can be established by a left-to-right examination of literals.

Definition 4.1 For sets T and F of ground atoms

71(T) = {A | there is a clause B « Ly,...,L, in P and a ground substitution 6 such that A = B9
and for every 1 < i < n either L;0 is true in I, or L;0 € T'};

Fi(F)= {A] for every clause B « Ly, ..., L, in P and ground substitution @ such that A = B6 (1)
there is some 7 (1 < ¢ < n), such that L;0 is false in I or L;0 € F, and (2) there exists a failing
prefiz: for all j (1< j <i—1), L;f1is truein I}. O

In 77 and Fy, I represents facts shown to be true or false in a previous fixpoint derivation. These
operators serve as primitives upon which inner fixpoint operators 77 and F; can be built.

Definition 4.2 Let I = (T'; F) be a partial interpretation,

TI=0 and F{°=Hp

T = T(T{") and Fy™*' = Fi(Ff")
Tr=|J " and Fr= ) F{™
n<w n<w
Further, define Z(I) as: Z(I) = I U (Ty; Fr). O
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The outer (transfinite) fixpoint is based, according to the usual definitions, on the operator 7 which
extends the interpretation I to Z(I) by adding to I: (1) new atomic facts 77 which can be derived
from P knowing I, along with (2) negations of atoms in unfounded sets based on the interpretation I.
Using this framework a LRD-stratified program is defined as one in which the iterated fixpoint of 7
produces a two-valued model (i.e. one in which no atom is undefined). When this model exists, it is
equal to the well-founded model for P.

5 Tabling Operations for LRD-Stratified Programs

The intuition behind the evaluation of LRD-stratified programs is that nodes with selected negative
literals are suspended using mechanisms similar to those of Section 3.1, and are resumed only when
the subgoals for those literals are failed: i.e., when they are completed with no answers. Along
with the SLG operations for definite programs of Definition 2.3, the following operations are used in
LRD-stratified programs.

Definition 5.1 (SLG operations for LRD-stratified Programs) Let N be an active node of an
SLG tree of the form Answer_Template :— not 5, Goals where § is a subgoal of a tabled predicate.

|[FLOUNDERING | If S is non-ground, then the evaluation is floundered.

|NEGATION FAILURE| If S is ground and has an answer, then create a fail node as the immediate child
of N in its SLG tree.

[NEGATION succEss| If S is ground and is failed, then produce an immediate child of N of the form:
Answer _Template :— Goals. a

Creating a fail node in an SLG tree effectively fails the computation path to the fail node. If an
evaluation encounters a literal not S and S is not yet in the system, the NEW SUBGOAL operation
takes place; i.e., a new SLG tree rooted by a generator node is created for §, and PROGRAM CLAUSE
RESOLUTION is used to derive answers for it. No operations are applicable for node N containing
a ground literal not S until either an answer is derived for S (at which time a NEGATION FAILURE
operation would be applicable), or until S is failed, when a NEGATION SUCCESs operation would
become applicable. The following theorem, slightly modified from [23], indicates the validity of the
approach outlined.

Theorem 5.1 ([23]) Let P be a ground LRD-stratified program, and let € be an SLG evaluation of P
consisting of the operations NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION, ANSWER RETURN, NEW
ANSWER, COMPLETION, NEGATION FAILURE, and NEGATION SUCCESS. Then & will reach a final state
that is not flummozed.

Together with the correctness of SLG, Theorem 5.1 implies that the above set of operations suffices
to evaluate LRD-stratified programs without the SLG DELAYING, SIMPLIFICATION and ANSWER COM-
PLETION operations (see [3]). As will be discussed in Section 6, the engine makes direct use of this
result.

Other evaluation mechanisms are of course possible. For instance [2] applies the SLG DELAYING
operation whenever there is a node with a selected negative literal in a ASCC that is being checked
for completion. Such an approach has the disadvantage that DELAYING breaks the fixed order of
computation for N, perhaps unnecessarily expanding the search space of the program. As implied by
Theorem 5.1, in LRD-stratified programs this search space expansion can be avoided.
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6 The Abstract Machine for LRD-Stratified Programs

In order to evaluate LRD-stratified programs, five main changes are made to the definite engine: 1) im-
plementation of early completion, 2) implementation of a stratified negation operator, 3) a suspend
and resume operation for selected negative literals, 4) explicit maintenance of subgoal dependencies,
and 5) a completion instruction with the ability to determine SCCs precisely and complete them
independently of their stack-based order. We discuss each of these changes in turn.

6.1 Implementation of Early Completion

Early completion (condition 2 in Definition 2.5), or the ability to complete subgoals whose truth
value has been established without taking into account their possible dependence on other subgoals,
is necessary to evaluate ground LRD-stratified programs without breaking a fixed literal selection
strategy. Example 6.1 illustrates one case of this.

Example 6.1 Let P be the LRD-stratified program in Figure 25(a) for which the query ?- ais to

:— table a/0,b/0,c/0,d/0,e/0.

a
.
:- b, not c. 0\
+
b c

a
b :- a.
b :- d.
b.
+ +
c :- not d.
d :- b, e. d + e
(a) A LRD-stratified Program (b) Subgoal Dependency Graph

Figure 25: Program showing the need for early completion.

be evaluated. The execution of this query against P causes cascading suspensions, of a on ¢ and ¢
on d, as seen from the subgoal dependency graph shown in Figure 25(b). Observe that b has been
completely evaluated. If b were explicitly completed, it could be removed from the SDG, and the
apparent loop through negation (subgoals a, b, ¢, and d) could be broken. |

To perform early completion the engine must check if a subgoal’s answer is a variant of the subgoal
itself. The SLG-WAM of XSB currently implements early completion in the case where the subgoal
is ground. Early completion is thus easily implemented during the answer check/insert step of the
new_answer instruction of Figure 16. Recall from Section 3.4 that new_answer is compiled as the last
instruction of each clause in a tabled predicate and it uses the substitution factor from the generator
choice point to add an answer to the table. If the number of variables in the subgoal is equal to 0,
the subgoal is ground and it may be (early) completed upon addition of its answer. In such a case,
the subgoal frame, which is accessible through the generator choice point, is marked as complete,
and its pointer to the nodes depending negatively on the subgoal set to null (the NS_Chain cell: see
Figure 10). In addition, the FailCont cell of the generator choice point (see Figure 7 in Section 3.1.4)
is made to point to a completion instruction. This action bypasses any possible remaining tableretry
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and tabletrust instructions for that subgoal °. The completion instruction will return the answer to any
consuming choice points through the fixpoint_check procedure, and will revise dependency information
to take account of subgoals that have been early completed (see Section 6.5).

6.2 Implementation of a Predicate for Fixed-Order Stratified Negation

Because negation is restricted to ground literals, whenever an answer is derived for a subgal S, a
NEGATION FAILURE operation becomes applicable to any active nodes with not § as their selected
literal. As mentioned in the previous section the SLG-WAM removes pointers to such active nodes
upon early completion of §; these active nodes will never be resumed, so that NEGATION FAILURE
operations are executed implicitly upon early completion. These considerations lead to the following
invariant:

Invariant 1 In the SLG-WAM for LRD-stratified programs, the completion of subgoals initiates only
NEGATION SUCCESS opemtions.

The predicate tnot/1 implements negation for LRD-stratified programs, and, as shown in Fig-
ure 26, makes use of this invariant. tnot/1 is implemented using low-level builtins. Since any ground
subgoal with an answer is marked as complete by early completion, tnot/1 calls the negation_suspend/1
builtin only if the subgoal is incomplete (and has no answer). Later, according to Invariant 1, the
computation resumes (to true) only if the completed subgoal has no answers. The exact mechanisms
of suspending and resuming negative literals can now be described.

tnot(S) :-
( ground(S) —
( subgoal_not_in_system(S), call(5), fail
; (is_complete(S) — has_no_answers(S)
; negation_suspend(S), true  /* if execution reaches here, S */
) /* is completed with no answers */

)

; error(” Flounder: subgoal S is not ground”)

).

Figure 26: An implementation of tabled negation (tnot/1) for LRD-stratified programs.

6.3 Suspending and Resuming Negative Literals

The operation of suspending negative literals is implemented through a C-level builtin nega-
tion_suspend/1 (cf. Figure 26). This builtin pushes a negation suspension frame onto the choice point
stack and then suspends the computation by freezing the stacks and failing. The negation suspen-
ston frame (whose format is shown in Figure 27) saves the execution environment for the suspended
computation in a manner similar to saving suspended environments for consumer choice points. Like
consumer choice points, negation suspension frames of the same subgoal are chained together in a

°Tt will be shown in Section 7 that early completion can also benefit certain definite programs because of this action.
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chain (using the PrevNS cell) and can be accessed from the subgoal frame (through their NS_Chain
cell: see Figure 10).

FailCont | Pointer to negation_resume instruction

EBreg Environment Backtrack Point

Hreg Top of Global Stack (Heap)

TRreg Top of (Forward) Trail Stack

CPreg Return point of suspended literal

Ereg Parent Environment

RSreg Root Subgoal Choice Point

SubgFr Frame of Suspended Subgoal

PreyNS | Pointer for Negation Suspension Frame Chain

Figure 27: Format of Negation Suspension Frames.

The completion instruction schedules negation_resume instructions in a manner similar to the way
it schedules answer_returns. For each subgoal, its negation suspension frames are chained together
using their PrevNS cells, and these subchains are chained together into one chain upon completion of
corresponding subgoals. The engine then backtracks to execute negation_resume instructions for each
negative active node suspended on one of the completed subgoals. Upon executing a negation_resume
instruction, the engine will use the forward trail to resume the suspended computations and continue
execution. Because, the SLG-WAM calls negation_suspend/1 builtins only through tnot/1, continued
execution will immediately succeed out of the tnot/1 predicate, implicitly performing a NEGATION
SUCCESS operation.

6.4 Maintenance of the Subgoal Dependency Graph

As Definition 2.4 implies, vertices of the SDG are incomplete subgoals, and edges are drawn between
the root subgoals of incomplete SLG trees and the selected subgoals of their active nodes. Within
the SLG-WAM, the SDG can be effectively represented by maintaining pointers from consumer choice
points to their root subgoals, and — if first call optimization is used — from generator choice points
to the appropriate root subgoals. °

In the WAM, global information, such as the root subgoal of the node currently under execution
is kept in registers, and we therefore introduce a global RS register (short for Root Subgoal register)
to keep track of this dependency. All choice point frames, including those for interior nodes, need to
maintain the value of this register, and do so in their RSreg cell (see Figures 7, 8 and 27). The RS
register is updated as follows:

e First, the RS register is modified upon creating the generator node for a new SLG tree. This
is performed by the tabletry and tabletrysingle instructions, after the creation of the generator
choice point frame. The value of the RS register is set to the address of that choice point.

e Secondly, the RS register must also be restored when the computation successfully exits an SLG
tree by, say, deriving an answer. This restoration of the RS register during forward execution
is performed by the new_answer instruction. Note that restoration during forward execution
is unnecessary for interior nodes since the SLG tree in which computation takes place is not
affected by executing PROGRAM CLAUSE RESOLUTION in the forward direction.

12 As a technical point, these pointers maintain the transpose of the SDG (SDGT) rather than the SDG itself.
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e Thirdly, the RS register must be restored when the computation executes a failure continuation,
potentially switching to a new tree. This can occur either when executing PROGRAM CLAUSE
RESOLUTION by the retry, trust, tableretry, and tabletrust instructions; when returning an answer
by the answer_return instruction; or when executing a negation_resume instruction.

6.5 Completion in LRD-Stratified Programs

In an LRD-stratified program there is nothing to prevent a given subgoal in an ASCC, A, from
depending negatively on another subgoal in A. If an engine is to evaluate LRD-stratified programs
using a fixed computation rule, it must correctly order the completion of subgoals and the execution of
NEGATION SUCCESS operations. We first discuss how exact SCC detection is done in our framework,
and then present the completion instruction for LRD-stratified programs.

6.5.1 Performing coMPLETION based on Exact Subgoal Dependencies

Example 6.2 Let P be the program in Figure 28 for which the query 7- p(a). is to be evaluated.
Note that since there is only one predicate p/1, P is not modularly stratified for any selection order.
It is, however, LRD-stratified. The SLG forest of Figure 28 depicts a state of the evaluation of p(a)

:— table p/1.
0.p(a) la. p(b) 2a. p(c)
p(a) :- p(b), not p(d). ‘ ‘

B o 1. p(a) :- p(b), not p(d) 3.p(c) :- p(b). p(e)
p(b) :- p(c). ‘ . 6.p(b) :- ‘
p(b) :- not p(d). 2. p(b) :- p(c)

p(b). 7. p(a) :- not p(d) 4. p(a) :- not p(d) 8.p(c) :- p(e)
p(b) :- not p(a).

4a. p(d) 8a. p(e)
p(c) :- p(b), p(e).
p(d) :- mot p(c), p(d) 5. p(d) :- not p(c), p(d) 9.p(e) :- p(c) 10. p(e) :- not p(b), not p(e)
p(e) :- p(e). 11. fail
p(e) :- not p(b), not p(e).

Figure 28: A LRD-stratified Program and the SLG Forest created for the query 7- p(a).

in which there are apparent cycles through negation, as can be seen from the associated SDG in
Figure 29(a). Note that in this state a PROGRAM CLAUSE RESOLUTION step has not been applied
using the last clause of p(b). Because the subgoal p(b) is ground and contains an answer, p(b) may
be early completed, producing the SDG of Figure 29(b), which contains no loops through negation.
The SCC {p(c),p(e)} is then found to be completely evaluated according to Definition 2.5, and a
COMPLETION operation is applicable to the subgoals of this SCC. |

In order to describe how the SLG-WAM performs the computation described in Example 6.2, we
first consider how the completion stack may be augmented to perform exact SCC detection. Fig-
ure 30(a) shows the completion stack and MinLink(S) values at the state of computation depicted in
the SLG forest of Figure 28. According to the definitions given in Section 3.5, p(b) is the leader of a
scheduling ASCC containing p(c), p(d), p(e) and itself. In order for the SLG-WAM to determine the
order of completion for subgoals in the scheduling ASCC, it augments the completion stack with reverse
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p(a) p(a)

p(b) ———= p(d) p(d)
+< +/ )
p(c) p(c)
p(e) p(e)
(a) For all subgoals in the forest (b) When disregarding early completed subgoals

Figure 29: Subgoal Dependency Graphs for the query 7- p(a).

dependency links. As Figure 30 illustrates, this augmentation effectively constructs the transpose of
the SDG restricted to incomplete subgoals in the scheduling ASCC. ! At this point, an independent

[pe!5[2]2 [ ——=pc )
[p@)[ 4 [3]2[ f+=po )
cLe@ 3 T3 ]2 [ —fF—=pE 5=pb )
pee, o)l 2 2] 2 | | nsee| @] 4 T3] 2 [} @] )
[ p@] 1 [ 1 | 1 0cTEdges [p@] 1 [ 1 | 1 06T Edges
Subgoal  Subg# DirLink MinLink(S) Subgoal  Subg# DirLink MinLink(S
(a) Before completion of p(b), p(c) and p(e). (b) After their completion.

Figure 30: Completion Stack states when evaluating the program of Frample 6.2.

SCC is obtained by performing a combination of a topological sort and an SCC computation of a
directed graph [5].

Example 6.3 Continuing Example 6.2, the COMPLETION operation for the scheduling ASCC led by
p(b) finds subgoals p(c) and p(e) to be an independent SCC, and completes them. The completion
frames of these subgoals, as well as that of p(b), which was early completed, are removed from
the completion stack. Also, their completion initiates a NEGATION SUCCESS operation for the node
p(d) :- not p(c), p(d). When computation resumes for this node, the literal p(d) is selected, and
the subgoal dependency graph is modified. The resulting completion stack of the new computation
state is depicted in Figure 30(b).

Only COMPLETION operations are applicable at this point. A COMPLETION operation for p(d) is
performed and p(d) is found to be the leader of its scheduling ASCC and is completed. Finally, literal

1We note that as an optimization, links do not need to be created for subgoals that are completed, but whose frames
remain on the completion stack.
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Instruction completion
0  SubgCSF := SF_ComplSF(GCP_SubgFr(breg));
/* B register (breg) points to the generator CP of Subgoal */
1 if (Subgoal is a leader of a scheduling ASCC, A)
/* using SubgC S F according to Definition 3.1 */

1.1 Call fixpoint_check(SubgC S F);
1.2 if (there are no negation suspensions on subgoals in A)
1.2.1 Mark as complete all subgoals in A;
1.2.2 Reclaim the stack space of subgoals in A and adjust the freeze registers;

else
1.3 I := independent_scc(Subgoal);
1.4 For each subgoal S € I
141 Mark the subgoal frame of S as complete;
1.4.2 if (there are negation suspensions on S)
1.4.3 if (there exists a subgoal S’ € I that is suspended on )
1.4.4 Abort: the program is not LRD-stratified,;
1.45 else Schedule negation_resume instructions for §

by chaining together the negation suspension frames for all completed subgoals;

1.5 Let E be the set of subgoals of A that were early completed and let C' := E U I;
151 Compact the completion stack by removing the frames of subgoals in C;
1.5.2 If possible, reclaim the stack space of subgoals in C and adjust the freeze registers;
2 breg := GCP_BregChain(breg);
3 fail;

Figure 31: The completion instruction (for LRD-stratified Programs).

not p(d) in the body of p(a) is resumed (using a negation_resume instruction) and succeeds, which
in turn activates the early completion of subgoal p(a) upon the derivation of its answer. |

As the example shows, the approximation of the strongly connected components kept by the completion
stack may considerably change as a result of NEGATION SUCCESS operations, and fresh dependency
information may have to be added to the completion stack whenever exact SCC detection is required.

6.5.2 The completion instruction for LRD-stratified Programs

The completion instruction for LRD-stratified programs is shown in Figure 31. With the exception of
the test in step 1.2, up to line 1.2.2, and in steps 2—-3 the actions of the completion instruction for LRD-
stratified programs are the same as for definite programs. The instruction is scheduled on the choice
point stack either by tabletrysingle or tabletrust when PROGRAM CLAUSE RESOLUTION is no longer
applicable for a subgoal Subgoal, or by the new_answer instruction in the case of early completion.
Upon execution, if Subgoal is the leader of its scheduling ASCC, the completion instruction for Subgoal
will first access the subgoal frame and perform a fixpoint_check to ensure that all ANSWER RETURN
operations have been performed for active nodes in the scheduling ASCC of Subgoal. If the Subgoal
is not a leader, the action of the completion instruction is simply to backtrack to the previous choice
point. If Subgoal is the leader of a scheduling ASCC, a check is made whether there are negative
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dependencies on any members of the ASCC (the NS_chain pointers of each subgoal frame are used for
this check). If no such negative dependencies are present, all subgoals in the ASCC can be completed
and their space reclaimed, just as in the definite case. If there is a negative dependency on some
subgoal of the ASCC, the engine refines the approximation of the scheduling ASCC by finding an
independent SCC as explained in the previous section (step 1.3). Once an independent SCC, I, is
obtained, its subgoals are completed and a check made for whether the program is LRD-stratified
using the property that the relevant portion of a program is LRD-stratified iff, after disregarding early
completed subgoals, no independent SCC contains negative dependencies among its subgoals. If it is
sound to continue, negation_resume instructions are scheduled for all nodes that were suspended on
the completion of the subgoals in I (step 1.4.5). This implementation of this scheduling is analogous
to that of the fixpoint_check procedure. Finally, the completion stack is compacted to remove frames
of complete subgoals, the remaining choice points are (re)chained through their Breg_Chain cell, and,
if possible, stack space is reclaimed for subgoals in the independent SCC. This is always possible when
the bottom of the completion stack is reached.

The correctness of the completion algorithm follows from the proposition below, which can be
proven using the formalism of SLGo automata in [24].

Proposition 6.1 (Correctness of completion algorithm) Let S be the completion stack in an eval-
uation of a ground LRD-stratified program, and let L be the leader of a scheduling ASCC A. Further-
more, assume that all applicable SLG operations of Definitions 2.8 and 5.1 (but for COMPLETION itself)
have been performed for subgoals in A. Finally, let C be the set of subgoals in step 1.5 of Figure 31.
Then,

1. C wnll be non-empty;

2. No subgoal will be in C unless it is completely evaluated.

7 Performance

Previous sections have described how the SLG-WAM extends the WAM so that tabling can be inter-
mixed with Prolog execution. We adopt two ideal criteria for judging the success of the engine.

1. Performance overheads should be minimized. Prolog programs should not pay a penalty for
tabling mechanisms that they do not use. Likewise, definite programs that use tabling should
not pay a penalty for mechanisms added for stratified negation.

2. Performance times of tabled and non-tabled code of similar complezity (cf. Section 7.2) should be
compatible. Performance times of both types of predicates should be similar if tabled evaluation
is to be used to solve practical problems.

This section measures the performance of the SLG-WAM using these criteria. Additional com-
parisons of the SLG-WAM against other tabling systems and deductive databases can be found
in [22, 2, 25, 18, 19].
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7.1 Measuring Performance Overheads
7.1.1 Overheads Imposed on Prolog Programs

When the SLG-WAM executes Prolog code, performance differences with the WAM can arise from
several factors: from the forward trail, from the introduction of freeze registers, and from other
miscellaneous factors such as the addition of words to Prolog choice points (the Breg_Chain cell and
the RSreg cell, whose uses were explained in previous sections). Of these differences, the forward trail
affects every trailed binding, and each environment restoration at backtracking. The freeze registers
affect the allocate and backtracking instructions, but moreover the values of EF and HF registers need
to be checked at every variable binding in order to determine whether the variable has been created
since the last choice point.

In summary, the differences with the WAM are:

e The try, retry, and trust instructions are changed due to freeze registers, to the forward trail, and
due to the addition of extra cells in choice points.

e The allocate instruction is changed due to freeze registers.

o The get and unify instructions are changed due to augmented trail frames, and due to the
incorporation of freeze registers in the check for whether trailing is necessary.

To measure the effect of these the following versions of the engine were created along with an unmod-
ified WA M engine.

SLG-WAM: WA M-tra:l Contains freeze registers, but WAM-style trail.

SLG-WAM: Definite Performs SLG evaluation for definite programs only. It contains a forward
trail as well as freeze registers.

SLG-WAM: LRD Performs SLG evaluation for LRD-stratified programs. It contains all additions
and changes to the WAM described in this paper.

Normalized CPU times of all emulators are compared for five standard benchmarks from the
D.H.D. Warren test suite in Table 1.12

‘ H deriv ‘ gsort ‘ nreverse ‘ serialise ‘ query H Mean ‘

WAM 1 1 1 1 1 1

SLG-WAM: WAM-trazl 1.10 1.10 1.04 1.04 1.09 1.08
SLG-WAM: Definite 1.16 1.11 1.05 1.09 1.13 1.13
SLG-WAM: LRD 1.16 1.11 1.05 1.09 1.13 1.13

Table 1: Normalized CPU times for executing standard Prolog benchmarks.

For gsort, nreverse, and query the increase in time appears to be due to the addition of the
freeze registers, while for serialise it is due to writing trail cells. query, and to some extent gsort
also test the efficiency of shallow backtracking. However query, gqsort, and nreverse rarely actually
trail variables either because the predicates are called with instantiated arguments, or because the

12 All tests in this section were done on a SPARC 20 running SunOS 5.4. The compilation of XSB was done with
gee 2.7.0 (using the -04 option)
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variables that are bound do not lie below a choice point. The serialise benchmark, on the other
hand, builds a structure which is successively instantiated at a progressively deeper level, creating trail
frames.

For the deriv benchmark, the performance of compiled cuts is also tested. Due to the complications
stemming from environment switching, cuts can be expensive in the SLG-WAM. To measure the effect
of the SLG-WAM cuts on deriv, a version of the emulator was created with cuts compiled as in the
WAM. This version had a normalized time of 1.11, indicating a sensitivity to the cut extensions.

The addition overhead of changes to evaluate LRD-stratifled programs was negligible (less than 1%)
for these benchmark programs, so that it is probably safe to conclude that on average the changes to
the WAM described in this paper add about a 10-15% overhead to Prolog CPU times.

In order to test memory usage, the LRD engine was tested against a vanilla WAM engine. For
Prolog programs, the SLG-WAM consumes more memory than the WAM due to its larger choice
point and to trail frames which consist of three words rather than one word. Surprisingly, for the
above benchmarks, memory usage is only about 5% higher than in the WAM. For these benchmark
programs, bindings to variables usually occurs in deterministic predicates: those for which only one
clause can succeed due to indexing or to the use of cuts. As has been noted in other, more detailed
studies (e.g. [27, 28, 32]), the actual creation of trail frames can usually be avoided.!?

7.1.2 Overhead for the Evaluation of LRD-stratified Programs

The previous section measured the overhead of the engine for stratified negation on Prolog programs.
In this section, we further measure the performance of this engine on definite programs that use tabling
(Figure 32). Table 2 contains normalized execution times for left-recursive transitive closure (over a
chain, a cycle, and a full binary tree data structure, all of size 8k), and a same generation program
(over a randomly generated 24 x 24 x 2 cylinder). A cylinder can be thought of as a rectangular matrix
of elements where each element in row ¢ has links to a certain number of elements in row 2 + 1. The
24 x 24 x 2 cylinder then, is an array of 24 x 24 nodes, where each of the nodes in each row (except
the last) is connected to two elements in the next row. None of these programs contains negative
literals. It is somewhat surprising that the engine for stratified programs outperforms (if slightly)

‘ H TC-chain ‘ TC-cycle ‘ TC-tree ‘ same gen. ‘

SLG-WAM: Definite 1 1 1 1
SLG-WAM: LRD 0.947 0.945 0.979 0.961
SLG-WAM: No-EC 1.008 1.009 1.012 1.010

Table 2: Normalized CPU times for erecuting tabling benchmarks using XSB.

the engine for definite programs. The third line of the table measures the performance of an engine
with all changes for negation ezcept early completion. With this information it can be seen that the
advantage of early completion outweights the overheads of other changes to implement LRD-stratified
programs.

Comparison with Other Evaluation Strategies for Stratified Negation To put the numbers
of the previous section in perspective, we compared the overhead of the SLG-WAM’s algorithm for

13This memory comparison was obtained using a SLG-WAM with trail compaction added. Without trail compaction
(as in XSB version 1.7), the memory overhead is 18%.
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:- table path/2.

path(X,Y) :- path(X,Z), edge(Z,Y).

path(X,Y) :- edge(X,Y).

(a) Left-Recursive Transitive Closure

sg(X,Y) :- cyl(X,X1), sg(X1,Y1), cyl(Y,Y1).

sg(X,X).

(c) Same Generation

path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

(b) Right-Recursive Transitive Closure
even(0).
even(X) :- X > 1, Y = X-1, not even(Y).

(d) Even

path(X,Y) :- path(X,Z), edge(Z,Y), not congested(Y).
path(X,Y) :- edge(X,Y).

(e) Congested

Figure 32: Test Programs (versions with Prolog-style negation).

stratified negation with Ordered Search [16], a magic-oriented strategy implemented in the CORAL
system [17]. The default strategy for CORAL is Supplementary Magic Rewriting which correctly
evaluates definite programs. This default strategy was not designed for stratified programs, and if
such programs are to be evaluated Ordered Search, which correctly evaluates left-to-right modularly
stratified programs, should be used. Table 3 compares performance of Ordered Search with Supple-
mentary Magic Rewriting on definite programs. The results in Table 3 show that Ordered Search is

‘ H TC-chain ‘ TC-cycle ‘ same gen. ‘
CORAL SemiNaive 1 1 1
CORAL Ordered Search 1.42 1.45 1.30

Table 3: Normalized CPU times for Ordered Search compared to seminaive evaluation in CORAL.

considerably less efficient than ordinary seminaive fixpoint evaluation (around 40% slower). CORAL
provides many annotations that affect the performance of programs; for both evaluation strategies the
timings reported are the best that could be obtained by setting these options.

We also measured the performance overhead of both methods on programs that contain negation,
but no negative loops, and which can be evaluated using SLDNF or a simple semi-naive search strat-
egy. The benchmarks even, and congested are shown in Figure 4 (these programs can be found
in the examples directory of in CORAL manual). In the case of the congested program, predicate
congested/1 contains recursion but no negation and serves as a test of whether a particular path is
valid. As can be seen from the results of Table 4, Ordered Search can impose a performance penalty

‘ H even ‘ congested ‘

CORAL SemiNaive 1 1
CORAL Ordered Search || 1.71 12.33

Table 4: Normalized CPU times for CORAL’s evaluation strategies on programs with negation.

on the execution of stratified programs that do not need its power. To determine the overhead of
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tabled negation in XSB for these programs, the first two rows of Table 5 compare the performance of
tabling using (tnot/1) and Prolog-style negation (not/1). As a further comparison, the last row of
the same table represents the performance of SLDNF evaluation (the left-recursive transitive closure
of congested was manually transformed to right recursion for the SLDNF test).

‘ H even ‘ congested ‘

SLG-not/1 1 1
SLG-tnot/1 || 1.19 1.23
SLD-not/1 0.72 0.71

Table 5: Normalized CPU times for different types of negation in XSB.

These performance numbers indicate a small overhead for the additional functionality of tabled-
based SLG negation relative to Ordered Search. We believe that these results reflect fundamental
aspects of the computation strategies involved, rather than accidents of implementation. As Section 6.4
indicates, it is a simple matter to use the SLG search forest to maintain dependencies between subgoals.
On the other hand, such a structure does not naturally follow from a semi-naive evaluation. Rather a
set of context nodes, which together serve as an analogue to the subgoal dependency graph, must be
built from scratch, leading to the observed overheads. The SLG-WAM’s small overhead is especially
striking since, XSB has been shown to be about an order of magnitude faster than CORAL for definite
Datalog queries [22].

7.2 Measuring Performance Compatibility

As shown in Section 7.1, SLG-WAM overhead for SLD resolution is minimal. When XSB is used
simply as a Prolog system (i.e., no tabling is used), it is reasonably competitive with other Prolog
implementations based on a WAM emulator written in C or assembly. For example, XSB is slightly

faster than NU-Prolog and is between two and three times slower than Quintus 3.1.1 or emulated
SICStus Prolog 2.1.9.

In general, performance times of tabled and non-tabled predicates may vary widely: certain tabled
predicates may not terminate in SLD or their complexity may become exponential, while simple Prolog
predicates, such as append/3 with the first two arguments instantiated, usually become quadratic when
tabled. Datalog programs with no redundant subcomputations form one class of programs for which
the complexity of both methods is the same. Two examples of this are transitive closure over trees and
chains, and Tables 6 and 7 show the normalized times for the query ?- path(1,X),fail. using XSB.
In these tables the right-recursive form of transitive closure was used for SLD (Figure 32(b)) against
its left-recursive version for SLG (Figure 32(a)). The left-recursive, SLG derivation is only slightly
slower than SLD for the chains and trees. Relative times for the tree are closer than for the chain
because SLD evaluations over the tree execute backtracking instructions to traverse the immediate
children of a given node, and these are less efficient operations in the WAM. For example, a choice
point is set up at the subgoal edge(1,X) because it unifies with both edge(1,2) and edge(1,3). The
similarities in the speed of SLD and SLG on the chain and tree are especially significant since the SLG
times include time to copy answers to and from the table space.

Memory usage for Prolog execution of the transitive closure in Figure 32(b) over a chain will be
constant. Assuming 32-bit addresses and a split-stack WAM, 60 bytes of stack space will be required
to backtrack through all solutions of the transitive closure (The 60 bytes is comprised of 1 local
environment frame, one trail cell, and one choice point frame). We present a detailed analysis of
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| Length | 8 [ 16|32 ] 64 |128] 256|512 1k | 2k |
SLD 56| .53].67].78] .71 | .78 [ .78 | .75 .73
SLG-cycle/chain || 1 1 1 1 1 1 1 1 1

Table 6: Normalized CPU Times for SLD and SLG Transitive Closure on Chains

| Height || 6 | 7 | 8 | 9 [ 10 | 11 |
SLD [[.89].82] .87 .88 .85 | .84
SLG 111 ]1[1]1

Table 7: Normalized CPU Times for SLD and SLG Transitive Closure on Complete Binary Trees

memory usage of SLG transitive closure in Appendix A, and summarize the results here. Like Prolog,
tabled execution will require a constant stack space of 192 bytes. In addition, tabled execution requires
space for tabled subgoals and answers. The subgoal trie for p(1,Y) requires 92 bytes, while the answer
trie requires 28 bytes per answer for this subgoal. The order of the clauses does not affect memory
usage for the tabled program, but if the order of the clauses in Figure 32(b) are interchanged, the
Prolog program creates a choice point (of 32 bytes) for each path/2 subgoal. Surprisingly, in this
latter case, Prolog becomes less efficient in terms of memory than tabling.

Memory usage of tabled evaluation is the same when transitive closure is executed over trees as
when executed over a chain: stack space is constant and table space grows linearly with the number
of answers. On the other hand, regardless of the order of clauses in Figure 32(b), the size of the choice
point stack for Prolog execution will grow with the depth of the tree.

8 Discussion

Extending the SLG-WAM to evaluate non-stratified programs according to the well-founded semantics
has already begun, with version 1.7 of XSB offering a prototype of this engine. The main components
of this extension are the introduction of the SLG DELAYING and SIMPLIFICATION operations to allow
the engine to evaluate body literals in a flexible order [21]. As the LRD-stratified extensions avoided
slowing down SLD resolution and tabled evaluation of definite programs, one goal of these new exten-
sions is to avoid slowing down SLD and tabled evaluation of LRD-stratified programs. Although the
basic components of the SLG-WAM are similar to those described in this paper, SIMPLIFICATION and
DELAYING necessitate deep changes to them, and experimentation is underway to determine the best
data structures for these operations.

Another extension to this work is to incorporate more sophisticated compilation techniques into
the engine. As indicated in Appendix A, the tabling instructions are large for byte-code instructions,
but are amenable to specialization based on mode and type. As mentioned in the introduction, the
tabling engine can efficiently perform mode and type analysis (among many others), and the results
of such analysis can be fed back into the XSB compiler. Tabling thus makes possible an engine which
can analyze itself declaratively, and using this analysis, can improve its performance. We believe that
advantages such as this, combined with the power to evaluate normal logic programs, will make tabling
a common component of logic programming systems of the future.
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A Analysis of Left-Recursion

In order to understand better why the execution overhead and stack space usage of SLG transitive
closure is so low we analyze the behavior of the left-recursive path/2 predicate (Figure 32(a)) on a
chain of 1024 elements. The byte-code for path/2 is shown in Figure 33.

Given a query path(1,Y),fail, the predicate path/2 is entered through instruction labeled L; in
Figure 33. Conceptually, the tabletry instruction begins by checking whether a variant of path(1,Y)
exists in the table, and copying the subgoal into the table if not. Assuming the evaluation starts
from a system with an empty table, the subgoal path(1,Y) is new to the evaluation, so a generator
choice point and a completion stack frame are created for the subgoal, and the tabletry instruction
will branch to the instruction labeled as L3 after it executes. In instruction Ly the subgoal path(1,Y)
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L, : tabletry 2 Ls TR %

Ly :  tabletrust 2 Lo %

Lz : getpvar V1 T % path(X,Y) :-

Ly: putpvar vy T % path(X,Z
Ls: call 3 path/2 % ),
Le¢ : putpval vy 7T % edge(Z,
L7 : putpval V1 T % Y
Lg: call 3 edge/2 % )
Lo : new_answer 2 s % .
Lig: call 2  edge/2 % path(X,Y) :- edge(X,Y)
Li1: new_answer 2 VU3 %

Figure 33: SLG-WAM Code for Left Recursive path/2.

is called again: a tabletry instruction is executed a second time, but the subgoal path(1,Y) is now
located in the table. Stacks are frozen and a consumer choice point is created, whose substitution
factor which will serve as the template for bindings in the fixpoint computation. This second execution
of the tabletry instruction also sets up pointers to backtrack through any existing answers in the table.
There currently are none, so the evaluation suspends by failing. At this point the necessary structures
to evaluate the fixpoint have been constructed.

The suspension and failure described in the previous paragraph causes backtracking to the genera-
tor choice point of path(1,Y) and subsequent execution of the tabletrust instruction. This instruction
places a completion instruction in the failure continuation cell of the generator choice point and then
branches to the instruction labeled Lig. The second clause calls edge(1,Y), whose instructions do not
differ from those of the WAM. edge(1,2) succeeds, causing the new_answer instruction to be invoked.
Recall from Section 3.4.3 that the second operand of new_answer is the GC P_pointer, through which
the subgoal frame of p(1,Y) can be accessed. The new_answer instruction checks for the existence of
the binding {Y « 2} as an answer for the subgoal, path(1,Y). Since the binding does not exist in the
table, the answer is inserted (as with subgoals, this check/insert operation is done in a single pass).
At this point the fixpoint computation contains its seed.

By returning the answer to the generator node in the query, the evaluation hits the fail predicate.
Because the edge/2 predicate is a chain, backtracking is not possible for the goal edge(1,Y), and the
engine fails to the completion instruction in the generator choice point. This instruction performs the
fixpoint_check operation which determines that a consumer subgoal of p(1,Y) has not consumed all
answers. The B register is set to the consumer choice point for p(1,Y) (whose Breg_Chain cell is
set to point to the generator choice point — see Figure 18) and through schedule_resumes the engine
fails. Failure invokes the answer_return instruction which returns the answer p(1,2) to the consumer
and proceeds. The subgoal edge(2,Y) is then called, succeeds, the answer p(1,3) is derived, and
the binding {Y « 3} is added to the answer table of p(1,Y) and returned to the generator. Once
again the predicate fail is encountered, and again the answer_return instruction is executed, this
time returning p(1,3). The engine stays in this loop throughout the transitive closure, executing
answer_return instructions, calling edge/2, adding the new answers through new_answer, and failing.
When the transitive closure is exhausted, the engine finally fails out of the consumer choice point and
into the completion instruction for path(1,Y). The completion instruction determines that path(1,Y)
is the leader of its SCC, and that all its answers have been returned to all its consumers. path(1,Y)
can therefore be completed, and the evaluation ends. Table 8 contains a dynamic count of SLG-WAM
instructions for the fixpoint loop of the query path(1,Y),fail over a chain of 1024 elements, along
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with an estimate for the number of SPARC instructions needed for each SLG-WAM instruction.4

Instructions Other Dynamic Percent || SPARC Percent
of path/2 instructions execution count instructions
answer_return 1023 10% 259 34%
putpval 2046 20% 14 5%
call 1024 10% 34 5.5%
switchonbound || 1024 10% 65 9.4%
getnumcon 1024 10% 15 (bb) 3.1%
getnumcon 1024 10% 43 (bf) 6.7%
proceed 1024 10% 3 1.7%
new_answer 1023 10% 253 32.9%
fail 1024 10% 4 1.8%

Table 8: Instruction Counts for Left-Recursive Transitive Closure in SLG

Several points can be made about this evaluation. First, the substitution factoring of Section 3.2
allows execution of the fixpoint of path/2 to be equivalent to execution of the fixpoint for

path(Y) :- path(X), edge(X,Y).

A second point is that the same local environment is reused throughout the fixpoint, and so is the
consumer choice point, so that transitive closure is a tight, failure driven loop. Optimizations could,
however, be made to specialize the answer_return instruction, which must copy bindings out of the
table and the new_answer instruction, which must copy bindings into the table. These instructions
necessarily have an interpretive flavor, and could be made more efficient by using information about
modes or types.

Memory usage of the query can be accounted for as follows. The original query ?- p(1,Y) requires
a local environment with two permanent variables. Each local environment for a tabled subgoal
requires a three word overhead (a pointer to the parent of the environment, a pointer to the CP
register, and a pointer to the generator choice point) for a total of 20 bytes. A three-word trail frame
is needed, a 24 byte completion stack frame, along with a generator choice point of 72 bytes including
argument cells and substitution factor, and a consumer choice point of 64 bytes, for a total of 192
bytes. 92 bytes are needed for the subgoal trie (including a 32 byte subgoal frame), while 28 bytes are
needed per answer: 20 to store the binding {Y « n}, and 8 for the answer list cell for each node.

'*The SPARC instruction count factors out operations which are not usually done in each instruction, such as memory
management, and hash table reconfiguration for answers, although the counts do include overheads for determining
whether these operations are needed. Assembly code for the count was produced using the -02 option when compiling

the SLG-WAM: Definite emulator.
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