J. LOGIC PROGRAMMING 1999:19, 20:1 679 1

EFFICIENT ACCESS MECHANISMS
FOR TABLED LOGIC PROGRAMS

I.V. RAMAKRISHNAN, PRASAD RAO,
KONSTANTINOS SAGONAS, TERRANCE SWIFT,
DAVID S. WARREN

>

The use of tabling in logic programming allows bottom-up evaluation to be
incorporated in a top-down framework, combining advantages of both. At
the engine level, tabling also introduces issues not present in pure top-down
evaluation, due to the need for subgoals and answers to access tables during
resolution. This article describes the design, implementation, and experi-
mental evaluation of data structures and algorithms for high-performance
table access. Our approach uses tries as the basis for tables. Tries, a vari-
ant of discrimination nets, provide complete discrimination for terms, and
permit a lookup and possible insertion to be performed in a single pass
through a term. In addition, a novel technique of substitution factoring is
proposed. When substitution factoring is used, the access cost for answers
is proportional to the size of the answer substitution, rather than to the size
of the answer itself. Answer tries can be implemented both as interpreted
structures and as compiled WAM-like code. When they are compiled, the
speed of computing substitutions through answer tries is competitive with
the speed of unit facts compiled or asserted as WAM code. Because answer
tries can also be created an order of magnitude more quickly than asserted
code, they form a promising alternative for representing certain types of
dynamic code, even in Prolog systems without tabling. <

Address correspondence to 1.V. Ramakrishnan, D.S. Warren, Dept. of Computer Science,
State University of New York at Stony Brook, Stony Brook, NY 11794-4400, U.S.A., e-
mail:  {ram,warren}@cs.sunysb.edu; P. Rao, Bellcore, 445 South Street, Morristown, NJ
07960-6438, U.S.A., e-mail: prasadr@bellcore.com; K. Sagonas, Dept. of Computer Science,
Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001, Heverlee, Belgium, email:
kostis@cs.kuleuven.ac.be; T. Swift, Dept. of Computer Science, University of Maryland at College
Park, A.V. Williams Building, College Park, MD 20742, U.S.A., email: tswift@cs.umd.edu.

THE JOURNAL OF LOGIC PROGRAMMING

© Elsevier Science Inc., 1999
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00



1. INTRODUCTION

Bottom-up evaluation of logic programs offers well-known advantages over top-
down: programs terminate if they have the finite term-depth property (as defined
in [17]); redundant subcomputations are eliminated; and non-stratified programs
can be evaluated according to the well-founded semantics without the possibly expo-
nential number of negative contexts (see [3]). Of course direct bottom-up evaluation
is unacceptable for general query evaluation, since it evaluates all possible queries to
a program. As a result, a persistent theme of logic programming research has been
to investigate how to combine the advantages of bottom-up evaluation with the
goal-orientation of top-down techniques. This effort has led to many systems based
on magic evaluation and related strategies (see [12] for a survey of such research).

The high speed of top-down engines, though, has sometimes been neglected
in the literature. At least for loop-free, stratified programs with few redundant
subcomputations, top-down engines, such as those based on the WAM [20], can
be substantially faster than bottom-up engines. Thus, rather than adding goal-
orientation to a bottom-up engine, a natural approach to evaluating in-memory
queries is to add bottom-up capabilities, or tabling, to a Prolog engine. The XSB
system [14] follows this latter approach. The goal of XSB is to evaluate tabled
predicates (using SLG resolution [3]) in approximately the same time as non-tabled
predicates (using SLDNF). Based on our experience, it appears that the greatest
efficiency gains under present technology can be made at the level of engine design.
This article reports on engine enhancements for tabling that yield substantial per-
formance improvements. Specifically, we present results of experiments for reducing
the time for an engine to access tabled information and more generally to access
dynamically created facts.

Consider table access operations for definite programs:

Call Check/Insert When a tabled subgoal is called, a check must be made to see
whether the subgoal is redundant or not. In the current version of the XSB
system, this amounts to a wariant check of whether the new subgoal is a
variant of one that already exists in the table. If it is, the subgoal is termed
a consumer and answer clauses are resolved against it. If not, the subgoal is
termed a generator, entered into the table, and program clause resolution is
used instead. We associate with each tabled subgoal a set of answers which
are stored in the answer table associated with the subgoal.

Answer Check/Insert When an answer is derived for a particular subgoal, a check
is made to determine whether it has already been entered into the answer
table for the subgoal. If it has, the derivation path fails, a vital step for
ensuring termination. If not, the computation continues, and the answer is
scheduled for return to the applicable consumer subgoals.

Answer Backtracking When a consumer subgoal is created, it backtracks through
answers in the table in the course of its evaluation.

Observe that naive table lookups and inserts of calls and answers can result in
repeatedly rescanning terms and thereby may degrade performance considerably.
For in-memory computations, the goal of Prolog speed for tabled programs is only
achievable if the above three operations are performed with very little overhead.
Specifically, in the case of the call check/insert step, a call to a tabled predicate



must take nearly the same time as a call to a non-tabled predicate. Similarly, the
time of answer check/insert should be small relative to the time required to derive
an answer, since this operation occurs for each solution to a tabled predicate. And
finally, backtracking through answer clauses must take roughly the same time as
backtracking through unit program clauses. Needless to add, engine modifications
to enable efficient storage and retrieval of subgoals and answers in tables cannot
compromise the performance of the system for any class of problems.

While compile-time approaches can partially alleviate these problems — for in-
stance, such approaches can indicate which predicates should be tabled and which
should not  their ultimate solution must be dynamic. We may thus speak of the
Table Access Problem as one of designing efficient algorithms and data structures
for accessing tabled data at the level of an evaluation engine. This problem is
addressed in this article.

Our results regarding the Table Access Problem are as follows: First, we devise a
trie-based method for storing subgoals and their answers in tables. Tries eliminate
repeated rescanning of tabled terms during lookups and inserts. Second, using tries
in conjunction with substitution factoring, a technique developed in this article,
further reduces the overheads of answer lookup and insert operations. Third, we
devise a technique for dynamically compiling tries, leading to the ability to back-
track through answer clauses at speeds comparable to compiled WAM code. As a
final result, we demonstrate the generality of these techniques by applying them
to asserted facts and exhibiting significant speedups over existing methods. Trie-
based tabling, substitution factoring and compiled tries have been present in the
XSB system since Version 1.4.2, and the option of tries for asserted facts has been
present since Version 1.7. XSB has been installed in about a thousand sites for
educational, research and commercial use, and runs under a variety of platforms.

The rest of this article is organized as follows: The next section describes trie-
based methods for storing subgoal and answer tables. In Section 3 we present the
concept of substitution factoring. Implementation aspects of trie-driven tabling are
discussed in Section 4. The technique of dynamically compiling tries is described
in Section 5. In Section 6 we present performance results which provide strong
evidence that our techniques can indeed allow tabled logic programs to achieve
speeds comparable to Prolog programs. We conclude with a discussion of the
relevance of this work to in-memory query optimization techniques. We assume

knowledge of the WAM [20].

2. TABLING TRIES

We assume the standard definitions of terms and the notions of substitution and
subsumption of terms. A position in a term is either the empty string A that reaches
the root of the term, or p.i, where p is a position and ¢ is an integer, that reaches
the i*" child of the term reached by p. The symbol ¢ (possibly subscripted) denotes
terms; f, g denote function symbols; and all capital letters (possibly subscripted)
denote variables. We use the terms call and subgoal interchangeably, as well as the
terms answer and return.

The trie data structure was originally invented to index dictionaries [7] and has
since been generalized (as discrimination nets) to index terms (see [2] for use of tries
in indexing logic programs and [1, 6, 8, 10, 15, 19] for automated theorem proving



and term rewriting). We will use a variant of the discrimination net in [1] as the
data structure for tabling calls and their answers. We refer to it as the tabling trie.

The essential idea underlying a tabling trie is to partition a set T' of terms based
upon their structure so that looking up and inserting these terms will be efficiently
done. The tabling trie is a tree-structured automaton whose root represents a
start state, and whose leaves each corresponds to a term in 7. Each internal state
specifies a position to be inspected in the input term when reaching that state.
The outgoing transitions specify the function symbols expected at that position.
A transition is taken if the symbol in the input term at that position matches the
symbol on the transition. On reaching a leaf state we say that the input term
matches the term associated with the leaf state. The root-to-leaf path taken to
reach the leaf state corresponds to a left-to-right preorder traversal of the matching
term. When no outgoing transition from a state can be taken, a lookup operation
fails. On the other hand, for an insert operation we add an outgoing transition for
the symbol and a new destination state for this transition. The position that will
be associated with the new state is the next position in the preorder traversal of
the input term. We illustrate the operations on a tabling trie using the example in
Figure 2.1.

rt(a,f(a,b),a).
rt(a,f(a,X),Y).
rt(b,V,d).

FIGURE 2.1. (b) is a trie for the terms in (a).

To look up the term rt(a,f(a,b),a) we begin at state s;. Since position 1 in
the input term is a, we make a transition to state ss. In this state we inspect the
next preorder position of the input (position 2) and make a transition to state s3.
Transition from this state on seeing a (in position 2.1) leads to the state s4. Con-
tinuing thus we finally reach the leaf state s and declare a match. To insert the
term rt(a,g(b,c),c) we again start at state s; and make a transition to state s,.
Since there is no outgoing transition labeled g/1 we create a new transition for g/1
and a new destination state for this transition. In this new state we will inspect
position 2.1 which is next in preorder traversal of the input term. Continuing in
this fashion we will create three more new states (s13, $14, and s15) yielding the trie



shown in Figure 2.2.

S 3

c
S 15@

FIGURE 2.2. The trie of Figure 2.1 after the addition of the term rt(a,g(b,c),c).

Our point of departure from the trie formalism described in [1] is in our treatment
of variables. Recall that our lookup/insert operations perform a variant check,
i.e., two terms match if they are identical up to variable renaming. Performing a
variant check for calls and answers, has advantages for a tabling system. A detailed
discussion of the various issues involved can be found in [3], but we mention the
two main advantages here. First, tabling based on variance can support Prolog-
style meta-programming using builtin predicates such as var/1, and second, variant
checks can be implemented very efficiently, as shown below.

To realize variant checks in our tabling trie we standardize the representation
of a term to treat each variable as a distinct constant. Formally this can be
done through a bijection, numbervar; from the set of variables in ¢, denoted by
vars(t), to the sequence of constants (vy,vs,...,v,) such that numbervar, (V) <
numbervar, (W) if V is encountered before W in the left-to-right preorder traversal
of t. For example in the term f(g(Y,Z), X, Z), numbervar,(X), numbervar;(Y)
and numbervar,(Z) are v3,v1 and vy respectively. Let numbervar(t) denote the
term t0, where 6(V') = numbervar,(V') for every variable V' in wars(t). Thus,
numbervar(f(g(Y,Z),X,Z)) is f(g(v1,v2),v3,v2). Consequently, two terms are
variants of each other if and only if numbervar(t;) = numbervar(t,).

Converting a term to standard form can be done concurrently with the process
of lookup and insertion (Implementation details are in Section 4). As an example
of this process, consider the addition of the term rt(a,f(b,X),X) to the trie of
Figure 2.2. Starting at state s; we make matching transitions till state s4. The
next position in the preorder traversal of the input term contains a variable whose
standardization is v; and matches the label of the outgoing transition to state s7.
At this state there is no outgoing transition for a variable whose standardization
is v1 (the only transition is labeled with 15), so a new transition labeled with v; is
created together with a new destination state, sig, for this transition yielding the
trie shown in Figure 2.3.



S 3

Se Sg 16! SlS@

FIGURE 2.3. The trie of Figure 2.2 after the addition of the term rt(a,f(b,X),X).

From these examples and the description above it is easy to see that:

Proposition 2.1. For the subgoal and answer check/insert steps, each element of
the input term is examined only once.

In summary, we claim that trie-based tabling has two major advantages over hash-
based tabling.

1. Complete discrimination. Tries completely discriminate between terms no
matter where in a term the discriminating element lies. In contrast, if hash-
ing is based on a limited prefix of the term, it will suffer when the discrim-
inating element is deeply nested.

2. Single pass check/insert. For the subgoal and answer check/insert, a single
traversal of the term is necessary, regardless of whether the term needs to be
copied into the table. In hash-based tabling lookup alone may require mul-
tiple passes over the term due to hash collisions. Furthermore, insertion will
require a separate pass. Given the prevalence of these operations in a tabling
system, the savings in time over a two-pass operation can be substantial.

The above claims are substantiated in the performance results presented in Sec-
tion 6, where it is also shown that use of the trie-based approach can save space
over hash-based methods. The approach just described provides a useful optim-
ization for lookup and insert operations in the call and answer tables. However,
because it treats the two tables as independent entities, it does not exploit sharing
of bindings between a specific call and its answers. This sharing can be exploited
by substitution factoring described in the following section.

3. SUBSTITUTION FACTORING

As mentioned in the introduction, we associate an answer table with every subgoal
in the subgoal table. Given a subgoal G, any answer A for the subgoal is subsumed



by G, and can be represented as GA,4. We call 8,4 an answer substitution for G.
Note that the sum of the sizes of terms in 64 is less than the size of GA4. The
core idea of substitution factoring is to store only the answer substitutions, and to
create a mechanism of returning answers to consuming subgoals that takes time
linear in the size of #4 rather than the size of GA,4. In other words, substitution
factoring ensures that answer tables contain no information that also exists in their
associated subgoal table. Operationally this means that the non-variable symbols
in the subgoal need not be examined again during either answer check/insert or
answer backtracking.

Let G denote a subgoal and {V;,Vs,...,V,,} denote the set of variables in G
such that numbervar(V;) = v;. An answer substitution 64 for G is of the form
Wi« t1,Va « to,...,V,, « t,}. We call the sequence (t1,to,...,t,) the
answer tuple corresponding to the answer substitution 6,4. Observe that we can
reconstruct the answers given the subgoal, the variable sequence (V1,Va,...,V,,)
and the answer tuples. Hence if we store the variable sequence with the subgoal,
then we need only store the answer tuples in the answer table. Because the variable
sequence is determined when a subgoal G is standardized for insertion into the
subgoal table, the storage requirement for an answer G604 depends only on the size
of 6 4. If answer tables are implemented as tries then the following proposition will

hold:

Proposition 3.1. Let G be a subgoal and A be an answer for G. Using substitution
factoring both answer check/insert and answer backtracking can be performed in
time proportional to the size of the answer substitution of A.

To illustrate this, consider a subgoal p (£ (X,Y) ,g(X)) with an answer p(f (a,b),
g(a)). In this case the answer has six symbols, whereas the substitution 6 has only
two symbols. For an access operation on an answer, either check/insert or return,
using substitution factoring only two symbols are traversed as opposed to six.

In terms of related work, substitution factoring bears a certain resemblance to
the factoring of [9] (hereafter termed NRSU-factoring) in that both reduce the
number of arguments copied into or out of a table. However, substitution factoring
has different characteristics than NRSU-factoring, mainly because it is a dynamic
rather than static technique. Whether a predicate is NRSU-factorable is unde-
cidable in general; hence NRSU-factoring is applicable only to certain classes of
Datalog programs. Consequently, substitution factoring may reduce arguments
of predicates that are not reduced by NRSU-factoring. Furthermore, contrary to
NRSU-factoring, substitution factoring is applicable to and can be very effective for
non-Datalog programs. On the other hand, [9] introduces additional optimizations
based on the factored program which are not performed by substitution factoring.
These optimizations can transform certain right and double recursions into left
recursions, an important transformation not performed by substitution factoring.

4. IMPLEMENTATION ASPECTS OF TABLING TRIES

Tabling tries are implemented by representing each state by a node, and transitions
by pointers to nodes. The structures of subgoal and answer trie nodes are shown
in Figure 4.1 and are explained throughout this section.

The label on a transition is placed in the symbol field of the node representing
the destination state. The outgoing transitions from a node are traced using its first



Sibling Parent
First Child Sibling
Symbol First Child (or Next Leaf)
—=  Symbol

FIGURE 4.1. Data Structures of Subgoal and Answer Trie Nodes.

child pointer and by following the list of sibling pointers of this child. Recall that in
order to lookup or insert a term into a tabling trie, the term is traversed in preorder.
If the symbol inspected in this traversal is the label of an outgoing transition from
the current state, that transition is taken. Otherwise, a new destination state is
created, and the transition to this state is taken. In the current implementation
of tries in XSB, the matching outgoing transition is found using sequential search
whenever the number of outgoing transitions from this state is small, otherwise
hashing is used. Note that in this case hashing is always on a single symbol so that
it is easy to achieve good discrimination. Hash collisions are reduced by dynamically
expanding the hash tables.

Recall that terms inserted in the trie are standardized. This standardization
process is performed while a term is inserted in the trie. The variables in the term
are replaced by their numbervar values, by binding the dereferenced variable cell to
a unique number, and tagging the cell with a type tag that is not otherwise used by
the SLG-WAM. Using this single binding, non-linearity (i.e., repeated occurrences
of the same variable) is handled without the need to check whether a variable has
been previously encountered. The bindings are undone as soon as the insertion of
the term in the trie is complete. In this manner, the numbervar bijection can be
performed in a single pass of the input term.

4.1. Implementation of Substitution Factoring

In order to explain the implementation of substitution factoring, we briefly consider
the creation of SLG-WAM choice points for calls to a tabled predicate; full details
can be found in [13]. As does the WAM, the SLG-WAM creates a choice point by
copying the program registers at the time of the call, including registers containing
each argument of the subgoal (argument registers). If the subgoal is new to the
evaluation, a generator choice point (Figure 4.2(a)) is created which will backtrack
through program clauses. However, together with the arguments Aq,..., A, of the
tabled subgoal, a generator choice point also contains a substitution factor consist-
ing of dereferenced pointers to unbound variables Vi,...,V,, of the subgoal (see
Figure 4.2(a)). These pointers are obtained during the call check/insert operation;
after this operation is completed other choice point cells are placed above the sub-
stitution factor. If the subgoal has already been encountered during the evaluation,
answer resolution will be used instead of program clause resolution. In this case, a
consumer choice point (Figure 4.2(b)) is created, which serves as an environment



into which answers can be returned by means of an answer-return operation. Like
the generator choice points, these consumer choice points contain a substitution
factor. However because they are not used for program clause resolution, consumer
choice points have no need for argument registers.

FailCont Rest of FailCont )
Generator EBreg
EFreg Choice Point Hreg Rest of
: Consumer
Anp, o . .
. Argument Breg_Chain Choice Point
Registers LastAnswer
Aq PrevCCP )
m m )
T Vi Substitution /]\ Vin Substitution
Factor Factor
Vi Vi J
(a) Generator Choice Point (b) Consumer Choice Point

FIGURE 4.2. Elements of the Choice Point Stack with Substitution Factoring.

The referents of the substitution factor reside either in the local or global stack.
Bindings to these referents are trailed through forward execution, whether they
are caused by program clause resolution (for a generator choice point) or answer
clause resolution (for a consumer choice point). The values in the substitution
factor variables are untrailed through backtracking just as argument cells would be
in WAM execution. Trailing and untrailing in the SLG-WAM is beyond the scope
of this paper and is explained in detail in [13]. When a new answer to a tabled
subgoal is detected, the dereferenced values of the cells of the substitution factor
from the generator choice point are copied directly into the table. Later, they will
be loaded directly into the consumer choice points to return the answers. Figure 4.3
shows an example of a tabling trie incorporating substitution factoring for answers
to the subgoal p(£(X),g(Y)).

4.2. Returning Answers to Consumer Subgoals

Recall that in a tabling framework answers need to be returned to applicable con-
sumer subgoals. Answer tries of subgoals for which new answers may be derived are
termed incomplete (see [13]). Since answer insert and answer return operations can
be interleaved, and new answers can be inserted anywhere in the trie, it is not pos-
sible to perform the answer-return operation by sequentially backtracking through
such a trie starting from its root. Therefore, an explicit list of answers (uniquely
identified by leaf nodes of the answer trie), has to be maintained. Alternatively, the
list can be implemented by having the first child field of leaf answer nodes point to
the next answer (as shown in Figure 4.3). The order of this list reflects the creation
times of its members. For example, in Figure 4.3 the answers are created in the
order {X=b,Y =1}, {X=2a,Y=a}, {X=a,Y =1}, and {X=Db,Y = a}. Answers



10

p/2
Subgoals: | 777777 i ””””””””””””””””””””””””” ‘
T CHESSTRE
I}:gg; ,Z)(Y)) M i B ] i (<] Subgoadl trie for p/2

p(£(X),g(0) ] LB

Answer substitutions
for p(£(X) ,g(Y)):

Answer triefor
X=a, Y=a . T
X=a Y=b Laly LTl oI ] i) .acv)
X=b, Y=a y—T T—\T—‘
X=b, Y=b LT T ETT3-CLTT:
Answer list

FIGURE 4.3. Substitution factoring illustrated for the subgoal p(£(X),g(Y)).

are returned for incomplete answer tries by traversing this list, and, with the help
of two stacks, a term stack and a unification stack, constructing the answers by a
leaf-to-root traversal. To efficiently perform this latter traversal, every node of the
answer trie maintains a back pointer to its parent node (denoted as parent pointer
in Figure 4.1). The answer return operation starts by pushing the substitution
factor variables (in reversed order) into the wunification stack. Then starting from
the leaf node and following the parent pointers, the symbols in the branch from the
leaf to the root are pushed into the term stack. On reaching the root of the answer
trie, the substitution factor variables in the unification stack are unified with the
terms constructed on the term stack.

Note, however, that answers can be returned from a completed answer trie by
sequentially backtracking from its root. Indeed, the WAM is a highly optimized
engine for performing backtracking. To exploit this power of the WAM, we dynam-
ically compile answer tries into WAM code as presented in the next section. The
idea of compiling dynamically created terms has been around for quite some time
in logic programming languages; for example it is used in some implementations of
Prolog’s assert/1. Recently, this idea has also been used in the context of general
theorem proving to efficiently perform forward subsumption (i.e. pattern matching)
of terms that are dynamically created [19].

5. DYNAMIC COMPILATION OF TRIES

We describe how answer tries are dynamically compiled into WAM-like instructions,
called trie instructions. We refer to the tries that consist of these instructions as



11

compiled tries, and to those described in Section 4.2 as interpreted tries !.

To motivate the new WAM instructions, we first show how an answer trie can be
represented as regular Prolog clauses. We then consider how WAM-style instruc-
tions might implement those clauses, and finally we create “mega”-instructions
that constitute a space-efficient representation of answer tries. We use the follow-
ing example throughout the development. Assuming that substitution factoring is
employed, consider the answer trie of a subgoal that contains three variables shown
in Figure 5.1.

C
S 15@

FIGURE 5.1. An Answer Trie.

The four answers in this trie could be represented by the Prolog facts of Fig-
ure 5.2(a).? Alternatively these facts could be prefix-factored into a full-trie [4] rep-
resented as a set of Prolog clauses shown in Figure 5.2(b). Note that each clause in
Figure 5.2(b) corresponds to a single edge in the answer trie of Figure 5.1, and that
the order of the clauses reflects a breadth-first, left-to-right traversal of the edges
of the trie.

We assume the existence of an array of registers and base the following discussion
on two premises of Section 4. First, we assume that backtracking is only performed
on completed tables, so that no answers will be added to a trie through which
we are backtracking. Also, we assume that substitution factoring is performed.
Operationally this means that when answer resolution is to be used for a subgoal
with n distinct variables, the first n registers have been initialized to hold these
variables. This initialization can be easily performed while traversing the subgoal
in the subgoal trie.

Figure 5.3 shows WAM-like code segments for the first three clauses of Fig-
ure 5.2(b). The code for the first two clauses starts with a choice-point instruction,

IThe instructions presented in this section are slightly more general than needed for answer tries
under variant tabling, and can be used to implement an alternative to assert/1 (See Section 6.5).

2For simplicity of presentation we consider linear answers first, and describe later on how
non-linearity is handled.



12

rt(a, X»,X3) - rt.a(X2,X3).
rt(b,Xz,Xg) Hed rt_b(Xg,Xg).

rt_a(f(Xq1.1,X1.2),X2) - rtiaf(X1.4,X1.2,X2).
rt_a(g(Xi.1,X1.2),X2) - rtiag(Xi1.1,X1.2,X2).

rt b(V,Xs) :- rtbV(X,).

rt_af(a, X2, X3) :- rt_afa(X,,X3).
rt(a,f(a,b),a).
rt(a,f(a,V),b). rt_ag(b, X2, X3) :— rt_agb(¥,X3).
rt(a,g(b,c),c). rt_bv(d).
rt(b,V,d). rt_afa(b, X>) :— rt_afab(Xs).

rt_afa(V, Xy) :- rt_afaV(X,).
rt_agb(c,X») :- rt_agbc(Xs).
rt_afab(a).
rt_afaV(b).

rt_agbc(c).

(a) As facts. (b) As “prefix-factored” clauses into a full-trie.

FIGURE 5.2. Two possible representations of the answer trie of Figure 5.1.

here a try_me_else or a trust_me_else instruction. The second instruction is a get_type
instruction. The shift_left instruction is not contained in the WAM. Its function is
to shift all the registers to the left by some number of positions (here one). This
function is needed to set up the arguments for the final instruction, the execute,
which branches to the next clause. Now consider the code for the first clause of
rt_a/2, whose first argument is a structure. Here again the first instruction is a
choice-point instruction, and the second instruction is a get_structure instruction.
Now however, the get_structure is followed by a shift_right instruction which shifts
the registers right to make room for the arguments of the structure symbol; (the
required number of positions is always one less than the arity of the structure sym-
bol). The shift_right instruction is followed by an argument-construction instruction,
unify_variable for each argument. Finally, there is again an execute instruction to
branch to the next clause.

rt1: try_me_else ris rty: trust_me_else fail rt_a1: try_me_else rt_as
get_constant a, A; get_constant b, A; get_structure f/27 Aq
shift_left 1 shift_left 1 shift_right 1
execute rt_a/2 execute rt_b/2 unify_variable V;
unify_variable V5
execute rt_af/3

FIGURE 5.3. Possible WAM-like code segments for the first 3 clauses of Figure 5.2(b).

Code segments like the ones in Figure 5.3 will construct the answer one-at-a-
time on the stack through backtracking. For efficient implementation we coalesce
these sequences of instructions into a single WAM-like instruction termed a trie



13

instruction. The main reason for this coalescing is to reduce the space needed for
the representation of these instructions in trie nodes (only one extra field needs to
be added to the format of the answer trie nodes of Figure 4.1); this action however
also has a small time performance improvement. Note that there are five major
parameters to a code segment:

1. the choice alternative;

2. the get_type alternative; 3

3. the constant, structure symbol, or variable to match (Symbol);*

4. the address of the next code segment down the trie (ContLabel); and,
5. the address of the alternative to try on failure (FailLabel).

So, the general form of the trie instructions is:

trie_choice_type ~ Symbol, ContLabel, FailLabel

Note how the three arguments of this instruction naturally correspond to the three
fields (Symbol, First Child, and Sibling) of the answer trie nodes of Figure 4.1.
Since each of the trie instructions may appear as the first, an intermediate, the
last, or the only instruction in a sequence of alternatives, we denote the choice
possibilities as try, retry, trust, and do respectively. As for types, constants, struc-
tures, lists as well as uninstantiated (first occurrence) and instantiated (consequent
occurrences of) variables should be handled. Figure 5.4 presents the set of the trie
instructions thus created. In the special case of answer tries whose subgoals have no

|| Unique | Flarst | Intermediate | Last |
Constant || trie.do_constant | trie_try_constant | trie_retry_constant | trie_trust_constant
Structure || trie_do_structure | trie_try_structure | trie_retry_structure | trie_trust_structure
List trie_do_list trie_try_list trie_retry_list trie_trust_list
Variable || trie.do_variable | trie_try_variable | trie_retry_variable | trie_trust_variable
Variable || trie.do_value trie_try_value trie_retry_value trie_trust_value

FIGURE 5.4. Trie instructions for all possible choice and type combinations.

variables, another trie instruction needs to be introduced, named trie_proceed which
has exactly the functionality of the WAM'’s proceed, namely setting the program
register to the continuation register. The functionality of a proceed is also needed
after the leaf of a trie is reached.

As a concrete example of how the trie instructions are used, Figure 5.5 shows the
WAM code generated for the clauses of Figure 5.2(b), and, as a consequence, for
the answer trie of Figure 5.1. Since no choice points are laid down for the trie_do_?
instructions, their Fail Label fields are not used. Notice the correspondence between
the labels of the instructions in Figure 5.5 and the names of the atoms in the

3If the instructions are intended to support tabling in which a variant-check is used for subgoals,
get-style instructions can be replaced by build-style instructions.
4Note that the argument register involved in the get_type instructions is always register 1 (A7).



14

rt1:  trie_try_constant a, rt_ar, rto
rta:  trie_trust_constant b, rt_b, fail
rt_ai:  trie_try_structure £/2, rtaf, rt_as
rt_as: trie_trust_structure g/2, rt.ag, fail
rt_b:  trie_do_variable v, rt bV
rt_af: trie.do_constant , rt_afaq
rt_ag: trie_do_constant , rt_agb
rt_ bV: trie.do_constant , proceed

rt_afaq: trie_try_constant
rt_afao:  trie_trust_variable

rt_afab, rt_afas
rt_afaV, fail

0O o P o0 <0 Qo p

rt_agb: trie.do_constant , rt_agbc
rt_afab: trie_.do_constant , proceed
rt_afaV: trie.do_constant , proceed
rt_agbc:  trie_.do_constant , proceed

FIGURE 5.5. WAM code for the clauses of Figure 5.2(b).

clauses of Figure 5.1. For facts, the trie instruction has a ContLabel of proceed to
indicate that the final operation of the trie instruction should be that of a proceed
WAM instruction rather than that of an execute. A slight optimization is to create
specialized versions of trie instructions that encode the last operation as that of a
proceed. Such instructions would be needed only for constants and variables.

The actions of the trie instructions are easily understandable if one thinks of
them as macros that define WAM code segments like those of Figure 5.3. For
example, the three code segments of Figure 5.3 present the operations performed
(for some values of the parameters) by the trie_try_constant, trie_trust_constant, and
trie_try_structure instructions, respectively. We note that the shift_left and shift_right
operations could be implemented efficiently in an engine that stores the registers
as an array, simply by modifying the base of that array. Alternatively, a separate
array of pseudo-registers could be used for the trie instructions only, which would
allow it to perform efficiently as a register stack. The latter is the implementation
scheme chosen by XSB. Non-linearity is handled by adding another array to the
WAM, called the var-array. The trie_?_variable instructions initialize the indicated
var-array entry on the heap, setting the top element of the register stack to point
to it. The trie_?_value instructions then unify the top register of the register stack
with the indicated var-array variable.

The trie instructions presented are used in XSB not only for answer tries but for
asserted facts. If trie instructions were used only for tabling with variant-checks for
subgoals, substitution factoring would allow all uses of the get_type subinstructions
to directly bind their values, i.e. to run in write mode, rather than to perform
unification. We also note that indexing is needed for the answer check/insert step
as well as for asserted code. Accordingly, the set of trie instructions described
in this section has been extended with two more hashing instructions to perform
this indexing. While useful for not slowing down the answer check/insert step, the
hashes do not provide any extra efficiency in answer backtracking once a subgoal
is completed. Both the use of indexing and the provision of unification in get_type
subinstructions slightly complicate the dynamic compilation, and impose a small
performance overhead which would be avoidable if answer tries and asserted facts



15

did not use the same compilation mechanisms.

We end this section by stating a useful property of compiled tries. This property
is based on the observation that all common prefixes of the terms in a trie are
shared during execution of trie instructions.

Property 5.1. When backtracking through the terms of a trie that is represented
using the trie instructions, each edge of the trie is traversed only once.

6. PERFORMANCE RESULTS

Several optimization methods have been presented so far: the use of tries, of substi-
tution factoring, and of dynamically compiling tabled terms into WAM-like code.
We first discuss the performance on tabled evaluations of each of these optimiza-
tions, and then the advantages of using trie-like code in creating facts dynamically
through a mechanism similar to Prolog’s assert/1 °.

6.1. Trie-based vs. Hash-based Table Structures in XSB

We first compare alternative tabling methods as they have been implemented in
XSB. A hash-based method of XSB Version 1.4.0, and two different trie-based
methods. The first trie-based method does not compile tries into instructions and
was used in Version 1.4.0; the second method compiles tries, and is found in Versions
1.4.2 and later. Hash-based table structures have a simple form. Each tabled
predicate has its own subgoal hash table. For the subgoal check/insert step, the
subgoal is hashed and compared against any other subgoal in the hash bucket, using
a variant-check. If the subgoal is not present, it is entered into the chain of the
proper hash bucket. Each subgoal has its own answer hash table which resembles
the subgoal hash tables in its essential details, and also requires a variant-check in
the case of hash collisions. Subgoals are hashed on the outer functor symbol of their
first argument, while answers are hashed on the combination of the outer functor
symbols of all their arguments. Note that this latter method gives full indexing
for Datalog terms. As a result, hash-based tabling consists of a quick insert, but a
slow check if hash collisions occur. On the other hand, trie-based tabling consists
of a relatively slower insert than the hash-based it must set parent and sibling
pointers  but combines the check and insert steps, and thereby may need to copy
less information for answers. Substitution factoring has been implemented only in
the trie-based methods, but its effect will be isolated in Section 6.2.

We begin by comparing the hash-based methods to the interpreted tries. The
first set of tests use standard left (Figure 6.1(a)), and right (Figure 6.1(b)) recursive
transitive closures. A Datalog binary tree was used as the EDB relation (shown
in Figure 6.2(a)). As an additional test, the tree was nested in a unary structure
(Figure 6.2(b)). Unification factoring [5] was used to compile the structured EDB.
Unification factoring processes the heads of the p/2 clauses into a non-deterministic
net which, in this case, provides perfect indexing. The graph of Figure 6.3 shows
times for 25 iterations of the queries 7- a(1,X) to non-structured EDB and that of

5All benchmarks were run on a SparcStation 2 with 64MB of main memory running
SunOS 4.1.3. Sizes of the benchmark programs do not reflect limitations in any of the systems
evaluated.



16

a(X,Y) :- p(X,V). a(X,Y) :- p(X,Y). a(Y) :- query(X), p(X,Y).
a(X,Y) :- a(X,2), p(Z,Y). a(X,Y) :- p(X,2), a(Z,Y). a(Y) :- a(X), p(X,V).

(a) (b) ()

FIGURE 6.1. (a) Left, (b) right, and (c) NRSU-factored recursive transitive closures.

(a) p(1,2),p(1,3),...,p(2" —1,27F!1 —1)
(b)  p(£(1),£(2)), p(£(1),£(3)),..., p(£(2" —1),£(2"*! — 1))

FIGURE 6.2. (a) Datalog, and (b) structured binary trees for the programs of Fig-
ure 6.1.

Figure 6.4 of queries 7- a(£(1),X) to structured EDB. In the graphs, Height refers
to the height of the tree, while Trie and Hash indicate the use of trie and hash-based
methods respectively. Left and Right stand for left and right-recursive definitions
of transitive closure. We note that for queries of the form 7- a(bound, free) over
complete binary trees, the left-recursive definition of transitive closure encounters
(and generates answers for) only one distinct call, and thus has a better complexity
than the right-recursive one where the number of calls encountered is equal to the
size of the tree.

The graphs in Figures 6.3 and 6.4 indicate the power of tries. For the Datalog
cases, and especially for left recursion, times for hash and tries are generally similar,
with tries having a slight advantage for large data sets where the effect of hash
collisions is more noticeable. However, as soon as discriminating information is
nested within structures, the times for tries become far more efficient than those for
hashing. This divergence is due to the trie’s ability to effectively index subgoals and
answers on constants within the symbol £/1 in the structured data, an ability not
shared by hash-based tabling. This point is further substantiated in the following
section.

6.2. Measuring the Effects of Substitution Factoring

In order to isolate the effect of substitution factoring, we statically factor a left
recursive program (shown in Figure 6.1(c)) in a manner similar to NRSU-factoring.
Note that given a query ?- a(free), the program of Figure 6.1(c) will perform
exactly the same subgoal check/insert, answer check/insert and answer backtrack-
ing operations as the program in Figure 6.1(a) when substitution factoring is per-
formed. Given the same p/2 relation as in the previous section, we would expect
the trie-based engine with substitution factoring to exhibit no speedup, while the
hash-based engine to exhibit a speedup due to substitution factoring. As expected,
static factoring shows no speedups over dynamic factoring for the trie-based emu-
lators in either table below (rows labeled Trie Speedup, Tables 6.1 and 6.2). For
the hash-based emulators, the effects are substantial, especially for the non-Datalog
program (rows Hash Speedup). The effect of substitution factoring causes the times
for the hash-based emulator to become identical to that of the trie-based emulator
for Datalog programs (last row of Table 6.1). However, for non-Datalog programs
the trie-based emulator is linear in the size of the binary tree while the hash-based



30

25 -

20

15

Time in Seconds

10

FIGURE 6.3. Performance Times for Transitive Closures on

5 6 7 8
Height of Datalog Tree

T T T T T

X
Trie-Left <—

Hash-Left —+- i
Trie-Right -5--
Hash-Right -
X m
3 4 9

Datalog Trees.

17

emulator shows a marked quadratic factor (as shown by their comparison in last
row of Table 6.2). Thus, with substitution factoring, the hash-based emulator is
comparable to the trie-based emulator for the Datalog programs, but the ability
of tries to discriminate information nested within a term is clearly important for

structured data.

| Height | 4 [ 5] 6] 7 ] 8 [ 9 [ 10]
Hash Speedup 11% | 5% | 9% | 9% 6% 8% 2%
Trie Speedup 0% | 0% | 0% | 0% 0% 0% 0%

| Hash/Trie Times || 1.00 | .94 | .94 [ 1.01 | 1.07 [ 1.02 | 1.10 ]

TABLE 6.1. Percent Speedup for Static Argument Reduction on Datalog Programs,
and Ratios of Hash-based and Trie-based Emulator Times.

| Height | 4 | 5] 6 [ 7] 87 9]
Hash Speedup 5% | 6% | 59% | 62% | 67% | 69%
Trie Speedup 0% | 0% | 3% | 2% | 0% | 0%

| Hash/Trie Times || 4.36 | 7.17 | 14.7 | 27.6 | 54.6 | 109 |

TABLE 6.2. Percent Speedup for Static Argument Reduction on Structured-Argument
Programs, and Ratios of Hash-based and Trie-based Emulator Times.



18

120 T T T T M T
Trie-Left -— ;
Hash-Left -+~
100 - Trie-Right -&-- -
Hash-Right -
»n 80 1
=}
j
o
(5]
[0
0 60 | 4
£
[}
E ;
=40 - s .
">< //
20 S ]
+ Er
0 & e W, B NS
3 4 8 9 10

5 6 7
Height of Structured Tree

FIGURE 6.4. Performance Times for Transitive Closures on Structured Trees.

6.3. Compiled vs. Interpreted Tries

The preceding performance sections compare a hash-based implementation to a trie-
based implementation without dynamic compilation. We now compare interpreted
tries to compiled tries. Dynamic compilation of tries can be expected to improve
the speed of answer backtracking, but to slow down the answer check/insert oper-
ation. (Since backtracking through tabled subgoals is never done in a pure tabled
evaluation, the subgoal trie is never dynamically compiled).

The Effects of Dynamic Compilation on Answer Backtracking. The first two
columns of Table 6.3 show times required to backtrack through various sets of
dynamically created terms using an open call (a call containing distinct variables as
arguments). Specifically, the first column presents the time to retrieve answers from
a completed table by interpreted tries, and the second column by compiled tries.
For comparison, we provide times for asserted code in XSB and Quintus (recall
from Section 5 that compiled trie code performs unification). XSB dynamically
compiles asserted code into WAM instructions and for unit clauses the result of the
dynamic compilation is nearly identical to a static compilation. Quintus indexes
asserted code as compiled, but performs variable bindings for asserted code in an
interpretive manner. (Quintus compiled code is 2-3 times faster than asserted for
unit clauses) ©.

We may define a common prefir measure for a set, S, of terms as

number of transitions in the trie for S

sum of the sizes of the terms in S
For Table 6.3 the common prefix measure ranges from about 91% (for the structured
data in the second to last row), to no sharing at all (the unary, 10-ary, and 100-ary
Datalog terms in rows 1, 4, and 5).
As expected, the performance of compiled tries increases with the common prefix
measure. In the admittedly extreme case of p(£(...(£(2)))) in the second to last

6All times in Table 6.3 represent 100 iterations except for the “Binary Tree” cases which
represent 10000 iterations.



19

Interpreted | Compiled || asserted | asserted
Form and Number of Terms Tries Tries (XSB) | (Quintus)
p(2) 0<i<4K 4.95 3.71 3.71 7.10
p(a,i) 0<i<Adk 6.5 3.76 4.91 7.85
p(i,a), p(i,b) 0<71<L2K 6.63 4.78 4.88 7.84
p(z,2,...,10) 0<i<4K 18.75 18.91 15.44 14.55
p(z,2,...,100) 0<:<200 7.68 8.39 6.41 4.35
Binary Tree Level 6 9.67 4.88 7.38 8.58
Binary Tree Level 7 24.07 9.07 16.23 19.10
p(£() 0<i<ak 6.13 3.75 4.31 7.40
p(£(s,2,...,10)) 0<i<4K 14.78 18.93 9.04 9.60
10
p(£(...£(i)...) 0<i<4K 16.08 3.77 16.94 11.64
0
p(£(...£(i,2,...,10)...)) 0<i<4K 24.85 18.99 21.67 14.12

TABLE 6.3. Times for accessing dynamically created terms of various forms.

row, compiled tries achieve speed-ups of 4 times over tries without code. However,
when the common prefix measure is low, the performance of compiled tries is slightly
slower than that of interpreted tries, especially for terms that contain structures. In
the case of p(£(:,2,...,10)) the slowdown is due to the fact that compiled tries
effectively perform the transformation p(£(2,2,...,10)) :- p(i,2,...,10). so
that variables within the £/10 structure lie below the last choice point. These
variables must be present as cells within the choice point and must also be trailed.
In contrast, the other methods recreate the £/10 structures on the heap. A second
point is that for a binary tree, compiled tries will execute about twice the number
of choice point instructions as the other methods. (Compiled tries will execute a
choice point instruction for every edge of the tree, while the other methods will
execute an instruction for every leaf of the tree). However this trade-off of choice
points for binding generally seems to be beneficial, according to results in [5] for
static code.

The Effects of Dynamic Compilation on Answer Check/Insert. Having compared
the performance of accessing compiled and interpreted answers we next measure
the time required for creating the trie data structures. Clearly creation time is a
critical factor since the code generation phase is performed during query evaluation.
Tables 6.4 and 6.5 present times for completing tables with and without the code

| Length of Chain || 1K | 2K [ 4K | 8K | 16K [ 32K | 64K |
Interpreted Tries || .05 | .10 | .19 | .37 | .74 | 1.50 | 3.11
Compiled Tries .05 | .11 | .21 | 40| .81 | 1.56 | 3.18

TABLE 6.4. Table creation times with and without compilation (using left recursion).

generation phase using the left (Figure 6.1(a)) and right recursive (Figure 6.1(b))
transitive closure predicates on Datalog chains. As the times show, the extra code



20

generation phase incurs only a minimal overhead (less than 5%) to the table creation
process. We note that in these benchmarks no answers from completed tables are

| Length of Chain [| 128 | 256 | 512 | 768 [ 1K | 1.5K |

Interpreted Tries || .13 | .62 | 2.70 | 6.34 | 11.25 | 26.16
Compiled Tries 18 | .66 | 2.73 | 6.36 | 11.31 | 27.19

TABLE 6.5. Table creation times with and without compilation (using right recursion).

ever used; they thus provide an upper-bound of the actual cost of code generation.
In cases where the derivation of answers for a table involves resolution with answers
from other already completed tables, the overhead from code generation is usually
balanced by the speedup in the time to access these answers.

6.4. Analysis of Space Requirements

In this section we analyze space usage on a practical example. In [11] it was shown
that model checking of concurrent systems can be implemented using XSB’s tabling.
Furthermore, it was shown that the resulting system is comparable in both time
and space to systems that have been specially designed for model checking.

Table 6.6 compares either the number of trie nodes (in trie-based methods) or the
summed term size of calls and answers (in the hash-based methods) using various
table access methods. In particular, hash-based tables are compared to trie-based
tables, both with and without substitution factoring. The programs analyzed are
sieve, which traverses the states for a concurrent system in which a generator
process and six tester processes communicate along a linear chain; and leader
which verifies that a leader election algorithm will always choose a unique leader in
a two process system. The information in Table 6.6 was obtained in two steps. The
first step evaluated the queries in order to construct completed tables for leader
and sieve. The space requirements of each configuration of table access methods
was then determined by XSB programs that analyzed the completed tables. We
note that the sizes of these examples are limited by the analysis programs, rather
than by the underlying engine.

| Table Access Method || sieve | leader
Number of Calls 1 2022
Number of Returns 3089 3083
Size of Calls (hashing) 4 | 214873
Size of Returns (hashing, no substitution factoring) || 235224 | 641818
Size of Returns (hashing, substitution factoring) 225957 | 324648
Size of Calls (tries) 4| 62216
Size of Returns (tries, no substitution factoring) 63347 62625
Size of Returns (tries, substitution factoring) 63343 58740

TABLE 6.6. Sizes of Hashed Terms and Tries with and without Substitution Factoring



21

As presented in [11], a state of a concurrent system can be represented as a
logical term. Such a term may be lengthy, but “similar” states may share a common
prefix when represented as terms. Table 6.6 reflects this sharing through the size
reduction of the trie-based methods over the hash-based methods. In leader, highly
instantiated tabled subgoals are called, so that substitution factoring provides a
significant reduction in space requirements for hashing. Much of the instantiated
portion of these subgoals, however, occurs in their leftmost prefix. As a result,
substitution factoring leads to smaller space savings for the tries, since the leftmost
prefix is factored into the top of a trie. However, if substitution factoring is not used,
the top of a trie will need to be traversed at each answer check/insert operation and
each answer backtracking operation, so that substitution factoring has a beneficial
effect on the execution time of leader (this effect is not measured in this section).

Table 6.6 measures the sizes of hashed terms and of tries, but does not indicate
how much space the tables will use in a functioning system. To obtain this informa-
tion, indexing must be taken into account, along with the actual space requirements
for terms which may vary according to whether the terms are compiled or inter-
preted. Disregarding index sizes for a moment, the actual space requirements of the
terms themselves can be easily approximated using the following assumptions. We
assume that each constant, variable or function symbol of hashed term requires 1
word when interpreted. When hashed answer tables are compiled, we assume that
two words are required per symbol (as in the WAM). We further note that in-
terpreted tries require 4 words per node and that compiled answer tries require 5
words per node. Table 6.7 indicates the approximate space requirements, in words,
for the various tabling methods on model-checking examples.

| Table Access Method || sieve | leader |
Interpreted hashing, no substitution factoring || 235228 856691
Interpreted hashing, substitution factoring 225961 539521
Compiled hashing, no substitution factoring 468452 | 1498509
Compiled hashing, substitution factoring 451918 | 864169
Interpreted tries, no substitution factoring 253404 | 499364
Interpreted tries, substitution factoring 253388 | 483824
Compiled tries, no substitution factoring 316755 | 619205
Compiled tries, substitution factoring 316735 542564

TABLE 6.7. Approximate Space Requirements in Words, for Various Table Access
Configurations (Not Including Indexing Space)

Table 6.7 indicates that (interpreted) tries with substitution factoring give the
best space utilization for storage of tabled subgoals and answers, disregarding index-
ing. Somewhat surprisingly, however, the tries require almost no space for indexing
as measured via hashing instructions (as defined in Section 5) — in XSB only 16
words are required over both examples. It can be expected that hash-based meth-
ods will require far more index space for even moderate discrimination of terms, so
at least for this example, tries outperform hash-based methods in terms of space.



22

6.5. Tries for Asserted Terms

Compared to asserted code, compiled tries provide good speed for answer back-
tracking as presented in Section 6.3. They can also utilize space well compared to
compiled hash-based methods as shown in the previous section. When unit clauses
are dynamically compiled and asserted, their internal representation resembles that
of hashed, compiled, answer clauses. It is thus natural to explore the use of tries
to store dynamically created facts outside of tabling.

As a last set of benchmarks, we compare the time needed to assert a set of terms
(using Prolog’s assert/1) with the time needed to create them as compiled tries.
Tables 6.8, and 6.9 present times to create unary and 10-ary Datalog facts. In

| Size [ 4K | 5K | 6K | 7K | 8K | 9K [ 10K |
Asserted Code (XSB) 1.51 | 1.98 | 2.35 | 2.84 | 3.18 | 3.64 | 3.96
Compiled Tries (XSB) Jd0 | 12 | 15 | 17 | 21 | .25 | .28

| Asserted Code (Quintus) || 1.73 [ 2.15 | 2.58 | 3.01 | 3.50 | 3.86 | 4.35 |

TABLE 6.8. Creation times for unary Datalog data (p(#), 1 < i < Size).

addition, Table 6.10 shows times to create a unary fact used in Table 6.8 when its
argument is nested in a unary function symbol.

| Size [ 4K | 5K | 6K | 7K | 8K [ 9K | 10K ]
Asserted Code (XSB) ][ 2.45 | 3.30 [ 4.08 [ 4.95 [ 6.06 | 6.85 | 7.86
Compiled Tries (XSB) 24 | 33 | 41 | 49 | 52 | 66 | .76
| Asserted Code (Quintus) || 1.85 | 2.28 | 2.66 | 3.12 | 3.72 | 4.17 | 4.48 |

TABLE 6.9. Creation times for 10-ary Datalog data (p(4,2,...,10), 1 < < Size).

As shown in Tables 6.8 and 6.9, storing terms as code in trie-based answer tables
is about 10-20 times faster than using Prolog’s assert/1. Note that all these
terms are perfectly indexed on their first argument. As soon as the discriminating
information is nested within structures and hash collisions start to occur with the
use of assert/1, storing the terms in the trie-based table structures exhibits an
even bigger performance improvement. Table 6.10 shows that the use of tables for
storing dynamic terms in the presence of hash collisions is faster than assert by
two orders of magnitude. Similar results were obtained in BIMprolog release 4.1.0.
Given the competitive retrieval speed of tries, their complete discrimination, and
their superior creation time, they are a useful alternative to asserted code for sets of
dynamic data when the order of the terms in the sets need not be preserved. Because
of these advantages dynamic unit clauses can be asserted in XSB (Version 1.7
and later) using either conventional assert/1 or assert/1 using trie-based data
structures. The choice is specified on a predicate basis, by using a directive such
as :- index(p/1,trie). Dynamic code asserted using trie-based data structures
can be retracted or abolished just as with conventional dynamic code using Prolog’s
retract/1 or abolish/1. Execution of asserted code uses the same instructions as
answer backtracking in completed tries.



23

| Size | 4K | 5K | 6K [ 7K | 8K | 9K | 10K |
Asserted Code (XSB) 8.00 | 12.44 [ 18.36 | 24.09 | 31.40 | 39.45 | 49.02
Compiled Tries (XSB) 15 .19 21 .26 .28 .34 .35

| Asserted Code (Quintus) || 8.62 | 13.38 | 18.67 | 25.00 | 31.22 [ 39.48 | 48.25 |

TABLE 6.10. Creation times for unary structured data (p(£(2)), 1 < i < Size).

7. DISCUSSION

The trie-based approach with which we address the table access problem has im-
portant properties in its ability to index data of different forms, and in its single
pass check/insert operation. When extended with substitution factoring this ap-
proach provides dynamic argument reduction, and indeed, reductions within com-
plex terms. Further, when tries are dynamically compiled, their access time and
space usage compares well with WAM code, and the amount of binding on back-
tracking can in some cases be greatly reduced.

This approach reflects the dynamic nature of subgoal and answer creation, a
characteristic which distinguishes the results of this article from other recent work.
Fundamentally, tabling tries must partition dynamically changing sets of terms. In
contrast, the unification factoring automata of [5] compiled a static set of program
clause heads into a trie-like structure for which optimality properties were proven.
Finally, as mentioned in Section 3, both the dynamic nature of substitution factor-
ing and its applicability to non-Datalog programs separates it from static methods
such as NRSU factoring.

As mentioned earlier, our tabling tries are variants of discrimination nets. In
particular, the call and incomplete answer tries can be viewed as discrimination
nets over ground terms. However, the relationship between a completed answer
trie and a discrimination net is a little subtle. First, our completed answer tries are
compiled whereas traditionally discrimination nets have been interpreted. Secondly,
our completed tries perform unification operations (in order to implement asserted
code) whereas discrimination nets do match operations.

Our work is orthogonal to that reported in [13], which described the SLG-WAM
as a whole, but did not examine table access mechanisms and substitution factoring
in depth, or consider compiled tries. While our approach has been developed for
the XSB system, we believe that tabling tries and substitution factoring may also
prove useful to other systems that already have or will incorporate some sort of
tabling.

The concept of trie data structures has been around for a while. In fact, it is the
data structure of choice in high performance automated theorem provers and term
rewriting systems. However seamless adaptation of tries to a WAM engine through
development of techniques for a tight integration (such as substitution factoring,
dynamic compilation) collectively distinguishes our implementation from those used
in the above areas.

Little else has been published concerning algorithms for table access, although
[16] and [18] describe structure-sharing algorithms for tabling in the context of an
evaluation engine. While useful bounds can be derived for the amount of copying
needed by a structure-sharing approach, such approaches may be subject to high
constant overheads, and in any case do not appear suitable for a WAM-based



24

implementation. In general, implementing logic as needed by deductive databases
is a difficult task, and one for which a complete solution — that evaluates in-
memory queries as well as a programming language, and queries to disk-resident
data as well as a database system is not yet at hand. Under various guises,
the table access problem is central to deductive databases. The performance of the
trie-based approach gives reason to expect that it will form a part of future tabled
logic programming systems and deductive databases as it does in present versions

of XSB.

Acknowledgements

The authors thank C. R. Ramakrishnan for his help in the preparation and proofread-
ing of this article, and the anonymous reviewers for their many helpful comments.

This research was supported in part by NSF grants CCR 9711386, 9705998, 9702681,

9510072, 9404921, CDA 9303181, INT 9600598 and 9314412, and by a fellowship

from the K.U. Leuven Research Council.

REFERENCES

1. T. Bachmair, T. Chen, and 1. V. Ramakrishnan. Associative-Commutative Dis-
crimination Nets. In M. C. Gaudel and J. P. Jouannaud, editors, Proceedings of
TAPSOFT’93: jth International Joint Conference on Theory and Practice of Soft-
ware Development, number 668 in LNCS, pages 61 74, Orsay, France, Apr. 1993.
Springer-Verlag.

2. T. Chen, I. V. Ramakrishnan, and R. Ramesh. Multistage Indexing Algorithms for
Speeding Prolog Execution. Software Practice and Ezperience, 24(12):1097 1119,
Dec. 1994.

3. W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM, 43(1):20 74, Jan. 1996.

4. D. Comer and R. Sethi. The Complexity of Trie Index Construction. Journal of
the ACM, 24(3):428 440, July 1977.

5. S. Dawson, C. R. Ramakrishnan, I. V. Ramakrishnan, K. Sagonas, S. Skiena,
T. Swift, and D. S. Warren. Unification Factoring for the Efficient Execution
of Logic Programs. In Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 24T7-258,
San Fransisco, California, Jan. 1995. ACM Press.

P. Graf. Term Indexing. Number 1053 in LNAI. Springer-Verlag, 1996.

7. D. E. Knuth. The Art of Computer Programming: Vol 1 Fundamental Algorithms.
Addison Wesley, 2"? edition, 1973.

8. W. W. McCune. Experiments with Discrimination-Tree Indexing and Path In-
dexing for Term Retrieval. Journal of Automated Reasoning, 9(2):147-167, Oct.
1992.

9. J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman. Argument Re-
duction by Factoring. Theoretical Computer Science, 146(1 & 2):269-310, July
1995.

10. H. J. Ohlbach. Abstraction Tree Indexing for Terms. In Proceedings of the Ninth
European Conference on Artificial Intelligence, pages 479 484, Stockholm, Sweden,
Aug. 1990. Pitman Publishing, London.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

25

Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,
T. Swift, and D. S. Warren. FEfficient Model Checking Using Tabled Resolu-
tion. In O. Grumberg, editor, Proceedings of the 9th International Conference on
Computer-Aided Verification, number 1254 in LNCS, pages 143-154, Haifa, Israel,
July 1997. Springer-Verlag.

R. Ramakrishnan and J. D. Ullman. A Survey of Deductive Database Systems.
Journal of Logic Programming, 23(2):125-149, May 1995.

K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of Fixed-
Order Stratified Logic Programs. ACM Transactions on Programming Languages
and Systems, 20, 1998. To appear.

K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database
Engine. In Proceedings of the ACM SIGMOD International Conference on the
Management of Data, pages 442—-453, Minneapolis, Minnesota, May 1994. ACM
Press.

R. C. Sekar, R. Ramesh, and 1. V. Ramakrishnan. Adaptive Pattern Matching.
SIAM Journal of Computing, 24(6):1207 1234, Dec. 1995.

S. Sudarshan and R. Ramakrishnan. Optimizations of Bottom-Up Evaluation with
Non-Ground Terms. In D. Miller, editor, Proceedings of the 1993 International
Symposium on Logic Programming, pages 557-574, Vancouver, Canada, Oct. 1993.
The MIT Press.

A. Van Gelder. Negation as Failure using Tight Derivations for General Logic
Programs. Journal of Logic Programming, 6(1 & 2):109-134, Jan./Mar. 1989.

E. Villemonte de la Clergerie. TLayer Sharing: an improved Structure-Sharing
Framework. In Conference Record of the Twentieth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 345 359,
Charleston, South Carolina, Jan. 1993.

A. Voronkov. The Anatomy of Vampire: Implementing Bottom-up Procedures
with Code Trees. Journal of Automated Reasoning, 15(2):237-265, Oct. 1995.

D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Report 309, SRI
International, Menlo Park, U.S.A., Oct. 1983.



