
J. LOGIC PROGRAMMING 1999:19, 20:1{679 1EFFICIENT ACCESS MECHANISMSFOR TABLED LOGIC PROGRAMS
I.V. RAMAKRISHNAN, PRASAD RAO,KONSTANTINOS SAGONAS, TERRANCE SWIFT,DAVID S. WARREN. The use of tabling in logic programming allows bottom-up evaluation to beincorporated in a top-down framework, combining advantages of both. Atthe engine level, tabling also introduces issues not present in pure top-downevaluation, due to the need for subgoals and answers to access tables duringresolution. This article describes the design, implementation, and experi-mental evaluation of data structures and algorithms for high-performancetable access. Our approach uses tries as the basis for tables. Tries, a vari-ant of discrimination nets, provide complete discrimination for terms, andpermit a lookup and possible insertion to be performed in a single passthrough a term. In addition, a novel technique of substitution factoring isproposed. When substitution factoring is used, the access cost for answersis proportional to the size of the answer substitution, rather than to the sizeof the answer itself. Answer tries can be implemented both as interpretedstructures and as compiled WAM-like code. When they are compiled, thespeed of computing substitutions through answer tries is competitive withthe speed of unit facts compiled or asserted as WAM code. Because answertries can also be created an order of magnitude more quickly than assertedcode, they form a promising alternative for representing certain types ofdynamic code, even in Prolog systems without tabling. /Address correspondence to I.V. Ramakrishnan, D.S. Warren, Dept. of Computer Science,State University of New York at Stony Brook, Stony Brook, NY 11794-4400, U.S.A., e-mail: fram,warreng@cs.sunysb.edu; P. Rao, Bellcore, 445 South Street, Morristown, NJ07960-6438, U.S.A., e-mail: prasadr@bellcore.com; K. Sagonas, Dept. of Computer Science,Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001, Heverlee, Belgium, email:kostis@cs.kuleuven.ac.be; T. Swift, Dept. of Computer Science, University of Maryland at CollegePark, A.V. Williams Building, College Park, MD 20742, U.S.A., email: tswift@cs.umd.edu.THE JOURNAL OF LOGIC PROGRAMMINGc
 Elsevier Science Inc., 1999655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

21. INTRODUCTIONBottom-up evaluation of logic programs o�ers well-known advantages over top-down: programs terminate if they have the �nite term-depth property (as de�nedin [17]); redundant subcomputations are eliminated; and non-strati�ed programscan be evaluated according to the well-founded semantics without the possibly expo-nential number of negative contexts (see [3]). Of course direct bottom-up evaluationis unacceptable for general query evaluation, since it evaluates all possible queries toa program. As a result, a persistent theme of logic programming research has beento investigate how to combine the advantages of bottom-up evaluation with thegoal-orientation of top-down techniques. This e�ort has led to many systems basedon magic evaluation and related strategies (see [12] for a survey of such research).The high speed of top-down engines, though, has sometimes been neglectedin the literature. At least for loop-free, strati�ed programs with few redundantsubcomputations, top-down engines, such as those based on the WAM [20], canbe substantially faster than bottom-up engines. Thus, rather than adding goal-orientation to a bottom-up engine, a natural approach to evaluating in-memoryqueries is to add bottom-up capabilities, or tabling, to a Prolog engine. The XSBsystem [14] follows this latter approach. The goal of XSB is to evaluate tabledpredicates (using SLG resolution [3]) in approximately the same time as non-tabledpredicates (using SLDNF). Based on our experience, it appears that the greateste�ciency gains under present technology can be made at the level of engine design.This article reports on engine enhancements for tabling that yield substantial per-formance improvements. Speci�cally, we present results of experiments for reducingthe time for an engine to access tabled information and more generally to accessdynamically created facts.Consider table access operations for de�nite programs:Call Check/Insert When a tabled subgoal is called, a check must be made to seewhether the subgoal is redundant or not. In the current version of the XSBsystem, this amounts to a variant check of whether the new subgoal is avariant of one that already exists in the table. If it is, the subgoal is termeda consumer and answer clauses are resolved against it. If not, the subgoal istermed a generator, entered into the table, and program clause resolution isused instead. We associate with each tabled subgoal a set of answers whichare stored in the answer table associated with the subgoal.Answer Check/Insert When an answer is derived for a particular subgoal, a checkis made to determine whether it has already been entered into the answertable for the subgoal. If it has, the derivation path fails, a vital step forensuring termination. If not, the computation continues, and the answer isscheduled for return to the applicable consumer subgoals.Answer Backtracking When a consumer subgoal is created, it backtracks throughanswers in the table in the course of its evaluation.Observe that naive table lookups and inserts of calls and answers can result inrepeatedly rescanning terms and thereby may degrade performance considerably.For in-memory computations, the goal of Prolog speed for tabled programs is onlyachievable if the above three operations are performed with very little overhead.Speci�cally, in the case of the call check/insert step, a call to a tabled predicate

3must take nearly the same time as a call to a non-tabled predicate. Similarly, thetime of answer check/insert should be small relative to the time required to derivean answer, since this operation occurs for each solution to a tabled predicate. And�nally, backtracking through answer clauses must take roughly the same time asbacktracking through unit program clauses. Needless to add, engine modi�cationsto enable e�cient storage and retrieval of subgoals and answers in tables cannotcompromise the performance of the system for any class of problems.While compile-time approaches can partially alleviate these problems | for in-stance, such approaches can indicate which predicates should be tabled and whichshould not | their ultimate solution must be dynamic. We may thus speak of theTable Access Problem as one of designing e�cient algorithms and data structuresfor accessing tabled data at the level of an evaluation engine. This problem isaddressed in this article.Our results regarding the Table Access Problem are as follows: First, we devise atrie-based method for storing subgoals and their answers in tables. Tries eliminaterepeated rescanning of tabled terms during lookups and inserts. Second, using triesin conjunction with substitution factoring, a technique developed in this article,further reduces the overheads of answer lookup and insert operations. Third, wedevise a technique for dynamically compiling tries, leading to the ability to back-track through answer clauses at speeds comparable to compiled WAM code. As a�nal result, we demonstrate the generality of these techniques by applying themto asserted facts and exhibiting signi�cant speedups over existing methods. Trie-based tabling, substitution factoring and compiled tries have been present in theXSB system since Version 1.4.2, and the option of tries for asserted facts has beenpresent since Version 1.7. XSB has been installed in about a thousand sites foreducational, research and commercial use, and runs under a variety of platforms.The rest of this article is organized as follows: The next section describes trie-based methods for storing subgoal and answer tables. In Section 3 we present theconcept of substitution factoring. Implementation aspects of trie-driven tabling arediscussed in Section 4. The technique of dynamically compiling tries is describedin Section 5. In Section 6 we present performance results which provide strongevidence that our techniques can indeed allow tabled logic programs to achievespeeds comparable to Prolog programs. We conclude with a discussion of therelevance of this work to in-memory query optimization techniques. We assumeknowledge of the WAM [20].2. TABLING TRIESWe assume the standard de�nitions of terms and the notions of substitution andsubsumption of terms. A position in a term is either the empty string � that reachesthe root of the term, or p:i, where p is a position and i is an integer, that reachesthe ith child of the term reached by p. The symbol t (possibly subscripted) denotesterms; f; g denote function symbols; and all capital letters (possibly subscripted)denote variables. We use the terms call and subgoal interchangeably, as well as theterms answer and return.The trie data structure was originally invented to index dictionaries [7] and hassince been generalized (as discrimination nets) to index terms (see [2] for use of triesin indexing logic programs and [1, 6, 8, 10, 15, 19] for automated theorem proving

4and term rewriting). We will use a variant of the discrimination net in [1] as thedata structure for tabling calls and their answers. We refer to it as the tabling trie.The essential idea underlying a tabling trie is to partition a set T of terms basedupon their structure so that looking up and inserting these terms will be e�cientlydone. The tabling trie is a tree-structured automaton whose root represents astart state, and whose leaves each corresponds to a term in T . Each internal statespeci�es a position to be inspected in the input term when reaching that state.The outgoing transitions specify the function symbols expected at that position.A transition is taken if the symbol in the input term at that position matches thesymbol on the transition. On reaching a leaf state we say that the input termmatches the term associated with the leaf state. The root-to-leaf path taken toreach the leaf state corresponds to a left-to-right preorder traversal of the matchingterm. When no outgoing transition from a state can be taken, a lookup operationfails. On the other hand, for an insert operation we add an outgoing transition forthe symbol and a new destination state for this transition. The position that willbe associated with the new state is the next position in the preorder traversal ofthe input term. We illustrate the operations on a tabling trie using the example inFigure 2.1.
rt(a,f(a,b),a).rt(a,f(a,X),Y).rt(b,V,d).

a b

d

1

2 2

3

s

1s

s

s

2 9

10

b

a

3 3

2.2

2.1

a

s

s

s

s s

s

3

4

5

6 8

7

f/2

11s

1ν

2ν

1ν

(a) (b)FIGURE 2.1. (b) is a trie for the terms in (a).To look up the term rt(a,f(a,b),a) we begin at state s1. Since position 1 inthe input term is a, we make a transition to state s2. In this state we inspect thenext preorder position of the input (position 2) and make a transition to state s3.Transition from this state on seeing a (in position 2.1) leads to the state s4. Con-tinuing thus we �nally reach the leaf state s6 and declare a match. To insert theterm rt(a,g(b,c),c) we again start at state s1 and make a transition to state s2.Since there is no outgoing transition labeled g/1 we create a new transition for g/1and a new destination state for this transition. In this new state we will inspectposition 2:1 which is next in preorder traversal of the input term. Continuing inthis fashion we will create three more new states (s13; s14, and s15) yielding the trie

5shown in Figure 2.2.
a b

f/2 g/2

b d

c

c

b

a

1

2 2

3

3 3 3

2.2

2.1 2.1

2.2

a

s

s

1s

s

s

ss

s

s

s

s s

s s

s

2

3

4

5

6 8

7

9

10

11

12

13

14

15

1ν

2ν

1ν

FIGURE 2.2. The trie of Figure 2.1 after the addition of the term rt(a,g(b,c),c).Our point of departure from the trie formalism described in [1] is in our treatmentof variables. Recall that our lookup/insert operations perform a variant check,i.e., two terms match if they are identical up to variable renaming. Performing avariant check for calls and answers, has advantages for a tabling system. A detaileddiscussion of the various issues involved can be found in [3], but we mention thetwo main advantages here. First, tabling based on variance can support Prolog-style meta-programming using builtin predicates such as var/1, and second, variantchecks can be implemented very e�ciently, as shown below.To realize variant checks in our tabling trie we standardize the representationof a term to treat each variable as a distinct constant. Formally this can bedone through a bijection, numbervart from the set of variables in t, denoted byvars(t), to the sequence of constants h�1; �2; : : : ; �ni such that numbervart(V) <numbervart(W) if V is encountered beforeW in the left-to-right preorder traversalof t. For example in the term f(g(Y; Z); X; Z), numbervart(X), numbervart(Y)and numbervart(Z) are �3; �1 and �2 respectively. Let numbervar(t) denote theterm t�, where �(V) = numbervart(V) for every variable V in vars(t). Thus,numbervar(f(g(Y; Z); X; Z)) is f(g(�1; �2); �3; �2). Consequently, two terms arevariants of each other if and only if numbervar(t1) = numbervar(t2).Converting a term to standard form can be done concurrently with the processof lookup and insertion (Implementation details are in Section 4). As an exampleof this process, consider the addition of the term rt(a,f(b,X),X) to the trie ofFigure 2.2. Starting at state s1 we make matching transitions till state s4. Thenext position in the preorder traversal of the input term contains a variable whosestandardization is �1 and matches the label of the outgoing transition to state s7.At this state there is no outgoing transition for a variable whose standardizationis �1 (the only transition is labeled with �2), so a new transition labeled with �1 iscreated together with a new destination state, s16, for this transition yielding thetrie shown in Figure 2.3.

6
a b

f/2 g/2

d

1

2 2

3

s

1s

s

s

s

2 9

10

11

1ν

b

a

2.2

2.1s

s

3

4

1ν

3

a

s

s

5

6

3s 7

b

c

c

3

2.1

2.2s

s

s

s

12

13

14

15s 8 s 16

2ν 1νFIGURE 2.3. The trie of Figure 2.2 after the addition of the term rt(a,f(b,X),X).From these examples and the description above it is easy to see that:Proposition 2.1. For the subgoal and answer check/insert steps, each element ofthe input term is examined only once.In summary, we claim that trie-based tabling has two major advantages over hash-based tabling.1. Complete discrimination. Tries completely discriminate between terms nomatter where in a term the discriminating element lies. In contrast, if hash-ing is based on a limited pre�x of the term, it will su�er when the discrim-inating element is deeply nested.2. Single pass check/insert. For the subgoal and answer check/insert, a singletraversal of the term is necessary, regardless of whether the term needs to becopied into the table. In hash-based tabling lookup alone may require mul-tiple passes over the term due to hash collisions. Furthermore, insertion willrequire a separate pass. Given the prevalence of these operations in a tablingsystem, the savings in time over a two-pass operation can be substantial.The above claims are substantiated in the performance results presented in Sec-tion 6, where it is also shown that use of the trie-based approach can save spaceover hash-based methods. The approach just described provides a useful optim-ization for lookup and insert operations in the call and answer tables. However,because it treats the two tables as independent entities, it does not exploit sharingof bindings between a speci�c call and its answers. This sharing can be exploitedby substitution factoring described in the following section.3. SUBSTITUTION FACTORINGAs mentioned in the introduction, we associate an answer table with every subgoalin the subgoal table. Given a subgoal G, any answer A for the subgoal is subsumed

7by G, and can be represented as G�A. We call �A an answer substitution for G.Note that the sum of the sizes of terms in �A is less than the size of G�A. Thecore idea of substitution factoring is to store only the answer substitutions, and tocreate a mechanism of returning answers to consuming subgoals that takes timelinear in the size of �A rather than the size of G�A. In other words, substitutionfactoring ensures that answer tables contain no information that also exists in theirassociated subgoal table. Operationally this means that the non-variable symbolsin the subgoal need not be examined again during either answer check/insert oranswer backtracking.Let G denote a subgoal and fV1; V2; : : : ; Vmg denote the set of variables in Gsuch that numbervar(Vi) = �i. An answer substitution �A for G is of the formfV1 t1; V2 t2; : : : ; Vm tmg. We call the sequence ht1; t2; : : : ; tmi theanswer tuple corresponding to the answer substitution �A. Observe that we canreconstruct the answers given the subgoal, the variable sequence hV1; V2; : : : ; Vmiand the answer tuples. Hence if we store the variable sequence with the subgoal,then we need only store the answer tuples in the answer table. Because the variablesequence is determined when a subgoal G is standardized for insertion into thesubgoal table, the storage requirement for an answer G�A depends only on the sizeof �A. If answer tables are implemented as tries then the following proposition willhold:Proposition 3.1. Let G be a subgoal and A be an answer for G. Using substitutionfactoring both answer check/insert and answer backtracking can be performed intime proportional to the size of the answer substitution of A.To illustrate this, consider a subgoal p(f(X,Y),g(X))with an answer p(f(a,b),g(a)). In this case the answer has six symbols, whereas the substitution � has onlytwo symbols. For an access operation on an answer, either check/insert or return,using substitution factoring only two symbols are traversed as opposed to six.In terms of related work, substitution factoring bears a certain resemblance tothe factoring of [9] (hereafter termed NRSU-factoring) in that both reduce thenumber of arguments copied into or out of a table. However, substitution factoringhas di�erent characteristics than NRSU-factoring, mainly because it is a dynamicrather than static technique. Whether a predicate is NRSU-factorable is unde-cidable in general; hence NRSU-factoring is applicable only to certain classes ofDatalog programs. Consequently, substitution factoring may reduce argumentsof predicates that are not reduced by NRSU-factoring. Furthermore, contrary toNRSU-factoring, substitution factoring is applicable to and can be very e�ective fornon-Datalog programs. On the other hand, [9] introduces additional optimizationsbased on the factored program which are not performed by substitution factoring.These optimizations can transform certain right and double recursions into leftrecursions, an important transformation not performed by substitution factoring.4. IMPLEMENTATION ASPECTS OF TABLING TRIESTabling tries are implemented by representing each state by a node, and transitionsby pointers to nodes. The structures of subgoal and answer trie nodes are shownin Figure 4.1 and are explained throughout this section.The label on a transition is placed in the symbol �eld of the node representingthe destination state. The outgoing transitions from a node are traced using its �rst

8
Sibling

Symbol

Symbol

First Child

First Child (or Next Leaf)

Sibling

Parent

FIGURE 4.1. Data Structures of Subgoal and Answer Trie Nodes.child pointer and by following the list of sibling pointers of this child. Recall that inorder to lookup or insert a term into a tabling trie, the term is traversed in preorder.If the symbol inspected in this traversal is the label of an outgoing transition fromthe current state, that transition is taken. Otherwise, a new destination state iscreated, and the transition to this state is taken. In the current implementationof tries in XSB, the matching outgoing transition is found using sequential searchwhenever the number of outgoing transitions from this state is small, otherwisehashing is used. Note that in this case hashing is always on a single symbol so thatit is easy to achieve good discrimination. Hash collisions are reduced by dynamicallyexpanding the hash tables.Recall that terms inserted in the trie are standardized. This standardizationprocess is performed while a term is inserted in the trie. The variables in the termare replaced by their numbervar values, by binding the dereferenced variable cell toa unique number, and tagging the cell with a type tag that is not otherwise used bythe SLG-WAM. Using this single binding, non-linearity (i.e., repeated occurrencesof the same variable) is handled without the need to check whether a variable hasbeen previously encountered. The bindings are undone as soon as the insertion ofthe term in the trie is complete. In this manner, the numbervar bijection can beperformed in a single pass of the input term.4.1. Implementation of Substitution FactoringIn order to explain the implementation of substitution factoring, we brie
y considerthe creation of SLG-WAM choice points for calls to a tabled predicate; full detailscan be found in [13]. As does the WAM, the SLG-WAM creates a choice point bycopying the program registers at the time of the call, including registers containingeach argument of the subgoal (argument registers). If the subgoal is new to theevaluation, a generator choice point (Figure 4.2(a)) is created which will backtrackthrough program clauses. However, together with the arguments A1; : : : ; An of thetabled subgoal, a generator choice point also contains a substitution factor consist-ing of dereferenced pointers to unbound variables V1; : : : ; Vm of the subgoal (seeFigure 4.2(a)). These pointers are obtained during the call check/insert operation;after this operation is completed other choice point cells are placed above the sub-stitution factor. If the subgoal has already been encountered during the evaluation,answer resolution will be used instead of program clause resolution. In this case, aconsumer choice point (Figure 4.2(b)) is created, which serves as an environment

9into which answers can be returned by means of an answer-return operation. Likethe generator choice points, these consumer choice points contain a substitutionfactor. However because they are not used for program clause resolution, consumerchoice points have no need for argument registers.FailCont...EFreg 9>=>; Rest ofGeneratorChoice PointAn...A1 9>=>; ArgumentRegisters" mVm...V1 9>>=>>; SubstitutionFactor
FailContEBregHreg...Breg ChainLastAnswerPrevCCP

9>>>>>>>>=>>>>>>>>; Rest ofConsumerChoice Point" mVm...V1 9>>=>>; SubstitutionFactor(a) Generator Choice Point (b) Consumer Choice PointFIGURE 4.2. Elements of the Choice Point Stack with Substitution Factoring.The referents of the substitution factor reside either in the local or global stack.Bindings to these referents are trailed through forward execution, whether theyare caused by program clause resolution (for a generator choice point) or answerclause resolution (for a consumer choice point). The values in the substitutionfactor variables are untrailed through backtracking just as argument cells would bein WAM execution. Trailing and untrailing in the SLG-WAM is beyond the scopeof this paper and is explained in detail in [13]. When a new answer to a tabledsubgoal is detected, the dereferenced values of the cells of the substitution factorfrom the generator choice point are copied directly into the table. Later, they willbe loaded directly into the consumer choice points to return the answers. Figure 4.3shows an example of a tabling trie incorporating substitution factoring for answersto the subgoal p(f(X),g(Y)).4.2. Returning Answers to Consumer SubgoalsRecall that in a tabling framework answers need to be returned to applicable con-sumer subgoals. Answer tries of subgoals for which new answers may be derived aretermed incomplete (see [13]). Since answer insert and answer return operations canbe interleaved, and new answers can be inserted anywhere in the trie, it is not pos-sible to perform the answer-return operation by sequentially backtracking throughsuch a trie starting from its root. Therefore, an explicit list of answers (uniquelyidenti�ed by leaf nodes of the answer trie), has to be maintained. Alternatively, thelist can be implemented by having the �rst child �eld of leaf answer nodes point tothe next answer (as shown in Figure 4.3). The order of this list re
ects the creationtimes of its members. For example, in Figure 4.3 the answers are created in theorder fX = b; Y = bg, fX = a; Y = ag, fX = a; Y = bg, and fX = b; Y = ag. Answers

10
Subgoals:p(X,X)p(f(X),a)p(f(X),g(Y))p(f(X),g(X))Answer substitutionsfor p(f(X),g(Y)):X = a, Y = aX = a, Y = bX = b, Y = aX = b, Y = b

V1

V1 V1

V2 V1

b

p(f(X),g(Y))

f/1

Subgoal trie for p/2

a g/1

a

a

b

a b

Answer list

Answer trie for

p/2

FIGURE 4.3. Substitution factoring illustrated for the subgoal p(f(X),g(Y)).are returned for incomplete answer tries by traversing this list, and, with the helpof two stacks, a term stack and a uni�cation stack, constructing the answers by aleaf-to-root traversal. To e�ciently perform this latter traversal, every node of theanswer trie maintains a back pointer to its parent node (denoted as parent pointerin Figure 4.1). The answer return operation starts by pushing the substitutionfactor variables (in reversed order) into the uni�cation stack. Then starting fromthe leaf node and following the parent pointers, the symbols in the branch from theleaf to the root are pushed into the term stack. On reaching the root of the answertrie, the substitution factor variables in the uni�cation stack are uni�ed with theterms constructed on the term stack.Note, however, that answers can be returned from a completed answer trie bysequentially backtracking from its root. Indeed, the WAM is a highly optimizedengine for performing backtracking. To exploit this power of the WAM, we dynam-ically compile answer tries into WAM code as presented in the next section. Theidea of compiling dynamically created terms has been around for quite some timein logic programming languages; for example it is used in some implementations ofProlog's assert/1. Recently, this idea has also been used in the context of generaltheorem proving to e�ciently perform forward subsumption (i.e. pattern matching)of terms that are dynamically created [19].5. DYNAMIC COMPILATION OF TRIESWe describe how answer tries are dynamically compiled into WAM-like instructions,called trie instructions. We refer to the tries that consist of these instructions as

11compiled tries, and to those described in Section 4.2 as interpreted tries 1.To motivate the new WAM instructions, we �rst show how an answer trie can berepresented as regular Prolog clauses. We then consider how WAM-style instruc-tions might implement those clauses, and �nally we create \mega"-instructionsthat constitute a space-e�cient representation of answer tries. We use the follow-ing example throughout the development. Assuming that substitution factoring isemployed, consider the answer trie of a subgoal that contains three variables shownin Figure 5.1.
a b

f/2 g/2

b d

c

c

b

a

1

2 2

3

3 3 3

2.2

2.1 2.1

b

V

2.2

a

V

s

s

1s

s

s

ss

s

s

s

s s

s s

s

2

3

4

5

6 8

7

9

10

11

12

13

14

15

1

1

FIGURE 5.1. An Answer Trie.The four answers in this trie could be represented by the Prolog facts of Fig-ure 5.2(a).2Alternatively these facts could be pre�x-factored into a full-trie [4] rep-resented as a set of Prolog clauses shown in Figure 5.2(b). Note that each clause inFigure 5.2(b) corresponds to a single edge in the answer trie of Figure 5.1, and thatthe order of the clauses re
ects a breadth-�rst, left-to-right traversal of the edgesof the trie.We assume the existence of an array of registers and base the following discussionon two premises of Section 4. First, we assume that backtracking is only performedon completed tables, so that no answers will be added to a trie through whichwe are backtracking. Also, we assume that substitution factoring is performed.Operationally this means that when answer resolution is to be used for a subgoalwith n distinct variables, the �rst n registers have been initialized to hold thesevariables. This initialization can be easily performed while traversing the subgoalin the subgoal trie.Figure 5.3 shows WAM-like code segments for the �rst three clauses of Fig-ure 5.2(b). The code for the �rst two clauses starts with a choice-point instruction,1The instructions presented in this section are slightly more general than needed for answer triesunder variant tabling, and can be used to implement an alternative to assert/1 (See Section 6.5).2For simplicity of presentation we consider linear answers �rst, and describe later on hownon-linearity is handled.

12
rt(a,f(a,b),a).rt(a,f(a,V),b).rt(a,g(b,c),c).rt(b,V,d).

rt(a,X2,X3) :- rt a(X2,X3).rt(b,X2,X3) :- rt b(X2,X3).rt a(f(X1:1,X1:2),X2) :- rt af(X1:1,X1:2,X2).rt a(g(X1:1,X1:2),X2) :- rt ag(X1:1,X1:2,X2).rt b(V,X2) :- rt bV(X2).rt af(a,X2,X3) :- rt afa(X2,X3).rt ag(b,X2,X3) :- rt agb(Y,X3).rt bV(d).rt afa(b,X2) :- rt afab(X2).rt afa(V,X2) :- rt afaV(X2).rt agb(c,X2) :- rt agbc(X2).rt afab(a).rt afaV(b).rt agbc(c).(a) As facts. (b) As \pre�x-factored" clauses into a full-trie.FIGURE 5.2. Two possible representations of the answer trie of Figure 5.1.here a try me else or a trust me else instruction. The second instruction is a get typeinstruction. The shift left instruction is not contained in the WAM. Its function isto shift all the registers to the left by some number of positions (here one). Thisfunction is needed to set up the arguments for the �nal instruction, the execute,which branches to the next clause. Now consider the code for the �rst clause ofrt a/2, whose �rst argument is a structure. Here again the �rst instruction is achoice-point instruction, and the second instruction is a get structure instruction.Now however, the get structure is followed by a shift right instruction which shiftsthe registers right to make room for the arguments of the structure symbol; (therequired number of positions is always one less than the arity of the structure sym-bol). The shift right instruction is followed by an argument-construction instruction,unify variable for each argument. Finally, there is again an execute instruction tobranch to the next clause.rt1: try me else rt2get constant a, A1shift left 1execute rt a/2 rt2: trust me else failget constant b, A1shift left 1execute rt b/2 rt a1: try me else rt a2get structure f/2, A1shift right 1unify variable V1unify variable V2execute rt af/3FIGURE 5.3. Possible WAM-like code segments for the �rst 3 clauses of Figure 5.2(b).Code segments like the ones in Figure 5.3 will construct the answer one-at-a-time on the stack through backtracking. For e�cient implementation we coalescethese sequences of instructions into a single WAM-like instruction termed a trie

13instruction. The main reason for this coalescing is to reduce the space needed forthe representation of these instructions in trie nodes (only one extra �eld needs tobe added to the format of the answer trie nodes of Figure 4.1); this action howeveralso has a small time performance improvement. Note that there are �ve majorparameters to a code segment:1. the choice alternative;2. the get type alternative; 33. the constant, structure symbol, or variable to match (Symbol);44. the address of the next code segment down the trie (ContLabel); and,5. the address of the alternative to try on failure (FailLabel).So, the general form of the trie instructions is:trie choice type Symbol, ContLabel, FailLabelNote how the three arguments of this instruction naturally correspond to the three�elds (Symbol, First Child, and Sibling) of the answer trie nodes of Figure 4.1.Since each of the trie instructions may appear as the �rst, an intermediate, thelast, or the only instruction in a sequence of alternatives, we denote the choicepossibilities as try, retry, trust, and do respectively. As for types, constants, struc-tures, lists as well as uninstantiated (�rst occurrence) and instantiated (consequentoccurrences of) variables should be handled. Figure 5.4 presents the set of the trieinstructions thus created. In the special case of answer tries whose subgoals have noUnique F irst Intermediate LastConstant trie do constant trie try constant trie retry constant trie trust constantStructure trie do structure trie try structure trie retry structure trie trust structureList trie do list trie try list trie retry list trie trust listV ariable trie do variable trie try variable trie retry variable trie trust variableV ariable trie do value trie try value trie retry value trie trust valueFIGURE 5.4. Trie instructions for all possible choice and type combinations.variables, another trie instruction needs to be introduced, named trie proceed whichhas exactly the functionality of the WAM's proceed, namely setting the programregister to the continuation register. The functionality of a proceed is also neededafter the leaf of a trie is reached.As a concrete example of how the trie instructions are used, Figure 5.5 shows theWAM code generated for the clauses of Figure 5.2(b), and, as a consequence, forthe answer trie of Figure 5.1. Since no choice points are laid down for the trie do ?instructions, their FailLabel �elds are not used. Notice the correspondence betweenthe labels of the instructions in Figure 5.5 and the names of the atoms in the3If the instructions are intended to support tabling in which a variant-check is used for subgoals,get-style instructions can be replaced by build-style instructions.4Note that the argument register involved in the get type instructions is always register 1 (A1).

14rt1: trie try constant a, rt a1, rt2rt2: trie trust constant b, rt b, failrt a1: trie try structure f/2, rt af , rt a2rt a2: trie trust structure g/2, rt ag, failrt b: trie do variable V, rt bVrt af : trie do constant a, rt afa1rt ag: trie do constant b, rt agbrt bV : trie do constant d, proceedrt afa1: trie try constant b, rt afab, rt afa2rt afa2: trie trust variable V, rt afaV , failrt agb: trie do constant c, rt agbcrt afab: trie do constant a, proceedrt afaV : trie do constant b, proceedrt agbc: trie do constant c, proceedFIGURE 5.5. WAM code for the clauses of Figure 5.2(b).clauses of Figure 5.1. For facts, the trie instruction has a ContLabel of proceed toindicate that the �nal operation of the trie instruction should be that of a proceedWAM instruction rather than that of an execute. A slight optimization is to createspecialized versions of trie instructions that encode the last operation as that of aproceed. Such instructions would be needed only for constants and variables.The actions of the trie instructions are easily understandable if one thinks ofthem as macros that de�ne WAM code segments like those of Figure 5.3. Forexample, the three code segments of Figure 5.3 present the operations performed(for some values of the parameters) by the trie try constant, trie trust constant, andtrie try structure instructions, respectively. We note that the shift left and shift rightoperations could be implemented e�ciently in an engine that stores the registersas an array, simply by modifying the base of that array. Alternatively, a separatearray of pseudo-registers could be used for the trie instructions only, which wouldallow it to perform e�ciently as a register stack. The latter is the implementationscheme chosen by XSB. Non-linearity is handled by adding another array to theWAM, called the var-array. The trie ? variable instructions initialize the indicatedvar-array entry on the heap, setting the top element of the register stack to pointto it. The trie ? value instructions then unify the top register of the register stackwith the indicated var-array variable.The trie instructions presented are used in XSB not only for answer tries but forasserted facts. If trie instructions were used only for tabling with variant-checks forsubgoals, substitution factoring would allow all uses of the get type subinstructionsto directly bind their values, i.e. to run in write mode, rather than to performuni�cation. We also note that indexing is needed for the answer check/insert stepas well as for asserted code. Accordingly, the set of trie instructions describedin this section has been extended with two more hashing instructions to performthis indexing. While useful for not slowing down the answer check/insert step, thehashes do not provide any extra e�ciency in answer backtracking once a subgoalis completed. Both the use of indexing and the provision of uni�cation in get typesubinstructions slightly complicate the dynamic compilation, and impose a smallperformance overhead which would be avoidable if answer tries and asserted facts

15did not use the same compilation mechanisms.We end this section by stating a useful property of compiled tries. This propertyis based on the observation that all common pre�xes of the terms in a trie areshared during execution of trie instructions.Property 5.1. When backtracking through the terms of a trie that is representedusing the trie instructions, each edge of the trie is traversed only once.6. PERFORMANCE RESULTSSeveral optimization methods have been presented so far: the use of tries, of substi-tution factoring, and of dynamically compiling tabled terms into WAM-like code.We �rst discuss the performance on tabled evaluations of each of these optimiza-tions, and then the advantages of using trie-like code in creating facts dynamicallythrough a mechanism similar to Prolog's assert/1 5.6.1. Trie-based vs. Hash-based Table Structures in XSBWe �rst compare alternative tabling methods as they have been implemented inXSB. A hash-based method of XSB Version 1.4.0, and two di�erent trie-basedmethods. The �rst trie-based method does not compile tries into instructions andwas used in Version 1.4.0; the second method compiles tries, and is found in Versions1.4.2 and later. Hash-based table structures have a simple form. Each tabledpredicate has its own subgoal hash table. For the subgoal check/insert step, thesubgoal is hashed and compared against any other subgoal in the hash bucket, usinga variant-check. If the subgoal is not present, it is entered into the chain of theproper hash bucket. Each subgoal has its own answer hash table which resemblesthe subgoal hash tables in its essential details, and also requires a variant-check inthe case of hash collisions. Subgoals are hashed on the outer functor symbol of their�rst argument, while answers are hashed on the combination of the outer functorsymbols of all their arguments. Note that this latter method gives full indexingfor Datalog terms. As a result, hash-based tabling consists of a quick insert, but aslow check if hash collisions occur. On the other hand, trie-based tabling consistsof a relatively slower insert than the hash-based |it must set parent and siblingpointers| but combines the check and insert steps, and thereby may need to copyless information for answers. Substitution factoring has been implemented only inthe trie-based methods, but its e�ect will be isolated in Section 6.2.We begin by comparing the hash-based methods to the interpreted tries. The�rst set of tests use standard left (Figure 6.1(a)), and right (Figure 6.1(b)) recursivetransitive closures. A Datalog binary tree was used as the EDB relation (shownin Figure 6.2(a)). As an additional test, the tree was nested in a unary structure(Figure 6.2(b)). Uni�cation factoring [5] was used to compile the structured EDB.Uni�cation factoring processes the heads of the p/2 clauses into a non-deterministicnet which, in this case, provides perfect indexing. The graph of Figure 6.3 showstimes for 25 iterations of the queries ?- a(1,X) to non-structured EDB and that of5All benchmarks were run on a SparcStation 2 with 64MB of main memory runningSunOS 4.1.3. Sizes of the benchmark programs do not re
ect limitations in any of the systemsevaluated.

16a(X,Y) :- p(X,Y).a(X,Y) :- a(X,Z), p(Z,Y). a(X,Y) :- p(X,Y).a(X,Y) :- p(X,Z), a(Z,Y). a(Y) :- query(X), p(X,Y).a(Y) :- a(X), p(X,Y).(a) (b) (c)FIGURE 6.1. (a) Left, (b) right, and (c) NRSU-factored recursive transitive closures.(a) p(1; 2), p(1; 3); : : : ; p(2n � 1; 2n+1 � 1)(b) p(f(1),f(2)), p(f(1);f(3)); : : : ; p(f(2n � 1);f(2n+1 � 1))FIGURE 6.2. (a) Datalog, and (b) structured binary trees for the programs of Fig-ure 6.1.Figure 6.4 of queries ?- a(f(1),X) to structured EDB. In the graphs, Height refersto the height of the tree, while Trie and Hash indicate the use of trie and hash-basedmethods respectively. Left and Right stand for left and right-recursive de�nitionsof transitive closure. We note that for queries of the form ?- a(bound,free) overcomplete binary trees, the left-recursive de�nition of transitive closure encounters(and generates answers for) only one distinct call, and thus has a better complexitythan the right-recursive one where the number of calls encountered is equal to thesize of the tree.The graphs in Figures 6.3 and 6.4 indicate the power of tries. For the Datalogcases, and especially for left recursion, times for hash and tries are generally similar,with tries having a slight advantage for large data sets where the e�ect of hashcollisions is more noticeable. However, as soon as discriminating information isnested within structures, the times for tries become far more e�cient than those forhashing. This divergence is due to the trie's ability to e�ectively index subgoals andanswers on constants within the symbol f/1 in the structured data, an ability notshared by hash-based tabling. This point is further substantiated in the followingsection.6.2. Measuring the E�ects of Substitution FactoringIn order to isolate the e�ect of substitution factoring, we statically factor a leftrecursive program (shown in Figure 6.1(c)) in a manner similar to NRSU-factoring.Note that given a query ?- a(free), the program of Figure 6.1(c) will performexactly the same subgoal check/insert, answer check/insert and answer backtrack-ing operations as the program in Figure 6.1(a) when substitution factoring is per-formed. Given the same p/2 relation as in the previous section, we would expectthe trie-based engine with substitution factoring to exhibit no speedup, while thehash-based engine to exhibit a speedup due to substitution factoring. As expected,static factoring shows no speedups over dynamic factoring for the trie-based emu-lators in either table below (rows labeled Trie Speedup, Tables 6.1 and 6.2). Forthe hash-based emulators, the e�ects are substantial, especially for the non-Datalogprogram (rows Hash Speedup). The e�ect of substitution factoring causes the timesfor the hash-based emulator to become identical to that of the trie-based emulatorfor Datalog programs (last row of Table 6.1). However, for non-Datalog programsthe trie-based emulator is linear in the size of the binary tree while the hash-based

17

0

5

10

15

20

25

30

3 4 5 6 7 8 9 10
T

im
e

in
 S

ec
on

ds

Height of Datalog Tree

Trie-Left
Hash-Left
Trie-Right

Hash-Right

FIGURE 6.3. Performance Times for Transitive Closures on Datalog Trees.emulator shows a marked quadratic factor (as shown by their comparison in lastrow of Table 6.2). Thus, with substitution factoring, the hash-based emulator iscomparable to the trie-based emulator for the Datalog programs, but the abilityof tries to discriminate information nested within a term is clearly important forstructured data.Height 4 5 6 7 8 9 10Hash Speedup 11% 5% 9% 9% 6% 8% 2%Trie Speedup 0% 0% 0% 0% 0% 0% 0%Hash/Trie Times 1.00 .94 .94 1.01 1.07 1.02 1.10TABLE 6.1. Percent Speedup for Static Argument Reduction on Datalog Programs,and Ratios of Hash-based and Trie-based Emulator Times.Height 4 5 6 7 8 9Hash Speedup 5% 6% 59% 62% 67% 69%Trie Speedup 0% 0% 3% 2% 0% 0%Hash/Trie Times 4.36 7.17 14.7 27.6 54.6 109TABLE 6.2. Percent Speedup for Static Argument Reduction on Structured-ArgumentPrograms, and Ratios of Hash-based and Trie-based Emulator Times.

18

0

20

40

60

80

100

120

3 4 5 6 7 8 9 10
T

im
e

in
 S

ec
on

ds

Height of Structured Tree

Trie-Left
Hash-Left
Trie-Right

Hash-Right

FIGURE 6.4. Performance Times for Transitive Closures on Structured Trees.6.3. Compiled vs. Interpreted TriesThe preceding performance sections compare a hash-based implementation to a trie-based implementation without dynamic compilation. We now compare interpretedtries to compiled tries. Dynamic compilation of tries can be expected to improvethe speed of answer backtracking, but to slow down the answer check/insert oper-ation. (Since backtracking through tabled subgoals is never done in a pure tabledevaluation, the subgoal trie is never dynamically compiled).The E�ects of Dynamic Compilation on Answer Backtracking. The �rst twocolumns of Table 6.3 show times required to backtrack through various sets ofdynamically created terms using an open call (a call containing distinct variables asarguments). Speci�cally, the �rst column presents the time to retrieve answers froma completed table by interpreted tries, and the second column by compiled tries.For comparison, we provide times for asserted code in XSB and Quintus (recallfrom Section 5 that compiled trie code performs uni�cation). XSB dynamicallycompiles asserted code into WAM instructions and for unit clauses the result of thedynamic compilation is nearly identical to a static compilation. Quintus indexesasserted code as compiled, but performs variable bindings for asserted code in aninterpretive manner. (Quintus compiled code is 2-3 times faster than asserted forunit clauses) 6.We may de�ne a common pre�x measure for a set, S, of terms as1� number of transitions in the trie for Ssum of the sizes of the terms in SFor Table 6.3 the common pre�x measure ranges from about 91% (for the structureddata in the second to last row), to no sharing at all (the unary, 10-ary, and 100-aryDatalog terms in rows 1, 4, and 5).As expected, the performance of compiled tries increases with the common pre�xmeasure. In the admittedly extreme case of p(f(...(f(i)))) in the second to last6All times in Table 6.3 represent 100 iterations except for the \Binary Tree" cases whichrepresent 10000 iterations.

19Interpreted Compiled asserted assertedForm and Number of Terms Tries Tries (XSB) (Quintus)p(i) 0 � i � 4K 4.95 3.71 3.71 7.10p(a,i) 0 � i � 4K 6.5 3.76 4.91 7.85p(i,a), p(i,b) 0 � i � 2K 6.63 4.78 4.88 7.84p(i; 2; : : : ; 10) 0 � i � 4K 18.75 18.91 15.44 14.55p(i; 2; : : : ; 100) 0 � i � 200 7.68 8.39 6.41 4.35Binary Tree Level 6 9.67 4.88 7.38 8.58Binary Tree Level 7 24.07 9.07 16.23 19.10p(f(i)) 0 � i � 4K 6.13 3.75 4.31 7.40p(f(i; 2; : : : ; 10)) 0 � i � 4K 14.78 18.93 9.04 9.60p(10z }| {f(: : : f(i) : : :)) 0 � i � 4K 16.08 3.77 16.94 11.64p(10z }| {f(: : : f(i; 2; : : : ; 10) : : :)) 0 � i � 4K 24.85 18.99 21.67 14.12TABLE 6.3. Times for accessing dynamically created terms of various forms.row, compiled tries achieve speed-ups of 4 times over tries without code. However,when the common pre�x measure is low, the performance of compiled tries is slightlyslower than that of interpreted tries, especially for terms that contain structures. Inthe case of p(f(i,2,...,10)) the slowdown is due to the fact that compiled triese�ectively perform the transformation p(f(i,2,...,10)) :- p(i,2,...,10). sothat variables within the f/10 structure lie below the last choice point. Thesevariables must be present as cells within the choice point and must also be trailed.In contrast, the other methods recreate the f/10 structures on the heap. A secondpoint is that for a binary tree, compiled tries will execute about twice the numberof choice point instructions as the other methods. (Compiled tries will execute achoice point instruction for every edge of the tree, while the other methods willexecute an instruction for every leaf of the tree). However this trade-o� of choicepoints for binding generally seems to be bene�cial, according to results in [5] forstatic code.The E�ects of Dynamic Compilation on Answer Check/Insert. Having comparedthe performance of accessing compiled and interpreted answers we next measurethe time required for creating the trie data structures. Clearly creation time is acritical factor since the code generation phase is performed during query evaluation.Tables 6.4 and 6.5 present times for completing tables with and without the codeLength of Chain 1K 2K 4K 8K 16K 32K 64KInterpreted Tries .05 .10 .19 .37 .74 1.50 3.11Compiled Tries .05 .11 .21 .40 .81 1.56 3.18TABLE 6.4. Table creation times with and without compilation (using left recursion).generation phase using the left (Figure 6.1(a)) and right recursive (Figure 6.1(b))transitive closure predicates on Datalog chains. As the times show, the extra code

20generation phase incurs only a minimal overhead (less than 5%) to the table creationprocess. We note that in these benchmarks no answers from completed tables areLength of Chain 128 256 512 768 1K 1.5KInterpreted Tries .13 .62 2.70 6.34 11.25 26.16Compiled Tries .18 .66 2.73 6.36 11.31 27.19TABLE 6.5. Table creation times with and without compilation (using right recursion).ever used; they thus provide an upper-bound of the actual cost of code generation.In cases where the derivation of answers for a table involves resolution with answersfrom other already completed tables, the overhead from code generation is usuallybalanced by the speedup in the time to access these answers.6.4. Analysis of Space RequirementsIn this section we analyze space usage on a practical example. In [11] it was shownthat model checking of concurrent systems can be implemented using XSB's tabling.Furthermore, it was shown that the resulting system is comparable in both timeand space to systems that have been specially designed for model checking.Table 6.6 compares either the number of trie nodes (in trie-based methods) or thesummed term size of calls and answers (in the hash-based methods) using varioustable access methods. In particular, hash-based tables are compared to trie-basedtables, both with and without substitution factoring. The programs analyzed aresieve, which traverses the states for a concurrent system in which a generatorprocess and six tester processes communicate along a linear chain; and leaderwhich veri�es that a leader election algorithm will always choose a unique leader ina two process system. The information in Table 6.6 was obtained in two steps. The�rst step evaluated the queries in order to construct completed tables for leaderand sieve. The space requirements of each con�guration of table access methodswas then determined by XSB programs that analyzed the completed tables. Wenote that the sizes of these examples are limited by the analysis programs, ratherthan by the underlying engine.Table Access Method sieve leaderNumber of Calls 1 2022Number of Returns 3089 3083Size of Calls (hashing) 4 214873Size of Returns (hashing, no substitution factoring) 235224 641818Size of Returns (hashing, substitution factoring) 225957 324648Size of Calls (tries) 4 62216Size of Returns (tries, no substitution factoring) 63347 62625Size of Returns (tries, substitution factoring) 63343 58740TABLE 6.6. Sizes of Hashed Terms and Tries with and without Substitution Factoring

21As presented in [11], a state of a concurrent system can be represented as alogical term. Such a term may be lengthy, but \similar" states may share a commonpre�x when represented as terms. Table 6.6 re
ects this sharing through the sizereduction of the trie-based methods over the hash-based methods. In leader, highlyinstantiated tabled subgoals are called, so that substitution factoring provides asigni�cant reduction in space requirements for hashing. Much of the instantiatedportion of these subgoals, however, occurs in their leftmost pre�x. As a result,substitution factoring leads to smaller space savings for the tries, since the leftmostpre�x is factored into the top of a trie. However, if substitution factoring is not used,the top of a trie will need to be traversed at each answer check/insert operation andeach answer backtracking operation, so that substitution factoring has a bene�ciale�ect on the execution time of leader (this e�ect is not measured in this section).Table 6.6 measures the sizes of hashed terms and of tries, but does not indicatehow much space the tables will use in a functioning system. To obtain this informa-tion, indexing must be taken into account, along with the actual space requirementsfor terms which may vary according to whether the terms are compiled or inter-preted. Disregarding index sizes for a moment, the actual space requirements of theterms themselves can be easily approximated using the following assumptions. Weassume that each constant, variable or function symbol of hashed term requires 1word when interpreted. When hashed answer tables are compiled, we assume thattwo words are required per symbol (as in the WAM). We further note that in-terpreted tries require 4 words per node and that compiled answer tries require 5words per node. Table 6.7 indicates the approximate space requirements, in words,for the various tabling methods on model-checking examples.Table Access Method sieve leaderInterpreted hashing, no substitution factoring 235228 856691Interpreted hashing, substitution factoring 225961 539521Compiled hashing, no substitution factoring 468452 1498509Compiled hashing, substitution factoring 451918 864169Interpreted tries, no substitution factoring 253404 499364Interpreted tries, substitution factoring 253388 483824Compiled tries, no substitution factoring 316755 619205Compiled tries, substitution factoring 316735 542564TABLE 6.7. Approximate Space Requirements in Words, for Various Table AccessCon�gurations (Not Including Indexing Space)Table 6.7 indicates that (interpreted) tries with substitution factoring give thebest space utilization for storage of tabled subgoals and answers, disregarding index-ing. Somewhat surprisingly, however, the tries require almost no space for indexingas measured via hashing instructions (as de�ned in Section 5) | in XSB only 16words are required over both examples. It can be expected that hash-based meth-ods will require far more index space for even moderate discrimination of terms, soat least for this example, tries outperform hash-based methods in terms of space.

226.5. Tries for Asserted TermsCompared to asserted code, compiled tries provide good speed for answer back-tracking as presented in Section 6.3. They can also utilize space well compared tocompiled hash-based methods as shown in the previous section. When unit clausesare dynamically compiled and asserted, their internal representation resembles thatof hashed, compiled, answer clauses. It is thus natural to explore the use of triesto store dynamically created facts outside of tabling.As a last set of benchmarks, we compare the time needed to assert a set of terms(using Prolog's assert/1) with the time needed to create them as compiled tries.Tables 6.8, and 6.9 present times to create unary and 10-ary Datalog facts. InSize 4K 5K 6K 7K 8K 9K 10KAsserted Code (XSB) 1.51 1.98 2.35 2.84 3.18 3.64 3.96Compiled Tries (XSB) .10 .12 .15 .17 .21 .25 .28Asserted Code (Quintus) 1.73 2.15 2.58 3.01 3.50 3.86 4.35TABLE 6.8. Creation times for unary Datalog data (p(i), 1 � i � Size).addition, Table 6.10 shows times to create a unary fact used in Table 6.8 when itsargument is nested in a unary function symbol.Size 4K 5K 6K 7K 8K 9K 10KAsserted Code (XSB) 2.45 3.30 4.08 4.95 6.06 6.85 7.86Compiled Tries (XSB) .24 .33 .41 .49 .52 .66 .76Asserted Code (Quintus) 1.85 2.28 2.66 3.12 3.72 4.17 4.48TABLE 6.9. Creation times for 10-ary Datalog data (p(i; 2; : : : ; 10), 1 � i � Size).As shown in Tables 6.8 and 6.9, storing terms as code in trie-based answer tablesis about 10-20 times faster than using Prolog's assert/1. Note that all theseterms are perfectly indexed on their �rst argument. As soon as the discriminatinginformation is nested within structures and hash collisions start to occur with theuse of assert/1, storing the terms in the trie-based table structures exhibits aneven bigger performance improvement. Table 6.10 shows that the use of tables forstoring dynamic terms in the presence of hash collisions is faster than assert bytwo orders of magnitude. Similar results were obtained in BIMprolog release 4.1.0.Given the competitive retrieval speed of tries, their complete discrimination, andtheir superior creation time, they are a useful alternative to asserted code for sets ofdynamic data when the order of the terms in the sets need not be preserved. Becauseof these advantages dynamic unit clauses can be asserted in XSB (Version 1.7and later) using either conventional assert/1 or assert/1 using trie-based datastructures. The choice is speci�ed on a predicate basis, by using a directive suchas :- index(p/1,trie). Dynamic code asserted using trie-based data structurescan be retracted or abolished just as with conventional dynamic code using Prolog'sretract/1 or abolish/1. Execution of asserted code uses the same instructions asanswer backtracking in completed tries.

23Size 4K 5K 6K 7K 8K 9K 10KAsserted Code (XSB) 8.00 12.44 18.36 24.09 31.40 39.45 49.02Compiled Tries (XSB) .15 .19 .21 .26 .28 .34 .35Asserted Code (Quintus) 8.62 13.38 18.67 25.00 31.22 39.48 48.25TABLE 6.10. Creation times for unary structured data (p(f(i)), 1 � i � Size).7. DISCUSSIONThe trie-based approach with which we address the table access problem has im-portant properties in its ability to index data of di�erent forms, and in its singlepass check/insert operation. When extended with substitution factoring this ap-proach provides dynamic argument reduction, and indeed, reductions within com-plex terms. Further, when tries are dynamically compiled, their access time andspace usage compares well with WAM code, and the amount of binding on back-tracking can in some cases be greatly reduced.This approach re
ects the dynamic nature of subgoal and answer creation, acharacteristic which distinguishes the results of this article from other recent work.Fundamentally, tabling tries must partition dynamically changing sets of terms. Incontrast, the uni�cation factoring automata of [5] compiled a static set of programclause heads into a trie-like structure for which optimality properties were proven.Finally, as mentioned in Section 3, both the dynamic nature of substitution factor-ing and its applicability to non-Datalog programs separates it from static methodssuch as NRSU factoring.As mentioned earlier, our tabling tries are variants of discrimination nets. Inparticular, the call and incomplete answer tries can be viewed as discriminationnets over ground terms. However, the relationship between a completed answertrie and a discrimination net is a little subtle. First, our completed answer tries arecompiled whereas traditionally discrimination nets have been interpreted. Secondly,our completed tries perform uni�cation operations (in order to implement assertedcode) whereas discrimination nets do match operations.Our work is orthogonal to that reported in [13], which described the SLG-WAMas a whole, but did not examine table access mechanisms and substitution factoringin depth, or consider compiled tries. While our approach has been developed forthe XSB system, we believe that tabling tries and substitution factoring may alsoprove useful to other systems that already have or will incorporate some sort oftabling.The concept of trie data structures has been around for a while. In fact, it is thedata structure of choice in high performance automated theorem provers and termrewriting systems. However seamless adaptation of tries to a WAM engine throughdevelopment of techniques for a tight integration (such as substitution factoring,dynamic compilation) collectively distinguishes our implementation from those usedin the above areas.Little else has been published concerning algorithms for table access, although[16] and [18] describe structure-sharing algorithms for tabling in the context of anevaluation engine. While useful bounds can be derived for the amount of copyingneeded by a structure-sharing approach, such approaches may be subject to highconstant overheads, and in any case do not appear suitable for a WAM-based

24implementation. In general, implementing logic as needed by deductive databasesis a di�cult task, and one for which a complete solution | that evaluates in-memory queries as well as a programming language, and queries to disk-residentdata as well as a database system | is not yet at hand. Under various guises,the table access problem is central to deductive databases. The performance of thetrie-based approach gives reason to expect that it will form a part of future tabledlogic programming systems and deductive databases as it does in present versionsof XSB.AcknowledgementsThe authors thank C. R. Ramakrishnan for his help in the preparation and proofread-ing of this article, and the anonymous reviewers for their many helpful comments.This research was supported in part by NSF grants CCR 9711386, 9705998, 9702681,9510072, 9404921, CDA 9303181, INT 9600598 and 9314412, and by a fellowshipfrom the K.U. Leuven Research Council.REFERENCES1. L. Bachmair, T. Chen, and I. V. Ramakrishnan. Associative-Commutative Dis-crimination Nets. In M. C. Gaudel and J. P. Jouannaud, editors, Proceedings ofTAPSOFT'93: 4th International Joint Conference on Theory and Practice of Soft-ware Development, number 668 in LNCS, pages 61{74, Orsay, France, Apr. 1993.Springer-Verlag.2. T. Chen, I. V. Ramakrishnan, and R. Ramesh. Multistage Indexing Algorithms forSpeeding Prolog Execution. Software Practice and Experience, 24(12):1097{1119,Dec. 1994.3. W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General LogicPrograms. Journal of the ACM, 43(1):20{74, Jan. 1996.4. D. Comer and R. Sethi. The Complexity of Trie Index Construction. Journal ofthe ACM, 24(3):428{440, July 1977.5. S. Dawson, C. R. Ramakrishnan, I. V. Ramakrishnan, K. Sagonas, S. Skiena,T. Swift, and D. S. Warren. Uni�cation Factoring for the E�cient Executionof Logic Programs. In Conference Record of POPL'95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 247{258,San Fransisco, California, Jan. 1995. ACM Press.6. P. Graf. Term Indexing. Number 1053 in LNAI. Springer-Verlag, 1996.7. D. E. Knuth. The Art of Computer Programming: Vol 1 Fundamental Algorithms.Addison Wesley, 2nd edition, 1973.8. W. W. McCune. Experiments with Discrimination-Tree Indexing and Path In-dexing for Term Retrieval. Journal of Automated Reasoning, 9(2):147{167, Oct.1992.9. J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman. Argument Re-duction by Factoring. Theoretical Computer Science, 146(1 & 2):269{310, July1995.10. H. J. Ohlbach. Abstraction Tree Indexing for Terms. In Proceedings of the NinthEuropean Conference on Arti�cial Intelligence, pages 479{484, Stockholm, Sweden,Aug. 1990. Pitman Publishing, London.

2511. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,T. Swift, and D. S. Warren. E�cient Model Checking Using Tabled Resolu-tion. In O. Grumberg, editor, Proceedings of the 9th International Conference onComputer-Aided Veri�cation, number 1254 in LNCS, pages 143{154, Haifa, Israel,July 1997. Springer-Verlag.12. R. Ramakrishnan and J. D. Ullman. A Survey of Deductive Database Systems.Journal of Logic Programming, 23(2):125{149, May 1995.13. K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of Fixed-Order Strati�ed Logic Programs. ACM Transactions on Programming Languagesand Systems, 20, 1998. To appear.14. K. Sagonas, T. Swift, and D. S. Warren. XSB as an E�cient Deductive DatabaseEngine. In Proceedings of the ACM SIGMOD International Conference on theManagement of Data, pages 442{453, Minneapolis, Minnesota, May 1994. ACMPress.15. R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive Pattern Matching.SIAM Journal of Computing, 24(6):1207{1234, Dec. 1995.16. S. Sudarshan and R. Ramakrishnan. Optimizations of Bottom-Up Evaluation withNon-Ground Terms. In D. Miller, editor, Proceedings of the 1993 InternationalSymposium on Logic Programming, pages 557{574, Vancouver, Canada, Oct. 1993.The MIT Press.17. A. Van Gelder. Negation as Failure using Tight Derivations for General LogicPrograms. Journal of Logic Programming, 6(1 & 2):109{134, Jan./Mar. 1989.18. E. Villemonte de la Clergerie. Layer Sharing: an improved Structure-SharingFramework. In Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 345{359,Charleston, South Carolina, Jan. 1993.19. A. Voronkov. The Anatomy of Vampire: Implementing Bottom-up Procedureswith Code Trees. Journal of Automated Reasoning, 15(2):237{265, Oct. 1995.20. D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRIInternational, Menlo Park, U.S.A., Oct. 1983.

