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How to Use
This
Document

This document is organized into four major chapters. It begins with a tuto-
rial covering the simpler techniques of programming and operation. New
users should start with the tutorial. The second chapter is an MPI program-
ming primer emphasizing the commonly used routines. Non-standard
extensions to MPI and additional programming capabilities unique to LAM
are separated into a third chapter. The last chapter is an operational refer-
ence. It describes how to configure and start a LAM multicomputer, and how
to monitor processes and messages.

This document is user oriented. It does not give much insight into how the
system is implemented. It does not detail every option and capability of
every command and routine. An extensive set of manual pages cover all the
commands and internal routines in great detail and are meant to supplement
this document.

The reader will note a heavy bias towards the C programming language,
especially in the code samples. There is no Fortran version of this document.
The text attempts to be language insensitive and the appendices contain For-
tran code samples and routine prototypes.

We have kept the font and syntax conventions to a minimum.

code This font is used for things you type on the keyboard or
see printed on the screen. We use it in code sections and
tables but not in the main text.

<symbol> This is a symbol used to abstract something you would
type. We use this convention in commands.
Section Italics are used to cross reference another section in the

document or another document. Italics are also used to
distinguish LAM commands.
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LAM
Architecture

Debugaing

LAM runs on each computer as a single daemon (server) uniquely struc-
tured as a nano-kernel and hand-threaded virtual processes. The nano-kernel
component provides a simple message-passing, rendez-vous service to local
processes. Some of the in-daemon processes form a network communica-
tion subsystem, which transfers messages to and from other LAM daemons
on other machines. The network subsystem adds features such as packetiza-
tion and buffering to the base synchronization. Other in-daemon processes
are servers for remote capabilities, such as program execution and parallel
file access. The layering is quite distinct: the nano-kernel has no connection
with the network subsystem, which has no connection with the servers.
Users can configure in or out services as necessary.

The unique software engineering of LAM is transparent to users and system
administrators, who only see a conventional daemon. System developers
can de-cluster the daemon into a daemon containing only the nano-kernel
and several full client processes. This developers’ mode is still transparent
to users but exposes LAM'’s highly modular components to simplified indi-
vidual debugging. It also reveals LAM's evolution from Trollius, which ran
natively on scalable multicomputers and joined them to a host network
through a uniform programming interface.

cmds, apps, GUIs

MPI, client / server
network msgs

local msgs, client mgmt

Figure 1: LAM’s Layered Design

The network layer in LAM is a documented, primitive and abstract layer on
which to implement a more powerful communication standard like MPI
(PVM has also been implemented).

A most important feature of LAM is hands-on control of the multicomputer.
There is very little that cannot be seen or changed at runtime. Programs
residing anywhere can be executed anywhere, stopped, resumed, killed, and
watched the whole time. Messages can be viewed anywhere on the multi-
computer and buffer constraints tuned as experience with the application
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MPI
Implementation

How to Get LAM

dictates. If the synchronization of a process and a message can be easily dis-
played, mismatches resulting in bugs can easily be found. These and other
services are available both as a programming library and as utility programs
run from any shell.

MPI synchronization boils down to four variables: context, tag, source rank,
and destination rank. These are mapped to LAM’s abstract synchronization
at the network layer. MPI debugging tools interpret the LAM information
with the knowledge of the LAM / MPI mapping and present detailed infor-
mation to MPI programmers.

A significant portion of the MPI specification can be and is implemented
within the runtime system and independent of the underlying environment.

As with all MPI implementations, LAM must synchronize the launch of

MPI applications so that all processes locate each other before user code is
entered. Thenpiruncommand achieves this after finding and loading the
program(s) which constitute the application. A simple SPMD application
can be specified on the mpirun command line while a more complex config-
uration is described in a separate file, called an application schema.

MPI programs developed on LAM can be moved without source code
changes to any other platform that supports MPI.

LAM installs anywhere and uses the shell’s search path at all times to find
LAM and application executables. A multicomputer is specified as a simple
list of machine names in a file, which LAM uses to verify access, start the
environment, and remove it.

LAM is freely available under a GNU license via anonymous ftp from
ftp.osc.edu.
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Programming
Tutorial

LAM / MPI Tutorial Introduction

The example programs in this section illustrate common operations in MPI.
You will also see how to run and debug a program with LAM.

For basic applications, MPI is as easy to use as any other message-passing
library. The first program is designed to run with exactly two processes. One
process sends a message to the other and then both terminate. Enter the fol-
lowing code in trivial.c or obtain the source from the LAM source distribu-
tion (examples/trivial/trivial.c).

/*

* Transmit a message in a two process system.

*/

#include <mpi.h>

#define BUFSIZE 64

int buf[64];

int

main(argc, argv)

int argc;

char *argvl[];

{
int size, rank;
MPI_Status status;

/*
* |nitialize MPI.
*
MPI_Init(&argc, &argv);
/*
* Error check the number of processes.
* Determine my rank in the world group.
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The World of
MPI

Enter and Exit
MPI

Who Am I; Who
Are They?

10

* The sender will be rank 0 and the receiver, rank 1.
*/
MPI_Comm_size(MPI_COMM_WORLD, &size);
if (2 1=size) {
MPI_Finalize();
return(l);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
/*
* As rank 0, send a message to rank 1.
*
if (0 == rank) {
MPI_Send(buf, sizeof(buf), MPI_INT, 1, 11,
MPI_COMM_WORLD);
}
/-k
* As rank 1, receive a message from rank O.
*
else {
MPI1_Recv(buf, sizeof(buf), MPI_INT, 0, 11,
MPI_COMM_WORLD, &status);

}
MPI_Finalize();
return(0);

Note that the program uses standard C program structure, statements, vari-
able declarations and types, and functions.

Processes are represented by a unique “rank” (integer) and ranks are num-
bered 0, 1, 2, ..., N-1. MPI_COMM_WORLD means “all the processes in
the MPI application.” It is called a communicator and it provides all infor-
mation necessary to do message-passing. Portable libraries do more with
communicators to provide synchronization protection that most other mes-
sage-passing systems cannot handle.

As with other systems, two routines are provided to initialize and cleanup
an MPI process:

MPI_Init(int *argc, char ***argv);
MPI_Finalize(void);

Typically, a process in a parallel application needs to know who it is (its
rank) and how many other processes exist. A process finds out its own rank
by calling MPI_Comm_rank().
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Sending
Messages

Receving
Messages
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MPI_Comm_rank(MPI_Comm comm, int *rank);
The total number of processes is returned by MPI_Comm_size().
MPI_Comm_size(MPI_Comm comm, int *size);

A message is an array of elements of a given datatype. MPI supports all the
basic datatypes and allows a more elaborate application to construct new
datatypes at runtime.

A message is sent to a specific process and is marked by a tag (integer) spec-
ified by the user. Tags are used to distinguish between different message
types a process might send/receive. In the example program above, the addi-
tional synchronization offered by the tag is unnecessary. Therefore, any ran-
dom value is used that matches on both sides.

MPI1_Send(void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm);

A receiving process specifies the tag and the rank of the sending process.
MPI_ANY_TAG and MPI_ANY_SOURCE may be used to receive a mes-
sage of any tag and from any sending process.

MPI_Recv(void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm,
MPI_Status *status);

Information about the received message is returned in a status variable. If
wildcards are used, the received message tag is status.MPIl_TAG and the
rank of the sending process is status.MPl_SOURCE.

Another routine, not used in the example program, returns the number of
datatype elements received. Itis used when the number of elements received
might be smaller than number specified to MP1_Recv(). Itis an error to send
more elements than the receiving process will accept.

MPI_Get_count(MPI_Status, &status,
MPI_Datatype dtype, int *nelements);
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Master/ Slave  The following example program is a communication skeleton for a dynam-
Example ically load balanced master/slave application. The source can be obtained
from the LAM source distribution (examples/trivial/ezstart.c). The program
is designed to work with a minimum of two processes: one master and one
slave.

#include <mpi.h>

#define WORKTAG 1

#define DIETAG 2

#define NUM_WORK_REQS 200

static void master();

static void slave();

/*

*  main

* This program is really MIMD, but is written SPMD for
* simplicity in launching the application.

*
int
main(argc, argv)
int argc;
char *argvl];
{
int myrank;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, /* group of everybody */
&myrank); /* 0 thru N-1 */
if (myrank == 0) {
master();
}else {
slave();
MPI_Finalize();
return(0);
}
/*
* master

* The master process sends work requests to the slaves
* and collects results.
*/

static void

master()

{
int ntasks, rank, work;
double result;
MPI_Status status;
MPI_Comm_size(MPI_COMM_WORLD,

&ntasks); [* #processes in app */
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/*
* Seed the slaves.

*/
work = NUM_WORK_REQS; [* simulated work */
for (rank = 1; rank < ntasks; ++rank) {
MPI1_Send(&work, /* message buffer */
1, [* one data item */
MPI_INT, [* of this type */
rank, [* to this rank */
WORKTAG, /* a work message */
MPI_COMM_WORLD); /* always use this */
work--;
}
/*

* Receive a result from any slave and dispatch a new work
* request until work requests have been exhausted.

*/
while (work > 0) {
MPI_Recv(&result, /* message buffer */
1, [* one data item */
MPI_DOUBLE, /* of this type */
MPI_ANY_SOURCE, /*from anybody */
MPI_ANY_TAG, [* any message */
MPI_COMM_WORLD, /* communicator */
&status); [* recv’d msg info */
MPI_Send(&work, 1, MPI_INT, status.MPI_SOURCE,
WORKTAG, MPI_COMM_WORLD);
work--; /* simulated work */
}
/*
* Receive results for outstanding work requests.
*/
for (rank = 1; rank < ntasks; ++rank) {
MPI_Recv(&result, 1, MPI_DOUBLE, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &status);
I* }
* Tell all the slaves to exit.
*
for (rank = 1; rank < ntasks; ++rank) {
MPI_Send(0, 0, MPI_INT, rank, DIETAG,
MPI_COMM_WORLD);
}
}
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/*
*  slave
* Each slave process accepts work requests and returns

* results until a special termination request is received.
*/

static void

slave()

{
double result;
int work;
MPI_Status status;
for (;;) {

MPI_Recv(&work, 1, MPI_INT, 0, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);
/*
* Check the tag of the received message.
*
/
if (status.MP1_TAG == DIETAG) {
return;
}

sleep(2);
result = 6.0; /* simulated result */

MPI_Send(&result, 1, MPI_DOUBLE, 0, 0,
MPI_COMM_WORLD);

}

The workings of ranks, tags and message lengths should be mastered before
constructing serious MPI applications.
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Before running LAM you must establish certain environment variables and
search paths for your shell. Add the following commands or equivalent to
your shell start-up file (.cshrc, assuming C shell). Do not add these to your
Jogin as they would not be effective on remote machines wgies used

to start LAM.

setenv LAMHOME <LAM installation directory>
set path = ($path $LAMHOME/bin)

The local system administrator, or the person who installed LAM, will know
the location of the LAM installation directory. After editing the shell start-
up file, invoke it to establish the new values. This is not necessary on subse-
guent logins to the UNIX system.

% source .cshrc

Many LAM commands require one or more nodeids. Nodeids are specified
on the command line as n<list>, where <list> is a list of comma separated
nodeids or nodeid ranges.

nl
nl,3,5-10

The mnemonic ‘h’ refers to the local node where the command is typed (as
in ‘here”).

Any native C compiler is used to translate LAM programs for execution. All
LAM runtime routines are found in a few libraries. LAM provides a wrap-
ping command calledccwhich invokes cc with the proper header and
library directories, and is used exactly like the native cc.

% hcc -o trivial trivial.c -lmpi

The major, internal LAM libraries are automatically linked. The MPI library

is explicitly linked. Since LAM supports heterogeneous computing, it is up
to the user to compile the source code for each of the various CPUs on their
respective machines. After correcting any errors reported by the compiler,
proceed to starting the LAM session.

Before starting LAM, the user specifies the machines that will form the mul-
ticomputer. Create a host file listing the machine names, one on each line.
An example file is given below for the machines “ohio” and “osc”. Lines
starting with the # character are treated as comment lines.
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# a 2-node LAM
ohio
0Ssc

The first machine in the host file will be assigned nodeid 0, the second
nodeid 1, etc. Now verify that the multicomputer is ready to run LAM. The
recontool checks if the user has access privileges on each machine in the
multicomputer and if LAM is installed and accessible.

% recon -v <host file>

If recon does not report a problem, proceed to start the LAM session with
thelamboottool.

% lamboot -v <host file>

The -v (verbose) option causes lamboot to report on the start-up process as
it progresses. You should return to the your own shell's prompt. LAM pre-
sents no special shell or interface environment.

Even if all seems well after start-up, verify communication with each node.
tping is a simple confidence building command for this purpose.

% tping nO

Repeat this command for all nodes or ping all the nodes at once with the
broadcast mnemonic, N. tping responds by sending a message between the
local node (where the user invoked tping) and the specified node. Successful
execution of tping proves that the target node, nodes along the route from
the local node to the target node, and the communication links between them
are working properly. If tping fails, press Control-Z, terminate the session
with thewipetool and then restart the system. Seeminating the Session

To execute a program, use timpiruncommand. The first example program
is designed to run with two processes. The -c <#> option runs copies of the
given program on nodes selected in a round-robin manner.

% mpirun -v -c 2 trivial

The example invocation above assumes that the program is locatable on the
machine on which it will run. mpirun can also transfer the program to the
target node before running it. Assuming your multicomputer for this tutorial

is homogeneous, you can use the -s h option to run both processes.

% mpirun -v -c 2 -s h trivial
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If the processes executed correctly, they will terminate and leave no traces.
If you want more feedback, try using tprintf() functions within the program.

The first example program runs too quickly to be monitored. Try changing
the tag in the call to MPI_Recv() to 12 (from 11). Recompile the program
and rerun it as before. Now the receiving process cannot synchronize with
the message from the send process because the tags are unequal. Look at the
status of all MPI processes with thgitaskcommand.

% mpitask
TASK (G/L) FUNCTION PEER|ROOT TAG COMM COUNT DATATYPE

0/0 trivial Finalize
1/1 trivial Recv 0/0 12 WORLD 64 INT

You will notice that the receiving process is blocked in a call to MPI_Recv()

- a synchronizing message has not been received. From the code we know
this is process rank 1 in the MPI application, which is confirmed in the first
column, the MPI task identification. The first number is the rank within the
world group. The second number is the rank within the communicator being
used by MPI_Recv(), in this case (and in many applications with simple
communication structure) also the world group. The specified source of the
message is likewise identified. The synchronization tag is 12 and the length
of the receive buffer is 64 elements of type MPI_INT.

The message was transferred from the sending process to a system buffer en
route to process rank 1. MPI_Send() was able to return and the process has
called MPI_Finalize(). System buffers, which can be thought of as message
gueues for each MPI process, can be examined witimfiensgcommand.

% mpimsg
SRC (G/L) DEST (G/L) TAG COMM COUNT DATATYPE MSG
0/0 1/1 11 WORLD 64 INT ni,#0

The message shows that it originated from process rank 0 using
MPI_COMM_WORLD and that it is waiting in the message queue of pro-
cess rank 1, the destination. The tag is 11 and the message contains 64 ele-
ments of type MPI_INT. This information corresponds to the arguments
given to MPI_Send(). Since the application is faulty and will never com-
plete, we will kill it with thelamcleancommand.

% lamclean -v
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The LAM session should be in the same state as after invoking lamboot. You
can also terminate the session and restart it with lamboot, but this is a much
slower operation. You can now correct the program, recompile and rerun.

Terminating the  To terminate LAM, use th&ipetool. The host file argument must be the
Session same as the one given to lamboot.

% wipe -v <host file>
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MPI Programming Primer

Through Message Passing Interface (MPI) an application views its parallel
environment as a static group of processes. An MPI process is born into the
world with zero or more siblings. This initial collection of processes is
called the world group. A unique number, called a rank, is assigned to each
member process from the sequence 0 through N-1, where N is the total num-
ber of processes in the world group. A member can query its own rank and
the size of the world group. Processes may all be running the same program
(SPMD) or different programs (MIMD). The world group processes may
subdivide, creating additional subgroups with a potentially different rank in
each group.

A process sends a message to a destination rank in the desired group. A pro-
cess may or may not specify a source rank when receiving a message. Mes-
sages are further filtered by an arbitrary, user specified, synchronization
integer called a tag, which the receiver may also ignore.

Animportant feature of MPI is the ability to guarantee independent software
developers that their choice of tag in a particular library will not conflict
with the choice of tag by some other independent developer or by the end
user of the library. A further synchronization integer called a context is allo-
cated by MPI and is automatically attached to every message. Thus, the four
main synchronization variables in MPI are the source and destination ranks,
the tag and the context.

A communicator is an opaque MPI data structure that contains information
on one group and that contains one context. Acommunicator is an argument
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to all MPI communication routines. After a process is created and initializes
MPI, three predefined communicators are available.

MPI_COMM_WORLD the world group
MPI_COMM_SELF group with one member, myself

MPI_COMM_PARENT an intercommunicator between two groups:
my world group and my parent group (See
Dynamic Processes

Many applications require no other communicators beyond the world com-
municator. If new subgroups or new contexts are needed, additional commu-
nicators must be created.

MPI constants, templates and prototypes are in the MPI header file, mpi.h.

#include <mpi.h>
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MPI_Init Initialize MPI state.

MPI_Finalize Clean up MPI state.

MPI1_Abort Abnormally terminate.
MPI_Comm_size Get group process count.
MPI_Comm_rank Get my rank within process group.
MPI_Initialized Has MPI been initialized?

The first MPI routine called by a program must be MPI_Init(). The com-
mand line arguments are passed to MPI_Init().

MPI_Init(int *argc, char **argv([]);
A process ceases MPI operations with MPI_Finalize().
MPI_Finalize(void);

In response to an error condition, a process can terminate itself and all mem-
bers of a communicator with MPI_Abort(). The implementation may report
the error code argument to the user in a manner consistent with the underly-
ing operation system.

MPI1_Abort (MPI_Comm comm, int errcode);

Two numbers that are very useful to most parallel applications are the total
number of parallel processes and self process identification. This informa-
tion is learned from the MPI_COMM_WORLD communicator using the
routines MPI_Comm_size() and MPI_Comm_rank().

MPI_Comm_size (MPI_Comm comm, int *size);
MPI_Comm_rank (MPI_Comm comm, int *rank);

Of course, any communicator may be used, but the world information is
usually key to decomposing data across the entire parallel application.
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MPI_Send Send a message in standard mode.
MPI_Recv Receive a message.
MPI1_Get_count Count the elements received.
MPI1_Probe Wait for message arrival.
MPI_Bsend Send a message in buffered mode.
MPI_Ssend Send a message in synchronous mode.
MPI_Rsend Send a message in ready mode.
MPI_Buffer_attach Attach a buffer for buffered sends.
MPI_Buffer_detach Detach the current buffer.
MPI_Sendrecv Send in standard mode, then receive.
MPI_Sendrecv_replace Send and receive from/to one area.
MPI_Get_elements Count the basic elements received.

This section focuses on blocking, point-to-point, message-passing routines.
The term “blocking” in MPI means that the routine does not return until the
associated data buffer may be reused. A point-to-point message is sent by
one process and received by one process.

The issues of flow control and buffering present different choices in design-
ing message-passing primitives. MPI does not impose a single choice but
instead offers four transmission modes that cover the synchronization, data
transfer and performance needs of most applications. The mode is selected
by the sender through four different send routines, all with identical argu-
ment lists. There is only one receive routine. The four send modes are:

standard The send completes when the system can buffer the mes-
sage (itis not obligated to do so) or when the message is
received.

buffered The send completes when the message is buffered in
application supplied space, or when the message is
received.

synchronous The send completes when the message is received.

ready The send must not be started unless a matching receive

has been started. The send completes immediately.

Standard mode serves the needs of most applications. A standard mode mes-
sage is sent with MP1_Send().

MPI1_Send (void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm);
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An MPI message is not merely a raw byte array. It is a count of typed ele-
ments. The element type may be a simple raw byte or a complex data struc-
ture. SedMessage Datatypes

The four MPI synchronization variables are indicated by the MPI1_Send()
parameters. The source rank is the caller’s. The destination rank and mes-
sage tag are explicitly given. The context is a property of the communicator.

As a blocking routine, the buffer can be overwritten when MP1_Send()
returns. Although most systems will buffer some number of messages, espe-
cially short messages, without any receiver, a programmer cannot rely upon
MPI1_Send() to buffer even one message. Expect that the routine will not
return until there is a matching receiver.

A message in any mode is received with MP1_Recv().

MPI1_Recv (void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm,
MPI_Status *status);

Again the four synchronization variables are indicated, with source and des-
tination swapping places. The source rank and the tag can be ignored with
the special values MPI_ANY_SOURCE and MPI_ANY_TAG. If both these
wildcards are used, the next message for the given communicator is
received.

An argument not present in MPI_Send() is the status object pointer. The sta-
tus object is filled with useful information when MPI_Recv() returns. If the
source and/or tag wildcards were used, the actual received source rank and/
or message tag are accessible directly from the status object.

status.MPI_SOURCE the sender’s rank
status.MPI_TAG the tag given by the sender

It is erroneous for an MPI program to receive a message longer than the
specified receive buffer. The message might be truncated or an error condi-
tion might be raised or both. Itis completely acceptable to receive a message
shorter than the specified receive buffer. If a short message may arrive, the
application can query the actual length of the message with
MPI1_Get_count().

MPI1_Get_count (MPI_Status *status,
MPI1_Datatype dtype, int *count);
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The status object and MPI datatype are those provided to MPI_Recv(). The
count returned is the number of elements received of the given datatype. See
Message Datatypes

Probe Sometimes it is impractical to pre-allocate a receive buffer. MP1_Probe()
synchronizes a message and returns information about it without actually
receiving it. Only synchronization variables and the status object are pro-
vided as arguments. MPI_Probe() does not return until a message is syn-
chronized.

MPI_Probe (in source, int tag, MPI_Comm comm,
MPI_Status *status);

After a suitable message buffer has been prepared, the same message
reported by MPI_Probe() can be received with MPI_Recv().
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MPI_Isend Begin to send a standard message.
MPI_Irecv Begin to receive a message.
MPI_Wait Complete a pending request.
MPI_Test Check or complete a pending request.
MPI_lprobe Check message arrival.

MPI_Ibsend Begin to send a buffered message.
MPI_Issend Begin to send a synchronous message.
MPI_Irsend Begin to send a ready message.
MPI_Request_free Free a pending request.

MPI1_Waitany Complete any one request.

MPI_Testany Check or complete any one request.
MPI_Waitall Complete all requests.

MPI_Testall Check or complete all requests.
MPI1_Waitsome Complete one or more requests.
MPI1_Testsome Check or complete one or more requests.
MPI_Cancel Cancel a pending request.
MPI_Test_cancelled Check if a pending request was cancelled.

The term “nonblocking” in MPI means that the routine returns immediately
and may only have started the message transfer operation, not necessarily
completed it. The application may not safely reuse the message buffer after
a nonblocking routine returns. The four blocking send routines and one
blocking receive routine all have nonblocking counterparts. The nonblock-
ing routines have an extra output argument - a request object. The request is
later passed to one of a suite of completion routines. Once an operation has
completed, its message buffer can be reused.

The intent of nonblocking message-passing is to start a message transfer at
the earliest possible moment, continue immediately with important compu-
tation, and then insist upon completion at the latest possible moment. When
the earliest and latest moment are the same, nonblocking routines are not
useful. Otherwise, a non-blocking operation on certain hardware could
overlap communication and computation, thus improving performance.

MPI_Isend() begins a standard nonblocking message send.

MPI_lIsend (void *buf, int count, MPI_Datatype
dtype, int dest, int tag, MPI_Comm comm,
MPI_Request *req);
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Likewise, MPI_lIrecv() begins a nonblocking message receive.

MPI_lIrecv (void *buf, int count, MPI_Datatype
dtype, int source, int tag, MPI_Comm comm,
MPI_Request *req);

Both routines accept arguments with the same meaning as their blocking
counterparts. When the application wishes to complete a nonblocking send
or receive, a completion routine is called with the corresponding request.
The Test() routine is nonblocking and the Wait() routine is blocking. Other
completion routines operate on multiple requests.

MPI1_Test (MPI_Request *req, int *flag,
MPI_Status *status);

MPI_Wait (MPl_Request *req, MPI_Status *status);

MPI_Test() returns a flag in an output argument that indicates if the request
completed. If true, the status object argument is filled with information. If
the request was a receive operation, the status object is filled as in
MPI_Recv(). Since MPI_Wait() blocks until completion, the status object
argument is always filled.

MPI_Iprobe() is the nonblocking counterpart of MP1_Probe(), but it does
not return a request object since it does not begin any message transfer that
would need to complete. It sets the flag argument which indicates the pres-
ence of a matching message (for a subsequent receive).

MPI_lprobe (int source, int tag, MPI_Comm comm,
int *flag, MPI_Status *status);

Programmers should not consider the nonblocking routines as simply fast
versions of the blocking calls and therefore the preferred choice in all appli-
cations. Some implementations cannot take advantage of the opportunity to
optimize performance offered by the nonblocking routines. In order to pre-
serve the semantics of the message-passing interface, some implementa-
tions may even be slower with nonblocking transfers. Programmers should
have a clear and substantial computation overlap before considering non-
blocking routines.
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MPI_Type_vector
MPI_Type_struct
MPI_Address
MPI_Type_commit
MPI1_Pack
MPI1_Unpack
MPI_Pack_size

MPI_Type_continuous
MPI_Type_hvector
MPI_Type_indexed
MPI_Type_hindexed
MPI_Type_extent
MPI_Type_size
MPI_Type_Ib
MPI_Type_ub
MPI_Type_free

Create a strided homogeneous vector.
Create a heterogeneous structure.

Get absolute address of memory location.
Use datatype in message transfers.

Pack element into contiguous buffer.
Unpack element from contiguous buffer.
Get packing buffer size requirement.

Create contiguous homogeneous array.
Create vector with byte displacement.

Create a homogeneous structure.

Create an index with byte displacements.
Get range of space occupied by a datatype.
Get amount of space occupied by a datatype.
Get displacement of datatype’s lower bound.
Get displacement of datatype’s upper bound.
Free a datatype.

Message Heterogeneous computing requires that message data be typed or described
Datatypes Somehow so that its machine representation can be converted as necessary
between computer architectures. MPI can thoroughly describe message
datatypes, from the simple primitive machine types to complex structures,
arrays and indices.

The message-passing routines all accept a datatype argument, whose C
typedefis MPI_Datatype. For example, recall MPI_Send(). Message data is
specified as a number of elements of a given type.

Several MPI_Datatype values, covering the basic data units on most com-
puter architectures, are predefined:

MPI_CHAR signed char
MPI_SHORT signed short
MPIL_INT signed int

MPI1_LONG signed long

MPI_UNSIGNED_ CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long
MPI_FLOAT float

unsigned char
unsigned short
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MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE a raw byte

The number of bytes occupied by these basic datatypes follows the corre-
sponding C definition. Thus, MPI_INT could occupy four bytes on one
machine and eight bytes on another machine. A message count of one
MPI_INT specified by both sender and receiver would, in one direction,
require padding and always be correct. In the reverse direction, the integer
may not be representable in the lesser number of bytes and the communica-
tion will fail.

Derived datatypes are built by combining basic datatypes, or previously
built derived datatypes. A derived datatype describes a memory layout
which consists of multiple arrays of elements. A generalization of this capa-
bility is that the four varieties of constructor routines offer more or less con-
trol over array length, array element datatype and array displacement.

contiguous one array length, no displacement, one datatype

vector one array length, one displacement, one datatype

indexed multiple array lengths, multiple displacements, one
datatype

structure multiple everything

Consider a two dimensional matrix with R rows and C columns stored in
row major order. The application wishes to communicate one entire column.
A vector derived datatype fits the requirement.

MPI_Type_Vector (int count, int blocklength,
int stride, MPI_Datatype oldtype,
MPI_Datatype *newtype);

Assuming the matrix elements are of MPI_INT, the arguments for the stated
requirement would be:

int R, C;
MPI_Datatype newtype;
MPI_Type_vector(R, 1, C, MPI_INT, &newtype);
MPI1_Type_commit(&newtype);

The count of blocks (arrays) is the number of elements in a column (R).
Each block contains just one element and the elements are strided (dis-
placed) from each other by the number of elements in a row (C).
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blklen (#elements)

NI Nl Bl

| 4

displacement (#elements)
Figure 2: Strided Vector Datatype

An arbitrary record whose template is a C structure is a common message
form. The most flexible MPI derived datatype, the structure, is required to
describe the memory layout.

MPI1_Type_struct (int count, int blocklengths]],
MPI_Aint displacements[], MPI_Datatype
dtypes[], MP|_Datatype *newtype);

In the following code fragment, a C struct of diverse fields is described with
MPI_Type_struct() in the safest, most portable manner.

/*

* non-trivial structure

*

struct cell {
double energy;
char flags;
float coord[3];

2
/*
* We want to be able to send arrays of this datatype.
*
struct cell cloud[2];
/*
* new datatype for cell struct
*
/
MPI_Datatype celltype;

1. Note that this datatype is not sufficient to send multiple columns
from the matrix, since it does not presume the final displacement
between the last element of the first column and the first element of
the second column. One solution is to use MPI_Type_struct() and
MPI_UB. Seé&Structure Datatype
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int blocklengths[4] = {1, 1, 3, 1};

MPI_Aint base;

MPI_Aint displacements[4];

MPI_Datatype types[4] = {MPI_DOUBLE, MPI_CHAR,

MPI_FLOAT, MPI_UB};

MPI1_Address(&cloud[0].energy, &displacement[0]);
MPI1_Address(&cloud[0].flags, &displacement[1]);
MPI1_Address(&cloud[0].coord, &displacement[2]);
MPI1_Address(&cloud[1].energy, &displacement[3]);

base = displacement[0];
for (i = 0; i < 4; ++i) displacement[i] -= base;
MPI_Type_struct(4, blocklengths, displacements, types,

&celltype);
MPI1_Type_commit(&celltype);

The displacements in a structure datatype are byte offsets from the first stor-
age location of the C structure. Without guessing the compiler’s policy for
packing and alignment in a C structure, the MPI_Address() routine and
some pointer arithmetic are the best way to get the precise values.
MPI_Address() simply returns the absolute address of a location in memory.
The displacement of the first element within the structure is zero.

blklen (#elements)

| v | v v v
BN

displacement (#bytes)
Figure 3: Struct Datatype

When transferring arrays of a given datatype (by specifying a count greater
than 1 in MPI_Send(), for example), MPI assumes that the array elements
are stored contiguously. If necessary, a gap can be specified at the end of the
derived datatype memory layout by adding an artificial element of type
MPI1_UB, to the datatype description and giving it a displacement that
extends to the first byte of the second element in an array.

MPI1_Type_Commit() separates the datatypes that will be used to transfer
messages from the intermediate ones that are scaffolded on the way to some
very complicated datatype. A derived datatype must be committed before
being used in communication.
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The description of a derived datatype is fixed after creation at runtime. If any
slight detail changes, such as the blocklength of a particular field in a struc-
ture, a new datatype is required. In addition to the tedium of creating many
derived datatypes, a receiver may not know in advance which of a nearly
identical suite of datatypes will arrive in the next message. MPI’s solution

is packing and unpacking routines that incrementally assemble and disas-
semble a contiguous message buffer. The packed message has the special
MPI datatype, MPI_PACKED, and is transferred with a count equal to its
length in bytes.

MPI1_Pack_size (int incount, MPI_Datatype dtype,
MPI_Comm comm, int *size);

MPI1_Pack_size() returns the packed message buffer size requirement for a
given datatype. This may be greater than one would expect from the type
description due to hidden, implementation dependent packing overhead.

MPI_Pack (void *inbuf, int incount, MPI_Datatype
dtype, void *outbuf, int outsize,
int *position, MPI_Comm comm);

incount (#elements)

| v
* position

21?20?2220 ??2?]?1??]?1??]? ?

outcount (#bytes)
Figure 4: Packed Datatype

Contiguous blocks of homogeneous elements are packed one at a time with
MPI1_Pack(). After each call, the current location in the packed message
buffer is updated. The “in” data are the elements to be packed and the “out”
data is the packed message buffer. The outsize is always the maximum size
of the packed message buffer, to guard against overflow.
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MPI_Unpack (void *inbuf, int insize,
int *position, void *outbuf, int outcount,
MPI1_Datatype datatype, MPl_Comm comm);

MPI1_Unpack() is the natural reverse of MPI_Pack() where the “in” data is
the packed message buffer and the “out” data are the elements to be
unpacked.

Consider a networking application that is transferring a variable length mes-
sage consisting of a count, several (count) Internet addresses as four byte
character arrays and an equal number of port numbers as shorts.

#define MAXN 100
unsigned char addrs[MAXN][4];
short ports[MAXN];

In the following code fragment, a message is packed and sent based on a
given count.

unsigned int membersize, maxsize;
int position;

int nhosts;

int dest, tag;

char *puffer;

/*

* Do this once.

*

MPI_Pack_size(1, MPI_INT, MPI_COMM_WORLD, &membersize);

maxsize = membersize;

MPI_Pack_size(MAXN * 4, MPI_UNSIGNED_CHAR, MPI_COMM_WORLD,
&membersize);

maxsize += membersize;

MPI1_Pack_size(MAXN, MPI_SHORT, MPI_COMM_WORLD, &membersize);

maxsize += membersize;

buffer = malloc(maxsize);

/*

* Do this for every new message.

*/

nhosts = /* some number less than MAXN */ 50;

position = 0;

MPI_Pack(nhosts, 1, MPI_INT, buffer, maxsize, &position,
MPI_COMM_WORLD);

MPI_Pack(addrs, nhosts * 4, MPI_UNSIGNED_CHAR, buffer,
maxsize, &position, MPI_COMM_WORLD);

MPI_Pack(ports, nhosts, MPI_SHORT, buffer, maxsize,
&position, MPI_COMM_WORLD);

MPI_Send(buffer, position, MPI_PACKED, dest, tag,
MPI_COMM_WORLD);
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A buffer is allocated once to contain the maximum size of a packed mes-
sage. In the following code fragment, a message is received and unpacked,
based on a count packed into the beginning of the message.

int SIC;
int msgsize;
MPI_Status status;

MPI1_Recv(buffer, maxsize, MPI_PACKED, src, tag,
MPI_COMM_WORLD, &status);

position = 0;

MPI_Get_count(&status, MPI_PACKED, &msgsize);

MPI_Unpack(buffer, msgsize, &position, &nhosts, 1, MPIl_INT,
MPI_COMM_WORLD);

MPI_Unpack(buffer, msgsize, &position, addrs, nhosts * 4,
MPI_UNSIGNED_CHAR, MPI_COMM_WORLD);

MPI_Unpack(buffer, msgsize, &position, ports, nhosts,
MPI_SHORT, MPI_COMM_WORLD);
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MPI_Bcast
MPI1_Gather
MPI1_Scatter
MPI_Reduce

MPI_Barrier
MPI_Gatherv
MPI_Scatterv
MPI_Allgather
MPI_Allgatherv
MPI1_Alitoall
MPI_Alltoallv
MPI_Op_create
MPI_Allreduce

MPI_Reduce_scatter

MPI_Scan

Send one message to all group members.
Receive and concatenate from all members.
Separate and distribute data to all members.
Combine messages from all members.

Wait until all group members reach this point.
Vary counts and buffer displacements.
Vary counts and buffer displacements.
Gather and then broadcast.

Variably gather and then broadcast.
Gather and then scatter.

Variably gather and then scatter.
Create reduction operation.

Reduce and then broadcast.

Reduce and then scatter.

Perform a prefix reduction.

Collective operations consist of many point-to-point messages which hap-
pen more or less concurrently (depending on the operation and the internal
algorithm) and involve all processes in a given communicator. Every pro-
cess must call the same MPI collective routine. Most of the collective oper-
ations are variations and/or combinations of four primitives: broadcast,

gather, scatter and reduce.

MPI_Bcast (void *buf, int count, MPI_Datatype
dtype, int root, MPI_Comm comm);

In the broadcast operation, all processes specify the same root process,
whose buffer contents will be sent. Processes other than the root specify
receive buffers. After the operation, all buffers contain the message from the

root process.

MPI_Scatter (void *sendbuf, int sendcount,
MPI1_Datatype sendtype, void *recvbuf,
int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm);

MPI_Scatter() is also a one-to-many collective operation. All processes
specify the same receive count. The send arguments are only significant to
the root process, whose buffer actually contains sendcanrelements of

the given datatype, where N is the number of processes in the given commu-
nicator. The send buffer will be divided equally and dispersed to all pro-
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Figure 5: Primitive Collective Operations
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cesses (including itself). After the operation, the root has sent sendcount
elements to each process in increasing rank order. Rank 0 receives the first
sendcount elements from the send buffer. Rank 1 receives the second send-
count elements from the send buffer, and so on.

MPI1_Gather (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf,
int recvcount, MP1_Datatype recvtype,
int root, MPI_Comm comm);

MPI_Gather() is a many-to-one collective operation and is a complete
reverse of the description of MPI_Scatter().

MPI1_Reduce (void *sendbuf, void *recvbuf,
int count, MPI_Datatype dtype, MPI_Op op,
int root, MPI_Comm comm);

MPI1_Reduce() is also a many-to-one collective operation. All processes
specify the same count and reduction operation. After the reduction, all pro-
cesses have sent count elements from their send buffer to the root process.
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Elements from corresponding send buffer locations are combined pair-wise
to yield a single corresponding element in the root process’s receive buffer.
The full reduction expression over all processes is always associative and
may or may not be commutative. Application specific reduction operations
can be defined at runtime. MPI provides several pre-defined operations, all
of which are commutative. They can be used only with sensible MPI pre-
defined datatypes.

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum

MPI_PROD product
MPI_LAND logical and
MPI1_BAND bitwise and

MPI_LOR logical or
MPI_BOR bitwise or
MPI_LXOR logical exclusive or
MPI_BXOR bitwise exclusive or

The following code fragment illustrates the primitive collective operations
together in the context of a statically partitioned regular data domain (e.g.,
1-D array). The global domain information is initially obtained by the root
process (e.g., rank 0) and is broadcast to all other processes. The initial
dataset is also obtained by the root and is scattered to all processes. After the
computation phase, a global maximum is returned to the root process fol-
lowed by the new dataset itself.

/*

* parallel programming with a single control process

*/

int root;

int rank, size;

int i;

int full_domain_length;

int sub_domain_length;
double *full_domain, *sub_domain;
double local_max, global_max;
root = 0;

MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
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/*
* Root obtains full domain and broadcasts its length.
*/
if (rank == root) {
get_full_domain(&full_domain,
&full_domain_length);
}
MPI_Bcast(&full_domain_length, 1 MPI_INT, root,
MPI_COMM_WORLD);
/*
* Distribute the initial dataset.
*/
sub_domain_length = full_domain_length / size;
sub_domain = (double *) malloc(sub_domain_length *
sizeof(double));
MPI_Scatter(full_domain, sub_domain_length,
MPI_DOUBLE, sub_domain, sub_domain_length,
MPI_DOUBLE, root, MPI_COMM_WORLD);
/*
* Compute the new dataset.
*
compute(sub_domain, sub_domain_length, &local_max);
/*

* Reduce the local maxima to one global maximum
* at the root.

*/
MPI1_Reduce(&local_max, &global_max, 1, MPI_DOUBLE,
MPI1_MAX, root, MPI_COMM_WORLD);
/*
* Collect the new dataset.
*/

MPI_Gather(sub_domain, sub_domain_length, MPI_DOUBLE,
full_domain, sub_domain_length, MPI_DOUBLE,
root, MPI_COMM_WORLD);
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MPI1_Comm_dup
MPI_Comm_split
MPI1_Comm_free

MPI_Comm_remote_size

MPI_Intercomm_merge

MPI_Comm_compare
MPI_Comm_create
MPI_Comm_test_inter
MPI_Intercomm_create

MPI_Group_size
MPI_Group_rank
MPI_Group_translate _ranks

MPI_Group_compare
MPI_Comm_group
MPI1_Group_union
MPI1_Group_intersection
MPI1_Group_difference
MPI1_Group_incl
MPI1_Group_excl
MPI1_Group_range_incl
MPI_Group_range_excl
MPI_Group_free

Duplicate communicator with new context.
Split into categorized sub-groups.
Release a communicator.

Count intercomm. remote group members.
Create an intracomm. from an intercomm.

Compare two communicators.

Create a communicator with a given group.

Test for intracommunicator or intercommunicator.
Create an intercommunicator.

Get number of processes in group.
Get rank of calling process.

Processes in group A have what ranks in B?
Compare membership of two groups.

Get group from communicator.

Create group with all members of 2 others.
Create with common members of 2 others.
Create with the complement of intersection.
Create with specific members of old group.
Create with the complement of incl.

Create with ranges of old group members.
Create with the complement of range_incl.
Release a group object.

A communicator could be described simply as a process group. Its creation
is synchronized and its membership is static. There is no period in user code
where a communicator is created but not all its members have joined. These
qualities make communicators a solid parallel programming foundation.
Three communicators are prefabricated before the user code is first called:

MPI_COMM_WORLD, MPI_COMM_SELF and
MPI_COMM_PARENT. Se®asic Concepts

Communicators carry a hidden synchronization variable called the context.

If two processes agree on source rank, destination rank and message tag, but
use different communicators, they will not synchronize. The extra synchro-
nization means that the global software industry does not have to divide,
allocate or reserve tag values. When writing a library or a module of an
application, it is a good idea to create new communicators, and hence a pri-
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vate synchronization space. The simplest MPI routine for this purpose is
MPI_Comm_dup(), which duplicates everything in a communicator, partic-
ularly the group membership, and allocates a new context.

MPI_Comm_dup (MPI_comm comm, MPIl_comm *newcomm);

Applications may wish to split into many subgroups, sometimes for data
parallel convenience (i.e. a row of a matrix), sometimes for functional
grouping (i.e. multiple distinct programs in a dataflow architecture). The
group membership can be extracted from the communicator and manipu-
lated by an entire suite of MPI routines. The new group can then be used to
create a new communicator. MPI also provides a powerful routine,
MPI_Comm_split(), that starts with a communicator and results in one or
more new communicators. It combines group splitting with communicator
creation and is sufficient for many common application requirements.

MPI_Comm_split (MPI_comm comm, int color,
int key, MPI_Comm *newcomm);

The color and key arguments guide the group splitting. There will be one
new communicator for each value of color. Processes providing the same
value for color will be grouped in the same communicator. Their ranks in
the new communicator are determined by sorting the key arguments. The
lowest value of key will become rank 0. Ties are broken by rank in the old
communicator. To preserve relative order from the old communicator, sim-
ply use the same key everywhere.

N NN

Figure 6: Communicator Split

A communicator is released by MPI_Comm_free(). Underlying system
resources may be conserved by releasing unwanted communicators.

MPI1_Comm_free (MPI_Comm *comm);
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An intercommunicator contains two groups: a local group in which the own-
ing process is a member and a remote group of separate processes. The
remote process group has the mirror image intercommunicator - the groups
are flipped. Spawning new processes creates an intercommunicator. See
Dynamic Processe$IPl_Intercomm_merge() creates an intracommunica-
tor (the common form with a single group) from an intercommunicator. This
is often done to permit collective operations, which can only be done on
intracommunicators.

MPI_Intercomm_merge (MPI_Comm intercomm,
int high, MPI_Comm *newintracomm);

The new intracommunicator group contains the union of the two groups of
the intercommunicator. The operation is collective over both groups. Rank
ordering within the two founding groups is maintained. Ordering between
the two founding groups is controlled by the high parameter, a boolean
value. The intercommunicator group that sets this parameter true will
occupy the higher ranks in the intracommunicator.

The number of members in the remote group of an intercommunicator is
obtained by MPI_Comm_remote_size().

MPI_Comm_remote_size (MPI_Comm comm, int *size);

Some MPI implementations may invalidate a communicator if a member
process dies. The MPI library may raise an error condition on any attempt
to use a dead communicator, including requests in progress whose commu-
nicator suddenly becomes invalid. These faults would then be detectable at
the application level by setting a communicator’s error handler to
MPI_ERRORS_RETURN (Sediscellaneous MPI Featurgs

A crude but portable fault tolerant master/slave application can be con-
structed by using the following strategy:

* Spawn processes in groups of one.

» Set the error handler for the parent / child intercommunicators to
MPI_ERRORS_RETURN.

« |f a communication with a child returns an error, assume it is dead
and free the intercommunicator.

» Spawn another process, if desired, to replace the dead process. See
Dynamic Processes
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MPI_Cart_create
MPI_Dims_create
MPI1_Cart_rank
MPI_Cart_coords
MPI1_Cart_shift

MPI_Cart_sub
MPI_Graph_create
MPI_Topo_test
MPI_Graphdims_get
MPI_Graph_get
MPI_Cartdim_get
MPI_Cart_get

MPI_Graph_neighbors_count

MPI_Graph_neighbors
MPI_Cart_map
MPI_Graph_map

Create cartesian topology communicator.
Suggest balanced dimension ranges.
Get rank from cartesian coordinates.

Get cartesian coordinates from rank.
Determine ranks for cartesian shift.

Split into lower dimensional sub-grids.

Create arbitrary topology communicator.

Get type of communicator topology.

Get number of edges and nodes.

Get edges and nodes.

Get number of dimensions.

Get dimensions, periodicity and local coordinates.

Get number of neighbors in a graph topology.

Get neighbor ranks in a graph topology.

Suggest new ranks in an optimal cartesian mapping.
Suggest new ranks in an optimal graph mapping.

MPI is a process oriented programming model that is independent of under-
lying nodes in a parallel computer. Nevertheless, to enhance performance,
the data movement patterns in a parallel application should match, as
closely as possible, the communication topology of the hardware. Since itis
difficult for compilers and message-passing systems to guess at an applica-
tion’s data movement, MPI allows the application to supply a topology to a
communicator, in the hope that the MPI implementation will use that infor-
mation to identify processes in an optimal manner.

For example, if the application is dominated by Cartesian communication
and the parallel computer has a cartesian topology, it is preferable to align
the distribution of data with the machine, and not blindly place any data
coordinate at any node coordinate.

MPI provides two types of topologies, the ubiquitous cartesian grid, and an
arbitrary graph. Topology information is attached to a communicator by cre-
ating a new communicator. MP1_Cart_create() does this for the cartesian

topology.

MPI_Cart_create (MPI_Comm oldcomm, int ndims,
int *dims, int *periods, int reorder,
MPI_Comm *newcomm);
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The essential information for a cartesian topology is the number of dimen-
sions, the length of each dimension and a periodicity flag (does the dimen-
sion wrap around?) for each dimension. The reorder argument is a flag that
indicates if the application will allow a different ranking in the new topology
communicator. Reordering may make coordinate calculation easier for the
MPI implementation.

With a topology enhanced communicator, the application will use coordi-
nates to decide source and destination ranks. Since MPI communication
routines still use ranks, the coordinates must be translated into a rank and
vice versa. MPI eases this translation with MPI_Cart_rank() and
MPI_Cart_coords().

MPI_Cart_rank (MPl_comm comm, int *coords,
int *rank);

MPI_Cart_coords (MPI_Comm comm, int rank,
int maxdims, int *coords);

To further assist process identification in cartesian topology applications,
MPI_Cart_shift() returns the ranks corresponding to common neighbourly
shift communication. The direction (dimension) and relative distance are
input arguments and two ranks are output arguments, one on each side of the
calling process along the given direction. Depending on the periodicity of
the cartesian topology associated with the given communicator, one or both
ranks may be returned as MPI_PROC_NULL, indicating a shift off the edge
of the grid.

MPI1_Cart_shift (MPI_Comm comm, int direction,
int distance, int *rank_source,
*int rank_dest);

Consider a two dimensional cartesian dataset. The following code skeleton
establishes a corresponding process topology for any number of processes,
and then creates a new communicator for collective operations on the first
column of processes. Finally, it obtains the ranks which hold the previous
and next rows, which would lead to data exchange.

int mycoords[2];

int dims[2];

int periods[2] = {1, 0};

int rank_prev, rank_next;
int size;

MPI_Comm comm_cart;
MPI_Comm comm_coll;
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/*
* Create communicator with 2D grid topology.
*/
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Dims_create(size, 2, dims);
MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 1,
&comm_cart);
/*
* Get local coordinates.
*/
MPI_Comm_rank(comm_cart, &rank);
MPI_Cart_coords(comm_cart, rank, 2, mycoords);
/*
* Build new communicator on first column.
*
if (mycoords[1] == 0) {
MPI_Comm_split(comm_cart, 0, mycoords|[0],
&comm_coll);
} else {
MPI_Comm_split(comm_cart, MPI_UNDEFINED, 0,
&comm_coll);
}
/*
* Get the ranks of the next and previous rows, same column.
*
MPI_Cart_shift(comm_cart, 0, 1, &rank_prev,
&rank_next);

MPI1_Dims_create() suggests the most balanced (“square”) dimension
ranges for a given number of nodes and dimensions.

A good reason for building a communicator over a subset of the grid, in this
case the first column in a mesh, is to enable the use of collective operations.
SeeCollective Message-Passing

1 [ ]
0,0{0,1{0,2[0,3
I I I I
1,0(11H1.2[H1.3
I I I I
21212223
I I I I
3,0(3.1{3.2[3.3
- L]

Figure 7: 2D Cartesian Topology
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MPI1_Spawn Start copies of one program.
MPI_Spawn_multiple Start multiple programs.

MPI_Port_open Obtain a connection point for a server.
MPI_Port_close Release a connection point.

MPI_Accept Accept a connection from a client.
MPI_Connect Make a connection to a server.
MPI_Name_publish Publish a connection point under a service name.
MPI_Name_unpublish Stop publishing a connection point.
MPI_Name_get Get connection point from service name.
MPI_Info_create Create a new info object.

MPI_Info_set Store a key/value pair to an info object.
MPI_Info_get Read the value associated with a stored key.
MPI_Info_get valuelen Get the length of a key value.
MPI_Info_get_nkeys Get number of keys stored with an info object.
MPI_Info_get nthkey Get the key name in a sequence position.
MPI_Info_dup Duplicate an info object.

MPI_Info_free Destroy an info object.

MPI_Info_delete Remove a key/value pair from an info object.

Due to the static nature of process groups in MPI (a virtue), process creation
must be done carefully. Process creation is a collective operation over a
given communicator. A group of processes are created by one call to
MPI1_Spawn(). The child processes start up, initialize and communicate in
the traditional MPI way. They must begin by calling MPI_Init(). The child
group has its own MPI_COMM_WORLD which is distinct from the world
communicator of the parent group.

MPI1_Spawn (char program[], char *argv[], int
maxprocs, MPI_Info info, int root, MPI_Comm,
parents, MPI_Comm *children, int errs[]);

How do the parents communicate with their children? The natural mecha-
nism for communication between two groups is the intercommunicator. An
intercommunicator whose remote group contains the children is returned to
the parents in the second communicator argument of MPI_Spawn(). The
children get the mirror communicator, whose remote group contains the par-
ents, as the pre-defined communicator MPI_COMM_PARENT. In the
application’s original process world that has no parent, the remote group of
MPI_COMM_PARENT is of size 0. Seereating Communicators
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The maxprocs parameter is the number of copies of the single program that
will be created. Each process will be passed command line arguments con-
sisting of the program name followed by the arguments specified in the argv
parameter. (The argv parameter should not contain the program name.) The
program name, maxprocs and argv are only significant in the parent process
whose rank is given by the root parameter. The result of each individual pro-
cess spawn is returned through the errs parameter, an array of MPI error
codes.

New processes require resources, beginning with a processor. The specifica-
tion of resources is a natural area where the MPI abstraction succumbs to
the underlying operating system and all its domestic customs and conven-
tions. It is thus difficult if not impossible for an MPI application to make a
detailed resource specification and remain portable. The info parameter to
MPI1_Spawn is an opportunity for the programmer to choose control over
portability. MPlimplementations are not required to interpret this argument.
Thus the only portable value for the info parameter is MPI_INFO_NULL.

Consult each MPI implementation’s documentation for (non-portable) fea-
tures within the info parameter and for the default behaviour with
MPI_INFO_NULL.

A common and fairly abstract resource requirement is simply to fill the
available processors with processes. MPI makes an attempt, with no guar-
antees of accuracy, to supply that information through a pre-defined
attribute called MPI_UNIVERSE_SIZE, which is cached on
MPI_COMM_WORLD. Intypical usage, the application would subtract the
value associated with MPI_UNIVERSE_SIZE from the current number of
processes, often the size of MPI_COMM_WORLD. The difference is the
recommended value for the maxprocs parameter of MPI_Spawn(). See
Miscellaneous MPI Featurasn how to retrieve the value for
MPI_UNIVERSE_SIZE.
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MPI_Errhandler_create
MPI_Errhandler_set
MPI_Error_string
MPI_Error_class
MPI1_Abort
MPI_Attr_get
MPI_Wtime

MPI_Errhandler_get
MPI_Errhandler_free
MPI_Get_processor_name
MPI_Wtick
MPI_Get_version

MPI_Keyval_create
MPI_Keyval_free
MPI_Attr_put
MPI_Attr_delete

Create custom error handler.

Set error handler for communicator.
Get description of error code.

Get class of error code.
Abnormally terminate application.
Get cached attribute value.

Get wall clock time.

Get error handler from communicator.
Release custom error handler.

Get the caller’'s processor name.

Get wall clock timer resolution.

Get the MPI version numbers.

Create a new attribute key.

Release an attribute key.

Cache an attribute in a communicator.
Remove cached attribute.

An error handler is a software routine which is called when a error occurs
during some MPI operation. One handler is associated with each communi-
cator and is inherited by created communicators which derive from it. When
an error occurs in an MPI routine that uses a communicator, that communi-
cator’s error handler is called. An application’s initial communicator,
MPI_COMM_WORLD, gets a default built-in handler,
MPI_ERRORS_ARE_FATAL, which aborts all tasks in the communicator.

An application may supply an error handler by first creating an MPI error
handler object from a user routine.

MPI_Errhandler_create (void (*function)(),
MPI1_Errhandler *errhandler);

Error handler routines have two pre-defined parameters followed by imple-
mentation dependent parameters using the ANSI C <stdargs.h> mechanism.
The first parameter is the handler’s communicator and the second is the error
code describing the problem.

void function (MPI_Comm *comm, int *code, ...);

The error handler object is then associated with a communicator by
MPI1_Errhandler_set().
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MPI1_Errhandler_set (MPI_Comm comm,
MPI1_Errhandler errhandler);

A second built-in error handler is MPI_ERRORS_RETURN, which does
nothing and allows the error code to be returned by the offending MPI rou-
tine where it can be tested and acted upon. In C the error code is the return
value of the MPI function. In Fortran the error code is returned through an
error parameter to the MPI subroutine.

MPI_Error_string (int code, char *errstring,
int *resultlen);

Error codes are converted into descriptive strings by MPI_Error_string().
The user provides space for the string that is a minimum of
MPI_MAX_ERROR_STRING characters in length. The actual length of
the returned string is returned through the resultlen argument.

MPI defines a list of standard error codes (also called error classes) that can
be examined and acted upon by portable applications. All additional error
codes, specific to the implementation, can be mapped to one of the standard
error codes. The idea is that additional error codes are variations on one of
the standard codes, or members of the same error class. Two standard error
codes catch any additional error code that does not fit this intent:
MPI_ERR_OTHER (doesn't fit but convert to string and learn something)
and MPI_ERR_UNKNOWN (no clue). Again, the goal of this design is por-
table, intelligent applications.

The mapping of error code to standard error code (class) is done by
MPI1_Error_class().

MPI_Error_class (int code, int class);

MPI provides a mechanism for storing arbitrary information with a commu-
nicator. A registered key is associated with each piece of information and is
used, like a database record, for storage and retrieval. Several keys and asso-
ciated values are pre-defined by MPI and stored in MPI_COMM_WORLD.

MPI_TAG_UB maximum message tag value
MPI_HOST process rank on user’s local processor
MPI_I1O process rank that can fully accomplish 1/0

MPI_WTIME_IS_GLOBAL Are clocks synchronized?
MPI_UNIVERSE_SIZE  #processes to fill machine
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All cached information is retrieved by calling MPI_Attr_get() and specify-
ing the desired key.

MPI_Attr_get (MPI_Comm comm, int keyval,
void *attr_val, int *flag);

The flag parameter is set to true by MPI_Attr_get() if a value has been stored
the specified key, as will be the case for all the pre-defined keys.

Performance measurement is assisted by MPI_Wtime() which returns an
elapsed wall clock time from some fixed point in the past.

double MPI_Wtime (void);
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LAM / MPI Extensions

LAM includes several functions beyond the MPI standard that programmers
may find useful during the development phase of a software application.
They can be used in the final product, though portability would obviously be
compromised. One of the extensions is actually an MPI portable library (see
Collective 1/Q which can operate with other MPI implementations. This
library is a distinct product from LAM and must be obtained and compiled
separately. The other extensions are all intrinsic to LAM.

Some of the extended routines that integrate naturally with MPI have names
that begin with MPIL_. Similar functionality will, in certain cases, be found

in later versions of the MPI standard. Other routines, which are distinct from
MPI concepts and objects, begin with lam_.
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lam_rfopen
lam_rfclose
lam_rfread
lam_rfwrite
lam_rflseek
lam_rfaccess
lam_rfmkdir
lam_rfchdir
lam_rffstat
lam_rfstat
lam_rfdup
lam_rfdup2
lam_rfsystem
lam_rfrmdir
lam_rfunlink
lam_rfgetwd

lam_rfftruncate

lam_rftruncate

Open afile.

Close a file.

Read from afile.

Write to a file.

Change position in a file.
Check permissions of a file.
Create directory.

Change working directory.
Get status on file descriptor.
Get status on named file.
Duplicate file descriptor.
Duplicate & place file descriptor.
Issue a shell command.
Remove a directory.
Remove a file.

Get working directory.

Set length of file descriptor.
Set length of named file.

A node’s file system can be accessed via remote file functions having a
POSIX-like interface. LAM does not provide a file system, only remote
access to a file system from any node.

File pathnames refer to files on the origin node by default. However, a spe-
cific nodeid can be attached to a pathname with the following syntax:

nodeid:path

Each LAM process may have a limited number of simultaneously open
LAM file descriptors. All LAM file functions involve message-passing
using the same links, buffers and other resources as an application.

LAM prohibits opening of slow devices (such as terminals) for input.

Some LAM specific features of remote file access are controlled by addi-
tional flags in the flags argument of the lam_rfopen() routine. These flags are

listed below.

LAM_O_LOCK Lock the file descriptor into the remote file server’s open

descriptor cache. See the manual page lam_rfposix().
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LAM_O_REUSEReuse existing open file descriptor for matching path-
name and open flags - if found. This is useful for asyn-
chronous access to one open file with one file pointer.

LAM_O_1WAY Write to the file without waiting for completion or return
code. This greatly increases write performance but
should only be used on a debugged application.

LAM does not conflict with the native operating system’s file interface.
Thus, open() is a direct UNIX routine (LAM is uninvolved) and operates on
the file system of the node on which it is invoked. On remote nodes, a pro-
cess’s pre-opened UNIX standard output (UNIX file handle 1 or stdout) and
UNIX standard error (UNIX file handle 2 or stderr) are redirected to LAM
as there is no remote terminal. LAM uses the remote file access facility to
move data from these two sources to the node and terminal from which the
application was launched - the user’s local node. It is not possible to read
from UNIX standard input (UNIX file handle 0, or stdin) on remote nodes.

Processes on the local node also have access to UNIX standard output and
error. Unlike remote processes, local processes can read from UNIX stan-
dard input.

The UNIX standard I/O terminations may be redirected by using the normal
shell redirections witmpirun SeeExecuting MPI Programs

% mpirun my_app > log
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CBX_Open Open a file for MPI Cubix access.
CBX_ Close Close an MPI Cubix file.

CBX_Read Read in either single or multiple mode.
CBX_Write Write in either single or multiple mode.
CBX_Lseek Seek in either single or multiple mode.
CBX_Order Change the order of multiple access.
CBX_Singl Switch file access to single mode.
CBX_Multi Switch file access to multiple mode.
CBX_Is_singl Is the file in single mode?
CBX_Is_multi Is the file in multiple mode?

MPI Cubix a loosely synchronous, collective I/O library based on aresearch
development of the same name at the California Institute of Technology.
This Cubix is integrated with the concepts of MPI communicators and
datatypes. The members of a communicator group participate collectively in
the 1/0 operation. Data is transferred as a count of elements of a given
datatype, just as in MPI message-passing.

All file access routines eventually translate to POSIX operations on a single
file. Only one process in the communicator group invokes the actual POSIX
operation. The POSIX file operation bindings are also reflected in the bind-
ings of the MPI Cubix routines, tempered with MPI objects.

There are two different MPI Cubix access methods that solve two common
file read/write problems in data parallel programming.

single All processes execute the same file routine with the same
amount of identical data. The data from only one (arbi-
trary) process is transferred. This is useful when all pro-
cesses want to read a global value from a file, or write a
global value to a file. It is especially convenient during
output to a terminal. All nodes print an error message and
it appears once on the terminal.

multiple All processes execute the same file routine with different
amounts of different data. All the data from all the pro-
cesses is transferred, but the order of transfer is strictly
controlled. By default, process rank 0 will transfer first
and the sequence continues until the highest rank trans-
fers last. This is useful in decomposing a data structure
during read so that the right nodes get the right subset of
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data and in recomposing a data structure during write so
that the data structure is not jumbled.

Without Cubix file access, an application often needs a controlling program
to manage the parallel processes and filter I/O. Cubix can eliminate the need
for a control program. Without synchronization, a message written by N
nodes appears N times on the terminal. A decomposed data structure written
to a file appears in a random order.

MPI Cubix file descriptors are distinct from LAM remote file descriptors
and the file descriptors of the native operating system. An MPI Cubix file
descriptor is returned from CBX_Open(). The access method is chosen by
one of the special flags, CBX_O_SINGL or CBX_O_MULTI. The owner of
the file, the one process that will operate on it at the POSIX level, is chosen
in another argument to CBX_Open().

#include <fcntl.h>
#include <cbx.h>

int CBX_Open (const char *name, int flags,
int mode, int owner, MPI_Comm comm);
int CBX_Close (int fd);

The access method being used on an open MPI Cubix file can be queried and
changed at any time. The change routines are collective. The inquiry rou-
tines are not.

int CBX_Multi (int fd);
int CBX_Singl (int fd);
int CBX_Is_muilti (int fd);
int CBX_Is_singl (int fd);

CBX_Read() and CBX_Write() transfer data from and to an open MPI
Cubix file. An MPI datatype is among the arguments. The length of the data
buffer is a count of elements of the given datatype. Only contiguous data is
transferred. If the MPI datatype contains holes, they are also transferred.

int CBX_Read (int fd, void *buffer, int count,
MPI1_Datatype dtype);

int CBX_Write (int fd, void *buffer, int count,
MPI_Datatype dtype);
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The CBX_Order() routine changes the default order of process data transfer
in the MPI Cubix multiple method. Each process specifies a unique
sequence number from 0 to N-1, where N is the size of the communicator.

int CBX_Order (int fd, int newrank);

Cubix Example  /*
* Read and decompose a 1-D array of reals
*across a 1-D array of processes.
* First read array size in singl then array in multi.
* Assume the array length decomposes evenly.

*
static float *data;
main(argc, argv)
int argc;
char *argv([];
{
int fd;
int glob_len, local_len;
int nread,;
int size;
MPI_Init(&argc, &argv);
/*

* Open the file first with Cubix single method.
* The file will be owned by process rank 0.
* This is not an error handling tutorial.
*/
fd = CBX_Open(“data”, O_RDONLY | CBX_O_SINGL, 0, 0,
MPI_COMM_WORLD);

/*
* Read the global (total) length of the array.
*
CBX_Read(fd, &glob_len, 1, MPI_INT);
/*

* Switch to Cubix multiple method.

*
CBX_Multi(fd);

/*

* Calculate the local length, allocate enough

* space and read the local subset of the data.

*/
MPI_Comm_size(MPI_COMM_WORLD, &size);
local_len = glob_len / size;
data = (float *) malloc(local_len * sizeof(float));
CBX_Read(fd, data, local_len, MPI_FLOAT);

CBX_Close(fd);
MPI_Finalize();
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lam_ksignal Install a signal handler.
lam_ksigblock Block selected signals.
lam_ksigsetmask Set entire blocking mask.
lam_Kksigretry Retry request after selected signals.
lam_ksigsetretry Set entire retry mask.
lam_ksigmask Create signal mask.

MPIL_Signal Deliver a signal to a process.

LAM provides a UNIX-like signal package. The signals are different and
their usage does not conflict with the underlying operating system.

Some signals are used internally by the system. Some have useful default
options and others are completely left to the user. The most useful signal is
the one that obliges a process to terminate itself. Signals are defined in
<lam_ksignal.h>.

LAM_SIGTRACE unload trace data
LAM_SIGUDIE terminate
LAM_SIGARREST suspend execution
LAM_SIGRELEASE resume execution

LAM_SIGA user defined (default ignored)
LAM_SIGB user defined (default ignored)
LAM_SIGFUSE node about to die

LAM_SIGSHRINK another node has died

The lam_ksignal(), lam_ksigblock() and lam_ksigsetmask() functions oper-
ate identically to their UNIX counterparts. A LAM or MPI routine inter-
rupted by a signal before completion is automatically retried. With the
lam_ksigretry() and lam_ksigsetretry() functions, which operate similarly
to lam_ksigblock() and lam_ksigsetmask() respectively, the user can disable
automatic system call retry and receive an error code instead.

MPIL_Signal() delivers a signal to a process identified by a communicator
and a rank. The signal number argument is taken from the list defined above.

MPIL_Signal (MPI_Comm comm, int rank, int signo);
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MPIL_Comm_id Get communicator identifier.
MPIL_Comm_gps Get LAM coordinates for an MPI process.
MPIL_Type_id Get datatype identifier.

MPIL_Trace_on Enable trace collection.

MPIL_Trace_off Disable trace collection.

LAM places great emphasis on debugging through extensive monitoring
capabilities. Opaque objects in MPI make it difficult for the user to cross ref-
erence the information presented by LAM debugging tools with the values
within a running process. thpitask(SeeProcess Monitoring and Contrpl
shows a process blocked on a communicator, it prints an identifying number
for that communicator. The number is not defined by the MPI standard. It is
implementation dependent information internal to the opaque communica-
tor which the program cannot access using the standard API.

MPIL_Comm_id() and MPIL_Type_id() return the internal identifiers for
communicators and datatypes, respectively.

MPIL_Comm_id (MPI_Comm comm, int *id);
MPIL_Type_id (MPl_Comm comm, int *id);

LAM / MPI extensions beginning with the lam__ prefix are LAM-centric.
They operate on LAM node and process identifiers, not MPl communicators
and ranks. MPIL_Comm_gps() obtains the LAM coordinates from MPI
information.

MPIL_Comm_gps (MP1_Comm comm, int rank, int *nid,

int *pid);
Execution trace collection for performance visualization and debugging
purposes is enabled Ioypirun SeeExecuting MPI ProgramsTo avoid
information overload and huge trace files, a trace enabled application can

toggle on and off actual trace collection so that only interesting phases of the
computation are monitored.

MPIL_Trace_On (void);
MPIL_Trace_Off (void);
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LAM Command Reference

Before running LAM you must establish certain environment variables and

search paths for your shell on each machine in the multicomputer. Add the
following commands or equivalent to your shell start-up file (.cshrc, assum-
ing C shell). Do not add these to your .login as they would not be effective

on remote machines whesh is used to start LAM.

setenv LAMHOME <LAM installation directory>
set path = ($path SLAMHOME/bin)

The local system administrator, or the person who installed LAM, will know
the location of the LAM installation directory. After editing the shell start-
up file, invoke it to establish the new values. This is not necessary on subse-
guent logins to the UNIX system.

% source .cshrc

Each remote machine in the multicomputer must be reachable with the
UNIX rsh command. rsh does not prompt for passwords and relies on spe-
cial files on the remote machine (/etc/hosts.equiv and ~/.rhosts) to gain
access. One of these files must be prepared to admit the selected user
account for the remote machine. See the UNIX manual page for rsh on how
to prepare these files.

Many LAM commands require one or more nodeids. Nodeids are specified
on the command line as n<list>, where <list> is a list of comma separated
nodeids or nodeid ranges.
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nl
nl1,3,5-10

In addition to explicit node identification, LAM has special mnemonics that
refer to special nodes or a group of nodes.

h the local node where the command is typed (as in ‘here’)

0 the origin node where LAM was started with tla@nbootcommand
N all nodes

C all nodes intended for application computing

Nodeids are established in the LAM multicomputer plan, called a boot
schema (se@riting a LAM Boot SchemalAM nodeids are always num-
bered consecutively beginning at 0 when the system is first started with lam-
boot. Thus the number of nodes in the boot schema defines the initial set of
nodeids. If nodes are added or subtracted, the contiguous property of
nodeids can end. Séelding and Deleting LAM Nodes

LAM processes can be specified in two ways: by process identifier (from the
underlying operating system) or by LAM process index. PIDs are specified
on the command line as p<list>, where <list> is a list of comma separated
PI1Ds or PID ranges.

p5158
p5158,5160,5200-5210

Process indices are specified on the command line as i<list>, where <list>
is a list of comma separated indices or index ranges.

i8

i8-12,14

MPI processes are normally labelled by the LAM / MPI status reporting
commandsmpitaskandmpimsg with their global rank in the
MPI_COMM_WORLD communicator. With the possibility of multiple
concurrent applications, spawned processes, and the need to use LAM node
/ process identification with LAM process control commands, a supplemen-
tary labelling scheme is available. It is known as the GPS, for Global Posi-

tioning System, because it absolutely distinguishes a process from all others
in a LAM system. The GPS contains the process index and nodeid.

To print a brief summary of the syntax and options of any LAM command,
execute the command with the -h option.
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% recon -h

Detailed information on each command (and most programming functions)
is available from on-line manual pages. They are an important supplemen-
tary reference to this document.

% man recon
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hcc wrapper for local C compiler
hcp wrapper for local C++ compiler
hf77 wrapper for local Fortran compiler

Objects and binaries are built with the native compiler and linker available,
hopefully, on all of the LAM nodes, or at least on one machine of each archi-
tecture and operating system type. Taetool is a wrapper that invokes the
native C compiler driver (e.g. cc) and provides the paths to the LAM header
files and libraries and implicitly links all LAM libraries. The MPI library is
linked explicitly. All options presented to hcc are passed through to the
native compiler driver.

% hcc -o appl appl.c -Impi
% hcp -o appl appl.c -Impi

By default, hcc uses the compiler driver that was used to build LAM and
specified in the LAM configuration file. A different C compiler can be spec-
ified in the LAMHCC environment variable.

In case the C and C++ compilers are different, a sepagerrapper is pro-
vided for C++.

Unlike the C and C++ wrappers, the Fortran wrappéfy, does not insert

an option to search LAM’s header file directory. This is because not all For-
tran compiler drivers support that option and the Fortran include statement
may be required instead to bring in the MPI header file, mpif.h. Note that
mpif.h is a Fortran source file, but all other LAM header files intended for
Fortran use contain C preprocessor code. The C preprocessor may need to
be run explicitly if the Fortran driver does not do so automatically.

Care should be taken not to confuse object files and binaries produced on
heterogeneous nodes in the multicomputer. In such situations, it can be a
good idea to append the machine or CPU name to the object and executable
file names in order to distinguish between them.

{sparc}% hcc -0 appl.sparc appl.c
{sgi}% hcc -o appl.sgi appl.c
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recon Verify multicomputer is ready to run LAM.
lamboot Start a LAM multicomputer session.
tping Check communication to given node.
wipe Terminate a LAM session.

The topology of a multicomputer running LAM is a totally connected
graph. Thus it is only necessary for the user to specify the machines to be
included in the multicomputer in order to start LAM. The boot schema
(ASCII file) serves this purpose. Sé&iting a LAM Boot Schema

Therecontool verifies that LAM can be started on each intended node. Sev-
eral conditions must exist before a machine can remotely run the software.

 The machine address must be reachable via the network.

* The user must be able to remotely execute on the machine with rsh.
Remote host permission must be provided in either /etc/hosts.equiv
or the remote user’s .rhosts file.

* Theremote user’s shell must have a search path that will locate LAM
executables.

* The remote shell’s start-up file must not print anything to standard
error when invoked non-interactively.

Thelamboottool starts a LAM session for the individual user. The -v option
prints a message before each start-up step is attempted. The boot schema file
is the primary argument to lamboot.

% lamboot -v <boot schema>

-X Enable fault detection and recovery. Exchange periodic
“heartbeat” messages between all nodes.

LAM considers a node to be dead after repeated retransmissions of a mes-
sage packet go unacknowledged. By default, no action is taken and retrans-
missions continue indefinitely. With the -x option to lamboot, LAM initiates

a procedure to remove the dead node from the multicomputer. The dead
nodeid becomes invalid. All other nodeids remain unchanged - holes may
develop in the nodeid list. Finally, a signal is set to all application processes
on all nodes, notifying them of the failure. The runtime system of each pro-
cess must, at a minimum, flush a cached table of nodeids, so that it can read
updated information from the LAM daemon. Users can trap this signal
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(LAM_SIGSHRINK) and take further action particular to the application.
SeeSignal Handling

Hands-on control and monitoring are a hallmark of LAM. The simplest
commandiping, is a confidence building validity check that begins to dispel
the black box nature of parallel environments. tping echoes a message to a
destination node, or a multicast destination. It is time to restart the session
if this command hangs.

% tping nO
% tping N

To terminate a LAM session, use th@petool. To restart LAM after a sys-
tem failure, execute wipe followed by lamboot.

% wipe -v  <boot schema>
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mpirun Run an MPI application.
lamclean Terminate and clean up all LAM processes.

An MPI application is started with one invocationrapirun The programs,
number of processes and computing resources are specified in an applica-
tion schema, a separate file whose name is given to mpirun. Simple SPMD
applications can be started from the mpirun command line. MPI processes
locate each other through the abstract concepts of communicator and pro-
cess rank. It is mpirun that provides the hard information on nodeids and
process IDs to build the pre-defined MPI_COMM_WORLD communicator.

% mpirun -v my_app_schema

An application schema contains one line for every different program that
constitutes the application. For each program, three important directions are
given, using options that duplicate the syntax of the mpirun command line:

-s <nodeid> the node in whose file space the executable program file
can be found - Without this option, LAM is directed to
look for programs on the same node where they will run.

<nodeids> the nodes on which the program will run - Without this
option, LAM will use all the nodes.
-C <#> the number of processes to create across the given nodes

- Without this option, LAM will create one process on
each of the given nodes.

These same options are used on the mpirun command line if the application
consists of only one program. The presence of one or more of these options
tells mpirun that the filename is an executable program. Otherwise the file-
name is assumed to be an application schema and is parsed accordingly.

#

# sample application schema
#

master h

slave N -s h

The above example runs the ‘master’ on the local node (the same node
where mpirun is invoked) and ‘slave’ on all the nodes, after taking the
‘slave’ executable file from the local node and shipping it to all nodes. The
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shipped program is stored in the /tmp directory and deleted when the pro-
cess dies.

LAM searches for executables files on the source node, as modified by the
-s option, by using the list of directories defined by the PATH environment
variable. The treatment of a ‘. path is special. On the local node invoking
mpirun, ‘. is the working directory of mpirun. On remote nodes, it is the
user’s home directory.

Other mpirun options enable powerful functionality within LAM’s MPI
library.

-c2c Bypass the LAM daemon for MPI communication. Use
an optimal protocol to directly connect MPI processes.

The “client to client” feature of the MP!I library derives the most spemat

of the underlying hardware at the expense of monitoring and control. Mes-
sages that have been delivered but not received are buffered with the
receiver. It is intended that applications would be debugged first with the
daemon and then run in production using direct communication

-nger Disable GER protocol that protects message envelope
gueues. Do not detect and report resource overflow
errors.

The “Guaranteed Envelope Resources” protocol provides the most robust
MPI message delivery system. It protects communication between any pro-
cess pair from interference from a third process. It prevents the posting of
send operations that may not be delivered to the receiver due to lack of sys-
tem resources (envelope resources) and thus fully respects the spirit of
MPI’s guarantee of message progress, which in turn reduces confusion in
debugging ill-behaved applications.

In addition to protecting process-pair envelope queues, GER publishes the
size of the queue so that programmers can know how far they can stress this
resource before deadlocking or failing. GER fills a serious portability hole
in MPI - knowing the resource limitations directly associated with message-
passing. The minimum GER figure for LAM is configured when LAM is

1. The speed is constrained by the quality of the c2c module within the MPI
library. Every machine can benefit from a customized solution.

2. Limits on underlying system resources (like file descriptors for a socket imple-
mentation) may constrain the scalability of applications using -c2c.
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installed. See the manual page on MPI as well as the [rgdarst MPI
Message Delivery Through Guaranteed Resouimea more detailed dis-
cussion.

-ton, -toff Enable trace collection. Trace collection begins immedi-
ately after MPI_Init() with -ton, but is deferred until
MPIL_Trace_on() with -toff.

The MPI library can generate execution traces detailing message-passing
activity. The data can be used for performance tuning or advanced debug-
ging. Actual trace generation is controlled by two switches, both of which
must be in the on position to enable trace generation. Both the -ton and -toff
options turn the first switch on for the entire run of the application. With
-ton, the second switch begins in the on position after the application calls
MPI1_Init(). With -toff, the second switch begins in the off position and no
traces are generated.

The second switch is toggled with runtime functions. Beleugging and
Tracing The purpose of beginning with the second switch off is to limit
tracing to interesting phases of the computation. The purpose of the first
switch is to allow an application to be traced without recompilation and to
allow an application littered with trace toggling functions to disable tracing
altogether and incur minimal overhead.

SeeCollecting Trace Datdor how to assemble a single trace file after run-
ning a trace enabled application.

An application that goes awry may leave many processes running or
blocked, many messages unconsumed, and many resources allocated
throughout the multicomputer. Although there are user interface commands
to remove a user presence from every individual subsystem, taking care to
invoke them all can become tedious. Tdmacleancommand can be used
when no user presence (processes, message, allocations, registrations) is
desired on the multicomputer. The user essentially wants to start over with-
out the longer delay of restarting the LAM session.

% lamclean

lamclean cannot be used when some or all nodes are not reachable due to
catastrophic failure or complete buffer overflow that causes link jamming.

If lamclean fails to return, it is time to use thepetool. SeeStarting LAM

It may be reassuring to use thpitaskandmpimsgcommands to verify that
lamclean did the job.

MPI Primer / Developing with LAM



Process
Monitoring
and Control

mpitask

66

mpitask
doom

Print status of MPI processes.
Send a signal to a process.

Monitoring a process’s execution state is a major aid in debugging multi-
computer applications. This feature helps debug process synchronization
and data transfer, the added dimension of parallel programmingnfihe
taskcommand prints information on MPI processes. With no arguments, all
MPI processes on all nodes are reported. The report can be constrained by
specifying nodes and LAM processes.

Consider the following example code, whose only purpose is to demonstrate
LAM’s monitoring capabilities:

/*

* Create an interesting report for mpitask and mpimsg.
*/

#include <mpi.h>

#define ROWS 10

#define COLS 20

struct cell {
int code;
double coords[3];

I3

static struct cell mat[ROWS][COLS];

static int blocklengths[3] = {1, 3, 1};
static MPI_Datatype types[3] =
{MPI_INT, MPI_DOUBLE, MPI_UB}

main(argc, argv)

int argc;

char *argv[];

{
int rank, size;
MPI_Comm newcomm;
MPI_Datatype dt_cell, dt_mat;
MPI_Status status;
MPI_Aint base;
MPI_Aint displacements|[3];

int i J;
/*
* |nitialize the matrix.
*/
for (i=0; i < ROWS; ++i) {
for (j=0;j < COLS; ++j) {
mat[i][j].code = i;
mat[i][j].coords[0] = (double) i;
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mat[i][j].coords[1] = (double) j;
mat][i][j].coords[2] = (double) i * j

}
MPI_Init(&argc, &argv);
/*
* Create communicators for sub-groups.
*
/
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_split(MPI_COMM_WORLD, rank % 3, 0, &hewcomm);
/7\-

* Build derived datatype for 2 columns of matrix.
*
MPI_Address(&mat[0][0].code, &displacements[0]);
MPI1_Address(mat[0][0].coords, &displacements[1]);
MPI1_Address(&mat[0][1].code, &displacements[2]);
base = displacements[0];
for (i = 0; i < 3; ++i) displacements]i] -= base;
MPI_Type_struct(3, blocklengths, displacements,
types, &dt_cell);
MPI_Type_vector(ROWS, 2, COLS, dt_cell, &dt_mat);
MPI1_Type_commit(&dt_mat);
/*
* Perform a send and a receive that won'’t be satisfied.
*
MPI_Comm_size(newcomm, &size);
MPI_Comm_rank(newcomm, &rank);
MPI1_Send(&mat[0][0], 1, dt_mat, (rank + 1) % size,
0, newcomm);
MPI1_Recv(&mat[0][0], 1, dt_mat, (rank + 1) % size,
MPI_ANY_TAG, newcomm, &status);
MPI_Finalize();
return(0);

}

Let the program be run with a sufficient number of processes. Then examine
the state of the application processes with mpitask.

% mpirun -v -c 10 demo

In its default display mode, mpitask prints information under the following
headings.

TASK (G/L) an identification of the process - An MPI process is nor-
mally identified by its rank in MPI_COMM_WORLD,
also referred to as the “global” (G) rank. If the process is
blocked on a communicator, a ‘/’ followed by its rank
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FUNCTION PEER|ROOT TAG COMM COUNT DATATYPE

% mpitask
TASK (G/L)
0/0 demo Recv
2/0 demo Recv
4/1 demo Recv
6/2 demo Recv
8/2 demo Recv
1/0 demo Recv
3/1 demo Recv
5/1 demo Recv
7/2 demo Recv
9/3 demo Recv
FUNCTION
PEER|ROOT
TAG
COMM
COUNT
DATATYPE

3/1 ANY <2> 1 <30>
5/1 ANY <2> 1 <30>
712 ANY <2> 1 <30>
9/3 ANY <2> 1 <30>
2/0 ANY <2> 1 <30>
4/1 ANY <2> 1 <30>
6/2 ANY <2> 1 <30>
8/2 ANY <2> 1 <30>
1/0 ANY <2> 1 <30>
0/0 ANY <2> 1 <30>

within that communicator is appended. This is also
referred to as the “local” (L) rank. The name of the pro-
gram is also printed.

the MPI routine currently being executed

the source or destination process of a communication
operation, if one is specified under FUNCTION, or the
root process of certain collective operations

the message tag of a point-to-point communication

the communicator ID being used - S2ebugging and
Tracingfor how to cross-reference this number with the
program’s data.

the number of elements being transferred
the datatype ID of each element being transferred

Depending on the MPI routine, some fields may not be applicable and will
be left blank. If a process is not currently executing an MPI routine, one of
the following execution states may be reported:

<running>
<paused>
<stopped>
<blocked>
GPS
Identification

free to run on the underlying OS
blocked on lam_kpause()
stopped by the LAM signal, LAM_SIGARREST

blocked in a LAM routine - In general this should be a
transitory state.

With spawned processes and even multiple MPI applications running con-

currently under the same LAM session, MPI_COMM_WORLD rank is not
always an unambiguous identification of an MPI process. LAM has an alter-
native to the global rank, called the GPS (for Global Positioning System).

MPI Primer / Developing with LAM



Communicator
Monitoring

69

-gps Identify MPI processes with the GPS instead of the glo-
bal rank, the rank within MPI_COMM_WORLD.

The GPS is comprised of the nodeid on which the process is running, and
the LAM process index within that node.

% mpitask -gps n0 i8
TASK (GPS/L) FUNCTION PEER|ROOT TAG COMM COUNT DATATYPE
no,i8/0 demo Recv nl1,i9/1 ANY <2> 1 <30>

The MPI communicator and datatype are two opague objects that are shown
as unfamiliar identifiers in the format, <#>. Extended library functions can
report the same values from within the running application.[3s®igging

and Tracing Information from within communicators and datatypes can be
reported by mpitask.

-C Instead of the default report, print communicator infor-
mation on all selected processes.

The communicator report contains an identification of the process, as under
the TASK heading in the default report. It also contains the size of the com-
municator and the global ranks (or GPS, with the -gps option) of all pro-
cesses in the communicator’s process group. If it is an inter-communicator,
members of both groups are reported.

% mpitask -c n0 i8
TASK (G/L): 0/0 demo

INTRACOMM: <2>
SIZE: 4
GROUP: 0369
Datatype -d Instead of the default report, print datatype information

Monitoring

on all selected processes.

The datatype report contains an identification of the process, as under the
TASK heading in the default report. It also contains a rendering of the
datatype’s type map, which is not easy to depict with only ASCII characters.
The format is hierarchical, with indentation representing a level of datatype
derivation. Basic datatypes are written as they are coded. For derived

1. Application process indices do not start at O or 1 because LAM system pro-
cesses occupy the first several positions.
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datatypes, the constructor type is shown along with information on displace-
ments, blocklengths and block counts. Compare the sample code with the
output of mpitask -d.

% mpitask -d n0 i8
TASK (G/L): 0/0 demo
DATATYPE: <30>

MPI_VECTOR (10 x 2, 20)
MPI_STRUCT (3)
(1, 0) MPL_INT
(3, 8) MPI_DOUBLE
(1, 32) MPI_UB

The number of MPI processes reported by mpitask can be constrained by
specifying nodeids and/or process indices on the mpitask command line.
Choosing the right nodeids and process indices is obviously facilitated by
the GPS reporting. Selecting a single process is particularly useful for com-
municator and datatype reporting, when many or all of the processes might
have the same communicator or datatype to report.

doom Doom is the command level interface to signal delivery. Node(s) must be
specified on the command line. If no processes are specified, all application
processes on the selected nodes are signalled. With no other options, doom
sends a LAM_SIGUDIE signal. Unfortunately, the user cannot specify sig-
nal mnemonics and must give the actual signal number instead. These are

listed below.

-1 (LAM_SIGTRACE) unload trace data

-4 (LAM_SIGUDIE) terminate

-5 (LAM_SIGARREST) suspend execution

-6 (LAM_SIGRELEASE) resume execution

-7 (LAM_SIGA) reserved for user

-8 (LAM_SIGB) reserved for user

-9 (LAM_SIGFUSE) node about to die

-10 (LAM_SIGSHRINK) another node has died

For example, to suspend process index 8 on node 1, use the following form:
% doom n1i8 -5

Resume the execution of the same process:

% doom nli8 -6
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mpimsg Monitor message buffers.
bfctl Control message buffers.

Message A receiving process is usually debugged withrtimtaskcommand, but a
Monitoring ~ sending process transfers a message and returns to a ready state quickly due
and Control t© the presence of buffers. Thgimsgcommand is provided to examine
buffered messages. With no arguments, all MPI messages on all nodes are
mpimsg  reported. The report can be constrained by specifying nodes and processes.

SeeProcess Monitoring and Contrébr an example program that can send
messages that will not be received. These messages can be examined with
mpimsg.

% mpimsg

SRC (G/L) DEST(G/L) TAG COMM COUNT DATATYPE MSG

9/3 0/0 0 <2> 1 <30> n0,#0

8/2 2/0 0 <2> 1 <30> no,#1

1/0 4/1 0 <2> 1 <30> n0,#2

3/1 6/2 0 <2> 1 <30> n0,#3

5/1 8/2 0 <2> 1 <30> no,#4

712 1/0 0 <2> 1 <30> n1,#0

0/0 3/1 0 <2> 1 <30> nl,#1

2/0 5/1 0 <2> 1 <30> nl,#2

4/1 712 0 <2> 1 <30> nl,#3

6/2 9/3 0 <2> 1 <30> ni,#4

In its default display mode, mpimsg prints information under the following
headings.

SRC (G/L) an identification of the sending process followed by a ‘/’
and the process’s communicator rank (the “local” rank)

DEST (G/L) an identification of the receiving process followed by a
‘I and the process’s communicator rank

TAG the message tag

COMM the communicator 1D

COUNT the number of elements in the message

DATATYPE the datatype ID of each element

MSG the message ID to use in a contents query

The same communicator and datatype information that is obtainable from
processes with mpitask is also obtainable from messages. The difference is
that more precision is needed to specify a message, because one process can
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generate several messages. Instead of process indices, mpimsg requires a
message number as a parameter to -c (communicator) or -d (datatype). In
fact the information needed by mpimsg is that exactly printed under the
MSG heading in the default report: nodeid and message number.

-m <#> Display the contents of the specified message number on
the specified node.

An additional capability unique to message reporting is the display of mes-
sage contents. The datatype’s type map is used to format the data. Offsets at
the beginning of each line are from the beginning of the unpacked message.
Contiguous blocks of one basic datatype are printed contiguously, with new-
lines forced between blocks.

% mpimsg -gps N0 -m 4
MESSAGE: n0,i12/2 #4

00000000:
00000008:
00000020:
00000028:
00000280:
00000288:
000002a0:
000002a8:
00000500:

bfctl

0 0

1 0

0 0

1 1

NFRPFRPRPRPPOOOO

The LAM daemon does not continue to allocate buffer space up until the
operating system is out of memory. There is a limit after which no additional
messages will be accepted until some are consumed. Processes will block in
send operations if the required buffer space is not available. When using the
default GER protocol (Sdexecuting MPI Programs mpirunwill take care

of adjusting the buffer limit according to the guaranteed envelope resources.
If this protocol is disabled, the user may need to tune the buffer limit man-
ually. The user can control the maximum size a LAM daemon'’s buffer pool
with thebfctl command.

-S Adjust the upper limit on buffered messages for the
selected nodes.

% bfctl N -s 0x100000
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lamtrace Collect trace data and store in a file.

After a traced application has completed execution, trace data recording

communication activity is stored within the LAM daemon across all nodes
on which the application ran. There is a limit on how much trace data one
LAM daemon will hold. When that limit is reached, the oldest traces are dis-
carded in favour of the newest traces. Bebugging and Tracingpr runt-

ime routines that can limit the volume of trace data.

Thelamtracecommand gathers trace data and stores it into a file, which by
convention has the suffix .lamtr.

% lamtrace -v -mpi

-mpi Search for an MPI world trace created by the specified
processes.

For the most part, lamtrace and the LAM daemon are ignorant of specific
trace formats. In order to extract MPI trace data for a particular world com-
municator group in the presence of several such groups (due to spawned
processes or multiple applications), lamtrace understands the format of an
administrative trace record produced by LAM’s MPI library. In simple situ-
ations with one application and no spawned processes, no node or process
focus is required. lamtrace searches all nodes and eventually locates the sol-
itary MPI1 world trace, which is produced by process rank 0 in
MPI_COMM_WORLD. However, if trace data from multiple worlds are
present, node and possibly process specification must be given on the com-
mand line to get the data for the desired world. The right nodeid and process
index can be learned frompitaskor inferred from the application schema.

For example:

% lamtrace -v -mpi n0 i8

It is entirely possible to unload trace data before the application has com-
pleted, with the obvious caveat that incomplete communication at the
moment of the unload will be reflected in the trace data.

Trace data remains in the LAM daemon and awaits an unload after an appli-
cation terminates. If not unloaded, it should be removed before running the
next application. This is one of the actions takemabyclean
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lamgrow Add a node to the current LAM session.
lamshrink Remove a node.

LAM can be operated in an environment where resource availability is
dynamic, perhaps under the control of an external resource manager. LAM
is started and an initial set of nodes are establishedamithoot If in the

future a resource manager (software or human) decides to modify the cur-
rent set of nodes belonging to a LAM session, the changes are made with
two commanddamgrowandlamshrink Both commands must be executed
from an existing LAM node.

A new machine is labelled with a nodeid and added to the LAM session with
lamgrow. Usage is more restrictive than typical LAM commands.

* The nodeid must not duplicate an existing node.
* Only one node can be added per invocation of lamgrow.
* The machine name must be supplied. LAM will not choose one.

* Only one copy of lamgrow must be running throughout the LAM
multicomputer.

% lamgrow -v n8 buckeye.osc.edu

If a nodeid is not specified, the next highest LAM nodeid is used. With the
power to specify a nodeid, lamgrow can remove the initial property guaran-
teed by lamboot - that nodeids are consecutive starting from zero.

-X Enable fault tolerant detection and recovery. The deci-
sion to use this option generally follows the lamboot
invocation.

-c <bhost> Update a boot schema by appending the new machine

name to the host list. This is a simple convenience feature
that updates a boot schema for usevipe

A single node is removed per invocation of lamshrink. The nodeid and the
machine name must be supplied.

% lamshrink -v n8 buckeye.osc.edu

-w <#secs> Signal all application processes on the doomed node
(LAM_SIGFUSE) and pause before continuing. See
Signal Handling
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fstate Get remote filesystem status.
fctl Control remote filesystem.

There are commands to monitor and control remote file acces&RSnete
File Accesy fstateprints one line of status information for each open file
descriptor.

FD/COUNT global file descriptor handle (not the client handle) and
reference count

FLAGS open flags and status flags (see below)

FLOW total amount of 1/O in bytes since opening

CLIENT nodeid and process ID of last client process

NAME filename

The open/status flags are single character mnemonics.

open for read

open for write

locked active

active, currently open in the underlying filesystem
inactive, currently closed in the underlying filesystem

—>r s

% fstate N

NODE FD/COUNT FLAGS FLOW CLIENT NAME
no (0) 0/0 R|L 0 none /dev/null
no (o) 1/0 WI|L 0 n0/p25825  /devi/ttya
no (0) 2/0 R|WIL 0 none /devittya

fctl

Thefctl command has two features. The -s option cleans up and closes a
specific file descriptor while the -S option does the same thing for all file
descriptors. With no option$tl prints the current working directory of the
remote filesystem. The working directory is changed by giving a new
pathname téctl. In the current release, working directories are kept on a per
node basis, not a per process basis.

% fctl -s 4
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bhost.my3suns example host file

The topology of a multicomputer is established in the boot schema. The boot
schema specifies the identifiers and types of nodes, and the physical
machines to be used. It may also contain the user account name on a
machine in case it is different from the local username. The boot schema is
used bylambootwhen starting the LAM session andWwipe when termi-
nating the LAM session. S&tarting LAM

A variety of boot schemata describing different multicomputers may
already be available for a given installation. These files are generally found
in the directory SLAMHOME/boot. LAM users may need to write their own
boot schema since the network often affords many choices. This section
describes how to write a boot schema for LAM using the host file syntax.
The example multicomputer has three nodes, one of which has a different
user account name.

The host file syntax is an extremely simple way of representing the informa-
tion required in a LAM boot schema. The machines are listed one on each
line with an optional user account name (username) following it. The user-
name is required in case the account name on that machine is different from
the one on the local machine where lamboot will be invoked. If the user-
name is not given, the local one will be used. The nodeids are determined
by the order in which the machines appear in the file, starting with node 0
and proceeding with consecutive node numbers. A line segment following
a # character denotes a comment and is thus skipped.

In the three node example, it is assumed that the machines are named
“ohio”, “osc” and “faraway.far.edu” and numbered 0, 1, and 2 respectively.

Itis also assumed that the user is logged on to node 0, and has the same user-
name on node 1, but a different one (guest) on node 2. Since node 1 has the
same username as the local node, there is no need to specify it. The example

boot schema using the host file syntax is shown below.

# a 3 node example
ohio

osc

faraway.far.edu guest
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hboot Start LAM on one node.

Thelambootcommand runs a lower level program that starts LAM on a spe-
cific node. Normally, the user will only need to use lamboot. In some special
circumstances, when variations in the normal start-up procedure not con-
trollable with lamboot options are desired, the user may wish to manually
start the system. By running the low lefabbottool, the user can select
options that tailor the start-up to his/her needs and/or bypass some of the
complexities of lamboot.

The hboot tool reads a per-node configuration file called a process schema.
The process schema contains a list of programs and runtime arguments that
will constitute LAM on a node. The default process schema filename for
hboot isconf.oth Lamboot invokes hboot using thenf.lamprocess

schema. Just as the user can create custom boot schemata, he/she can create
custom process schemata. They make it easy to reconfigure LAM at the
process level. For a complete description of the process schema grammar,
see thgrocschemananual page.

To manually start a LAM session, first consult the boot schema. This file
specifies the node identifiers as well as a binding between node identifiers
and actual machines. The example boot schema shown below is written with
the host file syntax and describes a 3 node multicomputer.

# a 3 node example
ohio

0sc

faraway.far.edu guest

Each node will be started using the hboot tool, giving each node information
about the other nodes in the multicomputer in order to form the fully con-
nected LAM topology. Assuming the user is logged on to machine “ohio”,
first start LAM locally.

{ohio}% hboot -vc conf.lam -I “-n0 -00
osc 1 faraway.far.edu 2”

Then login to machine “osc” and start LAM on it.

{osc}% hboot -vc conf.lam -1 “-n1 -00
ohio 0 faraway.far.edu 2”
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Then login to machine “faraway.far.edu” on the account “guest” and start
LAM on it.

{faraway}% hboot -vc conf.lam -I “-n2 -00
ohio.here.edu 0 osc.here.edu 1”

Notice that in this last case the full machine names of “ohio” and “osc” are
provided since they are in a different domain than “faraway”. The -1 option’s
parameter becomes the value of the $inet_topo variable in the process
schema. This variable is used by LAM to ascertain network information.

-0 the nodeid of the origin node - The origin node is
assumed to be the position from where the user would
have invoked lamboot. Many LAM features use the ori-
gin node as a default nodeid.

-n the local nodeid

Other than establishing local and remote nodeids, the network information
contains machine name / link number pairs for all other nodes. The link
number is equivalent to the LAM nodeid.

The same procedure may be done using the rsh UNIX tool instead of log-
ging in to each machine. In this case, use the -s option of hboot in order to
allow rsh to return when hboot is done.
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This appendix contains Fortran bindings for the library routines described
in this document. All bindings are subroutines unless otherwise noted.

from Initialization:

MPI_INIT (ierror)
integer ierror

MPI_FINALIZE (ierror)

MPI_ABORT (comm, errcode, ierror)
integer comm, errcode

MPI_COMM_SIZE (comm, size, ierror)
integer comm, size

MPI1_COMM_RANK (comm, rank, ierror)
integer comm, rank

from Blocking Point-to-Point

MPI1_SEND (buf, count, dtype, dest, tag, comm,
ierror)
<type> buf(*)
integer count, dtype, dest, tag, comm

MPI_RECV (buf, count, dtype, source, tag, comm,
status, ierror)
<type> buf(*)
integer count, dtype, source, tag, comm
integer status(MPI_STATUS_SIZE)

MPI_GET_COUNT (status, dtype, count, ierror)
integer status(MPI_STATUS_SIZE), dtype, count

MPI_PROBE (source, tag, comm, status, ierror)
integer source, tag, comm
integer status(MPI_STATUS_SIZE)

from Nonblocking Point-to-Point

MPI_ISEND (buf, count, dtype, dest, tag, comm,
request, ierror)
<type> buf(*)
integer count, dtype, dest, tag
integer comm, request
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MPI_IRECV (buf, count, dtype, source, tag, comm,
request, ierror)
<type> buf(*)
integer count, dtype, source, tag
integer comm, request

MPI_TEST (request, flag, status, ierror)
logical flag
integer request, status(MPI_STATUS_SIZE)

MPI_WAIT (request, status, ierror)
integer request, status(MPI_STATUS_SIZE)

MPI_IPROBE (source, tag, comm, flag, status,
ierror)
logical flag
integer source, tag, comm
integer status(MPI_STATUS_SIZE)

from Message Datatypes

MPI_TYPE_VECTOR (count, blocklength, stride,
oldtype, newtype, ierror)
integer count, blocklength, stride
integer oldtype, newtype

MPI_TYPE_STRUCT (count, blocklengths,
displacements, dtypes, newtype, ierror)
integer count, blocklengths(*)
integer displacements(*), dtypes(*), newtype
MPI1_ADDRESS (location, address, ierror)
<type> location(*)
integer address
MPI_TYPE_COMMIT (dtype, ierror)
integer dtype
MPI_PACK_SIZE (incount, dtype, comm size, ierror)
integer incount, dtype, comm, size

MPI1_PACK (inbuf, incount, dtype, outbuf, outsize,
position, comm, ierror)
<type> inbuf(*), outbuf(*)
integer incount, dtype, outsize
integer position, comm
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MPI_UNPACK (inbuf, insize, position, outbuf,
outcount, dtype, comm, ierror)
<type> inbuf(*), outbuf(*)
integer insize, position, outcount
integer dtype, comm

from Collective Message-Passing

MPI_BCAST (buf, count, dtype, root, comm, ierror)
<type> buf(*)
integer count, dtype, root, comm

MPI_SCATTER (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root,
comm, ierror)

<type> sendbuf(*), recvbuf(*)
integer sendcount, sendtype, recvcount
integer recvtype, root, comm

MPI_GATHER (sendbuf, sendcount, sendtype,
recvbuf, recvcount, recvtype, root
comm, ierror)

integer sendcount, sendtype, recvcount
integer recvtype, root, comm

MPI_REDUCE (sendbuf, recvbuf, count, dtype, op,
root, comm, ierror)
<type> sendbuf(*), recvbuf(*)
integer count, dtype, op, root, comm

from Creating Communicators

MPI_COMM_DUP (comm, newcomm, ierror)
integer comm, newcomm

MPI1_COMM_SPLIT (comm, color, key, newcomm, ierror)
integer comm, color, key, newcomm

MPI_COMM_FREE (comm, ierror)
integer comm

MPI_COMM_REMOTE_SIZE (comm, size, ierror)
integer comm, size

MPI_INTERCOMM_MERGE (intercomm, high, intracomm,
ierror)
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integer intercomm, intracomm
logical high

from Process Topologies

MPI_CART_CREATE (oldcomm, ndims, dims, periods,
reorder, newcomm, ierror)
integer oldcomm, ndims, dims(*), newcomm
logical periods(*), reorder
MPI_CART_RANK (comm, coords, rank, ierror)
integer comm, coords(*), rank
MPI_CART_COORDS (comm, rank, maxdims, coords,
ierror)
integer comm, rank, maxdims, coords(*)
MPI_CART_SHIFT (comm, direction, distance,
rank_source, rank_dest, ierror)
integer comm, direction, distance
integer rank_source, rank_dest

from Dynamic Processes

MPI_SPAWN (program, argv, maxprocs, info, root,
comm, intercomm, ierrors, ierror)
character*(*) program, argv(*)
integer info, maxprocs, root, comm
integer intercomm, ierrors(*)

from Miscellaneous MPI Features

MPI_ERRHANDLER_CREATE (errfunc, handler, ierror)
external errfunc
integer handler

MPI_ERRHANDLER_SET (comm, handler, ierror)
integer comm, handler
MPI_ERROR_STRING (code, errstring, resultlen,
ierror)
integer code, resultlen
character*(*) errstring

MPI_ERROR_CLASS (code, class, ierror)
integer code, class

MPI Primer / Developing with LAM



MPI_ATTR_GET (comm, keyval, attrval, flag, ierror)
integer comm, keyval, attrval
logical flag

double precision MPI_WTIME()
from Remote File Access

lamf_rfopen (lamfd, file, flags, modes, ierror)
integer lamfd, flags, modes
character*(*) file

lamf_rfclose (lamfd, ierror)
integer lamfd

lamf_rfread (lamfd, buf, length, nread, ierror)
integer lamfd, length, nread
<type> buf(*)
lamf_rfwrite (lamfd, buf, length, nwritten,
ierror)
integer lamfd, length, nwritten
<type> buf(*)

from Collective I/1Q

CBX_OPEN (file, flags, mode, owner, comm, cbxfd,
ierror)
character*(*) file
integer flags, mode, owner, comm, cbxfd

CBX_CLOSE (cbxfd, ierror)
integer cbxfd

CBX_READ (cbxfd, buf, count, dtype, nread, ierror)
integer cbxfd, count, dtype, nread
<type> buf(*)

CBX_WRITE (cbxfd, buf, count, dtype, nwritten,

ierror)

integer cbxfd, count, dtype, nwritten
<type> buf(*)

CBX_LSEEK (cbxfd, offset, whence, ierror)
integer cbxfd, offset, whence

CBX_MULTI (cbxfd, ierror)
integer cbxfd
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CBX_SINGL (cbxfd, ierror)
integer cbxfd

CBX_IS_MULTI (cbxfd, result, ierror)
integer cbxfd
logical result

CBX_IS_SINGL (cbxfd, result, ierror)
integer cbxfd
logical result

CBX_ORDER (cbxfd, newrank, ierror)
integer cbxfd, newrank

from Signal Handling
MPIL_SIGNAL (comm, rank, signo, ierror)
integer comm, rank, signo
from Debugging and Tracing
MPIL_COMM_ID (comm, id, ierror)
integer comm, id
MPIL_COMM_GPS (comm, rank, nodeid, pid, ierror)
integer comm, rank, nodeid, pid
MPIL_TYPE_ID (dtype, id, ierror)
integer dtype, id
MPIL_TRACE_ON (ierror)
MPIL_TRACE_OFF (ierror)
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The trivial example program frorogramming Tutorials shown here in
Fortran.

c
¢ Transmit a message in a two process system.
c

program trivial
#include <mpif.h>

integer*4 BUFSIZE
parameter (BUFSIZE = 64)
integer*4 buffer(BUFSIZE)
integer rank, size
integer status(MPl_STATUS_SIZE)
c
¢ Initialize MPI.
c
call MPL_INIT (ierror)
c

¢ Error check the number of processes.
¢ Determine my rank in the world group.
¢ The sender will be rank 0 and the receiver, rank 1.

c
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
if (size .ne. 2) then
call MP1_FINALIZE(ierror)
stop
endif
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
c
¢ As rank 0, send a message to rank 1.
c
if (rank .eq. 0) then
call MPI_SEND(buffer(1), BUFSIZE, MPI_INTEGER,
+ 1,11, MPI_COMM_WORLD, ierror)
c
c As rank 1, receive a message from rank 0.
c
else
call MPI_RECV(buffer(1), BUFSIZE, MPI_INTEGER,
+ 0, 11, MPI_COMM_WORLD, status,
+ ierror)
endif
call MP1_FINALIZE(ierror)
stop
end
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