
An Abstract Machine for Tabled Executionof Fixed-Order Strati�ed Logic Programs�Konstantinos Sagonas Terrance SwiftDepartment of Computer Science Department of Computer ScienceKatholieke Universiteit Leuven SUNY at Stony BrookB-3001 Heverlee, Belgium Stony Brook, NY 11794-4400, U.S.A.kostis@cs.kuleuven.ac.be tswift@cs.sunysb.eduSeptember 29, 1997AbstractSLG resolution [3] uses tabling to evaluate non-
oundering normal logic programs according tothe well-founded semantics. As reported in [22, 25] the SLG-WAM, which forms the engine of theXSB system, can compute in-memory recursive queries an order of magnitude faster than currentdeductive databases. At the same time, the SLG-WAM tightly integrates Prolog code with tabledSLG code, and can execute Prolog code with minimal overhead compared to the WAM. As a result,the SLG-WAM brings to logic programming important termination and complexity properties ofdeductive databases.This paper describes the architecture of the SLG-WAM for a powerful class of programs, theclass of �xed-order dynamically strati�ed programs. We o�er a detailed description of the algorithms,data structures, and instructions that the SLG-WAM adds to the WAM, and a performance analysisof engine overhead due to the extensions.
�Preliminary papers presenting initial designs of this abstract machine appeared in the following conference pro-ceedings. In Proceedings of the 1994 International Symposium on Logic Programming (The MIT Press): \An AbstractMachine for SLG resolution: De�nite Programs" pp. 633{652; and \Analysis of SLG Evaluation of De�nite Programs"pp. 219{235. In Proceedings of the Thirteenth Conference on Automated Deduction, (Springer-Verlag): \An AbstractMachine for Fixed-Order Dynamically Strati�ed Programs".

Contents1 Introduction 12 Basic De�nitions and Notation of SLG Resolution 23 The Abstract Machine for De�nite Programs 73.1 Suspending and Resuming Computations . 73.1.1 SLG Search Trees . 73.1.2 Preserving Environments through Freeze Registers 83.1.3 Resuming Suspended Computations by Restoring Environments 103.1.4 Generator and Consumer Choice Points . 113.2 Interfacing Table Space to Run-Time Stacks . 123.3 An Overview of Batched Evaluation for De�nite Programs 143.4 Extending the Abstract Machine Instruction Set . 173.4.1 A Reconstruction of the Instruction Set for Tabling 183.4.2 Optimizing the Instruction Set for Tabling . 193.4.3 Instructions for the SLG Operations . 203.5 Completion in De�nite Programs . 244 A Review of Left-to-Right Dynamic Strati�cation 275 Tabling Operations for LRD-Strati�ed Programs 296 The Abstract Machine for LRD-Strati�ed Programs 306.1 Implementation of Early Completion . 306.2 Implementation of a Predicate for Fixed-Order Strati�ed Negation 316.3 Suspending and Resuming Negative Literals . 316.4 Maintenance of the Subgoal Dependency Graph . 326.5 Completion in LRD-Strati�ed Programs . 336.5.1 Performing completion based on Exact Subgoal Dependencies 336.5.2 The completion instruction for LRD-strati�ed Programs 357 Performance 367.1 Measuring Performance Overheads . 377.1.1 Overheads Imposed on Prolog Programs . 377.1.2 Overhead for the Evaluation of LRD-strati�ed Programs 387.2 Measuring Performance Compatibility . 408 Discussion 41A Analysis of Left-Recursion 44

1 IntroductionThe lack of termination of SLDNF resolution, even on simple programs such as transitive closure, isa well-known problem. So is the fact that SLDNF may repeatedly evaluate the same subgoal, leadingto unacceptable complexity and performance. Much research has aimed at addressing these issues.Until recently, the majority of such research has focussed on set-at-a-time strategies such as thosebased on magic-style evaluation. Tabled resolution o�ers an alternative approach to the limitations ofSDLNF. One such formulation, SLG resolution (Linear resolution with Selection function for Generallogic programs [3]), o�ers advantages in its ability to evaluate queries to programs in accordance withthe well-founded semantics [30], and to do so with polynomial data complexity (as de�ned in [33, 30])if these queries are ground and the programs restricted to Datalog with negation.Despite the limitations of SLDNF and the availability of newer evaluation methods such as magicand tabling, Prolog is still by far the most popular logic programming language. The persistentpopularity of Prolog arguably arises from two causes. First, robust implementations are availablefor Prolog which are suitable for practical, and even commercial purposes. Secondly, Prolog o�ers anumber of well-known programming constructs, along with a proven programming environment.One would like to have the best of both worlds: to handle termination and negation according to thewell-founded semantics, but with the speed of Prolog and within its environment. Research on the XSBsystem [22] is geared exactly towards these goals. The termination and complexity properties of XSBhave been central to its use for Program Analysis [6, 4], for Natural Language processing [11, 10] andfor concurrency analysis [14]. Furthermore inclusion of these termination and complexity propertiesadds little performance overhead to the engine underlying most Prolog systems, the WAM (WarrenAbstract Machine [35, 1]). As a result, XSB has also been used by thousands of people around theworld to develop Prolog as well as tabled logic programs.XSB is based on an extended WAM-style engine, the SLG-WAM. This paper describes the datastructures, algorithms, instruction set and performance of the SLG-WAM on the important class ofleft-to-right dynamically strati�ed (LRD-strati�ed) programs [23]. This class properly includes otherstrati�cation classes such as (left-to-right) modular strati�cation [20], and may be the largest class ofnormal logic programs that can be evaluated using a �xed-order computation rule.The structure of the paper is as follows. Section 2 reviews a variant of SLG suitable for de�niteprograms. Section 3 presents in detail an abstract machine for de�nite programs. Sections 4 and 5de�ne the class of LRD-strati�ed programs and tabling operations needed to evaluate this class;Section 6 presents extensions to the de�nite engine that are needed to evaluate this class of programs.Finally, Section 7 presents performance results on the overhead incurred by the tabling extensions andon the speed of tabled evaluation compared to SLDNF evaluation. We point out that, while we usethe terminology of SLG, the di�erences between SLG and other table-based evaluation strategies suchas OLDT [26] or SLD-AL [34] are minor for de�nite programs. We also note that while much of thispaper assumes a knowledge of the WAM, whenever possible we have tried to present algorithms anddata structures of the SLG-WAM in a manner that assumes only a modest familiarity with the WAM.We thus hope that this detailed description will enable other implementors to incorporate varioustypes of tabling in their own systems.Related Implementations of Tabling It is natural to ask whether engine modi�cations are reallyrequired to implement tabling, or whether an SLG interpreter (or preprocessor) could be written inProlog. If so, then Prolog itself could compute SLG. Such interpreters can and in fact have beenwritten by using Prolog's dynamic database as a table store, (for instance the Extension Tables of [7]1

preprocess tabling operations for de�nite programs), but their speeds and robustness have usuallyturned out to be unacceptable for general programming. As will be described in Section 2, certaintabled subgoals resolve against answers rather than against program clauses. The branches of thesearch tree corresponding to these subgoals must either be maintained or reconstructed. Subgoals thatare to be resolved against answers must be retained until the �xpoint is reached: until all applicableanswers have been derived and resolved against the subgoals. Likewise, newly derived answers mustbe queued to resolve against subgoals arbitrarily far away in the search tree. These actions requirescheduling and suspension features that are not easily implementable without appropriate extensionsto the WAM. A recent alternative approach implements SLG by transforming a program using acontinuation passing style and then employs foreign function calls from SICStus Prolog to accesstables [18]. This approach has the advantage of portability | foreign function calls are less system-dependent than engine redesign | but compromises on speed,
exibility, and robustness.2 Basic De�nitions and Notation of SLG ResolutionIn this section we present the terminology and basic de�nitions of SLG resolution [3]. We do sothrough a simpli�ed version which is su�cient to model �nite computations of de�nite and �xed-orderstrati�ed logic programs. In general, we assume the usual terminology of logic programs from [12].We also assume that programs are evaluated using a �xed left-to-right literal selection strategy. Wede�ne subgoals as atoms, and treat variant atoms as identical. In our version of SLG a tabled programis a program augmented with tabling declarations of the form:- table p1=n1; : : : ; pk=nk.where pi is a predicate symbol and ni is an integer. These declarations ensure that all queries to thepredicate pi of arity ni will be executed using SLG. Other predicates are implicitly assumed as non-tabled in which case SLD resolution is used for queries to these predicates. Slightly abusing terminology,we will speak of tabled subgoals and literals as well as tabled predicates. Also for simplicity, if a literal(not)S is selected for resolution in node of an SLG tree, we will speak of S as the selected subgoal ofa node.Tabling methods such as SLG evaluate programs by maintaining tables of subgoals and theiranswers, and by resolving repeated occurrences of subgoals against answers from the table ratherthan against program clauses. By resolving answers in this manner, rather than repeatedly usingprogram clause resolution as in SLD, SLG avoids looping and thus terminates for all programs withthe bounded term-size property (see e.g. [29, 3]). SLG systems capture the states of an SLG evaluationof a query against a program and have two components: an SLG forest, which is a set of SLG trees, anda table. Before providing formal de�nitions, we introduce some aspects of SLG evaluation informallythrough an example.Example 2.1 Consider the evaluation of the query ?- p(a,Z) with respect to the program in Fig-ure 1. The declaration :- table p/2 indicates that SLG resolution is to be used for calls to predicatep/2. An SLG system consisting of a forest of SLG trees and a table is depicted in Figure 1 nearthe end of the evaluation. A root node of a tree in the forest consists of a tabled subgoal, and,for de�nite programs, a non-root node consists of a clause: Answer Template :� Goal List, whereAnswer Template accumulates substitutions for the variables of the subgoal, while Goal List containsliterals that remain in order to derive an answer. 2

6a. p(b,Z)

7. p(b,Z) :- p(b,Y),p(Y,Z)

9. p(b,c) :- q(Z)

10. p(b,c) :-

12. p(b,Z) :- p(c,Z)

8. p(b,Z) :- e(b,Z),q(Z)

11. p(a,c) :-

1. p(a,Z) :- p(a,Y),p(Y,Z) 2. p(a,Z) :- e(a,Z),q(Z)

0. p(a,Z)

6. p(a,Z) :- p(b,Z)

4. p(a,b) :-

3. p(a,b) :- q(b) 5. p(a,d) :- q(d)

12a. p(c,Z)

14. p(c,Z):- e(c,Z),q(Z)13. p(c,Z) :- p(c,Y),p(Y,Z)

p(a,c)

Subgoal

p(a,b)p(a,Z)

p(b,Z)

p(c,Z)

Answers

Incomplete

Incomplete

Incomplete

p(b,c)

State

q(a). q(b). q(c).

:- table p/2.

e(a,b). e(a,d). e(b,c).

p(X,Z) :- p(X,Y),p(Y,Z).
p(X,Z) :- e(X,Z),q(Z).

Figure 1: Program and SLG System for the query ?- p(a,Z).Let us examine operations of the SLG evaluation in detail. The evaluation begins with a systemcontaining a tree with root node p(a,Z) and an entry (hp(a; Z); ;; incompletei) in the table. In theabove table entry, the �rst argument represents the tabled subgoal, the second its current set ofanswers, and the third its state. This system initialization can be thought of as being performed bythe new subgoal operation which is applicable to a subgoal S if no entry for S exists in the table. Inthis case, new subgoal creates a tree with root S, and an entry for S in the table 1. The evaluationof query p(a,Z) then uses program clause resolution to generate children for this subgoal. Theprogram clause p(X,Z) :- p(X,Y),p(Y,Z) is �rst resolved against the new subgoal, creating node 1in Figure 1. In node 1, the selected literal p(a,Y) is tabled, so the node is termed active, and itsselected literal will be resolved away using answers. Since (a variant of) p(a,Y) has an entry in thetable, the new subgoal operation is not applicable. If answers for this subgoal were present, childrenfor node 1 could be produced via answer return operations. However, since there are no answers,the only alternative is to suspend this branch of the computation to wait for their possible generation.The only applicable operation for the forest at this point is to resolve the second program clause(p(X,Z) :- e(X,Z),q(Z)) against p(a,Z) in node 0. This resolution produces node 2. Since theselected literal for node 2 is non-tabled, node 2 is termed an interior node, and SLD-style programclause resolution is used on this literal. SLD-style resolution continues, eventually producing node 4which contains no further literals to resolve. The new answer operation adds p(a,b) to the tableas an answer for p(a,Z). Further program clause resolution is performed for the subtree rooted atnode 2, leading to node 5. Next, the answer produced in node 4, p(a,b), is returned to all activenodes suspended on p(a,Z) via the answer return operation. In this example, the only such node1SLG operations are denoted in the font of new subgoal throughout the paper, while engine-level instructions aredenoted in the font of tabletry. 3

is node 1 and through answer return node 6 is created.The evaluation eventually gives rise to two other tabled subgoals, p(b,Z) and p(c,Z), each ofwhich is entered in the table and forms the root of its own SLG tree. In general, the process ofexpanding nodes, adding new answers and returning them to consuming subgoals, continues untilfurther resolution will produce no new answers for a mutually dependent set of tabled subgoals, calledStrongly Connected Components (or SCCs). At such a stage, the subgoals in the SCC are completelyevaluated. Because answers for a completely evaluated subgoal S are in the table, the tree for S is ofno further use to a computation and can be disposed. In the SLG system of this example there are nomutual dependencies among subgoals, and so there are three singleton SCCs fp(a,Z)g, fp(b,Z)g, andfp(c,Z)g. Using the SLG completion operation the trees for p(c,Z) and p(b,Z) can be disposedonce it is determined that they are completely evaluated: that no new subgoal, answer return,program clause resolution, or new answer operations are applicable for any node on the tree.In this example that condition occurs after node 14 was created. The SLG system after completingthese subgoals is shown in Figure 2. After node 15 has been created, fp(a,Z)g is also completely
1. p(a,Z) :- p(a,Y),p(Y,Z) 2. p(a,Z) :- e(a,Z),q(Z)

3. p(a,b) :- q(b) 5. p(a,d) :- q(d)

0. p(a,Z)

6. p(a,Z) :- p(b,Z)

11. p(a,c) :-

15. p(a,Z) :-p(c,Z)

4. p(a,b) :-

p(a,c)

Subgoal

p(a,b)p(a,Z)

p(b,Z)

p(c,Z)

Answers

Incomplete

p(b,c) Complete

Complete

StateFigure 2: SLG System for the query ?- p(a,Z) on creation of node 15.evaluated, and all subgoals can be completed and their trees safely disposed.From Example 2.1, it can be seen that over the class of de�nite programs, SLG resolution does notgreatly di�er from other tabled-based formulations. SLG, however, is a variant-based tabling method:a tree for a new subgoal is created, or an answer added to the table depending whenever the subgoalor answer is di�erent (up to variance) from those previously derived. Other tabling methods, suchas OLDT [26] check whether a new subgoal or answer is subsumed by one previously derived in theevaluation. A variant-based tabling method preserves observables for Prolog; while a subsumption-based method may have better termination or complexity properties for certain programs and queries.We now present the formal de�nitions of terms used in the example.De�nition 2.1 (SLG System) An SLG system is a forest of SLG trees, along with an associatedtable. Root nodes of SLG trees are subgoals of tabled predicates. Non-root nodes either have the formfail or Answer Template :� Goal List:The Answer Template is an atom, and Goal List is a possibly empty sequence of literals.The table is a set of ordered triples of the formhSubgoal; Answer Set; Statei4

where the �rst element is a subgoal, the second a set of atoms, and the third either the constantcomplete or incomplete. 2As terminology, if hS;AS; Sti is an entry in the table and A 2 AS, we say that S is a subgoal inthe table, that A is an answer in the table for S and St is the state of the subgoal.De�nition 2.2 (SLG evaluation) Given a tabled program P , an SLG evaluation E for a subgoal Gof a tabled predicate is a sequence of systems S0;S1; : : : ;Sn such that:� S0 is the forest consisting of a single SLG tree rooted by G and the table fhG; ;; incompleteig;� for each �nite ordinal k, Sk+1 is obtained from Sk by an application of one of the operations inDe�nitions 2.3 or 5.1.If no operation is applicable to Sn, Sn is called a �nal system of E . In a �nal SLG system Sn of a non-
oundered evaluation E (i.e., where no non-ground negative literal of a tabled predicate is selected),if all its subgoals are completely evaluated, we say that Sn (and E) is complete; otherwise we say thatSn is
ummoxed. 2In our version of SLG, tabling operations a�ect both forests and tables. Trees can be created andextended, and subgoals and answers copied into the table. If a subcomputation has derived all possibleanswers for a subgoal S and copied these answers to the table, the tree with root S is no longer neededand can be disposed. The subgoals in the table of a system S thus are root nodes of SLG trees in S,or of trees in a predecessor of S that are now disposed.It is convenient to describe a node of an SLG tree by its status. The root node of an SLG tree hasstatus generator. Non-root nodes may have status interior if its selected literal is non-tabled, answer,if its Goal List is empty, or active if its selected literal is tabled and the node does not have fail asan immediate child. In the last case, we will speak of positive or negative active nodes, dependingon whether the selected literal is positive or negative. We call a subgoal S a consumer subgoal in asystem S if it is the selected subgoal of a positive active node, and the state of S in the table is notcomplete. fail nodes are used only in programs with negation and we postpone their discussion untilSection 5. Using this terminology, we de�ne tabling operations for de�nite programs.De�nition 2.3 (SLG operations for De�nite Programs) Given a system Sk of an SLG evalua-tion of a tabled program P and subgoal G, Sk+1 may be produced by one of the following operations.new subgoal Given an active node N with selected subgoal S, where S is not present in the tableof Sk, create a new SLG tree with root S and add the entry hS; ;; incompletei to the table.program clause resolution Let N be a node in Sk that is either a root node S or interior nodeAnswer Template :� S;Goals. Let C = Head :� Body be a program clause such that Headuni�es with S with mgu � and assume that C has not been used for resolution at node N . Then� if N is a root node, produce a child of N : (S :� Body)�.� if N is an interior node, produce a child of N : (Answer Template :� Body;Goals)�.answer return Let N be a positive active node Answer Template :� S;Goals. Let A be ananswer for S in Sk and assume that A has not been used for resolution against N . Then producea child of N : (Answer Template :� Goals)� where � is the mgu of S and A.5

new answer Let A :� be a node in a tree rooted by a subgoal S, such that A is not an answer inthe table entry for S in Sk. Then add A to the set of answers for S in the table.completion If Set is a set of subgoals that is completely evaluated (according to De�nition 2.5),remove all trees whose root is a subgoal in Set, and change the state of all table entries forsubgoals in Set from incomplete to complete. 2Further operations to handle negative literals are presented in Section 5.Returning to Example 2.1 it can be seen that the operation new subgoal is used to createnodes 6a and 12a. program clause resolution is used to create nodes 1, 2, 7, 8, 13 and 14 viaresolution against generator nodes, and to create nodes 3, 4, 5, 9 and 10 via resolution with selectedliterals of interior nodes. answer return creates nodes 6, 11, 12 and 15 through resolution againstselected atoms of active nodes. new answer is used to intern answer nodes 4, 10 and 11 into thetable.The completion operation in De�nition 2.3 relies on the notion of a set of subgoals being com-pletely evaluated. In order to de�ne this latter notion we introduce the notion of subgoal dependenciesin an SLG system.De�nition 2.4 (Subgoal Dependency Graph) Let Sk be an SLG system and F its SLG forest.We say that a tabled subgoal S directly depends on a tabled subgoal S 0 i� the tree rooted by Scontains an active node whose selected literal is (not)S 0. If (not)S 0 is a positive (negative) literal, thenwe say that S directly depends positively (negatively) on S 0. The dependence may be both positiveand negative at the same time.The Subgoal Dependency Graph SDG(Sk) = (V;E) of Sk is a directed graph in which V is the setof root goals for trees in F and (S; S 0) 2 E i� subgoal S directly depends on subgoal S 0. The edgesare labeled positively, negatively, or both depending on the sign of the direct dependencies. 2Because the subgoal dependency graph of a given system is a directed graph, strongly connectedcomponents can be de�ned on it in the usual manner. Throughout the paper, we denote a set of SCCsas an Approximate SCC, or ASCC. An ASCC is termed independent if it depends on no other ASCCswhich it does not contain. Using these notions, we can provide an operational de�nition of when a setof subgoals has been completely evaluated.De�nition 2.5 (Completely Evaluated Set of Subgoals) Given an SLG system Sk, a set Set ofsubgoals is completely evaluated i� either of the following conditions is satis�ed:1. Set is an independent ASCC of SDG(Sk), and for each subgoal S in Set:� All applicable SLG operations other than completion have been performed for nodes inthe tree rooted by S according to De�nitions 2.3 and 5.1.� No active node in the tree rooted by S contains a selected negative literal.2. Set = fSg and S contains an answer identical to itself in the table entry for S.We say that a subgoal S is completely evaluated i� Set is a completely evaluated set of subgoals andS 2 Set. 2The second condition, introduced in [23], will sometimes be referred to as early completion of subgoals.In a given system, a subgoal S may have an answer S, but there could be SLG operations such as6

program clause resolution which would otherwise be applicable to the tree for S. S would thusbe completely evaluated according to condition 2, but not to condition 1. Early completion is necessaryto evaluate certain strati�ed programs using a �xed computation rule and will be further discussed inSection 5.3 The Abstract Machine for De�nite ProgramsHaving introduced basic tabling de�nitions and operations, we now consider the main extensions madeby the SLG-WAM to the WAM to support tabling of de�nite programs.1. The engine must be able to suspend a computation when encountering a consumer subgoal andresume the consumer subgoal at a later point to return answers (e.g. nodes 1, 7 and 13 inExample 2.1). The need to resume computations requires that the environment correspondingto an active node of an SLG tree be e�ciently restored. Section 3.1 describes extensions to theWAM that support the ability to suspend and resume computations.2. A space for tables themselves must be designed, and their access methods must be tightlyintegrated with WAM data structures. These issues are covered in Section 3.2.3. The choice of when to return an answer to an active node gives rise to several possible schedulingstrategies. Naturally, di�erent scheduling strategies require di�erent amounts of time and space,and in
uence the architecture of the abstract machine. We discuss issues related to schedulingof SLG operations in Section 3.3.4. The preceding features must be compiled into WAM-like code. The design of the SLG-WAMinstruction set is described in detail in Sections 3.4 and 3.5.5. Since environments are needed for the answer return operation, space for active nodes cannotbe reclaimed upon backtracking, but only when the strongly connected component to whichthey belong is completed, i.e., only when it is known that no more answers will be produced.A mechanism must be developed to detect completion of subcomputations in order to reclaimspace. Section 3.5 describes how this is done for de�nite programs.3.1 Suspending and Resuming ComputationsA tabled evaluation like that of Example 2.1 cannot be implemented using the pure depth-�rst searchof the WAM. Rather, the computation path of an active node may have to suspend when it hasexhausted all answers in the table, and resume when new answers have been derived. (In Example 2.1,computation must suspend in nodes 1, 7, and 13). Suspension is performed in the WAM framework bycreating a choice point to represent the suspended environment, and then failing to a previous choicepoint without reclaiming any stack space. Suspended choice points thus freeze the stack, prohibitingmemory reclamation before completion of a subgoal. Resuming uses a forward trail to restore variablebindings along the path to the suspended subgoal. We consider data structures and algorithms tosupport suspending and resuming computations.3.1.1 SLG Search TreesRather than a forest of trees, the memory layout of the SLG-WAM resembles a single SLG searchtree which can be constructed by using a �rst-call optimization. This optimization has the e�ect of7

inserting the tree with root goal G as a subtree below the �rst node NG whose selected literal is G,and sharing their environments.2 Figure 3 illustrates how the SLG search tree for the program ofExample 2.1 is constructed from the forest of SLG trees shown in Figures 1 and 2 with the �rst-calloptimization occurring at nodes 6 and 12. First-call optimization merges a generator and an activenode; the resulting node produces answers like a generator and does not require an explicit instructionto perform an answer return operation.
1. p(a,Z) :- p(a,Y),p(Y,Z)

6. p(a,Z) :- p(b,Z) 15. p(a,Z):- p(c,Z)

0. p(a,Z)

2. p(a,Z) :- e(a,Z),q(Z)

5. p(a,d) :- q(d)

4. p(a,b) :-

3. p(a,b) :- q(b)

13. p(c,Z) :- p(c,Y),p(Y,Z)

8. p(b,Z) :- e(b,Z),q(Z)

9. p(b,c) :- q(c)12. p(b,Z) :- p(c,Z)

7. p(b,Z) :- p(b,Y),p(Y,Z)

14. p(c,Z) :- e(c,Y),q(Y)

11. p(a,c) :-

10. p(b,c) :- Figure 3: The SLG Forest of Figures 1 and 2 as a single SLG Search Tree.3.1.2 Preserving Environments through Freeze RegistersTo ensure that environments for suspended active nodes of the SLG tree may be later resumed,the SLG-WAM freezes the stacks using a freeze register for each stack of the WAM 3. Space is notreclaimed below these freeze registers until completion of the appropriate generator node. In de�niteprograms, stacks are frozen whenever a consumer subgoal is encountered, since consumer subgoalsneed to suspend either to obtain new answers, or to ensure the consumption of all relevant answers.Figure 4 shows states of the choice point stack while executing the program of Example 2.1, wherechoice points for generator and consumer subgoals are denoted explicitly. Note that on calling theconsumer subgoal p(a,Y) in node 1, the computation is suspended, a freeze point is set (denoted asfreeze1 in Figure 4(a)), computation continues with node 2 of the tree, and the next choice point (fore(a,Z)) is allocated above the choice point freeze register.The introduction of freeze registers a�ects the placement of choice points by the WAM try and trustinstructions: a choice point is placed at the maximum of the B register and the choice point freezeregister (BF register). Similarly, for local environments, freeze registers a�ect the allocate instruction2First-call optimization is also used implicitly in the OLDT dichotomy of solution and lookup nodes (see [26]).3Throughout the paper, we assume a WAM model with environment and choice point stacks separated rather thancombined as in the original WAM. We also assume throughout the paper that stacks grow upwards.8

freeze1

p(a,Z)

p(a,Z)

e(a,Z)

Prolog CP

Generator CP

Consumer CP

(1)

(2)

(0)(a) At node 4 p(b,Z)

p(b,Z)
freeze1

p(a,Z)

p(a,Z)

freeze2

Consumer CP

Generator CP

Generator CP

Consumer CP

(1)

(8)

(0)

(7)(b) At nodes 7{10
p(c,Z)

p(c,Z)

p(b,Z)

p(b,Z)
freeze1

p(a,Z)

p(a,Z)

freeze2

freeze3
Consumer CP

Generator CP

Generator CP

Generator CP

Consumer CP

Consumer CP

(0)

(1)

(7)

(14)

(13)

(8)(c) At nodes 13{14 p(b,Z)

p(b,Z)
freeze1

p(a,Z)

p(a,Z)

freeze2

Consumer CP

Generator CP

Generator CP

Consumer CP

(1)

(8)

(0)

(7)(d) After complet-ing p(c,Z) freeze1

p(a,Z)

p(a,Z)

Generator CP

Consumer CP

(1)

(0)(e) After complet-ing p(b,Z)Figure 4: Choice Point Stack States for Program of Figure 1.which must determine the greatest of the environment register (E register), the environment backtrackregister (EB register), and the environment freeze register (EF register). Likewise, the allocation ofnew trail entries requires a check of the trail freeze register (TRF register), as well as the WAMtrail register (TR register). In addition to their use for allocation, both the B register and the TRregister are used to store information about the environment of a node. The B register points to thecontinuation to take upon failure, and the TR register is used to untrail appropriate variables whenthat failure continuation is taken. However, because the H register is used only for allocation, itse�ect on the SLG-WAM can be reduced. Upon backtracking and execution of a trust instruction, theH register is reset to the HB register only if the HB register is greater than the heap freeze (HF)register; otherwise no change is made to the H register. This ensures that the H register is alwaysabove the HF register and points to an unfrozen portion of the heap. Thus, heap information is notoverwritten and instructions can build information on the heap just as in the WAM. Note that withthis updating scheme, the signi�cant overhead of checking two registers at every write to the heap isavoided.The introduction of freeze registers necessitates another change in stack management from theWAM. Consider the SLG system represented by the choice point stack in Figure 4(a). The parentof node 2 (p(a,Z):- e(a,Z),q(Z)) is the generator node, p(a,Z). However, due to the use of freezeregisters, the (Prolog) choice point for (p(a,Z):-e(a,Z),q(Z)) does not lie immediately above thegenerator choice point for p(a,Z). To handle cases such as this, each choice point must maintain anexplicit pointer to the proper failure continuation to take upon backtracking out of the choice point(e.g. when all applicable program clauses have been resolved against a subgoal). Freeze registers alsoadd an extra pointer to trail frames, as will be seen in the next section.Frozen segments in the stacks can be deallocated only when it is known that a set of consumersubgoals has no further need to be resumed. This condition holds when it is determined that thesubgoals are completely evaluated, and that their SLG trees, as represented in the SLG-WAM stacksas generator choice points and consumer choice points, can be safely disposed. Deallocation of freezeregisters after completion of subgoals p(c,Z) and p(b,Z) is represented in Figures 4(d) and (e).9

3.1.3 Resuming Suspended Computations by Restoring EnvironmentsTo resume computation at an active node, all variable bindings and WAM register values are restoredto their state at the time that the node was suspended (as saved using a consumer choice point,Section 3.2, or a negation suspension choice point, Section 6.3). The appropriate action is then taken(e.g. returning an answer) and execution continues with the success continuation (as represented bythe CP register) of the suspended computation.Restoring variable bindings for a resumed computation is done in the SLG-WAM through a forwardtrail [37, 36], whose frame format is shown in Figure 5. Recall that the WAM trail contains (local orglobal stack) variables that must be unbound upon backtracking. In fact, only conditional bindingsthat a�ect a variable existing before the creation of the current choice point need to be trailed4. TheSLG-WAM trail must keep addresses of conditionally bound variables as in the WAM. However, thetrail must also contain information about the value to which the variable was bound so that bindingsof suspended nodes can be restored. Furthermore, as the trail is also a tree rather than a stack, eachtrail frame has to maintain an explicit pointer to the previous trail frame (using its Parent cell). Theoverhead incurred by the forward trail, compared to the simple trailing of the WAM, is measured inSection 7.1. Parent Pointer to Parent trail frameValue Value to which the variable was boundAddr Address of the trailed variableFigure 5: Format of (Forward) Trail Frames.The algorithm restore bindings (Figure 6) uses the forward trail to reconstitute the environment ofan active node, as represented by a consumer choice point. Speci�cally, restore bindings starts fromAlgorithm restore bindings(new breg)start trreg := trreg; /* current TR register */end trreg := choice point trreg(new breg);trreg := choice point trreg(new breg);while (start trreg != end trreg)while (start trreg > end trreg)untrail(trail addr(start trreg));start trreg := trail parent(start trreg);while (end trreg > start trreg)end trreg := trail parent(end trreg);end trreg := trreg;while (start trreg < end trreg)* trail addr(end trreg) := trail value(end trreg);end trreg := trail parent(end trreg);Figure 6: The restore bindings procedure.4In get-style instructions, the WAM checks the E register and the HB register to determine whether a binding isconditional. The SLG-WAM must also check the corresponding freeze registers, EF and HF. Other than that, theseinstructions remain unchanged. 10

the current environment, and switches variable bindings to those of the active node represented by thechoice point designated by new breg. Both start trreg and end trreg follow their parent chains untila common ancestor is reached, with start trreg untrailing as it goes. Then, variables on the path fromend trreg to the common ancestor are rebound. The bindings are applied in the opposite order inwhich they happened. This is safe since no node can have more than one entry on each branch of thetrail. Note that since restore bindings is used to reconstitute environments for returning answers, eachtabled predicate is compiled using a choice point, even if the predicate is de�ned by a single clause.3.1.4 Generator and Consumer Choice PointsWe end our discussion of mechanisms to suspend and resume computations by presenting the format ofgenerator and consumer choice points. The format of a generator choice point is depicted in Figure 7.Cells that are not found in WAM choice points are marked with an asterisk, while cells marked witha : symbol are not necessary for de�nite programs (we will use these conventions throughout the restof the paper). Figure 7 is divided into three sections. The top section contains state information thatthe SLG-WAM must restore on backtracking for any subgoal, whether tabled or not. This informationincludes the cells of a WAM choice point along with an explicit pointer of the failure continuation totake upon backtracking out of the choice point (Breg Chain), and a cell, RSreg, that records the valueof a new global register, called the RS register 5. The middle section is not found in Prolog choiceFailCont The Failure ContinuationEBreg Environment Backtrack PointHreg Top of Global Stack (Heap)TRreg Top of TrailCPreg Success Continuation for SubgoalEreg Parent EnvironmentRSreg*: Root Subgoal Choice PointBreg Chain* Failure Continuation on Backtracking out of this CPSubgFr* Pointer to the Subgoal FrameBFreg* Choice Point Freeze RegisterHFreg* Heap Freeze RegisterTRFreg* Trail Freeze RegisterEFreg* Local Stack Freeze RegisterAn Argument Register n... ...A1 Argument Register 1VarNum* Number of Variables: mVm* Substitution Factor Variable m... ...V1* Substitution Factor Variable 1Figure 7: Format of Generator Choice Points.points in the SLG-WAM. It contains a pointer to the table entry of the subgoal (the Subgoal Frame,Section 3.2), and the values of the freeze registers at the time of choice point creation. Althoughcreating a generator choice point frame does not require freezing the stacks, the values of the freezeregisters must be recorded so that they can be properly reset when the subgoal associated with a5This new register and choice point cell are used to determine exact subgoal dependencies for programs with negation(see Section 6.4). 11

choice point is completed. The bottom section contains argument registers of the subgoal along withits substitution factor, the set of free variables which exist in the terms in the argument registers. Useof the substitution factor is explained in Section 3.2.Consumer choice points are created to store environments for consumer subgoals, and their formatis shown in Figure 8. As their name implies, these frames are stored on the choice point stack andcontain the same WAM state registers as any choice point. However, answers are resolved using asubstitution factor (Section 3.2) which replaces the usual argument registers for consumer choice pointframes. A consumer choice point for a tabled subgoal also maintains the following information.FailCont Pointer to answer return instructionEBreg Environment Backtrack PointHreg Top of Global Stack (Heap)TRreg Top of TrailCPreg Success ContinuationEreg Parent EnvironmentRSreg*: Root Subgoal Choice PointBreg Chain* Failure Continuation on Backtracking out of this CPLastAnswer* Pointer to Last Consumed AnswerPrevCCP* Pointer for Consumer Choice Point ChainVarNum* Number of Variables: mVm* Substitution Factor Variable m... ...V1* Substitution Factor Variable 1Figure 8: Format of Consumer Choice Points.1. A pointer, LastAnswer, to the last answer resolved by the consumer choice point (using theanswer return list of Section 3.2).2. A pointer PrevCCP, used to chain together all consumer choice points for the same subgoal.For instance, in Figure 1 of Example 2.1 active nodes 12 and 13 have selected literal p(c,Z).In the SLG-WAM, consumer choice points for these nodes would be chained together using theconsumer choice point chain for p(c,Z), as would nodes 6 and 7 for p(b,Z). The consumerchoice point chain is needed for scheduling the return of answers and will be discussed fully inSection 3.3.3.2 Interfacing Table Space to Run-Time StacksThe SLG-WAM adds two memory areas to those of the WAM: a completion stack and table space.The completion stack is used to detect when a set of subgoals has been completely evaluated and isdescribed in Section 3.5. The Table Space stores information about tabled subgoals and their answers.The design and implementation of data structures and algorithms for e�cient access to table spaceis a critical issue for the performance of any implementation of tabling. In this paper, we provideonly a brief description of the layout of the table space; full details are presented in [15]6. Elementsof the table space may need to be repeatedly accessed in several di�erent ways during the course ofevaluation. First, to implement the new subgoal operation, a check must be made to determine6Implementation of the table access routines is primarily due to Prasad Rao.12

whether each tabled subgoal is present in the table, and the subgoal must be inserted if not; this modeof access is called subgoal check/insert. An analogous mode, called answer check/insert, is needed toimplement new answer. Furthermore, the mode of answer backtracking is also needed during thecourse of answer return. In principle, tables can be implemented using any data structure thatsupports these three types of access: such as hashing, tries, or discrimination nets. Experience hasdemonstrated the superiority of tries as the basis for table space. Tries not only provide completediscrimination of terms, but also permit a check and possible insertion to be performed in the samepass through a term. Subgoals and answers are copied from the execution stacks to the table spaceduring subgoal check/insert and answer check/insert, while answers are copied from the table tothe execution stacks during answer backtracking. This copying is performed so that (i) variables insubgoals and in answers do not share bindings when they are used in di�erent nodes of the searchforest; and (ii) information about subgoals and answers may survive the e�ects of backtracking andpossible space reclamation (i.e. so that tabled information is persistent).Figure 9 represents elements of the table space for the SLG system in Figure 2. At the entry pointfor p/2 an operand of a tabletry SLG-WAM instruction (discussed in Section 3.4.2) points to a node ofits subgoal trie which is designated as the trie's root. In our example, the subgoal trie of p/2 containssubgoals p(a,Z), p(b,Z), and p(c,Z). Each of these subgoals may have an associated answer trie,although that of p(c,Z) is empty. Each root-to-leaf path through a subgoal trie corresponds to asingle subgoal, and leaf nodes of the subgoal trie have a special form and are called subgoal frames.Root-to-leaf paths through an answer trie also correspond to an answer. However, answer tries for
Subgoal

Frame

Subgoal

Frame

Subgoal

Frame

p/2

e/2

q/1

code for

code for

code for

Var_1

c

SLG-WAM code

Var_1

a

Var_1

b

Subgoal Trie

c Answer Triesb

Table Space

Answer Return List

cFigure 9: Relationships between elements of the Table Space.incomplete subgoals also have their leaves chained together via an answer return list. The need forthe answer return list arises to support the mode of answer backtracking. Since the generation andconsumption of answers are asynchronous, and new answers may be inserted anywhere in a trie, itis not possible to perform answer backtracking by sequentially backtracking through an answer trie13

of an incomplete subgoal. To address this, the elements of the answer return list point to answers(identi�ed by leaf nodes of the answer trie), in the order of their creation times. Using this list, it isguaranteed that no answer is skipped, and that no answer is returned to the same consumer choicepoint more than once.Substitution Factoring As Figure 9 shows, an answer trie stores only bindings that are not presentin the associated tabled subgoal. This optimization is called substitution factoring [15]. Substitutionfactoring uses the following observation to optimize the answer check/insert and answer backtrack-ing access modes. In a variant-based tabling method, all answers to a tabled subgoal are subsumedby the subgoal itself. For instance, p(a,Z) subsumes both p(a,b) and p(a,c), while p(b,Z) sub-sumes p(b,c). Thus, each answer A of a tabled subgoal G can be represented as G�A, where �Ais an answer substitution for G. The core idea of substitution factoring is to store only the answersubstitution, and to create a mechanism of returning answers to consumer subgoals that is propor-tional to the size of �A rather than the size of A. The set of unbound variables of a tabled subgoalis determined as part of the subgoal check/insert procedure. This procedure must fully traverse thesubgoal either to check if it is in the table or to insert it if not. As the procedure traverses the subgoal,it factors out dereferenced pointers to variables from the subgoal and places them in the choice pointstack. We refer to this set of dereferenced variable pointers as the substitution factor (see Figures 7and 8). The values in cells of the substitution factor thus point to variables on the local or globalstack. The substitution factor is used by generator choice points to add answer substitutions to thetable, and by consumer choice points to backtrack through answers. Furthermore, because the subgoalcheck/insert procedure must be performed to determine whether a subgoal is new to an evaluation(and by extension, whether a generator or consumer choice point is to be created), the substitutionfactor is placed before the rest of a generator choice point or consumer choice point.Subgoal Frames Subgoal frames contain general information about the state of a tabled subgoal,and their format is shown in Figure 10. To access answers for a subgoal, subgoal frames contain apointer to the root of the associated answer trie. To facilitate the completion operation, subgoalframes have a ComplSF cell which points to a completion stack frame (described in Section 3.5) whena subgoal is incomplete, and when set to null, indicates that the subgoal is complete. To facilitatememory management of subgoal frames and of the answer tries which are accessed through them,subgoal frames are maintained in a doubly linked list (see Figure 9). The foregoing information mustpersist after subgoals are determined as completely evaluated, but the subgoal frames also containinformation that can be reclaimed after their completion. This consists of the following pointers: (1) apointer (CCP Chain) to the head of the consumer choice point chain for the subgoal; (2) a pointer(NS Chain) to an analogous negation suspension chain of choice points for negative active nodes (thenegation suspension chain is discussed in Section 6.3); (3) a pointer to the head of the answer returnlist in the answer trie, which is used for answer backtracking when a consumer choice point is created;and (4) a pointer to the tail of the answer return list, used in the new answer instruction to e�cientlyadd answers in their proper generation sequence.3.3 An Overview of Batched Evaluation for De�nite ProgramsIt is usually possible to apply more than one operation to a particular SLG system. For instance,there may be program clauses to resolve with generator or interior nodes, answers to return to activenodes, or completion operations to be performed on sets of trees. The decision of when to perform14

AnsTrieRoot Pointer to the Root of the Answer TrieComplSF Pointer to the Associated Completion Stack FrameNextSF Pointer to Next Subgoal FramePreviousSF Pointer to Previous Subgoal FrameAnsRetListH Pointer to the Head of the Answer Return ListAnsRetListT Pointer to the Tail of the Answer Return ListCCP Chain Pointer to the Head of the Consumer Choice Point ChainNS Chain: Pointer to the Head of the Negation Suspension ChainFigure 10: Format of Subgoal Frames.such operations is determined by a scheduling strategy. This section overviews a particular schedulingstrategy, called Batched Evaluation [8], which forms the default scheduling strategy of version 1.7 ofXSB7. Later sections provide instruction-level details of the implementation of Batched Evaluation,as well as its extension to programs with negation.Batched Evaluation takes its name because it tries to avoid resuming an active node until there areseveral answers to return to that node. For in-memory Datalog queries, Batched Evaluation has beenshown to be superior in terms of time and space to three other scheduling strategies (see [8]). As anaside, we note that it is unlikely that a single scheduling strategy can be uniformly faster that all othersfor all applications. For instance, the breadth-�rst evaluation of [9] is extremely e�cient for queries todisk-resident data, giving disk-access properties comparable to those of the semi-naive evaluation of amagic-transformed program. Batched Evaluation is a highly optimized scheduling strategy, which wepresent through the series of rules in Figure 11. We begin by considering actions of Batched Evaluationin Example 2.1, where the numbers associated with the nodes in Figure 1 correspond to the order ofgeneration by that strategy.Batched Evaluation schedules program clause resolution in a depth-�rst manner as does theWAM as can be seen (from e.g, nodes 2 and 8) in Example 2.1. The advantages of this strategy arewell-known: for instance backtracking can be used to reclaim space, reducing the need for garbagecollection. Furthermore, the WAM's strategy gives a good locality of reference so that cache missesare also reduced [28, 31]. This design decision is shown in Rule 1 of Figure 11.When an active node, N , is created with selected subgoal S, scheduling of answer returnoperations varies depending on whether S is complete or incomplete. In the case where S is complete,a completed table optimization can be performed (Rule 2 of Figure 11). The node can be treated as ifit were an interior node, and need not be suspended; rather, the engine backtracks through answersfor S as if they were unit program clauses. An example of this optimization occurs on node 15 inExample 2.1. In this case, node 15, whose selected subgoal is completed, immediately fails. Wemention in passing that nodes of the trie data structure are in fact SLG-WAM instructions which aredirectly executed for completed tables. Surprisingly, execution of unit clauses compiled into an answertrie can sometimes outperform that of unit clauses compiled into standard WAM code mainly due tofactoring of common pre�xes and possible avoidance of unnecessary bingings and unbindings (see [15]for further explanation).If the table for S is incomplete, then N might not be able to consume all answers for S in adepth-�rst manner. This situation is portrayed in Example 3.1.Example 3.1 Figure 12 presents an example of mutually recursive predicates a/2 and b/2 each of7This scheduling strategy was primarily implemented by Juliana Freire.15

In the following, let N be an active node, Answer Template :� S;Goal List, in an SLG tree.1. The SLG-WAM schedules program clause resolution as does the WAM: clauses are re-solved according to their textual order and literals are selected by a �xed left-to-right rule. Thisapplies to both interior and generator nodes.2. If S is complete, the node N need not be suspended and, answers can be returned to it as ifthey were program clauses. Support for this strategy is called the completed table optimization.3. If S is incomplete, any answers for S are returned to N under a model that approximatesprogram clause scheduling: the �rst answer is immediately returned upon the creation of N ,and a consumer choice point frame is set up to return any further answers to N . Only when Nexhausts all answers (currently) in the table for S will it suspend.4. Answers may also be scheduled for return to N during the procedure �xpoint check performedby the leader SL of the scheduling ASCC of S. This �xpoint check is executed during thecompletion instruction for SL.Figure 11: Rules of the Batched Evaluation scheduling strategy.which produces answers consumed by the other. An SLG system is shown for the evaluation of thequery a(0,X). While details of this evaluation will be presented below, note in particular that answersfor b(0,Y) are returned to node 3 only when no other operations are applicable in the tree for b(0,X).In Example 3.1, the children of node 6 cannot be derived in a depth-�rst manner because theanswer a(0,2) is not derived until a(0,1) has been been resolved against the selected atom of node 6.Rather, node 6 needs to suspend so that answers may be derived, and later to resume to return thoseanswers. Suspension is performed using the mechanisms described in Sections 3.1 and 3.2: a consumerchoice point is created and stacks are frozen. If no answers for S are present in the table when N iscreated, the engine goes on to other resolution by picking up the Breg Chain failure continuation in theconsumer choice point of N . If there are answers for S, the consumer choice point of N will backtrackthrough them, approximating a depth-�rst search. At an operational level, answer backtracking isdone using the answer return list (Section 3.2) which causes the set of answers to be traversed in theorder of their derivation and helps ensure that each answer is returned exactly once to an active node.Whether there are answers present in the table or not, N will be suspended when it has exhausted allanswers present in the table. Rule 3 of Figure 11 summarizes these actions.In order to completely evaluate subgoals, the engine must ensure that all appropriate answersare returned to all consumer subgoals in an (Approximate) SCC. The subgoals a(0,X) and b(0,X)in Example 3.1 form a non-trivial ASCC. In evaluating this ASCC, the �rst batch of answers fora(0,X), fa(0,1)g is returned to node 6 creating node 7. Later, in nodes 9 and 11, the �rst batchof answers for b(0,X), fb(0,1),b(0,2)g is returned to node 3. Finally, the second batch of answersfor a(0,X), fa(0,2)g is returned to node 6, this time creating node 12. It can thus be seen thatthe process of resuming an active node, backtracking through answers, performing program clauseresolution, suspending and then resuming another active node is an iterative process which repeatsuntil a �xpoint is reached for a set of subgoals. Precisely, this �xpoint is reached when an ASCC iscompletely evaluated (De�nition 2.5). At a general level, the �xpoint is controlled by backtrackinginto generator choice points which causes a �xpoint check to schedule resumption of active nodes viaconsumer choice points (Rule 4 of Figure 11). 16

1. a(0,X) :- c(0,X)

2. a(0,1) :-

10. a(0,2) :-

9. a(0,X) :- c(1,X) 11. a(0,X) :- c(2,X)

3. a(0,X) :- b(0,Y), c(Y,X)

0. a(0,X)

a(0,X)

AnswersSubgoal

Incomplete
a(0,2)

a(0,1)

State

a(X,Y) :- c(X,Y).

a(X,Y) :- b(X,Z),c(Z,Y).

:- table a/2, b/2.

b(X,Y) :- d(X,Y).

b(X,Y) :- a(X,Z),c(Z,Y).

c(0,1). d(0,1).
c(1,2). d(1,2).

Incomplete
b(0,X)

b(0,2)

b(0,1)

4. b(0,X) :- d(0,X) 6. b(0,X) :- a(0,Y), d(Y,X)

12. b(0,X) :- d(2,X)7. b(0,X) :- d(1,X)

8. b(0,2) :-

5. b(0,1) :-

3a. b(0,X)

Figure 12: Illustration of Batched EvaluationSpeci�cally, �xpoint check is part of the SLG-WAM completion instruction which is invoked fora subgoal S when the engine backtracks into the generator choice point for S after all applicableprogram clause resolution steps for S have been applied. The completion instruction actuallyexecutes a �xpoint check only when a given subgoal is designated as leader, or oldest subgoal, of itsscheduling ASCC. Scheduling ASCCs are oriented toward space reclamation in a stack-based systemand their representation and maintenance is presented in Section 3.5. For now, a scheduling ASCCcan be thought of as a unique ASCC to which every incomplete tabled subgoal belongs.The �xpoint check procedure determines whether the subgoals in a scheduling ASCC have beencompletely evaluated or whether further answers need to be returned to consumer choice points forsubgoals in the scheduling ASCC. This determination is made by calling the procedure schedule resumesfor each subgoal in the scheduling ASCC. Given a subgoal S, the procedure schedule resumes traversesthe consumer choice point chain (Section 3.5) to �nd the �rst consumer choice point for S withunresolved answers (if any). If there is such a choice point, say C, it is resumed by setting the Bregister to point to C and failing. After failing, the engine executes answer return instructions for Cfor as long there are unconsumed answers for C, and then suspends C as in Rule 3, failing into thenext choice point on the consumer choice point chain for S. The consumer choice point chain is setso that the engine will backtrack to �xpoint check after returning answers to the last consumer choicepoint on the chain. The schedule resumes procedure is presented in Figure 18 and is discussed fully inSection 3.4; the �xpoint check procedure is discussed in Section 3.5.3.4 Extending the Abstract Machine Instruction SetWe present the set of SLG-WAM tabling instructions in two steps: �rst we motivate a naive instructionset from the SLG operations for de�nite programs, and then we present the actual instruction set indetail. 17

3.4.1 A Reconstruction of the Instruction Set for TablingConsider the tabling instructions that need to be generated for the k clauses of a tabled predicate t/n.Using the program transformation shown below, WAM indexing code is pushed one level down to a:- table t/n.t(t1;1; : : : ; t1;n) :- B1....t(tk;1; : : : ; tk;n) :- Bk. �! :- table t/n.t(X1; : : : ; Xn) :- p(X1; : : : ; Xn).p(t1;1; : : : ; t1;n) :- B1....p(tk;1; : : : ; tk;n) :- Bk.new predicate p/n which is evaluated using Prolog-style resolution. Notice that these two programsare equivalent with respect to observables.The Prolog predicate p/n can be compiled using the instruction set of the WAM. We concentrateon the instructions needed for the tabled evaluation of predicate t/n de�ned by the single rule:t(X1; : : : ; Xn) :� p(X1; : : : ; Xn):A pseudo-compilation of such a tabled predicate is shown in Figure 13. Roughly, the �rst portion ofthis pseudocode, instructions labeled L1{L7, checks whether subgoals are in the table and inserts themif not, derives answers for these subgoals by performing program clause resolution, and records theseanswers into the table. The second portion schedules the return of answers to consumer choice points,essentially performing the functionality of the �xpoint check procedure, and completes subgoals oncethe �xpoint is reached (Rule 4 of Figure 11).L1 : try me else L8L2 : new subgoal check insert n Trie RootL3 : allocateL4 : call 1 p/nL5 : new answer check insert n v1L6 : deallocateL7 : proceedL8 : retry meL9 : schedule answer returnsL10: completion checkFigure 13: SLG-WAM pseudocode for tabled predicates.The pseudo-instructions new subgoal check insert, new answer check insert, schedule answer returns,and completion check perform functions of the SLG operations new subgoal, new answer, answerreturn, and completion, respectively. The procedures that implement these instructions rely oninformation that is dynamic in nature (checking whether a particular subgoal or answer is new oralready exists in the table, whether all answers have been returned to appropriate active nodes, andwhether it can be determined that subgoals are completely evaluated).Finally, note that t/n requires both a choice point and a local environment, even though thepredicate consists of a single clause and none of the variables in the clause are permanent, in theWAM classi�cation. 18

Need for a Choice Point Choice point creation is necessary since checking for �xpoint and com-pletion may require information from the choice point frame in order to schedule the return ofanswers or to mark the table for a subgoal as complete. This requirement explains the unortho-dox use of a retry me in the second block of code, followed by an explicit deallocation of thechoice point once �xpoint is reached.Need for an Environment The local environment in the �rst block of code is used by thenew answer check insert instruction which needs access to the generator choice point, GCP , ofthe subgoal for which the answer is derived. As shown in Figure 7, this choice point containsboth the substitution factor (which provides the answer substitution) and a pointer to the sub-goal frame | and through the subgoal frame, a pointer to the corresponding answer trie. It isnot possible in general to e�ciently �nd GCP at the time of new answer check insert becauseany number of choice point frames may have been placed between the top of the choice pointstack and GCP . To address this, a local environment is created for all tabled subgoals. Thisenvironment contains a GCP pointer to GCP , denoted as v1 in Figure 13 | or in generalvm+1 for a clause with m permanent variables. Because the GCP pointer is required wheneveran answer is derived, the deallocate instruction has to occur after the new answer check insertinstruction. Consequently, the last call optimization is not applicable to tabled predicates; otheroptimizations like environment trimming, however, can be applied.3.4.2 Optimizing the Instruction Set for TablingNote that using the transformation and instruction set presented in the previous section, tabled pred-icates de�ned by more than one clause require two choice points instead of one. Also, this initialinstruction set contains �xed sequences of instructions: a new subgoal check insert instruction is al-ways preceded by a try-type instruction and followed by an allocate; similarly, a new answer check insertinstruction is always followed by a deallocate and a proceed instruction. The SLG-WAM provides thefollowing optimizations:� Tabled predicates de�ned by a single rule are compiled using a tabletrysingle tabling instructionrather than the transformation presented above. tabletrysingle includes the functionality of atry me else, new subgoal check insert, and allocate sequence of instructions.� Tabled predicates de�ned by more than one clause are compiled using the tabletry, tableretry, andtabletrust SLG-WAM instructions, rather than the transformation presented above. The tabletryincludes the functionality of the try me else, new subgoal check insert, and allocate sequence. Thetableretry and tabletrust di�er from the WAM retry and trust instructions in that they restore agenerator choice point and substitution factor rather than a WAM-style choice point.� The functionality of the new answer check insert, deallocate, and proceed sequence of instructionsis folded into a single SLG-WAM instruction called new answer.� During run-time, upon execution of tabletrysingle and tabletrust instructions for a subgoal S, theFailCont cell of the generator choice point for S is made to point to a completion instructionwhich includes the functionality of the schedule answer returns and completion check sequence ofFigure 13. This instruction determines whether S is the leader of its scheduling ASCC, and{ if S is the leader of its scheduling ASCC19

� calls the procedure schedule resumes as part of performing the �xpoint check for allsubgoals in the scheduling ASCC of S; and� if the ASCC of S is completely evaluated, deallocates the generator choice points forsubgoals in the ASCC of S along with any frozen portions of the stack that are asso-ciated with the ASCC.The completion instruction and space reclamation is presented fully in Section 3.5.Following these principles, the compiled SLG-WAM code for the predicate p/2 in the program ofExample 2.1 is shown in Figure 14. As mentioned in Section 3.1.2, the allocate instruction must nowL1 : tabletry 2 L3 TR %L2 : tabletrust 2 L10 %L3 : getpvar v1 r2 % p(X,Z) :-L4 : putpvar v2 r2 % p(X,YL5 : call 3 p/2 %),L6 : putpval v2 r1 % p(Y,L7 : putpval v1 r2 % ZL8 : call 3 p/2 %)L9 : new answer 2 v3 % .L10: getpvar v1 r2 % p(X,Z) :-L11: call 2 e/2 % e(X,Z),L12: putpval v1 r1 % q(ZL13: call 2 q/1 %)L14: new answer 2 v3 % .Figure 14: SLG-WAM code for predicate p/2 of Figure 1.use the EF register to check for the top of the local stack, in addition to the E and EB registers. Also,get- and unify- instructions must be changed to use a forward trail and to allocate trail frames abovefreeze registers. We note, however, that the substitution factor, which is used to e�ciently accessanswer substitutions, does not a�ect the uni�cation instructions. This is because the substitutionfactor does not contain variables, but only pointers to variables which occur in the tabled subgoal.These variables are constructed as part of constructing the call to the subgoal and afterwards residein the local and global stack. We now turn to the newly introduced instructions.3.4.3 Instructions for the SLG Operationsnew subgoal The pseudocode for the tabletrysingle instruction is shown in Figure 15. The argu-ments of the subgoal are in the WAM argument registers (the Arity of the subgoal is a parameter).Using a pointer to the root of the trie for an input subgoal S, as a second parameter, the instruction�rst checks whether S already exists in table or is new to the evaluation. If S is new (case � inFigure 15), the instruction creates a subgoal frame for the subgoal, pushes a generator choice pointonto the choice point stack, and a completion stack frame onto the completion stack, initializing allcells in these frames. tabletrysingle also allocates a local environment and initializes the appropriatepermanent variable as the GCP pointer. Furthermore, tabletrysingle places a completion instructionin the FailCont cell of the generator choice point. Recall that in the WAM the FailCont cell points tothe instruction to be executed upon failure of the current clause; thus, the completion instruction willbe executed after all program clause resolution has been performed for the subtree stemming from20

this generator choice point. After setting up bookkeeping, tabletrysingle branches to the appropriateinstructions for program clause resolution.Instruction tabletrysingle(Arity, Subgoal Trie Root) /* Subgoal is in argument registers */If (subgoal check insert(Subgoal,Subgoal Trie Root) == new) /* Subgoal is new and added */(�) Create and set up a subgoal frame SF for the Subgoal;Set up a generator choice point GCP to perform program clause resolution;Set the failure continuation FailCont cell of GCP to point to a completion instruction;Push a new completion stack frame ComplSF onto the Completion Stack;Associate ComplSF with SF; /* see Section 3.5 */Allocate a local environment and initialize the GCP pointer, vm+1;Branch to the next instruction to perform program clause resolution;else /* Subgoal was not new to the evaluation | already existed in the Subgoal Trie */If (SF ComplSF(Subgoal) == complete) /* The subgoal frame has been marked as complete */(�) Answer Root := SF AnsTrieRoot(Subgoal);Branch to Answer Root to perform answer clause resolutionby executing the code in the answer trie;else /* Subgoal was not new but it is still incomplete */(
) Create a consumer choice point CCP for Subgoal,and add CCP to the head of Subgoal's consumer choice point chain;Set the failure continuation FailCont cell of CCP to point to an answer return instruction;Call update dependencies(Subgoal); /* for scheduling ASCCs: see Figure 20 */Freeze stacks and fail into CCP to execute answer return instructions;Figure 15: The tabletrysingle instruction.On the other hand if S already exists in the table the instruction checks whether S is completed.If so, (case �), execution immediately branches to the root of the subgoal's answer trie to beginbacktracking through answers implementing the completed table optimization (Rule 2 of Figure 11).As mentioned in Section 3.3, these answers have been dynamically compiled into SLG-WAM code. Onthe other hand, if the subgoal is still incomplete (case
), a consumer choice point is added to the headof the consumer choice point chain, dependency information is updated for maintenance of schedulingASCCs, and the stacks are frozen. The computation then fails into the consumer choice point, whichwill execute answer return instructions as long as any unconsumed answers for S are available,8 andthen will suspend by failing into the choice point designated by the Breg Chain cell of the consumerchoice point.The tabletry instruction is similar to the tabletrysingle instruction, but it also has a Label as anargument (cf. Figure 14) which is used to branch to the next program clause for the predicate.new answer The new answer instruction (Figure 16) is the �nal instruction of each clause of atabled predicate. When this instruction is reached, the body of the clause has been resolved away andthe dereferenced values of the substitution factor constitute an answer substitution, which uniquely8This step is slightly optimized in XSB version 1.7 by returning the �rst answer, if any, directly by the tabletry(single)instruction. 21

identi�es an answer for a subgoal. The instruction begins by using the GCP pointer of the localInstruction new answer(Arity,vm+1) /* vm+1 is the GCP pointer */answer table := SF AnsTrieRoot(GCP SubgFr(vm+1));�A := locate substitution factor(Arity,vm+1); /* �A is a pointer to an answer substitution */if (answer check insert(�A,answer table) == new) /* the answer substitution was inserted */Deallocate local environment;Set the program pointer P to the continuation pointer CP; /* continue forward execution */elsefail; /* the answer substitution pointed by �A was already present in the answer table */Figure 16: The new answer instruction (for De�nite Programs).environment to access the answer substitution and the root of the answer trie. The answer substitution(i.e. the substitution factor) can be found as the value of the GCP pointer minus an o�set (Arityplus the size of a generator choice point, see Figure 7). The generator choice point also providesaccess to the subgoal frame which, in turn, contains pointers to the root of the subgoal's answer trieand to the answer return list (see Figure 10). Using the answer substitution, �A, and the root ofthe answer trie, new answer checks whether �A already exists in the answer trie and inserts it (inthe same pass) if not. If the �A exists in the trie, the derivation path fails, a vital step for ensuringtermination. On the other hand, if �A is new, a new element is added to the end of the answer returnlist which points to the leaf of the answer trie whose path corresponds to �A, a step which will supportanswer backtracking by consumer choice points. The new answer instruction will then deallocate theenvironment and proceed, by setting the WAM program register to the local environment continuationpointer. This action e�ectively returns the new answer to the generator node. It is in this manner thatthe SLG-WAM executes �rst-call optimization and avoids freezing stacks for generator choice points.answer return As mentioned, derived answers are immediately returned to the generator node.They also need to be returned to active nodes of the SLG search tree, an action which is performedby the answer return instruction of consumer choice points. The answer return instruction is shownin Figure 17 and is executed by failing into a consumer choice point. The instruction begins byrestoring the computation state of a consumer choice point, CCP , (i.e., restoring the WAM registersand variable bindings) using information in the consumer choice point and forward trail. If the lastanswer consumed by this active node (identi�ed by the LastAnswer cell of CCP) is not the lastelement of the answer return list, the next unconsumed answer substitution, �, is loaded into thesubstitution factor of CCP , and the LastAnswer cell is updated, implicitly marking � as consumedby this consumer choice point. The computation then continues by taking the forward continuationof the consumer choice point. Whenever the engine backtracks into CCP , if an unconsumed answeris present in the table, it is returned to the active node; otherwise, if there are no more answers forthe active node at the time of backtracking, execution fails to the choice point designated by theBreg Chain cell of CCP .Conceptually, the Breg Chain cell of a consumer choice point, CCP , can designate two typesof information: the choice point of the parent node in the SLG search tree, and a choice point onthe consumer choice point chain. A consumer choice point is originally created by a tabletry(single)instruction, and the parent of CCP is initialized to the value of the B register when CCP is created.22

Instruction answer returnCCP := breg; /* B register points to a consumer choice point */Call restore bindings(CCP); /* restore environment of the suspended consumer */Restore values of WAM registers as saved in cells of the CCP;if (the last answer consumed by this CCP is not the last answer of the answer return list)/* let answer be the �rst unconsumed answer of the answer return list */CCP LastAnswer(CCP) := answer; /* mark answer as consumed by CCP */Load answer from the answer trie into the substitution factor of CCP;Set the program pointer P to the continuation pointer CP; /* continue forward execution */else /* backtrack to another choice point */breg := CCP Breg Chain(CCP); /* backtrack */fail; /* Suspend the node to await further answers */Figure 17: The answer return instruction.In this case, the engine returns answers to CCP upon backtracking into it in accordance with Rule 3 ofFigure 11, until no more answers remain to be returned in this manner. As discussed in Section 3.3, a�xpoint-style computation may be necessary in order to completely evaluate all subgoals in a schedulingASCC. If so, CCP may be resumed after backtracking through its initial batch of answers, and in thiscase its Breg Chain cell will contain a pointer to a choice point on the consumer choice point chainset by the procedure schedule resumes.The functionality of schedule resumes was introduced in Section 3.3 as part of the �xpoint checkroutine in the completion instruction; its pseudocode is shown in Figure 18. The schedule resumesProcedure schedule resumes(SubgFr)/* SubgFr is a pointer to the subgoal frame for subgoal S */CCP Head := SF CCPChain(SubgFr);/* consumer choice point chain for S */First CCP := NULL;Starting from CCP Head traverse the consumer choice point chain andset First CCP to point to the �rst consumer choice point with unconsumed answers, if any;if (First CCP != NULL)Create a consumer choice point backtracking chain, andset the Breg Chain cell of its last element to point to the Choice Point currently pointed by breg;/* breg is B register */breg := First CCP;fail; /* to execute answer return instructions by picking up the failure continuation */Figure 18: Pseudo-Code to implement Schedule Resumes.procedure for a subgoal S checks whether any consumer subgoal of S has unconsumed answers. Recallthat consumer subgoals are represented via consumer choice points, maintained in a consumer choicepoint chain. The head of this chain is accessed via the CCP Chain cell of the subgoal frame, and links23

of the chain are maintained by the Prev CCP cell of the consumer choice points. Also recall from thedescription of the tabletrysingle instruction that new consumer choice points are added to the head ofthe list during tabletry(single). Procedure schedule resumes begins by constructing a consumer choicepoint backtracking chain for S. The backtracking chain contains all consumer choice points for Sthat have unresolved answers at the time of �xpoint check. The elements of the consumer choice pointbacktracking chain are linked by their Breg Chain so that a new consumer choice point is resumed uponbacktracking out of another (as opposed to the consumer choice point chain which uses the Prev CCPcells to link consumer choice points). Figure 18 shows the �rst element of the consumer choice pointbacktracking chain as First CCP, and indicates that the Breg Chain failure continuation of the lastelement on the chain points back to the choice point that initiated the �xpoint check. Thus, onceschedule resumes has performed an iteration for a subgoal S, �xpoint check is reinvoked to determinewhether another iteration of schedule resumes is needed for any subgoals in the scheduling ASCC. Asa �nal point, note that performing schedule resumes for a subgoal does not have any e�ect on thecomputation state unless some consuming choice points for that subgoal have unresolved answers.3.5 Completion in De�nite ProgramsIn this section we �rst present the algorithms that the SLG-WAM uses to maintain scheduling ASCCs,and then turn to a detailed description of the completion instruction for de�nite programs.Implementing Incremental Completion by Approximating Subgoal DependenciesIncremental completion is necessary for the SLG-WAM to be e�cient in terms of space and to bee�ective on large programs. Incremental completion was �rst introduced in [2] to reclaim the stackspace occupied by sets of subgoals when they are determined to be completely evaluated. For example,incremental completion a�ects the choice point stack of Example 2.1 shown in Figure 4, unfreezingand reclaiming stack space for the subgoals p(c,Z) and p(b,Z). Furthermore, incremental completionof subgoals enables the completed table optimization described in Section 3.3.To e�ciently perform incremental completion, the SLG-WAM contains an area of memory new tothe WAM, the Completion Stack, which is used to e�ciently keep track of scheduling ASCCs. Speci�-cally, the completion stack maintains, for each subgoal S, a representation of the deepest subgoal Sdepupon which S or any subgoal on top of S may depend. When S and all subgoals on top of S haveexhausted all program and answer clause resolution, S is checked for completion. If S depends onno subgoals deeper than itself, S and all subgoals on top of S are completely evaluated. Otherwise,if Sdep is deeper in the completion stack than S, S may depend upon subgoals that appear belowit in the completion stack, and cannot be completed. As an aside, we note that for the programof Figure 1, each tabled subgoal can be completed after �xpoint check and failure over its generatorchoice point since each component consists of a singleton set of subgoals, but this situation is not thecase in general, as will be shown in Example 3.2.A completion stack frame is pushed onto the completion stack when a new tabled subgoal is addedto the system (see Figure 15), and is popped o� when that subgoal is determined to be completelyevaluated by execution of a completion instruction. There is thus a one-to-one correspondence betweencompletion stack frames and generator choice point frames. For de�nite programs, the format of thecompletion stack frame is shown in Figure 19 and its cells can be described as follows:The Subg# is a unique number representing the chronological order of encountering the subgoal(assigned through a global counter), DirLink keeps track of the deepest direct subgoal dependency24

SubgFr Pointer to Subgoal FrameSubg# Unique Subgoal NumberDirLink Deepest Direct DependencyFigure 19: Format of Completion Stack Frames.(information which is propagated when a consumer choice point is created). In addition, we de�ne fora given state of an SLG evaluation, the function MinLink(S), which is the minimum DirLink valuefor all subgoals on the completion stack whose Subg# is greater or equal to Subg#(S). We brie
ypresent how �elds of the completion stack are updated:� When a new tabled subgoal S is called, a unique number is assigned to Subg#(S), a new frameis pushed onto the completion stack, and DirLink(S) is initialized to Subg#(S).� When a tabled subgoal S is called and S is neither new to the evaluation nor complete, let Stoprepresent the subgoal whose frame is on top of the completion stack, and setDirLink(Stop) :=min(DirLink(Stop); DirLink(S))Procedure update dependencies(Subgoal)/* Let ComplSFtop be the topmost frame of the completion stack */ComplSF := SF ComplSF(Subgoal);/* Completion stack frames are accessed through the corresponding subgoal frame */ComplSF DirLink(ComplSFtop) :=min(ComplSF Dirlink(ComplSFtop), ComplSF DirLink(ComplSF));Figure 20: Updating ASCC information on encountering Consumer Subgoals.Figure 20 shows the steps performed by the tabletry and tabletrysingle instructions when creating aconsumer choice point (cf. Figure 15). Based on these rules and the format of the completion frame,we de�ne Scheduling ASCCs through their leaders as follows.De�nition 3.1 (Leader of a Scheduling ASCC) A subgoal S is called a leader of a schedulingASCC i� the completion frame associated with S is either the deepest one in the completion stack,or satis�es the condition: Subg#(Sprev) < min(DirLink(S);MinLink(S))where Sprev is the predecessor of S on the completion stack.The completion stack can thus be partitioned into scheduling ASCCs, A1; : : : ; An, with the propertythat no subgoal in a given scheduling ASCC depends on any subgoal in a scheduling ASCC deeperin the stack. As a result, the leader of the topmost scheduling ASCC can be used to determine whensubgoals in that ASCC can be completed. This property is the basic idea behind the SLG-WAM'simplementation of incremental completion. Example 3.2 indicates a further property of incrementalcompletion. 25

Example 3.2 ([2]) For the program in Figure 21(a) and query ?- p(X,Y)., Figure 21(b) depictsthe subgoal dependency graph and completion stack at the time of completion of p(X,Y). The orderof entries in the Completion Stack re
ects the Subg# of the subgoals. Subgoal q(X), with Subg# 2,:- table p/2, r/1, q/1.p(X,Y) :- q(X), r(Y).p(c,a).q(a).q(b).r(c).r(X) :- p(X,Y).(a) Program Subgoal

q(X)

p(X,Y) 1 1

r(Y) 3

2 2

1

r(Y)q(X)

p(X,Y)

+ +

+
1

1

1

MinLink(S)DirLinkSubg#(b) Subgoal Dependency Graph and Completion StackFigure 21: A Trapped Component (consisting of a single subgoal).is trapped below r(Y) with Subg# 3, because its MinLink is low due to the DirLink value fromsubgoal r(Y). As a result, p(X,Y) is the only leader, all three subgoals end up in the same schedulingASCC and will be completed simultaneously.Example 3.2 illustrates both a disadvantage and an advantage of scheduling ASCCs. Clearly, q(X)is not detected to be completely evaluated as soon as it can be. However, in terms of space reclamation,the detection of completion of q(X) is not useful for a stack-based engine. To see this, recall that theorder of subgoals in the completion stack re
ects that of generator nodes in the choice point stack.Thus if r(Y), which is above q(X), depends on p(X,Y) below q(X), there must be an active nodewith selected literal p(X,Y) above q(X) in the choice point stack. As a result, all WAM stacks remainfrozen by the active node regardless of whether q(X) is completed. Space frozen by q(X) thereforecannot be unfrozen until the leader of the scheduling ASCC, p(X,Y), is completed. Scheduling ASCCsare e�ciently maintainable, and have good space reclamation properties. Section 6.5 will discuss howto extend the rules presented here so that exact detection of SCCs can be performed when necessaryfor strati�ed programs.The Completion Instruction for De�nite ProgramsFigure 22 presents the completion instruction for de�nite programs. Section 3.4 discussed how thescheduling of answer return instructions is performed by the �xpoint check procedure as part of thecompletion instruction for the leader of a scheduling ASCC. A call to this procedure is made in step 1.1of Figure 22. The �xpoint check procedure, shown in Figure 23, simply traverses completion stackframes to call schedule resumes for subgoals in a scheduling ASCC. If there are unconsumed answersfor a particular subgoal, schedule resumes breaks the loop of �xpoint check by causing the engine tofail and return answers by backtracking through consumer choice points for that subgoal. When thisbatch of answers has been consumed, the engine once again backtracks to the completion instructionfor Subgoal. Thus, step 1.2.1 is reached only if all answers have been returned to each subgoal inthe scheduling ASCC. In this case, stacks are unfrozen and space is reclaimed (step 1.2.2). Moreprecisely, the stacks are restored to their state at the time Subgoal was �rst called by adjusting theWAM stack and freeze registers (i.e., B, BF, E, EF, : : :) to their values as saved in the generator26

Instruction completion0 SubgCSF := SF ComplSF(GCP SubgFr(breg));/* B register (breg) points to the Generator CP of Subgoal */1 If (Subgoal is the leader of a scheduling ASCC, A)/* using SubgCSF according to De�nition 3.1 */1.1 Call �xpoint check(SubgCSF);1.2.1 Mark as complete all subgoals in A;1.2.2 Reclaim the stack space of subgoals in A and adjust the freeze registers;2 breg := GCP BregChain(breg);3 fail; Figure 22: The completion instruction (for De�nite Programs).choice point of Subgoal (see Figure 7). In addition, subgoals in the ASCC of Subgoal are removedfrom the completion stack. When this is done, or if Subgoal is not a leader, execution fails to theprevious choice point.Procedure �xpoint check(SubgCSF) /* SubgCSF is a pointer to the completion stack frame */while (SubgCSF is less than or equal to the top of the completion stack)SubgFr := CSF SubgFr(SubgCSF);Call schedule resumes(SubgFr); /* a failure continuation is taken if any consumer choice *//* point associated with SubgFr has unconsumed answers (cf. Figure 18) */Increment SubgCSF by the size of a completion stack frame;Figure 23: The Fixpoint Check Procedure.4 A Review of Left-to-Right Dynamic Strati�cationStrati�cation theories share a common thread: that a program can be broken up into strata, and thatelements of a given stratum may depend negatively only on elements in lower strata. These elementsmay be predicates or atoms or a mixture of both; and their division into strata may take place eitherstatically or during the program's evaluation. In Dynamic Strati�cation [13], the elements are atomsand their division into strata takes place dynamically during a program's evaluation. The power ofdynamic strati�cation arises from a theorem that a program has a two-valued well-founded model ifand only if it is dynamically strati�ed.Evaluation of dynamically strati�ed programs cannot be done using a �xed computation rule [13].Within SLG, the ability to alter a computation rule is addressed by delaying and simplificationoperations. These operations can be expensive and can deeply a�ect the SLG-WAM. However, byrestricting the de�nition of dynamic strati�cation to �xed-order computations, the useful subclass ofLeft-to-Right Dynamically Strati�ed programs (LRD-strati�ed programs) arises. As we will show, thisclass can be e�ciently evaluated without elaborate modi�cations of the de�nite engine. LRD-strati�ed27

programs were introduced in [23], along with the variant of SLG, SLGstrat that we use throughoutthe remaining part of this paper. It can be shown that the class of LRD-strati�ed programs properlycontains the class of left-to-right weakly strati�ed programs, which in turn properly contains theclass of left-to-right modularly strati�ed programs. Further, it was shown in [20] that all modularlystrati�ed programs are statically reorderable into this later class. Figure 24 provides an example ofa left-to-right dynamically strati�ed program and a dynamically strati�ed (but not LRD-strati�ed)program. We note that the LRD-strati�ed program in Figure 24(a) is neither modularly nor weaklystrati�ed. p :- q, not r, not s.q :- r, not p.r :- p, not q.s :- not p, not q, not r. p :- not s, not r, q.q :- r, not p.r :- p, not q.s :- not p, not q, not r.(a) LRD-Strati�ed (b) Dynamically Strati�edFigure 24: Program Examples for Dynamically Strati�ed Negation.Intuitively, LRD-strati�ed programs are those with two-valued well-founded models that can beevaluated using a �xed left-to-right literal selection strategy. Formally, these programs are de�nedby adapting Przymusinski's iterated �xed point for the well-founded semantics [13] to a �xed left-to-right computation rule. Our single modi�cation is the introduction of the failing pre�x constraint inDe�nition 4.1. This constraint restricts false facts from being included in FI(F), unless their falsitycan be established by a left-to-right examination of literals.De�nition 4.1 For sets T and F of ground atomsTI(T) = fA j there is a clause B L1; :::; Ln in P and a ground substitution � such that A = B�and for every 1 � i � n either Li� is true in I , or Li� 2 Tg;FI(F) = fA j for every clause B L1; :::; Ln in P and ground substitution � such that A = B� (1)there is some i (1 � i � n), such that Li� is false in I or Li� 2 F , and (2) there exists a failingpre�x: for all j (1 � j � i� 1), Lj� is true in Ig. 2In TI and FI , I represents facts shown to be true or false in a previous �xpoint derivation. Theseoperators serve as primitives upon which inner �xpoint operators TI and FI can be built.De�nition 4.2 Let I = hT ;F i be a partial interpretation,T "0I = ; and F #0I = HPT "n+1I = TI(T "nI) and F #n+1I = FI(F #nI)TI = [n<! T "nI and FI = \n<! F #nI :Further, de�ne I(I) as: I(I) = I [hTI ;FIi: 228

The outer (trans�nite) �xpoint is based, according to the usual de�nitions, on the operator I whichextends the interpretation I to I(I) by adding to I : (1) new atomic facts TI which can be derivedfrom P knowing I , along with (2) negations of atoms in unfounded sets based on the interpretation I .Using this framework a LRD-strati�ed program is de�ned as one in which the iterated �xpoint of Iproduces a two-valued model (i.e. one in which no atom is unde�ned). When this model exists, it isequal to the well-founded model for P .5 Tabling Operations for LRD-Strati�ed ProgramsThe intuition behind the evaluation of LRD-strati�ed programs is that nodes with selected negativeliterals are suspended using mechanisms similar to those of Section 3.1, and are resumed only whenthe subgoals for those literals are failed : i.e., when they are completed with no answers. Alongwith the SLG operations for de�nite programs of De�nition 2.3, the following operations are used inLRD-strati�ed programs.De�nition 5.1 (SLG operations for LRD-strati�ed Programs) Let N be an active node of anSLG tree of the form Answer Template :� not S;Goals where S is a subgoal of a tabled predicate.floundering If S is non-ground, then the evaluation is
oundered.negation failure If S is ground and has an answer, then create a fail node as the immediate childof N in its SLG tree.negation success If S is ground and is failed, then produce an immediate child of N of the form:Answer Template :� Goals. 2Creating a fail node in an SLG tree e�ectively fails the computation path to the fail node. If anevaluation encounters a literal not S and S is not yet in the system, the new subgoal operationtakes place; i.e., a new SLG tree rooted by a generator node is created for S, and program clauseresolution is used to derive answers for it. No operations are applicable for node N containinga ground literal not S until either an answer is derived for S (at which time a negation failureoperation would be applicable), or until S is failed, when a negation success operation wouldbecome applicable. The following theorem, slightly modi�ed from [23], indicates the validity of theapproach outlined.Theorem 5.1 ([23]) Let P be a ground LRD-strati�ed program, and let E be an SLG evaluation of Pconsisting of the operations new subgoal, program clause resolution, answer return, newanswer, completion, negation failure, and negation success. Then E will reach a �nal statethat is not
ummoxed.Together with the correctness of SLG, Theorem 5.1 implies that the above set of operations su�cesto evaluate LRD-strati�ed programs without the SLG delaying, simplification and answer com-pletion operations (see [3]). As will be discussed in Section 6, the engine makes direct use of thisresult.Other evaluation mechanisms are of course possible. For instance [2] applies the SLG delayingoperation whenever there is a node with a selected negative literal in a ASCC that is being checkedfor completion. Such an approach has the disadvantage that delaying breaks the �xed order ofcomputation for N , perhaps unnecessarily expanding the search space of the program. As implied byTheorem 5.1, in LRD-strati�ed programs this search space expansion can be avoided.29

6 The Abstract Machine for LRD-Strati�ed ProgramsIn order to evaluate LRD-strati�ed programs, �ve main changes are made to the de�nite engine: 1) im-plementation of early completion, 2) implementation of a strati�ed negation operator, 3) a suspendand resume operation for selected negative literals, 4) explicit maintenance of subgoal dependencies,and 5) a completion instruction with the ability to determine SCCs precisely and complete themindependently of their stack-based order. We discuss each of these changes in turn.6.1 Implementation of Early CompletionEarly completion (condition 2 in De�nition 2.5), or the ability to complete subgoals whose truthvalue has been established without taking into account their possible dependence on other subgoals,is necessary to evaluate ground LRD-strati�ed programs without breaking a �xed literal selectionstrategy. Example 6.1 illustrates one case of this.Example 6.1 Let P be the LRD-strati�ed program in Figure 25(a) for which the query ?- a is to:- table a/0,b/0,c/0,d/0,e/0.a :- b, not c.b :- a.b :- d.b.c :- not d.d :- b, e.(a) A LRD-strati�ed Program -

d e

b c

a

-

+ +

+

+

+(b) Subgoal Dependency GraphFigure 25: Program showing the need for early completion.be evaluated. The execution of this query against P causes cascading suspensions, of a on c and con d, as seen from the subgoal dependency graph shown in Figure 25(b). Observe that b has beencompletely evaluated. If b were explicitly completed, it could be removed from the SDG, and theapparent loop through negation (subgoals a, b, c, and d) could be broken.To perform early completion the engine must check if a subgoal's answer is a variant of the subgoalitself. The SLG-WAM of XSB currently implements early completion in the case where the subgoalis ground. Early completion is thus easily implemented during the answer check/insert step of thenew answer instruction of Figure 16. Recall from Section 3.4 that new answer is compiled as the lastinstruction of each clause in a tabled predicate and it uses the substitution factor from the generatorchoice point to add an answer to the table. If the number of variables in the subgoal is equal to 0,the subgoal is ground and it may be (early) completed upon addition of its answer. In such a case,the subgoal frame, which is accessible through the generator choice point, is marked as complete,and its pointer to the nodes depending negatively on the subgoal set to null (the NS Chain cell: seeFigure 10). In addition, the FailCont cell of the generator choice point (see Figure 7 in Section 3.1.4)is made to point to a completion instruction. This action bypasses any possible remaining tableretry30

and tabletrust instructions for that subgoal 9. The completion instruction will return the answer to anyconsuming choice points through the �xpoint check procedure, and will revise dependency informationto take account of subgoals that have been early completed (see Section 6.5).6.2 Implementation of a Predicate for Fixed-Order Strati�ed NegationBecause negation is restricted to ground literals, whenever an answer is derived for a subgal S, anegation failure operation becomes applicable to any active nodes with not S as their selectedliteral. As mentioned in the previous section the SLG-WAM removes pointers to such active nodesupon early completion of S; these active nodes will never be resumed, so that negation failureoperations are executed implicitly upon early completion. These considerations lead to the followinginvariant:Invariant 1 In the SLG-WAM for LRD-strati�ed programs, the completion of subgoals initiates onlynegation success operations.The predicate tnot/1 implements negation for LRD-strati�ed programs, and, as shown in Fig-ure 26, makes use of this invariant. tnot/1 is implemented using low-level builtins. Since any groundsubgoal with an answer is marked as complete by early completion, tnot/1 calls the negation suspend/1builtin only if the subgoal is incomplete (and has no answer). Later, according to Invariant 1, thecomputation resumes (to true) only if the completed subgoal has no answers. The exact mechanismsof suspending and resuming negative literals can now be described.tnot(S) :-(ground(S) !(subgoal not in system(S), call(S), fail; (is complete(S) ! has no answers(S); negation suspend(S), true /* if execution reaches here, S */) /* is completed with no answers */); error("Flounder: subgoal S is not ground")).Figure 26: An implementation of tabled negation (tnot/1) for LRD-strati�ed programs.6.3 Suspending and Resuming Negative LiteralsThe operation of suspending negative literals is implemented through a C-level builtin nega-tion suspend/1 (cf. Figure 26). This builtin pushes a negation suspension frame onto the choice pointstack and then suspends the computation by freezing the stacks and failing. The negation suspen-sion frame (whose format is shown in Figure 27) saves the execution environment for the suspendedcomputation in a manner similar to saving suspended environments for consumer choice points. Likeconsumer choice points, negation suspension frames of the same subgoal are chained together in a9It will be shown in Section 7 that early completion can also bene�t certain de�nite programs because of this action.31

chain (using the PrevNS cell) and can be accessed from the subgoal frame (through their NS Chaincell: see Figure 10). FailCont Pointer to negation resume instructionEBreg Environment Backtrack PointHreg Top of Global Stack (Heap)TRreg Top of (Forward) Trail StackCPreg Return point of suspended literalEreg Parent EnvironmentRSreg Root Subgoal Choice PointSubgFr Frame of Suspended SubgoalPrevNS Pointer for Negation Suspension Frame ChainFigure 27: Format of Negation Suspension Frames.The completion instruction schedules negation resume instructions in a manner similar to the wayit schedules answer returns. For each subgoal, its negation suspension frames are chained togetherusing their PrevNS cells, and these subchains are chained together into one chain upon completion ofcorresponding subgoals. The engine then backtracks to execute negation resume instructions for eachnegative active node suspended on one of the completed subgoals. Upon executing a negation resumeinstruction, the engine will use the forward trail to resume the suspended computations and continueexecution. Because, the SLG-WAM calls negation suspend/1 builtins only through tnot/1, continuedexecution will immediately succeed out of the tnot/1 predicate, implicitly performing a negationsuccess operation.6.4 Maintenance of the Subgoal Dependency GraphAs De�nition 2.4 implies, vertices of the SDG are incomplete subgoals, and edges are drawn betweenthe root subgoals of incomplete SLG trees and the selected subgoals of their active nodes. Withinthe SLG-WAM, the SDG can be e�ectively represented by maintaining pointers from consumer choicepoints to their root subgoals, and | if �rst call optimization is used | from generator choice pointsto the appropriate root subgoals. 10In the WAM, global information, such as the root subgoal of the node currently under executionis kept in registers, and we therefore introduce a global RS register (short for Root Subgoal register)to keep track of this dependency. All choice point frames, including those for interior nodes, need tomaintain the value of this register, and do so in their RSreg cell (see Figures 7, 8 and 27). The RSregister is updated as follows:� First, the RS register is modi�ed upon creating the generator node for a new SLG tree. Thisis performed by the tabletry and tabletrysingle instructions, after the creation of the generatorchoice point frame. The value of the RS register is set to the address of that choice point.� Secondly, the RS register must also be restored when the computation successfully exits an SLGtree by, say, deriving an answer. This restoration of the RS register during forward executionis performed by the new answer instruction. Note that restoration during forward executionis unnecessary for interior nodes since the SLG tree in which computation takes place is nota�ected by executing program clause resolution in the forward direction.10As a technical point, these pointers maintain the transpose of the SDG (SDGT) rather than the SDG itself.32

� Thirdly, the RS register must be restored when the computation executes a failure continuation,potentially switching to a new tree. This can occur either when executing program clauseresolution by the retry, trust, tableretry, and tabletrust instructions; when returning an answerby the answer return instruction; or when executing a negation resume instruction.6.5 Completion in LRD-Strati�ed ProgramsIn an LRD-strati�ed program there is nothing to prevent a given subgoal in an ASCC, A, fromdepending negatively on another subgoal in A. If an engine is to evaluate LRD-strati�ed programsusing a �xed computation rule, it must correctly order the completion of subgoals and the execution ofnegation success operations. We �rst discuss how exact SCC detection is done in our framework,and then present the completion instruction for LRD-strati�ed programs.6.5.1 Performing completion based on Exact Subgoal DependenciesExample 6.2 Let P be the program in Figure 28 for which the query ?- p(a). is to be evaluated.Note that since there is only one predicate p/1, P is not modularly strati�ed for any selection order.It is, however, LRD-strati�ed. The SLG forest of Figure 28 depicts a state of the evaluation of p(a):- table p/1.p(a) :- p(b), not p(d).p(b) :- p(c).p(b) :- not p(d).p(b).p(b) :- not p(a).p(c) :- p(b), p(e).p(d) :- not p(c), p(d)p(e) :- p(c).p(e) :- not p(b), not p(e). 1. p(a) :- p(b), not p(d)

0. p(a)

7. p(a) :- not p(d)

1a. p(b)

2. p(b) :- p(c)

3. p(c) :- p(b), p(e)

8. p(c) :- p(e)

2a. p(c)

4. p(a) :- not p(d)

6. p(b) :-

11. fail

10. p(e) :- not p(b), not p(e)

8a. p(e)

5. p(d) :- not p(c), p(d)

4a. p(d)

9. p(e) :- p(c)Figure 28: A LRD-strati�ed Program and the SLG Forest created for the query ?- p(a).in which there are apparent cycles through negation, as can be seen from the associated SDG inFigure 29(a). Note that in this state a program clause resolution step has not been appliedusing the last clause of p(b). Because the subgoal p(b) is ground and contains an answer, p(b) maybe early completed, producing the SDG of Figure 29(b), which contains no loops through negation.The SCC fp(c),p(e)g is then found to be completely evaluated according to De�nition 2.5, and acompletion operation is applicable to the subgoals of this SCC.In order to describe how the SLG-WAM performs the computation described in Example 6.2, we�rst consider how the completion stack may be augmented to perform exact SCC detection. Fig-ure 30(a) shows the completion stack and MinLink(S) values at the state of computation depicted inthe SLG forest of Figure 28. According to the de�nitions given in Section 3.5, p(b) is the leader of ascheduling ASCC containing p(c), p(d), p(e) and itself. In order for the SLG-WAM to determine theorder of completion for subgoals in the scheduling ASCC, it augments the completion stack with reverse33

p(a)

p(e)

p(c)

+

p(b)

+

+ +

+

p(d)-

-

-(a) For all subgoals in the forest
p(a)

p(e)

p(c)

p(d)

-

++

-(b) When disregarding early completed subgoalsFigure 29: Subgoal Dependency Graphs for the query ?- p(a).dependency links. As Figure 30 illustrates, this augmentation e�ectively constructs the transpose ofthe SDG restricted to incomplete subgoals in the scheduling ASCC. 11 At this point, an independent
SDG EdgesT

Subgoal

1 11p(a)

ASCC p(b) 2 2 2

p(e) p(b)

2

2p(d) 4 3

p(e) 5 2

3p(c) 3

p(c)

p(c)

2

MinLink(S)DirLinkSubg#(a) Before completion of p(b), p(c) and p(e). Subg#Subgoal

1 11p(a)

ASCC 2p(d) 4 3 p(d)

SDG EdgesT

DirLink MinLink(S)(b) After their completion.Figure 30: Completion Stack states when evaluating the program of Example 6.2.SCC is obtained by performing a combination of a topological sort and an SCC computation of adirected graph [5].Example 6.3 Continuing Example 6.2, the completion operation for the scheduling ASCC led byp(b) �nds subgoals p(c) and p(e) to be an independent SCC, and completes them. The completionframes of these subgoals, as well as that of p(b), which was early completed, are removed fromthe completion stack. Also, their completion initiates a negation success operation for the nodep(d) :- not p(c), p(d). When computation resumes for this node, the literal p(d) is selected, andthe subgoal dependency graph is modi�ed. The resulting completion stack of the new computationstate is depicted in Figure 30(b).Only completion operations are applicable at this point. A completion operation for p(d) isperformed and p(d) is found to be the leader of its scheduling ASCC and is completed. Finally, literal11We note that as an optimization, links do not need to be created for subgoals that are completed, but whose framesremain on the completion stack. 34

Instruction completion0 SubgCSF := SF ComplSF(GCP SubgFr(breg));/* B register (breg) points to the generator CP of Subgoal */1 if (Subgoal is a leader of a scheduling ASCC, A)/* using SubgCSF according to De�nition 3.1 */1.1 Call �xpoint check(SubgCSF);1.2 if (there are no negation suspensions on subgoals in A)1.2.1 Mark as complete all subgoals in A;1.2.2 Reclaim the stack space of subgoals in A and adjust the freeze registers;else1.3 I := independent scc(Subgoal);1.4 For each subgoal S 2 I1.4.1 Mark the subgoal frame of S as complete;1.4.2 if (there are negation suspensions on S)1.4.3 if (there exists a subgoal S 0 2 I that is suspended on S)1.4.4 Abort: the program is not LRD-strati�ed;1.4.5 else Schedule negation resume instructions for Sby chaining together the negation suspension frames for all completed subgoals;1.5 Let E be the set of subgoals of A that were early completed and let C := E [I ;1.5.1 Compact the completion stack by removing the frames of subgoals in C;1.5.2 If possible, reclaim the stack space of subgoals in C and adjust the freeze registers;2 breg := GCP BregChain(breg);3 fail; Figure 31: The completion instruction (for LRD-strati�ed Programs).not p(d) in the body of p(a) is resumed (using a negation resume instruction) and succeeds, whichin turn activates the early completion of subgoal p(a) upon the derivation of its answer.As the example shows, the approximation of the strongly connected components kept by the completionstack may considerably change as a result of negation success operations, and fresh dependencyinformation may have to be added to the completion stack whenever exact SCC detection is required.6.5.2 The completion instruction for LRD-strati�ed ProgramsThe completion instruction for LRD-strati�ed programs is shown in Figure 31. With the exception ofthe test in step 1.2, up to line 1.2.2, and in steps 2{3 the actions of the completion instruction for LRD-strati�ed programs are the same as for de�nite programs. The instruction is scheduled on the choicepoint stack either by tabletrysingle or tabletrust when program clause resolution is no longerapplicable for a subgoal Subgoal, or by the new answer instruction in the case of early completion.Upon execution, if Subgoal is the leader of its scheduling ASCC, the completion instruction for Subgoalwill �rst access the subgoal frame and perform a �xpoint check to ensure that all answer returnoperations have been performed for active nodes in the scheduling ASCC of Subgoal. If the Subgoalis not a leader, the action of the completion instruction is simply to backtrack to the previous choicepoint. If Subgoal is the leader of a scheduling ASCC, a check is made whether there are negative35

dependencies on any members of the ASCC (the NS chain pointers of each subgoal frame are used forthis check). If no such negative dependencies are present, all subgoals in the ASCC can be completedand their space reclaimed, just as in the de�nite case. If there is a negative dependency on somesubgoal of the ASCC, the engine re�nes the approximation of the scheduling ASCC by �nding anindependent SCC as explained in the previous section (step 1.3). Once an independent SCC, I , isobtained, its subgoals are completed and a check made for whether the program is LRD-strati�edusing the property that the relevant portion of a program is LRD-strati�ed i�, after disregarding earlycompleted subgoals, no independent SCC contains negative dependencies among its subgoals. If it issound to continue, negation resume instructions are scheduled for all nodes that were suspended onthe completion of the subgoals in I (step 1.4.5). This implementation of this scheduling is analogousto that of the �xpoint check procedure. Finally, the completion stack is compacted to remove framesof complete subgoals, the remaining choice points are (re)chained through their Breg Chain cell, and,if possible, stack space is reclaimed for subgoals in the independent SCC. This is always possible whenthe bottom of the completion stack is reached.The correctness of the completion algorithm follows from the proposition below, which can beproven using the formalism of SLGO automata in [24].Proposition 6.1 (Correctness of completion algorithm) Let S be the completion stack in an eval-uation of a ground LRD-strati�ed program, and let L be the leader of a scheduling ASCC A. Further-more, assume that all applicable SLG operations of De�nitions 2.3 and 5.1 (but for completion itself)have been performed for subgoals in A. Finally, let C be the set of subgoals in step 1.5 of Figure 31.Then,1. C will be non-empty;2. No subgoal will be in C unless it is completely evaluated.7 PerformancePrevious sections have described how the SLG-WAM extends the WAM so that tabling can be inter-mixed with Prolog execution. We adopt two ideal criteria for judging the success of the engine.1. Performance overheads should be minimized. Prolog programs should not pay a penalty fortabling mechanisms that they do not use. Likewise, de�nite programs that use tabling shouldnot pay a penalty for mechanisms added for strati�ed negation.2. Performance times of tabled and non-tabled code of similar complexity (cf. Section 7.2) should becompatible. Performance times of both types of predicates should be similar if tabled evaluationis to be used to solve practical problems.This section measures the performance of the SLG-WAM using these criteria. Additional com-parisons of the SLG-WAM against other tabling systems and deductive databases can be foundin [22, 2, 25, 18, 19]. 36

7.1 Measuring Performance Overheads7.1.1 Overheads Imposed on Prolog ProgramsWhen the SLG-WAM executes Prolog code, performance di�erences with the WAM can arise fromseveral factors: from the forward trail, from the introduction of freeze registers, and from othermiscellaneous factors such as the addition of words to Prolog choice points (the Breg Chain cell andthe RSreg cell, whose uses were explained in previous sections). Of these di�erences, the forward traila�ects every trailed binding, and each environment restoration at backtracking. The freeze registersa�ect the allocate and backtracking instructions, but moreover the values of EF andHF registers needto be checked at every variable binding in order to determine whether the variable has been createdsince the last choice point.In summary, the di�erences with the WAM are:� The try, retry, and trust instructions are changed due to freeze registers, to the forward trail, anddue to the addition of extra cells in choice points.� The allocate instruction is changed due to freeze registers.� The get and unify instructions are changed due to augmented trail frames, and due to theincorporation of freeze registers in the check for whether trailing is necessary.To measure the e�ect of these the following versions of the engine were created along with an unmod-i�ed WAM engine.SLG-WAM: WAM-trail Contains freeze registers, but WAM-style trail.SLG-WAM: De�nite Performs SLG evaluation for de�nite programs only. It contains a forwardtrail as well as freeze registers.SLG-WAM: LRD Performs SLG evaluation for LRD-strati�ed programs. It contains all additionsand changes to the WAM described in this paper.Normalized CPU times of all emulators are compared for �ve standard benchmarks from theD.H.D. Warren test suite in Table 1.12deriv qsort nreverse serialise query MeanWAM 1 1 1 1 1 1SLG-WAM: WAM-trail 1.10 1.10 1.04 1.04 1.09 1.08SLG-WAM: De�nite 1.16 1.11 1.05 1.09 1.13 1.13SLG-WAM: LRD 1.16 1.11 1.05 1.09 1.13 1.13Table 1: Normalized CPU times for executing standard Prolog benchmarks.For qsort, nreverse, and query the increase in time appears to be due to the addition of thefreeze registers, while for serialise it is due to writing trail cells. query, and to some extent qsortalso test the e�ciency of shallow backtracking. However query, qsort, and nreverse rarely actuallytrail variables either because the predicates are called with instantiated arguments, or because the12All tests in this section were done on a SPARC 20 running SunOS 5.4. The compilation of XSB was done withgcc 2.7.0 (using the -O4 option) 37

variables that are bound do not lie below a choice point. The serialise benchmark, on the otherhand, builds a structure which is successively instantiated at a progressively deeper level, creating trailframes.For the deriv benchmark, the performance of compiled cuts is also tested. Due to the complicationsstemming from environment switching, cuts can be expensive in the SLG-WAM. To measure the e�ectof the SLG-WAM cuts on deriv, a version of the emulator was created with cuts compiled as in theWAM. This version had a normalized time of 1.11, indicating a sensitivity to the cut extensions.The addition overhead of changes to evaluate LRD-strati�ed programs was negligible (less than 1%)for these benchmark programs, so that it is probably safe to conclude that on average the changes tothe WAM described in this paper add about a 10-15% overhead to Prolog CPU times.In order to test memory usage, the LRD engine was tested against a vanilla WAM engine. ForProlog programs, the SLG-WAM consumes more memory than the WAM due to its larger choicepoint and to trail frames which consist of three words rather than one word. Surprisingly, for theabove benchmarks, memory usage is only about 5% higher than in the WAM. For these benchmarkprograms, bindings to variables usually occurs in deterministic predicates: those for which only oneclause can succeed due to indexing or to the use of cuts. As has been noted in other, more detailedstudies (e.g. [27, 28, 32]), the actual creation of trail frames can usually be avoided.137.1.2 Overhead for the Evaluation of LRD-strati�ed ProgramsThe previous section measured the overhead of the engine for strati�ed negation on Prolog programs.In this section, we further measure the performance of this engine on de�nite programs that use tabling(Figure 32). Table 2 contains normalized execution times for left-recursive transitive closure (over achain, a cycle, and a full binary tree data structure, all of size 8k), and a same generation program(over a randomly generated 24�24�2 cylinder). A cylinder can be thought of as a rectangular matrixof elements where each element in row i has links to a certain number of elements in row i+ 1. The24� 24� 2 cylinder then, is an array of 24� 24 nodes, where each of the nodes in each row (exceptthe last) is connected to two elements in the next row. None of these programs contains negativeliterals. It is somewhat surprising that the engine for strati�ed programs outperforms (if slightly)TC-chain TC-cycle TC-tree same gen.SLG-WAM: De�nite 1 1 1 1SLG-WAM: LRD 0.947 0.945 0.979 0.961SLG-WAM: No-EC 1.008 1.009 1.012 1.010Table 2: Normalized CPU times for executing tabling benchmarks using XSB.the engine for de�nite programs. The third line of the table measures the performance of an enginewith all changes for negation except early completion. With this information it can be seen that theadvantage of early completion outweights the overheads of other changes to implement LRD-strati�edprograms.Comparison with Other Evaluation Strategies for Strati�ed Negation To put the numbersof the previous section in perspective, we compared the overhead of the SLG-WAM's algorithm for13This memory comparison was obtained using a SLG-WAM with trail compaction added. Without trail compaction(as in XSB version 1.7), the memory overhead is 18%. 38

:- table path/2.path(X,Y) :- path(X,Z), edge(Z,Y).path(X,Y) :- edge(X,Y).(a) Left-Recursive Transitive Closure path(X,Y) :- edge(X,Y).path(X,Y) :- edge(X,Z), path(Z,Y).(b) Right-Recursive Transitive Closuresg(X,Y) :- cyl(X,X1), sg(X1,Y1), cyl(Y,Y1).sg(X,X). (c) Same Generation even(0).even(X) :- X > 1, Y = X-1, not even(Y).(d) Evenpath(X,Y) :- path(X,Z), edge(Z,Y), not congested(Y).path(X,Y) :- edge(X,Y).(e) CongestedFigure 32: Test Programs (versions with Prolog-style negation).strati�ed negation with Ordered Search [16], a magic-oriented strategy implemented in the CORALsystem [17]. The default strategy for CORAL is Supplementary Magic Rewriting which correctlyevaluates de�nite programs. This default strategy was not designed for strati�ed programs, and ifsuch programs are to be evaluated Ordered Search, which correctly evaluates left-to-right modularlystrati�ed programs, should be used. Table 3 compares performance of Ordered Search with Supple-mentary Magic Rewriting on de�nite programs. The results in Table 3 show that Ordered Search isTC-chain TC-cycle same gen.CORAL SemiNaive 1 1 1CORAL Ordered Search 1.42 1.45 1.30Table 3: Normalized CPU times for Ordered Search compared to seminaive evaluation in CORAL.considerably less e�cient than ordinary seminaive �xpoint evaluation (around 40% slower). CORALprovides many annotations that a�ect the performance of programs; for both evaluation strategies thetimings reported are the best that could be obtained by setting these options.We also measured the performance overhead of both methods on programs that contain negation,but no negative loops, and which can be evaluated using SLDNF or a simple semi-naive search strat-egy. The benchmarks even, and congested are shown in Figure 4 (these programs can be foundin the examples directory of in CORAL manual). In the case of the congested program, predicatecongested/1 contains recursion but no negation and serves as a test of whether a particular path isvalid. As can be seen from the results of Table 4, Ordered Search can impose a performance penaltyeven congestedCORAL SemiNaive 1 1CORAL Ordered Search 1.71 12.33Table 4: Normalized CPU times for CORAL's evaluation strategies on programs with negation.on the execution of strati�ed programs that do not need its power. To determine the overhead of39

tabled negation in XSB for these programs, the �rst two rows of Table 5 compare the performance oftabling using (tnot/1) and Prolog-style negation (not/1). As a further comparison, the last row ofthe same table represents the performance of SLDNF evaluation (the left-recursive transitive closureof congested was manually transformed to right recursion for the SLDNF test).even congestedSLG-not/1 1 1SLG-tnot/1 1.19 1.23SLD-not/1 0.72 0.71Table 5: Normalized CPU times for di�erent types of negation in XSB.These performance numbers indicate a small overhead for the additional functionality of tabled-based SLG negation relative to Ordered Search. We believe that these results re
ect fundamentalaspects of the computation strategies involved, rather than accidents of implementation. As Section 6.4indicates, it is a simple matter to use the SLG search forest to maintain dependencies between subgoals.On the other hand, such a structure does not naturally follow from a semi-naive evaluation. Rather aset of context nodes , which together serve as an analogue to the subgoal dependency graph, must bebuilt from scratch, leading to the observed overheads. The SLG-WAM's small overhead is especiallystriking since, XSB has been shown to be about an order of magnitude faster than CORAL for de�niteDatalog queries [22].7.2 Measuring Performance CompatibilityAs shown in Section 7.1, SLG-WAM overhead for SLD resolution is minimal. When XSB is usedsimply as a Prolog system (i.e., no tabling is used), it is reasonably competitive with other Prologimplementations based on a WAM emulator written in C or assembly. For example, XSB is slightlyfaster than NU-Prolog and is between two and three times slower than Quintus 3.1.1 or emulatedSICStus Prolog 2.1.9.In general, performance times of tabled and non-tabled predicates may vary widely: certain tabledpredicates may not terminate in SLD or their complexity may become exponential, while simple Prologpredicates, such as append/3 with the �rst two arguments instantiated, usually become quadratic whentabled. Datalog programs with no redundant subcomputations form one class of programs for whichthe complexity of both methods is the same. Two examples of this are transitive closure over trees andchains, and Tables 6 and 7 show the normalized times for the query ?- path(1,X),fail. using XSB.In these tables the right-recursive form of transitive closure was used for SLD (Figure 32(b)) againstits left-recursive version for SLG (Figure 32(a)). The left-recursive, SLG derivation is only slightlyslower than SLD for the chains and trees. Relative times for the tree are closer than for the chainbecause SLD evaluations over the tree execute backtracking instructions to traverse the immediatechildren of a given node, and these are less e�cient operations in the WAM. For example, a choicepoint is set up at the subgoal edge(1,X) because it uni�es with both edge(1,2) and edge(1,3). Thesimilarities in the speed of SLD and SLG on the chain and tree are especially signi�cant since the SLGtimes include time to copy answers to and from the table space.Memory usage for Prolog execution of the transitive closure in Figure 32(b) over a chain will beconstant. Assuming 32-bit addresses and a split-stack WAM, 60 bytes of stack space will be requiredto backtrack through all solutions of the transitive closure (The 60 bytes is comprised of 1 localenvironment frame, one trail cell, and one choice point frame). We present a detailed analysis of40

Length 8 16 32 64 128 256 512 1k 2kSLD .56 .53 .67 .78 .71 .78 .78 .75 .73SLG-cycle/chain 1 1 1 1 1 1 1 1 1Table 6: Normalized CPU Times for SLD and SLG Transitive Closure on ChainsHeight 6 7 8 9 10 11SLD .89 .82 .87 .88 .85 .84SLG 1 1 1 1 1 1Table 7: Normalized CPU Times for SLD and SLG Transitive Closure on Complete Binary Treesmemory usage of SLG transitive closure in Appendix A, and summarize the results here. Like Prolog,tabled execution will require a constant stack space of 192 bytes. In addition, tabled execution requiresspace for tabled subgoals and answers. The subgoal trie for p(1,Y) requires 92 bytes, while the answertrie requires 28 bytes per answer for this subgoal. The order of the clauses does not a�ect memoryusage for the tabled program, but if the order of the clauses in Figure 32(b) are interchanged, theProlog program creates a choice point (of 32 bytes) for each path/2 subgoal. Surprisingly, in thislatter case, Prolog becomes less e�cient in terms of memory than tabling.Memory usage of tabled evaluation is the same when transitive closure is executed over trees aswhen executed over a chain: stack space is constant and table space grows linearly with the numberof answers. On the other hand, regardless of the order of clauses in Figure 32(b), the size of the choicepoint stack for Prolog execution will grow with the depth of the tree.8 DiscussionExtending the SLG-WAM to evaluate non-strati�ed programs according to the well-founded semanticshas already begun, with version 1.7 of XSB o�ering a prototype of this engine. The main componentsof this extension are the introduction of the SLG delaying and simplification operations to allowthe engine to evaluate body literals in a
exible order [21]. As the LRD-strati�ed extensions avoidedslowing down SLD resolution and tabled evaluation of de�nite programs, one goal of these new exten-sions is to avoid slowing down SLD and tabled evaluation of LRD-strati�ed programs. Although thebasic components of the SLG-WAM are similar to those described in this paper, simplification anddelaying necessitate deep changes to them, and experimentation is underway to determine the bestdata structures for these operations.Another extension to this work is to incorporate more sophisticated compilation techniques intothe engine. As indicated in Appendix A, the tabling instructions are large for byte-code instructions,but are amenable to specialization based on mode and type. As mentioned in the introduction, thetabling engine can e�ciently perform mode and type analysis (among many others), and the resultsof such analysis can be fed back into the XSB compiler. Tabling thus makes possible an engine whichcan analyze itself declaratively, and using this analysis, can improve its performance. We believe thatadvantages such as this, combined with the power to evaluate normal logic programs, will make tablinga common component of logic programming systems of the future.41

AcknowledgementsMany people have made important contributions to the design and implementation of the SLG-WAM.The authors are deeply indebted to David S. Warren without whose ideas, guidance and encouragementstemming from his conviction to the importance of tabled execution of logic programs, the SLG-WAMwould never have been implemented. Thanks also to Prasad Rao for his work on the trie-based tablingand to Juliana Freire for her work on batched scheduling. In addition, we thank Bart Demoen for hiscomments on an earlier draft of this paper and the anonymous referees for their detailed commentswhich have signi�cantly improved the presentatation of this article.References[1] A��t-Kaci, H. Warren's Abstract Machine: A Tutorial Reconstruction. The MIT Press, 1991.[2] Chen, W., Swift, T., and Warren, D. S. E�cient top-down computation of queries underthe well-founded semantics. Journal of Logic Programming 24, 3 (September 1995), 161{199.[3] Chen, W., and Warren, D. S. Tabled Evaluation with Delaying for General Logic Programs.Journal of the ACM 43, 1 (January 1996), 20{74.[4] Codish, M., Demoen, B., and Sagonas, K. General Purpose Semantic Based ProgramAnalysis using XSB. K.U. Leuven Technical Report CW 245. December 1996.[5] Cormen, T., Leiserson, C., and Rivest, R. Introduction to Algorithms. The MIT Press,1990.[6] Dawson, S., Ramakrishnan, C. R., and Warren, D. S. Practical Program Analysis UsingGeneral Purpose Logic Programming Systems | A Case Study. In Proceedings of Conferenceon Programming Language Design and Implementation (Philadelphia, Pennsylvania, May 1996),ACM Press, pp. 117{126.[7] Dietrich, S. Extension Tables for Recursive Query Evaluation. PhD thesis, Department ofComputer Science, SUNY at Stony Brook, 1987.[8] Freire, J., Swift, T., and Warren, D. S. Beyond Depth-First: Improving Tabled LogicPrograms through Alternative Scheduling Strategies. In Proceedings of the Eighth InternationalSymposium on PLILP (Aachen, Germany, September 1996), H. Kuchen and S. D. Swierstra,Eds., no. 1140 in LNCS, Springer-Verlag, pp. 243{258.[9] Freire, J., Swift, T., and Warren, D. S. Treating I/O Seriously: Resolution Reconsid-ered for Disk. In Proceedings of the Fourteenth International Conference on Logic Programming(Leuven, Belgium, July 1997), L. Naish, Ed., The MIT Press, pp. 198{212.[10] Larson, R., Warren, D. S., Freire, J., Gomez, O. P., and Sagonas, K. Semantica. TheMIT Press, Cambridge, MA, August 1997.[11] Larson, R., Warren, D. S., Freire, J., and Sagonas, K. Syntactica. The MIT Press,Cambridge, MA, January 1996.[12] Lloyd, J. W. Foundations of Logic Programming, 2nd ed. Springer-Verlag, Berlin, 1987.42

[13] Przymusinski, T. C. Every Logic Program has a Natural Strati�cation and an Iterated LeastFixed Point Model. In Proceedings of the Eighth ACM Symposium on Principles of DatabaseSystems (Philadelphia, Pennsylvania, March 1989), ACM Press, pp. 11{21.[14] Ramakrishna, Y. S., Ramakrishnan, C. R., Ramakrishnan, I. V., Smolka, S. A., Swift,T., and Warren, D. S. E�cient Model Checking Using Tabled Resolution. In Proceedingsof the 9th International Conference on Computer-Aided Veri�cation (Haifa, Israel, July 1997),O. Grumberg, Ed., no. 1254 in LNCS, Springer-Verlag.[15] Ramakrishnan, I. V., Rao, P., Sagonas, K., Swift, T., and Warren, D. S. E�cientTabling Mechanisms for Logic Programs. In Proceedings of the 12th International Conference onLogic Programming (Tokyo, Japan, June 1995), L. Sterling, Ed., The MIT Press, pp. 687{711.[16] Ramakrishnan, R., Srivastava, D., and Sudarshan, S. Controlling the search in bottom-up evaluation. In Proceedings of the Joint International Conference and Symposium on LogicProgramming (Washington D.C., October 1992), K. Apt, Ed., The MIT Press, pp. 273{287.[17] Ramakrishnan, R., Srivastava, D., and Sudarshan, S. CORAL | Control, Relations, andLogic. In Proceedings of the 18th Conference on Very Large Data Bases (Vancouver, Canada,August 1992), Morgan-Kaufmann, pp. 238{249.[18] Ramesh, R., and Chen, W. A portable method of integrating SLG resolution into Prologsystems. In Proceedings of the 1994 International Symposium on Logic Programming (Ithaca,New York, November 1994), M. Bruynooghe, Ed., The MIT Press, pp. 618{632.[19] Rao, P., Ramakrishnan, C. R., and Ramakrishnan, I. V. A thread in time saves tablingtime. In Proceedings of the Joint International Conference and Symposium on Logic Programming(Bonn, Germany, September 1996), M. Maher, Ed., The MIT Press, pp. 112{126.[20] Ross, K. A. Modular Strati�cation and Magic Sets for Datalog programs with Negation. Journalof the ACM 41, 6 (November 1994), 1216{1266.[21] Sagonas, K. The SLG-WAM: A Search-E�cient Engine for Well-Founded Evaluation of NormalLogic Programs. PhD thesis, Department of Computer Science, SUNY at Stony Brook, August1996.[22] Sagonas, K., Swift, T., and Warren, D. S. XSB as an E�cient Deductive DatabaseEngine. In Proceedings of the ACM SIGMOD International Conference on the Management ofData (Minneapolis, Minnesota, May 1994), ACM Press, pp. 442{453.[23] Sagonas, K., Swift, T., and Warren, D. S. The Limits of Fixed-Order Computation. InProceedings of the International Workshop on Logic in Databases (San Miniato, Italy, July 1996),D. Pedreschi and C. Zaniolo, Eds., no. 1154 in LNCS, Springer-Verlag, pp. 343{363.[24] Swift, T. E�cient Evaluation of Normal Logic Programs. PhD thesis, Department of ComputerScience, SUNY at Stony Brook, December 1994.[25] Swift, T., and Warren, D. S. Analysis of SLG-WAM Evaluation of De�nite Programs.In Proceedings of the 1994 International Symposium on Logic Programming (Ithaca, New York,November 1994), M. Bruynooghe, Ed., The MIT Press, pp. 219{235.43

[26] Tamaki, H., and Sato, T. OLD Resolution with Tabulation. In Proceedings of the ThirdInternational Conference on Logic Programming (London, July 1986), E. Shapiro, Ed., no. 225in LNCS, Springer-Verlag, pp. 84{98.[27] Taylor, A. High Performance Prolog Implementation. PhD thesis, Department of ComputerScience, University of Sidney, Australia, 1991.[28] Tick, E. Memory Performance of Prolog Architectures. Kluwer Academic Publishers, 1988.[29] Van Gelder, A. Negation as Failure using Tight Derivations for General Logic Programs.Journal of Logic Programming 6, 1 & 2 (January/March 1989), 109{134.[30] Van Gelder, A., Ross, K. A., and Schlipf, J. S. The Well-Founded Semantics for GeneralLogic Programs. Journal of the ACM 38, 3 (July 1991), 620{650.[31] Van Roy, P. 1983{1993: The Wonder Years of Sequential Prolog Implementation. Journal ofLogic Programming 19/20 (May/July 1994), 385{441.[32] Van Roy, P. L. Can Logic Programming Execute as Fast as Imperative Programming? PhDthesis, Computer Science Division, University of California at Berkeley, December 1990.[33] Vardi, M. The Complexity of Relational Query Languages. In Proceedings of the 14th AnnualACM Symposium on the Theory of Computing (San Fransisco, California, May 1982), ACM,pp. 137{146.[34] Vielle, L. Recursive Query Processing: The Power of Logic. Theoretical Comput. Sci. 69, 1(December 1989), 1{53.[35] Warren, D. H. D. An abstract Prolog instruction set. Tech. Rep. 309, SRI International, MenloPark, U.S.A., October 1983.[36] Warren, D. H. D. The SRI Model for OR-Parallel Execution of Prolog | Abstract Designand Implementation Issues. In Proceedings of the 1987 Symposium on Logic Programming (SanFransisco, California, September 1987), IEEE Computer Science Press, pp. 92{102.[37] Warren, D. S. E�cient Prolog memory management for
exible control strategies. In Proceed-ings of the 1984 Symposium on Logic Programming (Atlantic City, New Jersey, February 1984),IEEE Computer Science Press, pp. 198{202.A Analysis of Left-RecursionIn order to understand better why the execution overhead and stack space usage of SLG transitiveclosure is so low we analyze the behavior of the left-recursive path/2 predicate (Figure 32(a)) on achain of 1024 elements. The byte-code for path/2 is shown in Figure 33.Given a query path(1,Y),fail, the predicate path/2 is entered through instruction labeled L1 inFigure 33. Conceptually, the tabletry instruction begins by checking whether a variant of path(1,Y)exists in the table, and copying the subgoal into the table if not. Assuming the evaluation startsfrom a system with an empty table, the subgoal path(1,Y) is new to the evaluation, so a generatorchoice point and a completion stack frame are created for the subgoal, and the tabletry instructionwill branch to the instruction labeled as L3 after it executes. In instruction L5 the subgoal path(1,Y)44

L1 : tabletry 2 L3 TR %L2 : tabletrust 2 L10 %L3 : getpvar v1 r2 % path(X,Y) :-L4 : putpvar v2 r2 % path(X,ZL5 : call 3 path/2 %),L6 : putpval v2 r1 % edge(Z,L7 : putpval v1 r2 % YL8 : call 3 edge/2 %)L9 : new answer 2 v3 % .L10: call 2 edge/2 % path(X,Y) :- edge(X,Y)L11: new answer 2 v3 % .Figure 33: SLG-WAM Code for Left Recursive path/2.is called again: a tabletry instruction is executed a second time, but the subgoal path(1,Y) is nowlocated in the table. Stacks are frozen and a consumer choice point is created, whose substitutionfactor which will serve as the template for bindings in the �xpoint computation. This second executionof the tabletry instruction also sets up pointers to backtrack through any existing answers in the table.There currently are none, so the evaluation suspends by failing. At this point the necessary structuresto evaluate the �xpoint have been constructed.The suspension and failure described in the previous paragraph causes backtracking to the genera-tor choice point of path(1,Y) and subsequent execution of the tabletrust instruction. This instructionplaces a completion instruction in the failure continuation cell of the generator choice point and thenbranches to the instruction labeled L10. The second clause calls edge(1,Y), whose instructions do notdi�er from those of the WAM. edge(1,2) succeeds, causing the new answer instruction to be invoked.Recall from Section 3.4.3 that the second operand of new answer is the GCP pointer, through whichthe subgoal frame of p(1,Y) can be accessed. The new answer instruction checks for the existence ofthe binding fY 2g as an answer for the subgoal, path(1,Y). Since the binding does not exist in thetable, the answer is inserted (as with subgoals, this check/insert operation is done in a single pass).At this point the �xpoint computation contains its seed.By returning the answer to the generator node in the query, the evaluation hits the fail predicate.Because the edge/2 predicate is a chain, backtracking is not possible for the goal edge(1,Y), and theengine fails to the completion instruction in the generator choice point. This instruction performs the�xpoint check operation which determines that a consumer subgoal of p(1,Y) has not consumed allanswers. The B register is set to the consumer choice point for p(1,Y) (whose Breg Chain cell isset to point to the generator choice point | see Figure 18) and through schedule resumes the enginefails. Failure invokes the answer return instruction which returns the answer p(1,2) to the consumerand proceeds. The subgoal edge(2,Y) is then called, succeeds, the answer p(1,3) is derived, andthe binding fY 3g is added to the answer table of p(1,Y) and returned to the generator. Onceagain the predicate fail is encountered, and again the answer return instruction is executed, thistime returning p(1,3). The engine stays in this loop throughout the transitive closure, executinganswer return instructions, calling edge/2, adding the new answers through new answer, and failing.When the transitive closure is exhausted, the engine �nally fails out of the consumer choice point andinto the completion instruction for path(1,Y). The completion instruction determines that path(1,Y)is the leader of its SCC, and that all its answers have been returned to all its consumers. path(1,Y)can therefore be completed, and the evaluation ends. Table 8 contains a dynamic count of SLG-WAMinstructions for the �xpoint loop of the query path(1,Y),fail over a chain of 1024 elements, along45

with an estimate for the number of SPARC instructions needed for each SLG-WAM instruction.14Instructions Other Dynamic Percent SPARC Percentof path/2 instructions execution count instructionsanswer return 1023 10% 259 34%putpval 2046 20% 14 5%call 1024 10% 34 5.5%switchonbound 1024 10% 65 9.4%getnumcon 1024 10% 15 (bb) 3.1%getnumcon 1024 10% 43 (bf) 6.7%proceed 1024 10% 3 1.7%new answer 1023 10% 253 32.9%fail 1024 10% 4 1.8%Table 8: Instruction Counts for Left-Recursive Transitive Closure in SLGSeveral points can be made about this evaluation. First, the substitution factoring of Section 3.2allows execution of the �xpoint of path/2 to be equivalent to execution of the �xpoint forpath(Y) :- path(X), edge(X,Y).A second point is that the same local environment is reused throughout the �xpoint, and so is theconsumer choice point, so that transitive closure is a tight, failure driven loop. Optimizations could,however, be made to specialize the answer return instruction, which must copy bindings out of thetable and the new answer instruction, which must copy bindings into the table. These instructionsnecessarily have an interpretive
avor, and could be made more e�cient by using information aboutmodes or types.Memory usage of the query can be accounted for as follows. The original query ?- p(1,Y) requiresa local environment with two permanent variables. Each local environment for a tabled subgoalrequires a three word overhead (a pointer to the parent of the environment, a pointer to the CPregister, and a pointer to the generator choice point) for a total of 20 bytes. A three-word trail frameis needed, a 24 byte completion stack frame, along with a generator choice point of 72 bytes includingargument cells and substitution factor, and a consumer choice point of 64 bytes, for a total of 192bytes. 92 bytes are needed for the subgoal trie (including a 32 byte subgoal frame), while 28 bytes areneeded per answer: 20 to store the binding fY ng, and 8 for the answer list cell for each node.
14The SPARC instruction count factors out operations which are not usually done in each instruction, such as memorymanagement, and hash table recon�guration for answers, although the counts do include overheads for determiningwhether these operations are needed. Assembly code for the count was produced using the -O2 option when compilingthe SLG-WAM: De�nite emulator. 46

