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1  The MPI Interface

In principle, a sequential algorithm is portable to any architecture supporting the
sequential paradigm. However, programmers require more than this: they want their
realisation of the algorithm in the form of a particular program to be portable —
source-code portability.

The same is true for message-passing programs and forms the motivation behind
MPI. MPI provides source-code portability of message-passing programs written in C
or Fortran across a variety of architectures. Just as for the sequential case, this has
many benefits, including

• protecting investment in a program

• allowing development of the code on one architecture (e.g. a network of work-
stations) before running it on the target machine (e.g. fast specialist parallel
hardware)

While the basic concept of processes communicating by sending messages to one
another has been understood for a number of years, it is only relatively recently that
message-passing systems have been developed which allow source-code portability.

MPI was the first effort to produce a message-passing interface standard across the
whole parallel processing community. Sixty people representing forty different organ-
isations — users and vendors of parallel systems from both the US and Europe — col-
lectively formed the “MPI Forum”. The discussion was open to the whole community
and was led by a working group with in-depth experience of the use and design of
message-passing systems (including PVM, PARMACS, and EPCC’s own CHIMP).
The two-year process of proposals, meetings and review resulted in a document spec-
ifying a standard Message Passing Interface (MPI).

1.1  Goals and scope of MPI
MPI’s prime goals are:

• To provide source-code portability

• To allow efficient implementation across a range of architectures

It also offers:

• A great deal of functionality

• Support for heterogeneous parallel architectures

Deliberately outside the scope of MPI is any explicit support for:

• Initial loading of processes onto processors

• Spawning of processes during execution

• Debugging

• Parallel I/O
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1.2  Preliminaries
MPI comprises a library. An MPI process consists of a C or Fortran 77 program which
communicates with other MPI processes by calling MPI routines. The MPI routines
provide the programmer with a consistent interface across a wide variety of different
platforms.

The initial loading of the executables onto the parallel machine is outwith the scope of
the MPI interface. Each implementation will have its own means of doing this.
Appendix A :“Compiling and Running MPI Programs on lomond” on page 73 con-
tains information on running MPI programs on lomond . More general information on
lomond  can be found in the "Introduction to the University of Edinburgh HPC Serv-
ice" document.

The result of mixing MPI with other communication methods is undefined, but MPI is
guaranteed not to interfere with the operation of standard language operations such
as write , printf  etc. MPI may (with care) be mixed with OpenMP, but the program-
mer may not make the assumption that MPI is thread-safe, and must make sure that
any necessary explicit synchronisation to force thread-safety is carried out by the pro-
gram.

1.3  MPI Handles
MPI maintains internal data-structures related to communications etc. and these are
referenced by the user through handles. Handles are returned to the user from some
MPI calls and can be used in other MPI calls.

Handles can be copied by the usual assignment operation of C or Fortran.

1.4  MPI Errors
In general, C MPI routines return an int  and Fortran MPI routines have an IERROR
argument — these contain the error code. The default action on detection of an error
by MPI is to cause the parallel computation to abort, rather than return with an error
code, but this can be changed as described in “Error Messages” on page 63.

Because of the difficulties of implementation across a wide variety of architectures, a
complete set of detected errors and corresponding error codes is not defined. An MPI
program might be erroneous in the sense that it does not call MPI routines correctly,
but MPI does not guarantee to detect all such errors.

1.5  Bindings to C and Fortran 77
All names of MPI routines and constants in both C and Fortran begin with the prefix
MPI_ to avoid name collisions.

Fortran routine names are all upper case but C routine names are mixed case — fol-
lowing the MPI document [1], when a routine name is used in a language-independ-
ent context, the upper case version is used. All constants are in upper case in both
Fortran and C.

In Fortran1, handles are always of type INTEGER and arrays are indexed from 1.

1. Note that although MPI is a Fortran 77 library, at EPCC MPI programs are usually compiled
using a Fortran 90 compiler. As Fortran 77 is a sub-set of Fortran 90, this is quite acceptable.
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In C, each type of handle is of a different typedef ’d type (MPI_Datatype ,
MPI_Comm, etc.) and arrays are indexed from 0.

Some arguments to certain MPI routines can legitimately be of any type (integer ,
real  etc.). In the Fortran examples in this course

MPI_ROUTINE (MY_ARGUMENT, IERROR)

<type> MY_ARGUMENT

indicates that the type of MY_ARGUMENT is immaterial. In C, such arguments are sim-
ply declared as void * .

1.6  Initialising MPI
The first MPI routine called in any MPI program must be the initialisation routine
MPI_INIT 1. Every MPI program must call this routine once, before any other MPI
routines. Making multiple calls to MPI_INIT  is erroneous. The C version of the rou-
tine accepts the arguments to main , argc  and argv  as arguments.

int MPI_Init(int *argc, char ***argv);

The Fortran version takes no arguments other than the error code.

MPI_INIT(IERROR)

 INTEGER IERROR

1.7 MPI_COMM_WORLD and communicators
MPI_INIT  defines something called MPI_COMM_WORLD for each process that calls it.
MPI_COMM_WORLD is a communicator. All MPI communication calls require a commu-
nicator argument and MPI processes can only communicate if they share a communi-
cator.

 Figure 1:  The predefined communicator MPI_COMM_WORLD for seven processes. The num-
bers indicate the ranks of each process.

Every communicator contains a group which is a list of processes. Secondly, a group is
in fact local to a particular process. The apparent contradiction between this statement
and that in the text is explained thus: the group contained within a communicator has
been previously agreed across the processes at the time when the communicator was

1.There is in fact one exception to this, namelyMPI_INITIALIZED  which allows the pro-
grammer to test whetherMPI_INIT  has already been called.

10
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set up. The processes are ordered and numbered consecutively from 0 (in both For-
tran and C), the number of each process being known as its rank. The rank identifies
each process within the communicator. For example, the rank can be used to specify
the source or destination of a message. (It is worth bearing in mind that in general a
process could have several communicators and therefore might belong to several
groups, typically with a different rank in each group.) Using MPI_COMM_WORLD,
every process can communicate with every other. The group of MPI_COMM_WORLD is
the set of all MPI processes.

1.8  Clean-up of MPI
An MPI program should call the MPI routine MPI_FINALIZE  when all communica-
tions have completed. This routine cleans up all MPI data-structures etc. It does not
cancel outstanding communications, so it is the responsibility of the programmer to
make sure all communications have completed. Once this routine has been called, no
other calls can be made to MPI routines, not even MPI_INIT , so a process cannot later
re-enrol in MPI.

MPI_FINALIZE() 1

1.9 Aborting MPI
MPI_ABORT(comm, errcode)

This routine attempts to abort all processes in the group contained in comm so that
with comm = MPI_COMM_WORLD the whole parallel program will terminate.

1.10  A simple MPI program
All MPI programs should include the standard header file which contains required
defined constants. For C programs the header file is mpi.h  and for Fortran programs
it is mpif.h . Taking into account the previous two sections, it follows that every MPI
program should have the following outline.

1.10.1 C version

#include <mpi.h>

/* Also include usual header files */

main(int argc, char **argv)

{

/* Initialise MPI */

MPI_Init (&argc, &argv);

/* There is no main program */

/* Terminate MPI */

MPI_Finalize ();

1.The C and Fortran versions of the MPI calls can be found in the MPI specification
provided.



The MPI Interface

Edinburgh Parallel Computing Centre 5

exit (0);

}

1.10.2 Fortran version

PROGRAM simple

include ’mpif.h’

integer errcode

C Initialise MPI

call MPI_INIT (errcode)

C The main part of the program goes here.

C Terminate MPI

call MPI_FINALIZE (errcode)

end

1.10.3 Accessing communicator information

An MPI process can query a communicator for information about the group, with
MPI_COMM_SIZE and MPI_COMM_RANK.

MPI_COMM_RANK (comm, rank)

MPI_COMM_RANKreturns in rank  the rank of the calling process in the group associ-
ated with the communicator comm.

MPI_COMM_SIZE returns in size  the number of processes in the group associated
with the communicator comm.

MPI_COMM_SIZE (comm, size)

1.11  Exercise: Hello World - the minimal MPI
program

1. Write a minimal MPI program which prints the message "Hello World". Com-
pile and run it on a single processor.

2. Run it on several processors in parallel.
3. Modify your program so that only the process ranked 0 in MPI_COMM_WORLD

prints out the message.
4. Modify your program so that the number of processes (ie: the value of

MPI_COMM_SIZE) is printed out.

Extra exercise

What happens if you omit the last MPI procedure call in your MPI program?
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2  What’s in a Message?

An MPI message is an array of elements of a particular MPI datatype.

 Figure 2:  An MPI message.

All MPI messages are typed in the sense that the type of the contents must be specified
in the send and receive. The basic datatypes in MPI correspond to the basic C and For-
tran datatypes as shown in the tables below.

Table 1:  Basic C datatypes in MPI

MPI Datatype C datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED
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There are rules for datatype-matching and, with certain exceptions, the datatype spec-
ified in the receive must match the datatype specified in the send. The great advan-
tage of this is that MPI can support heterogeneous parallel architectures i.e. parallel
machines built from different processors, because type conversion can be performed
when necessary. Thus two processors may represent, say, an integer in different ways,
but MPI processes on these processors can use MPI to send integer messages without
being aware of the heterogeneity1

More complex datatypes can be constructed at run-time. These are called derived
datatypes and are built from the basic datatypes. They can be used for sending strided
vectors, C structs  etc. The construction of new datatypes is described later. The MPI
datatypes MPI_BYTE and MPI_PACKED do not correspond to any C or Fortran
datatypes. MPI_BYTE is used to represent eight binary digits and MPI_PACKED has a
special use discussed later.

1.Whilst a single implementation of MPI may be designed to run on a parallel
“machine” made up of heterogeneous processors, there is no guarantee that two dif-
ferent MPI implementation can successfully communicate with one another — MPI
defines an interface to the programmer, but does not define message protocols etc.

Table 2:  Basic Fortran datatypes in MPI

MPI Datatype Fortran Datatype

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED
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3  Point-to-Point Communica-
tion

3.1  Introduction
A point-to-point communication always involves exactly two processes. One process
sends a message to the other. This distinguishes it from the other type of communica
tion in MPI, collective communication, which involves a whole group of processes at
one time.

 Figure 3:  In point-to-point communication a process sends a message to another specific proc-
ess

To send a message, a source process makes an MPI call which specifies a destination
process in terms of its rank in the appropriate communicator (e.g.
MPI_COMM_WORLD). The destination process also has to make an MPI call if it is to
receive the message.

3.2  Communication Modes
There are four communication modes provided by MPI: standard, synchronous, buffered
and ready. The modes refer to four different types of send. It is not meaningful to talk of
communication mode in the context of a receive. “Completion” of a send means by
definition that the send buffer can safely be re-used. The standard, synchronous and
buffered sends differ only in one respect: how completion of the send depends on the
receipt of the message.

Table 3:  MPI communication modes

Completion condition

Synchronous send Only completes when the receive has completed.

0
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communicator

source
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All four modes exist in both blocking and non-blocking forms. In the blocking forms,
return from the routine implies completion. In the non-blocking forms, all modes are
tested for completion with the usual routines (MPI_TEST, MPI_WAIT,  etc.)

There are also “persistent” forms of each of the above, see “Persistent communica-
tions” on page 66.

3.2.1 Standard Send

The standard send completes once the message has been sent, which may or may not
imply that the message has arrived at its destination. The message may instead lie “in
the communications network” for some time. A program using standard sends
should therefore obey various rules:

•  It should not assume that the send will complete before the receive begins. For
example, two processes should not use blocking standard sends to exchange
messages, since this may on occasion cause deadlock.

•  It should not assume that the send will complete after the receive begins. For ex-
ample, the sender should not send further messages whose correct interpreta-
tion depends on the assumption that a previous message arrived elsewhere; it is
possible to imagine scenarios (necessarily with more than two processes) where
the ordering of messages is non-deterministic under standard mode.

In summary, a standard send may be implemented as a synchronous send, or it
may be implemented as a buffered send, and the user should not assume either
case.

•  Processes should be eager readers, i.e. guarantee to eventually receive all messag-
es sent to them, else the network may overload.

Buffered send Always completes (unless an error occurs), irrespective of
whether the receive has completed.

Standard send Either synchronous or buffered.

Ready send Always completes (unless an error occurs), irrespective of
whether the receive has completed.

Receive Completes when a message has arrived.

Table 4:  MPI Communication routines

Blocking form

Standard send MPI_SEND

Synchronous send MPI_SSEND

Buffered send MPI_BSEND

Ready send MPI_RSEND

Receive MPI_RECV

Table 3:  MPI communication modes

Completion condition
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If a program breaks these rules, unpredictable behaviour can result: programs may
run successfully on one implementation of MPI but not on others, or may run success-
fully on some occasions and “hang” on other occasions in a non-deterministic way.

The standard send has the following form

MPI_SEND (buf, count, datatype, dest, tag, comm)

where

• buf  is the address of the data to be sent.

• count  is the number of elements of the MPI datatype which buf  contains.

• datatype  is the MPI datatype.

• dest  is the destination process for the message. This is specified by the rank of
the destination process within the group associated with the communicator
comm.

• tag  is a marker used by the sender to distinguish between different types of
messages. Tags are used by the programmer to distinguish between different
sorts of message.

• comm is the communicator shared by the sending and receiving processes. Only
processes which have the same communicator can communicate.

• IERROR contains the return value of the Fortran version of the synchronous
send.

Completion of a send means by definition that the send buffer can safely be re-used i.e.
the data has been sent.

3.2.2 Synchronous Send

If the sending process needs to know that the message has been received by the
receiving process, then both processes may use synchronous communication. What
actually happens during a synchronous communication is something like this: the
receiving process sends back an acknowledgement (a procedure known as a ‘hand-
shake’ between the processes) as shown in Figure 4:. This acknowledgement must be
received by the sender before the send is considered complete.

 Figure 4:  In the synchronous mode the sender knows that the other one has received the mes-
sage.

The MPI synchronous send routine is similar in form to the standard send. For exam-
ple, in the blocking form:

MPI_SSEND (buf, count, datatype, dest, tag, comm)
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communicator
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If a process executing a blocking synchronous send is “ahead” of the process execut-
ing the matching receive, then it will be idle until the receiving process catches up.
Similarly, if the sending process is executing a non-blocking synchronous send, the
completion test will not succeed until the receiving process catches up. Synchronous
mode can therefore be slower than standard mode. Synchronous mode is however a
safer method of communication because the communication network can never
become overloaded with undeliverable messages. It has the advantage over standard
mode of being more predictable: a synchronous send always synchronises the sender
and receiver, whereas a standard send may or may not do so. This makes the behav-
iour of a program more deterministic. Debugging is also easier because messages can-
not lie undelivered and “invisible” in the network. Therefore a parallel program using
synchronous sends need only take heed of the rule on page 10. Problems of unwanted
synchronisation (such as deadlock) can be avoided by the use of non-blocking syn-
chronous communication “Non-Blocking Communication” on page 19.

3.2.3 Buffered Send

Buffered send guarantees to complete immediately, copying the message to a system
buffer for later transmission if necessary. The advantage over standard send is pre-
dictability — the sender and receiver are guaranteed not to be synchronised and if the
network overloads, the behaviour is defined, namely an error will occur. Therefore a
parallel program using buffered sends need only take heed of the rule on page 10. The
disadvantage of buffered send is that the programmer cannot assume any pre-allo-
cated buffer space and must explicitly attach enough buffer space for the program
with calls to MPI_BUFFER_ATTACH. Non-blocking buffered send has no advantage
over blocking buffered send.

To use buffered mode, the user must attach buffer space:

MPI_BUFFER_ATTACH (buffer, size)

This specifies the array buffer  of size  bytes to be used as buffer space by buffered
mode. Of course buffer  must point to an existing array which will not be used by
the programmer. Only one buffer can be attached per process at a time. Buffer space is
detached with:

MPI_BUFFER_DETACH (buffer, size)

Any communications already using the buffer are allowed to complete before the
buffer is detached by MPI.

C users note: this does not deallocate the memory in buffer .

Often buffered sends and non-blocking communication are alternatives and each has
pros and cons:

• buffered sends require extra buffer space to be allocated and attached by the us-
er;

• buffered sends require copying of data into and out of system buffers while
non-blocking communication does not;

• non-blocking communication requires more MPI calls to perform the same
number of communications.

3.2.4 Ready Send

A ready send, like buffered send, completes immediately. The communication is guar-
anteed to succeed normally if a matching receive is already posted. However, unlike
all other sends, if no matching receive has been posted, the outcome is undefined. As
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shown in Figure 5:, the sending process simply throws the message out onto the com-
munication network and hopes that the receiving process is waiting to catch it. If the
receiving process is ready for the message, it will be received, else the message may be
silently dropped, an error may occur, etc.

 Figure 5:  In the ready mode a process hopes that the other process has caught the message

The idea is that by avoiding the necessity for handshaking and buffering between the
sender and the receiver, performance may be improved. Use of ready mode is only
safe if the logical control flow of the parallel program permits it. For example, see Fig-
ure 6:

 Figure 6:  An example of safe use of ready mode.  When Process 0 sends the message with tag
0 it ``knows'' that the receive has already been posted because of the synchronisation inherent

in sending the message with tag 1.

Clearly ready mode is a difficult mode to debug and requires careful attention to par-
allel program messaging patterns. It is only likely to be used in programs for which
performance is critical and which are targeted mainly at platforms for which there is a
real performance gain. The ready send has a similar form to the standard send:

MPI_RSEND (buf, count, datatype, dest, tag, comm)

Non-blocking ready send has no advantage over blocking ready send (see
“Non-Blocking Communication” on page 19).

3.2.5 The standard blocking receive

The format of the standard blocking receive is:

MPI_RECV (buf, count, datatype, source, tag, comm, status)

where
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• buf  is the address where the data should be placed once received (the receive
buffer). For the communication to succeed, the receive buffer must be large
enough to hold the message without truncation — if it is not, behaviour is un-
defined. The buffer may however be longer than the data received.

• count  is the number of elements of a certain MPI datatype which buf  can con-
tain. The number of data elements actually received may be less than this.

• datatype  is the MPI datatype for the message. This must match the MPI da-
tatype specified in the send routine.

• source  is the rank of the source of the message in the group associated with the
communicator comm. Instead of prescribing the source, messages can be re-
ceived from one of a number of sources by specifying a wildcard,
MPI_ANY_SOURCE, for this argument.

• tag  is used by the receiving process to prescribe that it should receive only a
message with a certain tag. Instead of prescribing the tag, the wildcard
MPI_ANY_TAG can be specified for this argument.

• comm is the communicator specified by both the sending and receiving process.
There is no wildcard option for this argument.

• If the receiving process has specified wildcards for both or either of source  or
tag , then the corresponding information from the message that was actually re-
ceived may be required. This information is returned in status , and can be
queried using routines described later.

• IERROR contains the return value of the Fortran version of the standard receive.

Completion of a receive means by definition that a message arrived i.e. the data has
been received.

3.3  Discussion
The word “blocking” means that the routines described above only return once the com-
munication has completed. This is a non-local condition i.e. it might depend on the state
of other processes. The ability to select a message by source is a powerful feature. For
example, a source process might wish to receive messages back from worker proc-
esses in strict order. Tags are another powerful feature. A tag is an integer labelling
different types of message, such as “initial data”, “client-server request”, “results
from worker”. Note the difference between this and the programmer sending an inte-
ger label of his or her own as part of the message — in the latter case, by the time the
label is known, the message itself has already been read. The point of tags is that the
receiver can select which messages it wants to receive, on the basis of the tag.
Point-to-point communications in MPI are led by the sending process “pushing” mes-
sages out to other processes — a process cannot “fetch” a message, it can only receive
a message if it has been sent. When a point-to-point communication call is made, it is
termed posting a send or posting a receive, in analogy perhaps to a bulletin board.
Because of the selection allowed in receive calls, it makes sense to talk of a send
matching a receive. MPI can be thought of as an agency — processes post sends and
receives to MPI and MPI matches them up.
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3.4  Information about each message: the
Communication Envelope

As well as the data specified by the user, the communication also includes other infor-
mation, known as the communication envelope, which can be used to distinguish
between messages. This information is returned from MPI_RECV as status .

 Figure 7:  As well as the data, the message contains information about the communication in
the communication envelope.

The status  argument can be queried directly to find out the source or tag of a mes-
sage which has just been received. This will of course only be necessary if a wildcard
option was used in one of these arguments in the receive call. The source process of a
message received with the MPI_ANY_SOURCE argument can be found for C in:

status.MPI_SOURCE

and for Fortran in:

STATUS(MPI_SOURCE)

This returns the rank of the source process in the source  argument. Similarly, the
message tag of a message received with MPI_ANY_TAG can be found for C in:

status.MPI_TAG

and for Fortran in:

STATUS(MPI_TAG)

The size of the message received by a process can also be found.

Destination Address

For the attention of :

Data
Item 1
Item 2
Item 3

Sender’s Address
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3.4.1 Information on received message size

The message received need not fill the receive buffer. The count  argument specified
to the receive routine is the number of elements for which there is space in the receive
buffer. This will not always be the same as the number of elements actually received.

 Figure 8:  Processes can receive messages of different sizes.

The number of elements which was actually received can be found by querying the
communication envelope, namely the status variable, after a communication call.
For example:

MPI_GET_COUNT (status, datatype, count)

This routine queries the information contained in status  to find out how many of
the MPI datatype are contained in the message, returning the result in count .

3.5  Rules of point-to-point communication
MPI implementations guarantee that the following properties hold for point-to-point
communication (these rules are sometimes known as “semantics”).

3.5.1 Message Order Preservation

Messages do not overtake each other. That is, consider any two MPI processes. Process A
sends two messages to Process B with the same communicator. Process B posts two
receive calls which match both sends. Then the two messages are guaranteed to be
received in the order they were sent.

 Figure 9:  Messages sent from the same sender which match the same receive are received in
the order they were sent.
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3.5.2 Progress

It is not possible for a matching send and receive pair to remain permanently outstanding.
That is, if one MPI process posts a send and a second process posts a matching
receive, then either the send or the receive will eventually complete.

 Figure 10:  One communication will complete.

There are two possible scenarios:

• The send is received by a third process with a matching receive, in which case
the send completes but the second processes receive does not.

• A third process sends out a message which is received by the second process, in
which case the receive completes but the first processes send does not.

3.6  Datatype-matching rules
When a message is sent, the receiving process must in general be expecting to receive
the same datatype. For example, if a process sends a message with datatype
MPI_INTEGER the receiving process must specify to receive datatype MPI_INTEGER,
otherwise the communication is incorrect and behaviour is undefined. Note that this
restriction disallows inter-language communication. (There is one exception to this
rule: MPI_PACKED can match any other type.) Similarly, the C or Fortran type of the
variable(s) in the message must match the MPI datatype, e.g., if a process sends a mes-
sage with datatype MPI_INTEGER the variable(s) specified by the process must be of
type INTEGER, otherwise behaviour is undefined. (The exceptions to this rule are
MPI_BYTE and MPI_PACKED, which, on a byte-addressable machine, can be used to
match any variable type.)

3.7  Exercise: Ping pong
1. Write a program in which two processes repeatedly pass a message back and

forth.
2. Insert timing calls (see below) to measure the time taken for one message.
3. Investigate how the time taken varies with the size of the message.

3.7.1 Timers

For want of a better place, a useful routine is described here which can be used to time
programs.
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MPI_WTIME()

This routine returns elapsed wall-clock time in seconds. The timer has no defined
starting-point, so in order to time something, two calls are needed and the difference
should be taken between them.

MPI_WTIME is a double-precision routine, so remember to declare it as such in your
programs (applies to both C and Fortran programmers). This also applies to variables
which use the results returned by MPI_WTIME.

Extra exercise

Write a program in which the process with rank 0 sends the same message to all other
processes in MPI_COMM_WORLD and then receives a message of the same length
from all other processes. How does the time taken varies with the size of the messages
and with the number of processes?
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4  Non-Blocking Communica-
tion

4.1  Example: one-dimensional smoothing
Consider the example in Figure 11: (a simple one-dimensional case of the smoothing
operations used in image-processing). Each element of the array must be set equal to
the average of its two neighbours, and this is to take place over a certain number of
iterations. Each process is responsible for updating part of the array (a common paral-
lel technique for grid-based problems known as regular domain decomposition1. The two
cells at the ends of each process’ sub-array are boundary cells. For their update, they
require boundary values to be communicated from a process owning the neighbour-
ing sub-arrays and two extra halo cells are set up to hold these values. The non-bound-
ary cells do not require halo data for update.

 Figure 11:  One-dimensional smoothing

1. We use regular domain decomposition as an illustrative example of a partic-
ular communication pattern. However, in practice, parallel libraries exist
which can hide the communication from the user.
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4.2  Motivation for non-blocking communica-
tion

The communications described so far are all blocking communications. This means
that they do not return until the communication has completed (in the sense that the
buffer can be used or re-used). Using blocking communications, a first attempt at a
parallel algorithm for the one-dimensional smoothing might look like this:

for(iterations)

update all cells;

send boundary values to neighbours;

receive halo values from neighbours;

This produces a situation akin to that shown in  where each process sends a message
to another process and then posts a receive. Assume the messages have been sent
using a standard send. Depending on implementation details a standard send may
not be able to complete until the receive has started. Since every process is sending and
none is yet receiving, deadlock can occur and none of the communications ever com-
plete.

 Figure 12:  Deadlock

There is a solution to the deadlock based on “red-black” communication in which
“odd” processes choose to send whilst “even” processes receive, followed by a
reversal of roles1 — but deadlock is not the only problem with this algorithm. Com-
munication is not a major user of CPU cycles, but is usually relatively slow because of
the communication network and the dependency on the process at the other end of
the communication. With blocking communication, the process is waiting idly while
each communication is taking place. Furthermore, the problem is exacerbated because
the communications in each direction are required to take place one after the other.
The point to notice is that the non-boundary cells could theoretically be updated dur-
ing the time when the boundary/halo values are in transit. This is known as latency
hiding because the latency of the communications is overlapped with useful work.
This requires a decoupling of the completion of each send from the receipt by the
neighbour. Non-blocking communication is one method of achieving this.2 In
non-blocking communication the processes call an MPI routine to set up a communi-

1.Another solution might use MPI_SEND_RECV

2.It is not the only solution - buffered sends achieve a similar effect.
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cation (send or receive), but the routine returns before the communication has com-
pleted. The communication can then continue in the background and the process can
carry on with other work, returning at a later point in the program to check that the
communication has completed successfully. The communication is therefore divided
into two operations: the initiation and the completion test. Non-blocking communica-
tion is analogous to a form of delegation — the user makes a request to MPI for com-
munication and checks that its request completed satisfactorily only when it needs to
know in order to proceed. The solution now looks like:

for(iterations)

update boundary cells;

initiate sending of boundary values to neighbours;

initiate receipt of halo values from neighbours;

update non-boundary cells;

wait for completion of sending of boundary values;

wait for completion of receipt of halo values;

Note also that deadlock cannot occur and that communication in each direction can
occur simultaneously. Completion tests are made when the halo data is required for
the next iteration (in the case of a receive) or the boundary values are about to be
updated again (in the case of a send)1.

4.3  Initiating non-blocking communication in
MPI

The non-blocking routines have identical arguments to their blocking counterparts
except for an extra argument in the non-blocking routines. This argument, request ,
is very important as it provides a handle which is used to test when the communica-
tion has completed.

1. “Persistent communications” on page 66 describes an alternative way of
expressing the same algorithm using persistent communications.

Table 5:  Communication models for non-blocking communications

Non-Blocking Operation MPI call

Standard send MPI_ISEND

Synchronous send MPI_ISSEND

Buffered send MPI_BSEND

Ready send MPI_RSEND

Receive MPI_IRECV
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4.3.1 Non-blocking sends

The principle behind non-blocking sends is shown in Figure 13:.

 Figure 13:  A non-blocking send

The sending process initiates the send using the following routine (in synchronous
mode):

MPI_ISSEND (buf, count, datatype, dest, tag, comm, request)

It then continues with other computations which do not alter the send buffer. Before
the sending process can update the send buffer it must check that the send has com-
pleted using the routines described in “Testing communications for completion” on
page 23.

4.3.2 Non-blocking receives

Non-blocking receives may match blocking sends and vice versa.

A non-blocking receive is shown in Figure 14:.

 Figure 14:  A non-blocking receive

The receiving process posts the following receive routine to initiate the receive:

MPI_IRECV (buf, count, datatype, source, tag, comm, request)

The receiving process can then carry on with other computations until it needs the
received data. It then checks the receive buffer to see if the communication has com-
pleted. The different methods of checking the receive buffer are covered in “Testing
communications for completion” on page 23.
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4.4  Testing communications for completion
When using non-blocking communication it is essential to ensure that the communi-
cation has completed before making use of the result of the communication or
re-using the communication buffer. Completion tests come in two types:

• WAIT type These routines block until the communication has completed. They
are useful when the data from the communication is required for the computa-
tions or the communication buffer is about to be re-used.

Therefore a non-blocking communication immediately followed by a WAIT-type
test is equivalent to the corresponding blocking communication.

• TEST type These routines return a TRUE or FALSE value depending on whether
or not the communication has completed. They do not block and are useful in
situations where we want to know if the communication has completed but do
not yet need the result or to re-use the communication buffer i.e. the process can
usefully perform some other task in the meantime.

4.4.1 Testing a non-blocking communication for
completion

The WAIT-type test is:

MPI_WAIT (request, status)

This routine blocks until the communication specified by the handle request  has
completed. The request  handle will have been returned by an earlier call to a
non-blocking communication routine. The TEST-type test is:

MPI_TEST (request, flag, status)

In this case the communication specified by the handle request is simply queried to
see if the communication has completed and the result of the query (TRUE or FALSE)
is returned immediately in flag .

4.4.2 Multiple Communications

It is not unusual for several non-blocking communications to be posted at the same
time, so MPI also provides routines which test multiple communications at once (see
Figure 15:). Three types of routines are provided: those which test for the completion
of all of the communications, those which test for the completion of any of them and
those which test for the completion of some of them. Each type comes in two forms:
the WAIT form and the TEST form.

 Figure 15:  MPI allows a number of specified non-blocking communications to be tested in one
go.
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The routines may be tabulated:

Each is described in more detail below.

4.4.3 Completion of all of a number of communi-
cations

In this case the routines test for the completion of all of the specified communications
(see Figure 16:).

 Figure 16:  Test to see if all of the communications have completed.

The blocking test is as follows:

MPI_WAITALL (count, array_of_requests, array_of_statuses)

This routine blocks until all the communications specified by the request handles,
array_of_requests , have completed. The statuses of the communications are
returned in the array array_of_statuses  and each can be queried in the usual
way for the source  and tag  if required (see “Information about each message: the
Communication Envelope” on page 19“.

There is also a TEST-type version which tests each request handle without blocking.

MPI_TESTALL (count, array_of_requests, flag, array_of_statuses)

If all the communications have completed, flag  is set to TRUE, and information
about each of the communications is returned in array_of_statuses . Otherwise
flag  is set to FALSE and array_of_statuses  is undefined.

Table 6:  MPI completion routines

Test for completion WAIT type
(blocking)

TEST type
(query only)

At least one, return exactly one
MPI_WAITANY MPI_TESTANY

Every one MPI_WAITALL MPI_TESTALL

At least one, return all which
completed

MPI_WAITSOME MPI_TESTSOME

in

in

in

process



Non-Blocking Communication

Edinburgh Parallel Computing Centre 25

4.4.4 Completion of any of a number of communi-
cations

It is often convenient to be able to query a number of communications at a time to find
out if any of them have completed (see Figure 17:).

This can be done in MPI as follows:

MPI_WAITANY (count, array_of_requests, index, status)

MPI_WAITANY blocks until one or more of the communications associated with the
array of request handles, array_of_requests , has completed. The index of the
completed communication in the array_of_requests  handles is returned in
index , and its status is returned in status . Should more than one communication
have completed, the choice of which is returned is arbitrary. It is also possible to query
if any of the communications have completed without blocking.

MPI_TESTANY (count, array_of_requests, index, flag, status)

The result of the test (TRUE or FALSE) is returned immediately in flag.  Otherwise
behaviour is as for MPI_WAITANY.

 Figure 17:  Test to see if any of the communications have completed.

4.4.5 Completion of some of a number of commu-
nications

The MPI_WAITSOME and MPI_TESTSOME routines are similar to the MPI_WAITANY
and MPI_TESTANY routines, except that behaviour is different if more than one com-
munication can complete. In that case MPI_WAITANY or MPI_TESTANY select a com-
munication arbitrarily from those which can complete, and returns status  on that.
MPI_WAITSOME or MPI_TESTSOME, on the other hand, return status  on all commu-
nications which can be completed. They can be used to determine how many commu-
nications completed. It is not possible for a matched send/receive pair to remain
indefinitely pending during repeated calls to MPI_WAITSOME or MPI_TESTSOME i.e.
the routines obey a fairness rule to help prevent “starvation”.

MPI_TESTSOME (count, array_of_requests, outcount,
array_of_indices, array_of_statuses)
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4.4.6 Notes on completion test routines

Completion tests deallocate the request  object for any non-blocking communica-
tions they return as complete1. The corresponding handle is set to
MPI_REQUEST_NULL. Therefore, in usual circumstances the programmer would take
care not to make a completion test on this handle again. If a MPI_REQUEST_NULL
request is passed to a completion test routine, behaviour is defined but the rules are
complex.

4.5  Exercise: Rotating information around a
ring.

Consider a set of processes arranged in a ring as shown below.

Each processor stores its rank in MPI_COMM_WORLD in an integer and sends this value
onto the processor on its right. The processors continue passing on the values they
receive until they get their own rank back. Each process should finish by printing out
the sum of the values.

 Figure 18:  Four processors arranged in a ring.

Extra exercises

1. Modify your program to experiment with the various communication modes
and the blocking and non-blocking forms of point-to-point communications.

2. Modify the above program in order to estimate the time taken by a message to
travel between to adjacent processes along the ring. What happens to your tim-
ings when you vary the number of processes in the ring? Do the new timings
agree with those you made with the ping-pong program?

1. Completion tests are also used to test persistent communication requests —
see “Persistent communications” on page 66— but do not deallocate in that
case.
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5  Introduction to Derived
Datatypes

5.1  Motivation for derived datatypes
In “Datatype-matching rules” on page 17, the basic MPI datatypes were discussed. These allow
the MPI programmer to send messages consisting of an array of variables of the same type.
However, consider the following examples.

5.1.1 Examples in C

5.1.1.1 Sub-block of a matrix

Consider

double results[IMAX][JMAX];

where we want to send results[0][5], results[1][5], ....,
results[IMAX][5] . The data to be sent does not lie in one contiguous area of mem-
ory and so cannot be sent as a single message using a basic datatype. It is however
made up of elements of a single type and is strided i.e. the blocks of data are regularly
spaced in memory.

5.1.1.2 A struct

Consider

struct {
int nResults;
double results[RMAX];

} resultPacket;

where it is required to send resultPacket . In this case the data is guaranteed to be
contiguous in memory, but it is of mixed type.

5.1.1.3 A set of general variables

Consider

int nResults, n, m;
double results[RMAX];

where it is required to send nResults  followed by results .

5.1.2 Examples in Fortran

5.1.2.1 Sub-block of a matrix
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Consider

DOUBLE PRECISION results(IMAX, JMAX)

where we want to send results(5,1), results(5,2), ....,
results(5,JMAX) . The data to be sent does not lie in one contiguous area of mem-
ory and so cannot be sent as a single message using a basic datatype. It is however
made up of elements of a single type and is strided i.e. the blocks of data are regularly
spaced in memory.

5.1.2.2 A common block

Consider

INTEGER nResults
DOUBLE PRECISION results(RMAX)
COMMON / resultPacket / nResults, results

where it is required to send resultPacket . In this case the data is guaranteed to be
contiguous in memory, but it is of mixed type.

5.1.2.3 A set of general variable

Consider

INTEGER nResults, n, m
DOUBLE PRECISION results(RMAX)

where it is required to send nResults  followed by results .

5.1.3 Discussion of examples

If the programmer needs to send non-contiguous data of a single type, he or she
might consider

• making consecutive MPI calls to send and receive each data element in turn,
which is slow and clumsy.

So, for example, one inelegant solution to “Sub-block of a matrix” on page 27,
would be to send the elements in the column one at a time. In C this could be
done as follows:

int count=1;

/*
**********************************************************
* Step through column 5 row by row
**********************************************************

*/

for(i=0;i<IMAX;i++){
MPI_Send (&(results[i][5]), count, MPI_DOUBLE,

dest, tag, comm);
}

In Fortran:

INTEGER count
C Step through row 5 column by column

count = 1
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DO i = 1, IMAX
CALL MPI_SEND (result(i, 5), count, MPI_DOUBLE_PRECISION,

& dest, tag, comm, ierror)
END DO

• copying the data to a buffer before sending it, but this is wasteful of memory and
long-winded.

If the programmer needs to send contiguous data of mixed types, he or she might con-
sider

• again, making consecutive MPI calls to send and receive each data element in
turn, which is clumsy and likely to be slower.

• using MPI_BYTE and sizeof  to get round the datatype-matching rules, but this
produces an MPI program which may not be portable to a heterogeneous ma-
chine.

Non-contiguous data of mixed types presents a combination of both of the problems
above. The idea of derived MPI datatypes is to provide a portable and efficient way of
communicating non-contiguous and/or mixed types in a message.

5.2  Creating a derived datatype
Derived datatypes are created at run-time. Before a derived datatype can be used in a
communication, the program must create it. This is done in two stages.

• Construct the datatype. New datatype definitions are built up from existing
datatypes (either derived or basic) using a call, or a recursive series of calls, to
the following routines: MPI_TYPE_CONTIGUOUS, MPI_TYPE_VECTOR,
MPI_TYPE_HVECTOR, MPI_TYPE_INDEXED MPI_TYPE_HINDEXED,
MPI_TYPE_STRUCT.

• Commit the datatype.The new datatype is “committed” with a call to
MPI_TYPE_COMMIT. It can then be used in any number of communications. The
form of MPI_TYPE_COMMIT is:

MPI_TYPE_COMMIT (datatype)

Finally, there is a complementary routine to MPI_TYPE_COMMIT, namely
MPI_TYPE_FREE, which marks a datatype for de-allocation.

MPI_TYPE_FREE (datatype)

Any datatypes derived from datatype  are unaffected when it is freed, as are any
communications which are using the datatype at the time of freeing. datatype  is
returned as MPI_DATATYPE_NULL.

5.2.1 Construction of derived datatypes

Any datatype is specified by its type map, that is a list of the form:

basic datatype 0 displacement of datatype 0

basic datatype 1 displacement of datatype 1

... ...

basic datatypen-1 displacement of datatypen-1



Writing Message Passing Parallel Programs with MPI

30 Course notes

The displacements may be positive, zero or negative, and when a communication call
is made with the datatype, these displacements are taken as offsets from the start of
the communication buffer, i.e. they are added to the specified buffer address, in order
to determine the addresses of the data elements to be sent. A derived datatype can
therefore be thought of as a kind of stencil laid over memory.

Of all the datatype-construction routines, this course will describe only
MPI_TYPE_VECTOR and MPI_TYPE_STRUCT. The others are broadly similar and the
interested programmer is referred to the MPI document [1].

5.2.1.1 MPI_TYPE_VECTOR

MPI_TYPE_VECTOR (count, blocklength, stride, oldtype, newtype)

 Figure 19:  Illustration of a call to MPI_TYPE_VECTOR with count = 2 , stride = 5
and blocklength = 3

The new datatype newtype  consists of count  blocks, where each block consists of
blocklength  copies of oldtype . The elements within each block have contiguous
displacements, but the displacement between every block is stride . This is illus-
trated in Figure 19:.

5.2.1.2 MPI_TYPE_STRUCT

MPI_TYPE_STRUCT (COUNT, ARRAY_OF_BLOCKLENGTHS,
ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE)

The new datatype newtype  consists of a list of count blocks, where the ith block in
the list consists of array_of_blocklengths[i]  copies of the type
array_of_types[i] . The displacement of the ith block is in units of bytes and is
given by array_of_displacements[i] . This is illustrated in Figure 20:.

 Figure 20:  Illustration of a call to MPI_TYPE_STRUCT with count = 2 ,
array_of_blocklengths[0] = 1 , array_of_types[0] = MPI_INT ,
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array_of_blocklengths[1] = 3  and array_of_types[1] = MPI_DOUBLE

See also MPI_TYPE_SIZE , MPI_TYPE_EXTENT, MPI_TYPE_LB, MPI_TYPE_UB,
MPI_TYPE_COUNT

5.3  Matching rule for derived datatypes
A send and receive are correctly matched if the type maps of the specified datatypes,
with the displacements ignored, match according to the usual matching rules for basic
datatypes. A received message may not fill the specified buffer. The number of basic
elements received can be retrieved from the communication envelope using
MPI_GET_ELEMENTS. The MPI_GET_COUNT routine introduced earlier returns as
usual the number of received elements of the datatype specified in the receive call.
This may not be a whole number, in which case MPI_GET_COUNT will return
MPI_UNDEFINED.

5.4  Example Use of Derived Datatypes in C
5.4.1 Sub-block of a matrix (strided non-contigu-
ous data of a single type)

double results[IMAX][JMAX];

/* ********************************************************** *
* We want to send results[0][5], results[1][5],
* results[2][5], ...., results[IMAX-1][5]
* *********************************************************** */

MPI_Datatype newtype;

/* ********************************************************** *
* Construct a strided vector type and commit.
* IMAX blocks, each of length 1 element, separated by
* stride JMAX elements * oldtype=MPI_DOUBLE
* *********************************************************** */

MPI_Type_vector (IMAX, 1, JMAX, MPI_DOUBLE,
&newtype);MPI_Type_Commit (&newtype);

/* ********************************************************** *
* Use new type to send data, count=1
* *********************************************************** */

MPI_Ssend(&(results[0][5]), 1, newtype, dest, tag, comm);

5.4.2 A C struct  (data of mixed type)

struct{
int nResults;
double results[RMAX];

} resultPacket;

/* *********************************************************** *
* We wish to send resultPacket
* ************************************************************ */

/* *********************************************************** *
* Set up the description of the struct prior to



Writing Message Passing Parallel Programs with MPI

32 Course notes

* constructing a new type.
* Note that all the following variables are constants
* and depend only on the format of the struct. They
* could be declared ’const’.
* ************************************************************ */

#define NBLOCKS 2
int array_of_blocklengths[NBLOCKS] = {1, RMAX};

MPI_Aint array_of_displacements[NBLOCKS];
MPI_Datatype array_of_types[NBLOCKS] = {MPI_INT, MPI_DOUBLE};

/* ***********************************************************
* Use the description of the struct to construct a new
* type, and commit.
* ************************************************************ */

MPI_Datatype resultPacketType;
array_of_displacements[0]=0;

MPI_Type_extent (MPI_INT, &extent);
array_of_displacements[1]=extent;

MPI_Type_struct (2,
      array_of_blocklengths,

array_of_displacements,
array_of_types,
&resultPacketType);

MPI_Type_commit (&resultPacketType);

/* ***********************************************************
* The new datatype can be used to send any number of
* variables of type ’resultPacket’
* ************************************************************ */

count=1;

MPI_Ssend (&resultPacket, count, resultPacketType, dest, tag,
comm);

5.5  Example Use of Derived Datatypes in
Fortran

5.5.1 Sub-block of a matrix (strided non-contigu-
ous data of a single type)

      IMPLICIT none
      INTEGER newtype, jmax, imax, newtype, ierror
      INTEGER dest, tag, comm

      DOUBLE_PRECISION results(IMAX, JMAX)

C **************************************************
C We want to send results(5,1), results(5,2)
C results(5,3), ....., results(5, JMAX)
C **************************************************

C **************************************************
C Construct a strided datatype and commit.JMAX blocks,
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c each of length 1 element, separated by stride IMAX
c elements.
c
C The old datatype is MPI_DOUBLE_PRECISION
c The new datatype is newtype.
C ***************************************************

      CALL MPI_TYPE_VECTOR (JMAX, 1, IMAX,
& MPI_DOUBLE_PRECISION, newtype, ierror)

      CALL MPI_TYPE_COMMIT (newtype, ierror)

C ***************************************************
C Use newtype to send data, count = 1
C ***************************************************

CALL MPI_SSEND (results(5, 1), 1, newtype, dest,
& tag, comm, ierror)

  .
  .

5.5.2 A Fortran common block (data of mixed
type)

      IMPLICIT none
      INTEGER NBLOCKS
      PARAMETER (NBLOCKS = 2)
      INTEGER nResults, count
      INTEGER array_of_blocklengths(NBLOCKS),
      INTEGER array_of_displacements(NBLOCKS)
      INTEGER array_of_types(NBLOCKS)
      INTEGER array_of_addresses(NBLOCKS)

      DOUBLE PRECISION results(RMAX)
      PARAMETER (RMAX=3)

      COMMON / resultPacket / nResults, results

C ***************************************************
C We want to send resultPacket
C ***************************************************

C ***************************************************
C Set up the description of the common block prior
C to constructing a new type.
C Note that all the following variables are constants
C and depend only on the format of the common block.
C ***************************************************

array_of_blocklengths(1) = 1
array_of_blocklengths(2) = RMAX

      CALL MPI_ADDRESS(nResults, array_of_addresses(1), ierror)
      CALL MPI_ADDRESS(results, array_of_addresses(2), ierror)

array_of_displacements(1) = 0
array_of_displacements(2) = array_array_of_addresses(2) -

     &                            array_of_addresses(1)

array_of_types(1) = MPI_INTEGER
array_of_types(2) = MPI_DOUBLE_PRECISION
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C ***************************************************
C Use the description of the struct to construct a
C new type, and commit.
C ***************************************************

CALL MPI_TYPE_STRUCT (NBLOCKS,
array_of_blocklengths,

& array_of_displacements,
& array_of_types,
& resultPacketType, ierror)

CALL MPI_TYPE_COMMIT (resultPacketType, ierror)

C ***************************************************
C The new variable can be used to send any number
C of variables of type ’resultPacket’.

C ***************************************************

count = 1

CALL MPI_SSEND (nResults, count, resultPacketType,
& dest, tag, comm, ierror)

5.6  Exercise: Rotating a structure around a
ring

Modify the passing-around-a-ring exercise from “Exercise: Rotating information
around a ring.” on page 26 so that it uses derived datatypes to pass round either a C
structure or a Fortran common block which contains a floating point rankas well as
the integer rank. Compute a floting point sum of ranks as well as the integer sum of
ranks.

Extra exercises

1. Write a program in which two processes exchange two vectors of the same
strided vector data type, e.g. rows or columns of a two-dimensional array. How
does the time taken for one message vary as a function of the stride?

2. Modify the above program so that the processes exchange a sub-array of a
two-array. How does the time taken for one message vary as a function of the
size of the sub-array?
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6  Convenient Process Naming:
Virtual Topologies

A virtual topology is a mechanism for naming the processes in a communicator in a
way that fits the communication pattern better. The main aim of this is to makes sub-
sequent code simpler. It may also provide hints to the run-time system which allow it
to optimise the communication or even hint to the loader how to configure the proc-
esses — however, any specification for this is outwith the scope of MPI. For example,
if your processes will communicate mainly with nearest neighbours after the fashion
of a two-dimensional grid (see Figure 21:), you could create a virtual topology to
reflect this fact. What this gains you is access to convenient routines which, for exam-
ple, compute the rank of any process given its coordinates in the grid, taking proper
account of boundary conditions i.e. returning MPI_NULL_PROC if you go outside the
grid. In particular, there are routines to compute the ranks of your nearest neighbours.
The rank can then be used as an argument to MPI_SEND, MPI_RECV, MPI_SENDRECV
etc. The virtual topology might also gain you some performance benefit, but if we
ignore the possibilities for optimization, it should be stressed that nothing complex is
going on here: the mapping between process ranks and coordinates in the grid is sim-
ply a matter of integer arithmetic and could be implemented simply by the program-
mer — but virtual topologies may be simpler still.

 Figure 21:  A virtual topology of twelve processes.  The lines denote the main communication
patterns, namely between neighbours.  This grid actually has a cyclic boundary condition in

one direction e.g. processes 0 and 9 are ``connected''.  The numbers represent the ranks in the
new communicator and the conceptual coordinates mapped to the ranks.

Although a virtual topology highlights the main communication patterns in a com-
municator by a “connection”, any process within the communicator can still commu-
nicate with any other.
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As with everything else in MPI, a virtual topology is associated with a communicator.
When a virtual topology is created on an existing communicator, a new communica-
tor is automatically created and returned to the user. The user must use the new com-
municator rather than the old to use the virtual topology.

6.1  Cartesian and graph topologies
This course will only describe cartesian virtual topologies, suitable for grid-like topol-
ogies (with or without cyclic boundaries), in which each process is “connected” to its
neighbours in a virtual grid. MPI also allows completely general graph virtual topolo-
gies, in which a process may be “connected” to any number of other processes and the
numbering is arbitrary. These are used in a similar way to cartesian topologies,
although of course there is no concept of coordinates. The reader is referred to the
MPI document [1] for details.

6.2  Creating a cartesian virtual topology
MPI_CART_CREATE (comm_old, ndims, dims, periods, reorder,
comm_cart)

MPI_CART_CREATE takes an existing communicator comm_old  and returns a new
communicator comm_cart  with the virtual topology associated with it. The cartesian
grid can be of any dimension and may be periodic or not in any dimension, so tori,
rings, three-dimensional grids, etc. are all supported. The ndims  argument contains
the number of dimensions. The number of processes in each dimension is specified in
the array dims  and the array periods is an array of TRUE or FALSE values specify-
ing whether that dimension has cyclic boundaries or not. The reorder  argument is
an interesting one. It can be TRUE or FALSE:

• FALSE is the value to use if your data is already distributed to the processes. In
this case the process ranks remain exactly as in old_comm  and what you gain is
access to the rank-coordinate mapping functions.

• TRUE is the value to use if your data is not yet distributed. In this case it is open
to MPI to renumber the process ranks. MPI may choose to match the virtual to-
pology to a physical topology to optimise communication. The new communi-
cator can then be used to scatter the data.

MPI_CART_CREATE creates a new communicator and therefore like all communica-
tor-creating routines (see “Communicators, groups and contexts” on page 63) it may
(or may not) synchronise the processes involved. The routine MPI_TOPO_TEST can be
used to test if a virtual topology is already associated with a communicator. If a carte-
sian topology has been created, it can be queried as to the arguments used to create it
(ndims  etc.) using MPI_CARTDIM_GET and MPI_CART_GET (see the MPI document
[1]).

6.2.1 Note for Fortran Programmers

Fortran programmers should be aware that MPI numbers dimensions from 0 to ndim
- 1. For example, if the array dims contains the number of processes in a particular
dimension, then dims(1)  contains the number of processes in dimension 0 of the
grid.

6.3  Cartesian mapping functions
The MPI_CART_RANK routine converts process grid coordinates to process rank. It
might be used to determine the rank of a particular process whose grid coordinates
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are known, in order to send a message to it or receive a message from it (but if the
process lies in the same row, column, etc. as the calling process, MPI_CART_SHIFT
might be more appropriate). If the coordinates are off the grid, the value will be
MPI_NULL_PROC for non-periodic dimensions, and will automatically be wrapped
correctly for periodic.

MPI_CART_RANK (comm, coords, rank)

The inverse function MPI_CART_COORDS routine converts process rank to process
grid coordinates. It might be used to determine the grid coordinates of a particular
process from which a message has just been received.

MPI_CART_COORDS (comm, rank, maxdims, coords)

The maxdims  argument is needed to specify the length of the array coords , usually
ndims .

MPI_CART_SHIFT (comm, direction, disp, rank_source, rank_dest)

This routine does not actually perform a “shift” (see “Shifts and MPI_SENDRECV” on
page 67). What it does do is return the correct ranks for a shift which can then be
included directly as arguments to MPI_SEND, MPI_RECV, MPI_SENDRECV, etc. to per-
form the shift. The user specifies the dimension in which the shift should be made in
the direction  argument (a value between 0 and ndims-1  in both C and Fortran).
The displacement disp  is the number of process coordinates in that direction in
which to shift (a positive or negative number). The routine returns two results:
rank_source  is where the calling process should receive a message from during the
shift, while rank_dest  is the process to send a message to. The value will be
MPI_NULL_PROC if the respective coordinates are off the grid (see Figure 22: and Fig-
ure 23:). Unfortunately, there is no provision for a diagonal “shift”, although
MPI_CART_RANK can be used instead.

 Figure 22: MPI_CART_SHIFT is called on process 20 with a virtual topology as shown, with
direction=0  and with disp=2
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 Figure 23: MPI_CART_SHIFT is called on process 20 with a virtual topology as shown, with
direction=1  and with disp=-1 .  Note the effect of the periodic boundary condition

6.4  Cartesian partitioning
You can of course use several communicators at once with different virtual topologies
in each. Quite often, a program with a cartesian topology may need to perform reduc-
tion operations or other collective communications only on rows or columns of the
grid rather than the whole grid. MPI_CART_SUB exists to create new communicators
for sub-grids or “slices” of a grid.

MPI_CART_SUB (comm, remain_dims, newcomm)

If comm defines a 2x3x4 grid, and remain_dims = (TRUE, FALSE, TRUE) , then
MPI_CART_SUB(comm, remain_dims, comm_new) will create three communica-
tors each with eight processes in a 2×4 grid.

Note that only one communicator is returned — this is the communicator which con-
tains the calling process.

6.5  Balanced cartesian distributions
MPI_DIMS_CREATE (nnodes, ndims, dims)

The MPI_DIMS_CREATE function, given a number of processors in nnodes  and an
array dims  containing some zero values, tries to replace the zeroes with values, to
make a grid of the with dimensions as close to each other as possible. Obviously this
is not possible if the product of the non-zero array values is not a factor of nnodes .
This routine may be useful for domain decomposition, although typically the pro-
grammer wants to control all these parameters directly.
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6.6  Exercise: Rotating information across a
cartesian topology

1. Re-write the exercise from page 34 so that it uses a one-dimensional ring topol-
ogy.

2. Extend one-dimensional ring topology to two-dimensions. Each row of the grid
should compute its own separate result.

Extra exercise

Write a program that sorts the rows and columns of a 2-dimensional matrix in increas-
ing order. This is illustrated below with the matrix on the right being the output when
the matrix on the left is input. There may be more than one valid output any given
input matrix; you need only compute one.

1. In the first instance, assign at most one matrix element to each process.
2. Modify your program so that it can take an arbitrary N × N matrix for input

where N2 may be much greater than the total number of processes.

4 0 3

5 2 7

2 3 1

7 5 2

4 3 1

3 2 0

→
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7  Collective Communication

MPI provides a variety of routines for distributing and re-distributing data, gathering
data, performing global sums etc. This class of routines comprises what are termed
the “collective communication” routines, although a better term might be “collective
operations”. What distinguishes collective communication from point-to-point com-
munication is that it always involves every process in the specified communicator1 (by
which we mean every process in the group associated with the communicator). To
perform a collective communication on a subset of the processes in a communicator, a
new communicator has to be created (see “When to create a new communicator” on
page 64). The characteristics of collective communication are:

• Collective communications cannot interfere with point-to-point communica-
tions and vice versa — collective and point-to-point communication are transpar-
ent to one another. For example, a collective communication cannot be picked
up by a point-to-point receive. It is as if each communicator had two sub-com-
municators, one for point-to-point and one for collective communication.

• A collective communication may or may not synchronise the processes in-
volved2.

• As usual, completion implies the buffer can be used or re-used. However, there
is no such thing as a non-blocking collective communication in MPI.

• All processes in the communicator must call the collective communication.
However, some of the routine arguments are not significant for some processes
and can be specified as “dummy” values (which makes some of the calls look a
little unwieldy!).

• Similarities with point-to-point communication include:

• A message is an array of one particular datatype (see “What’s in a Mes-
sage?” on page 7).

• Datatypes must match between send and receive (see “Datatype-match-
ing rules” on page 17).

• Differences include:

• There is no concept of tags.

• The sent message must fill the specified receive buffer.

7.1  Barrier synchronisation
This is the simplest of all the collective operations and involves no data at all.

1.Always an intra-communicator. Collective communication cannot be per
formed on an inter-communicator.

2.Obviously MPI_BARRIER always synchronises.
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MPI_BARRIER (COMM)

MPI_BARRIER blocks the calling process until all other group members have called it.

In one phase of a computation, all processes participate in writing a file. The file is to
be used as input data for the next phase of the computation. Therefore no process
should proceed to the second phase until all processes have completed phase one.

7.2  Broadcast, scatter, gather, etc.

 Figure 24:  Schematic illustration of broadcast/scatter/gather operations. The circles represent
processes with ranks as shown. The small boxes represent buffer space and the letters represent
data items. Receive buffers are represented by the empty boxes on the ``before'' side, send buff-

ers by the full boxes.

This set of routines distributes and re-distributes data without performing any opera-
tions on the data. The routines are shown schematically in Figure 24:. The full set of
routines is as follows, classified here according to the form of the routine call.

7.2.1 MPI_BCAST

A broadcast has a specified root process and every process receives one copy of the
message from the root. All processes must specify the same root (and communicator).

MPI_BCAST (buffer, count, datatype, root, comm)

The root  argument is the rank of the root process. The buffer , count  and
datatype  arguments are treated as in a point-to-point send on the root and as in a
point-to-point receive elsewhere.

7.2.2 MPI_SCATTER, MPI_GATHER

These routines also specify a root process and all processes must specify the same root
(and communicator). The main difference from MPI_BCAST is that the send and
receive details are in general different and so must both be specified in the argument
lists. The argument lists are the same for both routines, so only MPI_SCATTER is
shown here.
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MPI_SCATTER (sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, root, comm)

Note that the sendcount  (at the root) is the number of elements to send to each proc-
ess, not to send in total. (Therefore if sendtype = recvtype , sendcount =
recvcount ). The root  argument is the rank of the root process. As expected, for
MPI_SCATTER, the sendbuf , sendcount , sendtype  arguments are significant only
at the root (whilst the same is true for the recvbuf , recvcount , recvtype  argu-
ments in MPI_GATHER).

7.2.3 MPI_ALLGATHER, MPI_ALLTOALL

These routines do not have a specified root process. Send and receive details are sig-
nificant on all processes and can be different, so are both specified in the argument
lists. The argument lists are the same for both routines, so only MPI_ALLGATHER is
shown here.

MPI_ALLGATHER (sendbuf, sendcount, sendtype, recvbuf, recvcount,
recvtype, comm)

7.2.4 MPI_SCATTERV, MPI_GATHERV,
MPI_ALLGATHERV, MPI_ALLTOALLV

These are augmented versions of the MPI_SCATTER, MPI_GATHER, MPI_ALLGATHER
and MPI_ALLTOALL routines respectively. For example, in MPI_SCATTERV, the
sendcount  argument becomes an array sendcounts , allowing a different number
of elements to be sent to each process. Furthermore, a new integer array argument
displs  is added, which specifies displacements, so that the data to be scattered need
not lie contiguously in the root process’ memory space. This is useful for sending
sub-blocks of arrays, for example, and obviates the need to (for example) create a tem-
porary derived datatype (see“Introduction to Derived Datatypes” on page 27)
instead. Full details with examples and diagrams can be found in the MPI document
[1].

7.3  Global reduction operations (global
sums etc.)

7.3.1 When to use a global reduction operation

You should use global reduction routines when you have to compute a result which
involves data distributed across a whole group of processes. For example, if every
process holds one integer, global reduction can be used to find the total sum or prod-
uct, the maximum value or the rank of the process with the maximum value. The user
can also define his or her arbitrarily complex operators.

7.3.2 Global reduction operations in MPI

Imagine that we have an operation called "o" which takes two elements of an MPI
datatype mytype  and produces a result of the same type1.

1.It also has to be associative i.e. A o (B o C )= (A o B) o C, meaning that the order of
evaluation doesn’t matter. The reader should be aware that for floating point opera-
tions this is not quite true because of rounding error
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Examples include:

1. the sum of two integers
2. the product of two real numbers
3. the maximum of two integers
4. the product of two square matrices
5. a struct

struct {

int nResults;

double results[RMAX];

} resultPacket;

where the operation o multiplies the elements in results pairwise and sums
the nResults  to produce a result of type struct resultPacket

6.  a struct

struct {

float x;

int location;

} fred;

where, given two instances of fred , fred
0
 and fred

1
, the operation o com-

pares fred
0
.x  with fred

1
.x  and sets fred

result
.x  to the maximum of the two,

then sets fred
result

.location  to be whichever of the two location s “won”.

(A tie is broken by choosing the minimum of fred
0
.location  and

fred
1
.location .)

A similar thing could be defined in Fortran with an array of two REALs and a bit of
trickery which stores the integer location  in one of the values.

This is in fact the MPI_MAXLOC operator (see “Predefined operators” on page 45).

An operation like this can be applied recursively. That is, if we have n instances of
mytype  called mydata 0 mydata 1 ... mydata n-1 we can work out1 mydata 0 o

mydata 1 o ... o mydata n-1 . It is easiest to explain how reduction works in MPI

with a specific example, such as MPI_REDUCE.

1.Associativity permits writing this without brackets.
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7.3.3 MPI_REDUCE

This is illustrated in Figure 25:.

 Figure 25:  Global reduction in MPI with MPI_REDUCE. o represents the reduction operator.
The circles represent processes with ranks as shown. The small boxes represent buffer space and
the letters represent data items. After the routine call, the light-shaded boxes represent buffer

space with undefined contents, the dark-shaded boxes represent the result on the root. Only one
of the four results is illustrated, namely A o E o I  o M o Q, but the other four are similar --- for
example, the next element of the result is B o F o J  o N o R. Receive buffers are represented by

the empty boxes on the ``before'' side, send buffers by the full boxes.

MPI_REDUCE (sendbuf, recvbuf, count, datatype, op, root, comm)

All processes in the communicator must call with identical arguments other than
sendbuf  and recvbuf . See “Operators” on page 45 for a description of what to spec-
ify for the operator  handle. Note that the root process ends up with an array of
results — if, for example, a total sum is sought, the root must perform the final sum-
mation.

7.3.4 Operators

Reduction operators can be predefined or user-defined. Each operator is only valid for
a particular datatype or set of datatypes.

7.3.4.1 Predefined operators

These operators are defined on all the obvious basic C and Fortran datatypes (see
Table 7:). The routine MPI_MAXLOC(MPI_MINLOC) allows both the maximum (mini-
mum) and the rank of the process with the maximum (minimum) to be found. See
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“Global reduction operations in MPI” on page 43. More details with examples can be
found in the MPI document [1].

7.3.4.2 User-defined operators

To define his or her own reduction operator, in C the user must write the operator as a
function of type MPI_User_function  which is defined thus:

typedef void MPI_User_function (void *invec, void *inoutvec, int
*len, MPI_Datatype *datatype);

while in Fortran the user must write an EXTERNAL subroutine of the following type

SUBROUTINE USER_FUNCTION (INVEC(*), INOUTVEC(*), LEN, TYPE)

<type> INVEC(LEN), INOUTVEC(LEN)

INTEGER LEN, TYPE

The operator must be written schematically like this:

for(i = 1 to len)

inoutvec(i) = inoutvec(i) o invec(i)

where o is the desired operator. When MPI_REDUCE (or another reduction routine is
called), the operator function is called on each processor to compute the global result
in a cumulative way. Having written a user-defined operator function, it has to be reg-
istered with MPI at run-time by calling the MPI_OP_CREATE routine.

MPI_OP_CREATE (function, commute, op)

Table 7:  Predefined operators

MPI Name Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum & location

MPI_MINLOC Minimum & location
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These return the operator handle op , suitable for use in global reduction calls. If the
operator is commutative (A o B = B o A) — the value commute  should be specified as
TRUE, as it may allow MPI to perform the reduction faster.

7.3.5 MPI_ALLREDUCE, MPI_REDUCE_SCATTER,
MPI_SCAN

These are variants of MPI_REDUCE. They are illustrated in Figure 26:,

 Figure 26:  Global reduction in MPI with MPI_ALLREDUCE. The symbols are as in Figure
25:. The only difference from MPI_REDUCE is that there is no root --- all processes receive the

result.
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Figure 27:

 Figure 27:  Global reduction in MPI with MPI_REDUCE_SCATTER. The symbols are as in
Figure 25:The difference from MPI_ALLREDUCEis that processes elect to receive a cer-

tain-size segment of the result. The segments are always distributed in rank order.

and Figure 28:.

 Figure 28:  Global reduction in MPI with MPI_SCAN. The symbols are as in Figure 25:. The
difference from MPI_ALLREDUCE is that the processes receive a partial result.
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The “scan” is sometimes known as a “parallel prefix” operation. Further details of
routine arguments and examples (including an implementation of “segmented scan”
via a user-defined operator) can be found in the MPI document [1].

7.4  Exercise: Global sums using collective
communications

The exercises from Sections 5, 6, and 7 are variations on a global sum where the varia-
ble being summed is the ranks of the processors.

1. Re-write the exercise to use MPI global reduction to perform the global sum.
2. Re-write the exercise so that each process prints out a partial sum.
3. Ensure that the processes prints out their partial sum in the correct order, i.e.

process 0, then process 1, etc.

Extra exercises

1. Write a program in which the process with rank 0 broadcasts a message via
MPI_COMM_WORLD and then waits for every other process to send back that
message.

2. Write a program in which the process with rank 0 scatters a message to all proc-
esses via MPI_COMM_WORLD and then gathers back that message. How do
the execution times of this program and the previous one compare?

3. Define a graph topology where nearest-neighbours of the process with rank k
have rank 2k+1 and 2k+2, where k≥0. Use the resulting communicator to
implement a broadcast. How does the execution time of that broadcast vary as
a function of the message length? How does it compare with the MPI broad-
cast?
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8  Case Study: Towards Life

8.1  Overview
In this case study you will learn how to:

• Use a master-slave model.

• Perform a domain decomposition and do halo swaps.

• Implement a message passing form of the Game of Life.

Each of the above tasks builds on from the previous one. Each is self contained – having completed the
previous task – and can be extended using the extra exercises. If you find there is insufficient time to
complete the next stage you may care to examine one of the extra exercises instead. Note that these can
be performed in any order. If you successfully complete all the steps you should end up with a fully
working message passing version of the Game of Life. If you do not manage to finish all the steps in the
time available don’t worry you will still have done something useful.

8.2  Stage 1: the master slave model
For this part of the exercise you will:

• Create a master slave model – the master will write the output data to file.

• Partition a 2-dimensional array between processors.

• Generate a cartesian virtual topology.

• Processor will colour their data section black or white depending on position.

• Communicate the data back to the master processor which will write it to file in pgm format (you
are shown how to do this below).

The end result should be a chess-like board, see Figure 29, which can be viewed using the program xv.1

 Figure 29:  Pattern generated from a 4 processor arrangement.

1. xv is a shareware utility available from: ftp.cis.upenn.edu/pub/xv. See also http://www.trilon.com/xv.
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As you will be writing all of the code from scratch pseudo code has been provided below. You should
easily be able to convert this to C or Fortran code. Note that only the parallel constructs are outlined in
the pseudo code.

Step 1

Find the basic info: processor rank and the number of processors used. This step also applies what you
have learnt from virtual topologies. The virtual topology will allow you to map the data to the proces-
sors and ease the identification of nearest neighbour processors.

It is best not to have fixed values for nx and ny. Use the MPI call MPI_DIMS_CREATE, see page 180 of
the MPI standard, to do the processor assignment.

MPI Routines required: MPI_COMM_SIZE, MPI_COMM_RANK, MPI_DIMS_CREATE,
MPI_CART_CREATE.

Step 2

Initially set XSIZE=YSIZE=128  and MAXGREY=100. Note that for the above algorithm to work cor-
rectly the number of processors in each of the cartesian directions must divide evenly into XSIZE and
YSIZE (see extra exercise 1 if you wish to generalise the scheme). Setting the initial arrays to
0.75*MAXGREY (grey) will help diagnose problems with the transfer of data.

If you are a C programmer you can allocate the global array only on processor 0. The worker proces-
sors need only allocate the amount of memory they will require. For this to work properly though you
will have to map a 1d array to a 2d array yourself – this is done to ensure that the memory allocated is
contiguous (this may not be the case if you try to allocate memory for a 2d array). The method adopted
by Fortran programmers may be easier – see below.

Initialise MPI

Find out how many processors there are.
set n x= number of processors in the x direction,

ny= number of processors in the y direction.

Create a 2-dimensional, periodic, cartesian grid.

On processor 0:
Use a XSIZE by YSIZE integer array.
Initialise elements to 0.75*MAXGREY.

On other processors:
Use a XSIZE/n x by YSIZE/n y integer array.

Initialize elements to 0.75*MAXGREY.

Find the cartesian coordinate of the processor: (x,y).
if((x+y+1)mod2 == 1):

set elements in local array to 0 (black).
else

set elements in local array to MAXGREY (white).

Create derived data type(s) to transfer local data
back to processor 0.

if processor 0:
do loop from 1 to number of processors-1

receive data using derived data type into
the appropriate part of the array.

next loop
write data to file (see below for format).

else:
processor sends raw data to processor 0.

Finalise MPI

Step 1

Step 2

Step 3

Step 4
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In Fortran77 memory cannot be allocated or deallocated. A scratch array has to be used instead. Create
the global array across all processors but only use that part required by the processor domain, see
Figure 30. Note that if you do this you will need to create a derived data type to send this data (you
only want to send the block of data being used) and another at the receiving end to insert the data at
the correct location on the master processor.

 Figure 30:  Domain decomposition over four processors. The data is collected back at
processor 0 and then written out to file.

Step 3

Once you have determined what portion of the data space a processor is responsible for the data can
be initialised. To do this you must know where the processor lies in relation to the global data space.
This can be derived from the cartesian coordinate (x,y) in the virtual topology in which the processor
lies. If we paint processors with (x+y+1) an even number black, white otherwise, the desired chess
board pattern will be obtained. If the data initialisation is a little more complex then the process will be
a little bit more involved.

MPI Routines s required: MPI_CART_COORDS.

Step 4

The data from the slave processors must be sent back to the master processor which will then reconfig-
ure the global data space and output these numbers to file. The way this process is done is dependent
on the way the data is stored on the slave processors.

If the data stored at the slave processors is complete, as opposed to part of a larger data set – say a
scratch array, it can just be sent as raw integer data and received at the master processor as a derived
data type. This is done to accommodate the received data in the correct positions. If a subset of the
data array is used, see Figure 31, a derived data type will have to be used to send the data to the mas-
ter processor.

To create the derived data types for a data block use MPI_TYPE_VECTOR. Remember that in C rows
are contiguous in memory while in Fortran it is the columns that are contiguous. Use Figure 31 to help
you get the data blocks right.

If you use C the received data should be placed in the global array at element GArray[dx*coord[0]
+coord[1]*dy*XSIZE]  or equivalently GArray[dx*coord[0]][dy*coord[1]]  in a two dimen-

processor 0

processor 1

processor 2

processor 3

processor 0
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sional representation. Remember dx=XSIZE/n x  and dy=YSIZE/ny is the amount of data stored
locally at each processor.

In Fortran this becomes Garray(dx*coord(1)+1,dy*coord(2)+1)  – in a one dimensional array
representation GArray(dx*coord[0]*XSIZE+coord[1]*dy+1) could be used as in C. Note that if the
number of processors do not divide evenly into the extents of the array (i.e. columns and/or rows left
over) a more complicated process needs to be applied – see extra exercise 1.

 Figure 31:  Use derived data types to transfer data back to the host processor to output to file.

With this information and the derived data types you should be able to reassemble the data from the
distributed domain. The master processor then writes the received data to file in pgm (portable grey-
map) format. This is quite straightfoward to do. All you need to do is open a file and write in plain text
(ASCII) the following:

P2
XSIZE YSIZE
MAXGREY
All XSIZE*YSIZE values in the integer array.

The P2 at the top of the file is a magic number that identifies the file format. The values XSIZE and
YSIZE give the size of the array and MAXGREY gives the maximum contrast – a value of 0 giving
black while MAXGREY gives white, intermediate values give different shades of grey. All
XSIZE*YSIZE integer values should then be output with no line being more than 70 characters long.
Only integers, spaces, tabs and new lines are allowed. More details can be found by typing man pgm at
the unix prompt.

MPI Routines required: MPI_TYPE_VECTOR, MPI_TYPE_COMMIT, MPI_(I)SEND, MPI_RECV,
MPI_WAIT.

If you are successful in this first part of the exercise you should end up with a chess like board as in
Figure 29 (when you use 4 processors). Try to make your program general so that it can work on any
number of processors (you will have to be careful when the number of processors does not divide
evenly into the array dimensions – see extra exercise 1 below). Try different numbers of processors to
make sure that the program works. If you have successfully completed this section you can proceed by
trying out the extra exercises below or moving on to the next part – boundary swaps.

Extra Exercises

1. Generalise the algorithm to make sure that it can deal with any size of grid and/or number of
processors.
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There are two ways of doing this: spread the extra rows or columns amongst the first few proc-
essors that is if nx is the number of processors in the x direction and ny in the y direction then

if (XSIZE mod nx≠ 0 AND rank < coord[*]) then row=row+1

and similarly for the columns. Alternatively we can add all the remaining columns or rows to
the processor at the edge of the row/column in the virtual topology. This is the approach that
we would like you to use and will be expanded in greater detail here – you may still care to
employ the other method instead. If the number of columns and/or rows is large enough the
load imbalance produced by adopting the latter scheme will be relatively small. You will find
that generalising the code however does increase the algorithmic complexity a bit.

A way to incorporate the necessary modification to the algorithm is as follows: if there is a
remainder in the number of rows or columns when divided by the number of processors in that
direction the processor at the edge of the domain inherits the extra number of columns and/or
rows. So:

my_rows = XSIZE/nx
xrem = Rem(XSIZE/nx)
if(xrem ≠ 0 AND coord[*] = nx- 1) then my_rows = my_rows+xrem

where Rem denotes the remainder of the expression in brackets. A similar piece of code can be
used for the columns. The problem now lies in porting the data back to the host processor.

There are now four possibilities in the message that will be received by the host processor: no
extra rows or columns, extra rows and no extra columns, no extra columns but extra rows and
finally both extra rows and columns. Derived data types must be created across all processors to
take each of these possibilities into account. It is the receiving processors that must use these
datatypes to make sure that the data that is sent back to it gets placed in the correct array seg-
ment:

if(master processor) then
loop: receive_from = 1 to number of processors - 1
find out coords of processor receive_from
if(Rem(XSIZE/nx) ≠ 0 AND Rem(YSIZE/ny) ≠ 0 AND

coord[0] == nx-1 AND coord[1] == ny-1) then
MPI_RECV(...extra_columns_and_rows_data_type....)

else if(Rem(XSIZE/nx) ≠ 0 AND coord[1] == ny-1) then
MPI_RECV(...extra_columns_data_type....)

else if(Rem(YSIZE/ny) ≠ 0 AND coord[1] == ny-1) then
MPI_RECV(...extra_rows_data_type....)

else
MPI_RECV(...normal_column_row_data_type...)

endif
nextloop

else
MPI_SEND(my_data,dx*dy,MPI_INTEGER,0,....)

endif

The starting position of the incoming data on the array will be the same as before – the derived
data types should ensure that everything goes in at the correct place. Once you have done this
try it out on different number of processors to make sure that it still works before going on to
the next part.

2. Use collective communications to gather the slave processors data back to the master processor.

As you have seen from the course MPI is rather rich in the different types of collective commu-
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nications available. Unfortunately what is being attempted here cannot be done directly using
collective communications as in the general case different derived data types have to be used
for the different blocks. We can however perform collective communications over the restricted
case where the number of processors divides evenly into the number of rows and columns.

Even with the restriction there is another problem – it is difficult to position the start of the
imported data block as the stride in the vector data type will affect the starting location for the
data. However there is a trick (but it’s a bit of a hack). We can create the column and row
derived data types as before but this time this is sandwiched it in a structure data type of inte-
ger extent. Using this we can easily position the start and end of the data precisely. A sample
piece of C code has been provided below that achieves the object.

/* a normal block */
MPI_Type_vector(dx,dy,YSIZE,MPI_INT,&Block);
MPI_Type_commit(&MPI_Block);

/* Now create the structure type */
offset[0]   = 0;
MPI_Type_extent(MPI_INT,&extent);
offset[1]   = extent;
types[0]    = Block;
types[1]    = MPI_UB;
blngths[0] = 1;
blngths[1] = 1;

MPI_Type_struct(2,blngths,offset,types,&MPI_MBlock);
MPI_Type_commit(&Block);

for(i=0;i<size;i++){
MPI_Cart_coords(GridComm,i,2,coords);
disp[i]    = dx*coords[0]*YSIZE+dy*coords[1];
rcounts[i] = 1;

}

MPI_Gatherv(Larray,dx*dy,MPI_INT,Garray,rcounts,
disp,Block,0,MPI_COMM_WORLD);

The MPI_MBlock data type set an upperbound for the structure using MPI_UB (see §3.12.3 of
the MPI Standard, p. 70) which is smaller than the extent of the BLOCK datatype. This allows us
to place the correct start of the data using MPI. Mote that in this case the local array only con-
tains dx*dy elements – if the local array is part of a larger data set, as in Figure 30, then you will
have to use a derived data type to send the data.

MPI_Gatherv is used to gather the data to the root processor. More information about this call
can be found in the MPI standard on p.111. Using this slightly laboured mechanism you can col-
lect all the data in processor 0 using collective communications. As you can see this is not
entirely straightforward and anyhow will not work for the general case.

8.3  Stage 2: Boundary Swaps
In this part of the exercise you will:

• Create a halo region around each processor domain.

• Perform halo swaps across processor domains.
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In a lot of domain decomposition1 type problems it is often necessary to swap data at the boundaries
between processor domains. This is done to minimise the subsequent communication between proces-
sors. The data imported from other processors is often referred to as the halo region.

You will do this for the chessboard pattern program you wrote earlier. In theory you would need to start
off by making sure that the local data had extra columns and rows at each of the processor boundaries
BUT here we will take a slightly different approach to make sure that things are done correctly. Only
update the internal regions of each processor subdomain2 – i.e. do not allocate extra memory, just leave
the first and last rows and columns unmodified (this will have to be rewritten for the final part of the
case study). These regions can act as the halo to which data from the other processors will be imported
to. It will be useful to write the received data to file at this early stage in .pgm format. If things are
being done correctly you should see that each square is surrounded by a grey boundary as in the left-
most diagram in Figure 33 when the output file is viewed using xv.

Having done this successfully the next stage is to swap the boundaries between processors. An algo-
rithm you could use is outlined in the piece of pseudo code below

Create a row derived data type 3

create a column derived data type
Find nearest neighbours in the x-direction
Find nearest neighbours in the y-direction
Swap boundaries with the processor above and below
Swap boundaries with the processor to the left and right

It is as simple as that. Note that when we communicate the haloes not only do we include the internal
points but also the outer region of the halo. This ensures that the corners from the opposite domains
will be included in the data transferred across,. Figure 32 illustrates the transferral of rows across the
processor domains – the same operation would have to be performed for the columns.

 Figure 32:  Exchange of rows and columns across processor boundaries.

1. In a domain decomposition the data is distributed amongst the processors as opposed to the functional decomposi-
tion method that would attempt to parallelise an algorithm according to the procedures involved.

2. Strictly speaking this is incorrect as you are eating into the data contained within the processor. The halo regions
should lie outwith this data. In this particular instance though we are trying to ensure that the data swapping is
being done correctly.

3. The extent of these data types should encompass the entire processor subdomain.
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Once the data exchange is finished a pattern like the middle diagram in Figure 33 should be obtained.
It may be easier to ensure that the operations have been performed correctly by assigning each proces-
sor domain an unique shade of grey (see the caption to Figure 33 for an algorithm and the right most
diagram for the result) to make sure that data from the correct domains has been exchanged. Inspect
the corners carefully to make sure that data from the correct domain has been imported.

 Figure 33:  On left we have the pattern before the boundaries have been swapped – this is a useful check. In the
middle the boundaries have been swapped and on the right a greyscale representation has been used. Instead of

colouring the blocks black or white they are set to (rank+1)*MAXGREY/(number of processors).

Now you have all the necessary steps to move on to the next section to construct a full application –
the Game of Life. If you attend the EPCC HPF course you will be able to see and contrast how the Game
of Life is constructed using a data parallel approach.

8.4  Stage 3: Building the Application
You can now complete the case study by:

• Rewriting the halo routine so that a proper halo region is allocated and only internal regions are
updated.

• Derived data types are now used in the slave processors to communicate the internal regions to
the master processor excluding the halo.

• Implement the rules of the game of life using the static domain decomposition you have devel-
oped in the above exercises.

If you get this far by the end of this exercise you will have implemented a complete application using
MPI. The next section briefly describes the Game of Life if you are not familiar with. If you already
know this you may wish to skip over it.

What is the Game of Life?

The Game of Life is a simple 2-dimensional cellular automata originally conceived by J.H. Conway in
1970. The model evolves a population of organisms in a 2-dimensional space and can exhibit very
complex behaviour from a very simple set of evolution rules.

The underlying evolution principle is very simple: cells can be alive or dead at any one time step. The
state of the system at the next time step is determined from the number of nearest neighbours each cell
has at the present time, see Figure 34. The rules for evolving a system to the next time level are as fol-
lows:

• dead if the cell has less than two live neighbours – lonely.

• retain the same state if the cell has exactly two live neighbours – content.

• cell is born if the cell has exactly three live neighbours – ... 8-)

• die if the cell has more than three live neighbours – overcrowding.
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Using this fairly simple set of rules some fairly complex structures can be exhibited. Figure 37 displays
more possible starting configurations you may wish to explore in one of the extra exercises.

 Figure 34:  The state of a given cell, alive or dead, is determined from the state of the nearest neighbour cells.

Creating Life

The first thing to do is to make sure that the halo region lies outside the processor’s domain data. You
will thus now have to allocate (dx+2)x(dy+2) for local data in order to take into account the halo
region. Also when communicating data from the slave processors to the master processors derived
data types will have to be used to ensure that only the internal region is sent to the master processor.
Make sure this is done before you move on to the next part.

For this exercise we will set up a fairly straightforward initial configuration and let it evolve. In this
case we have:

where the i,j subscript refer to the cell’s position in the array. The Initial configuration thus consists of
a cross across the processor domain. To initialise the data properly we must find a mapping between
the local processor’s data domains and the global extent of the data as demonstrated in Figure 35.

 Figure 35:  Mapping between the local data coordinates and the global data distribution. NB the local array will
have a halo region not shown in the above diagrams.

In order to find a mapping between the local data and the global data all we need to find out is where
the upper right hand corner and lower left hand corner of the local data lie in relation to the global
data. The mapping is fairly straightforward – make sure you understand it though:

Cellij
Alive if (i,j)=(XSIZE/2,YSIZE/2)

Dead otherwise
=

Global Data

(urx,ury)

(llx,lly)

Local Data

(dx,dy)

(1,1)

Halo Region
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urx = 1 + coord[0]*(dx-1)
ury = 1 + coord[1]*(dy-1)

and

llx = urx + dx
lly = ury + dy

These mappings can be used to ensure that the requested initial conditions can be set up locally on
each processor. Putting all this together in pseudo code we get

Set up the Initial Conditions on the Life Board
Loop over the number of iterations

Swap boundaries
Clear the count array
Loop over number of Local Cells

Count the number of live neighbours cell has
Store the answer in the Count Array

next cell
Loop over number of Cells

Update the Life board from the Count board
Next Cell
Communicate the local Life Board to the Master Processor
if Master Processor

Open file and write received data to file
Next iteration

Note that two boards are required – one to count the number of nearest live cells and another to keep
the current state of the system. Output files should be produced by the master processor at every, or
every few iterations, and should be named something like: life00.pgm , life01.pgm ,
life02.pgm , . . . , life dd.pgm . It is now possible to evolve the system according to the rules estab-
lished for the game of life. To view an animation of the end result use xv as follows:

xv -expand 10 -wait 0.5 -wloop -raw life*.pgm

to get an animation of your results.

 Figure 36:  Steps 0, 5 and 10 in the evolution of a 128x128 simulation. Your simulation should develop along
the same lines.

Extra Exercises

1. Try to use some of the other initial configurations as given in Figure 37. Explore how the load
balance of the system is affected by different configurations. Would a dynamic data decompo-
tion improve matters?
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 Figure 37:  Starting configurations for the game of life. Cells with black circles denote live cells and those with
none are dead.

Block
(stable)

Blinker
(cyclic)

Glider
(moves)
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9  Further topics in MPI

9.1  A note on error-handling
A successful MPI routine will always return MPI_SUCCESS, but the behaviour of an
MPI routine which detects an error depends on the error-handler associated with the
communicator involved (or to MPI_COMM_WORLD if no communicator is involved).
The following are the two predefined error-handlers associated with
MPI_COMM_WORLD1.

• MPI_ERRORS_ARE_FATAL – This is the default error-handler for
MPI_COMM_WORLD. The error is fatal and the program aborts.

• MPI_ERRORS_RETURN– The error causes the routine in which the error oc-
curred to return an error code. The error is not fatal and the program continues
executing — however, the state of MPI is undefined and implementation-de-
pendent. The most portable behaviour for a program in these circumstances is
to clean up and exit.

The most convenient and flexible option is to register a user-written error-handler for
each communicator. When an error occurs on the communicator, the error-handler is
called with the error code as one argument. This method saves testing every error
code individually in the user’s program. The details are described in the MPI docu-
ment[1] (see MPI_ERRHANDLER_CREATE, MPI_ERRHANDLER_SET,
MPI_ERRHANDLER_FREE) but are not discussed in this course.

9.2  Error Messages
MPI provides a routine, MPI_ERROR_STRING, which associates a message with each
MPI error code. The format of this routine are as follows:

MPI_ERROR_STRING (errorcode, string, resultlen)

The array string  must be at least MPI_MAX_ERROR_STRINGcharacters long.

9.3  Communicators, groups and contexts
9.3.1 Contexts and communicators

Two important concepts in MPI are those of communicators and contexts. In fact these
two concepts are indivisible, since a communicator is simply the handle to a context.
Every communicator has a unique context and every context has a unique communi-
cator. A communicator is the central object for communication in MPI. All MPI com-
munication calls require a communicator argument; it follows that all MPI

1.Other communicators, when they are created, inherit error-handlers by default.



Writing Message Passing Parallel Programs with MPI

64 Course notes

communications are made in a specific context. Two MPI processes can only commu-
nicate if they share a context and messages sent in one context cannot be received in
another. A context is analogous to a radio frequency where only processes which have
specified the same frequency can take part in a communication (Figure 38:). Contexts
define the scope for communication.

 Figure 38:  A communicator.

The motivation for context is modularity. The user’s code may need to work together
with one or more parallel libraries (possibly also written by the same user!), each of
which has its own communication patterns. Using context, the communications of
each “module” are completely insulated from those of other modules. Note that tags
are not suitable for this purpose, since a choice of tags to avoid clashes requires prior
knowledge of the tags used by other modules.

9.3.2 When to create a new communicator

It is often the case that a programmer wants to restrict the scope of communication to
a subset of the processes. For example:

• The programmer may want to restrict a collective communication to a subset of
the processes. For example, a regular domain decomposition may require
row-wise or column-wise sums.

• A parallel library may need to re-define the context of user communication to a
subset of the original processes (clients) whilst the other processes become serv-
ers.

 Figure 39:  A new communicator defined on a subset of the processes in MPI_COMM_WORLD.

There are other reasons for creating a new communicator. When creating a virtual
topology (see “Convenient Process Naming: Virtual Topologies” on page 35), a new
communicator is automatically created and returned to the user. It simply contains a
convenient re-numbering of the group in the original communicator, which typically
fits communication patterns better and therefore makes subsequent code simpler.
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9.3.3 Communicators and groups

An MPI group is simply a list of processes and is local to a particular process — proc-
esses can create and destroy groups at any time without reference to other processes.
Understanding this fact is important in understanding how new communicators are
created. It appears to contradict the statement that a communicator/context contains
a group, but the point is that the group contained within a communicator has been previ-
ously agreed across the processes at the time when the communicator was set up, an operation
that may synchronise the processes involved.

9.3.4 An aside on intra-communicators and
inter-communicators

The “standard” type of communicator is known as an intra-communicator, but a sec-
ond, more exotic type known as an inter-communicator also exists1to provide commu-
nication between two different communicators. The two types differ in two ways:

1. An intra-communicator refers to a single group, an inter-communicator refers
to a pair of groups.The group of an intra-communicator is simply the set of all
processes which share that communicator.

2. Collective communications (see“Collective Communication” on page 41 can be
performed with an intra-communicator. They cannot be performed on an
inter-communicator. The group of processes involved in a collective communi-
cation (see “Collective Communication” on page 41) is simply the group of the
intra-communicator involved.

Inter-communicators are more likely to be used by parallel library designers than
application developers. The routines MPI_COMM_SIZE and MPI_COMM_RANK can be
used with inter-communicators, but the interpretation of the results returned is
slightly different.

9.3.5 The creation of communicators

When a process starts MPI by calling MPI_INIT , the single intra-communicator
MPI_COMM_WORLD is defined for use in subsequent MPI calls. Using
MPI_COMM_WORLD, every process can communicate with every other.
MPI_COMM_WORLD can be thought of as the “root” communicator and it provides the
fundamental group. New communicators are always created from existing communi-
cators. Creating a new communicators involves two stages:

• The processes which will define the new communicator always share an existing
communicator (MPI_COMM_WORLD for example). Each process calls MPI rou-
tines to form a new group from the group of the existing communicator — these
are independent local operations.

• The processes call an MPI routine to create the new communicator. This is a glo-
bal operation and may synchronise the processes. All the processes have to spec-
ify the same group — otherwise the routine will fail.

1.A routine MPI_COMM_TEST_INTER exists to query the type of a given communica-
tor.
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9.4  Advanced topics on point-to-point com-
munication

9.4.1 Message probing

Message probing allows the MPI programmer to read a communication envelope
before choosing whether or not to read the actual message. The envelope contains
data on the size of the message and also (useful when wildcards are specified) the
source and tag, enabling the programmer to set up buffer space, choose how to
receive the message etc. A probed message can then be received in the usual way. This
need not be done immediately, but the programmer must bear in mind that:

• In the meantime the probed message might be matched and read by another re-
ceive.

• If the receive call specifies wildcards instead of the source and tag from the en-
velope returned by the probe, it may receive a different message from that which
was probed.

The same message may be probed for more than once before it is received. There is
one blocking probing routine MPI_PROBE and one non-blocking (or “querying”) rou-
tine MPI_IPROBE. The form of the routines is similar to the normal receive routines —
the programmer specifies the source, tag, and communicator as usual, but does not of
course specify buf , count  or datatype arguments.

MPI_PROBE (source, tag, comm, status)

MPI_PROBE returns when a matching message is “receivable”. The communication
envelope status  can be queried in the usual way, as described in “Information about
each message: the Communication Envelope” on page 15.

MPI_IPROBE (source, tag, comm, flag, status)

MPI_IPROBE is similar to MPI_PROBE, except that it allows messages to be checked
for, rather like checking a mailbox. If a matching message is found, MPI_IPROBE
returns with flag  set to TRUE and this case is treated just like MPI_PROBE. However,
if no matching message is found in the “mailbox”, the routine still returns, but with
flag  set to FALSE. In this case status  is of course undefined. MPI_IPROBE is useful
in cases where other activities can be performed even if no messages of a certain type
are forthcoming, in event-driven programming for example.

9.4.2 Persistent communications

If a program is making repeated communication calls with identical argument lists
(destination, buffer address etc.), in a loop for example, then re-casting the communi-
cation in terms of persistent communication requests may permit the MPI implementa-
tion to reduce the overhead of repeated calls. Persistent requests are freely compatible
with normal point-to-point communication. There is one communication initialisation
routine for each send mode (standard, synchronous, buffered, ready) and one for
receive. Each routine returns immediately, having created a request  handle. For
example, for standard send:

MPI_SEND_INIT (buf, count, datatype, dest, tag, comm, request)

The MPI_BSEND_INIT , MPI_SSEND_INIT , MPI_RSEND_INIT  and
MPI_RECV_INIT  routines are similar. The request  from any of these calls can be
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used to perform communication as many times as required, by making repeated calls
to MPI_START:

MPI_START (request)

Each time MPI_START is called it initiates a non-blocking instance of the communica-
tion specified in the INIT  call. Completion of each instance is tested with any of the
routines described for non-blocking communication in “Testing communications for
completion” on page 23. The only difference to the use of the non-blocking communi-
cation routines in“Non-Blocking Communication” on page 19 is that completion tests
do not in this case deallocate the request object and it can therefore be re-used. The
request  must be deallocated explicitly with MPI_REQUEST_FREE instead.

MPI_REQUEST_FREE (request)

For example, consider the one-dimensional smoothing example from “Example:
one-dimensional smoothing” on page 19 which can be re-written:

call MPI_SEND_INIT for each boundary cell;

call MPI_RECV_INIT for each halo cell;

for(iterations) {

update boundary cells;

initiate sending of boundary values to neighbours with
MPI_START;

initiate receipt of halo values from neighbours with MPI_START;

update non-boundary cells;

wait for completion of sending of boundary values;

wait for completion of receipt of halo values;

}

call MPI_REQUEST_FREE to free requests;

A variant called MPI_STARTALL also exists to activate multiple requests.

9.4.3 Shifts and MPI_SENDRECV

A shift involves a set of processes passing data to each other in a chain-like fashion (or
a circular fashion). Each process sends a maximum of one message and receives a
maximum of one message. See Figure 40: for an example. A routine called
MPI_SENDRECV provides a convenient way of expressing this communication pattern
in one routine call without causing deadlock and without the complications of
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“red-black” methods (see“Motivation for non-blocking communication” on page 20
for a quick description of “red-black”).

 Figure 40:  An example of two shifts. MPI_SENDRECV could be used for both

Note that MPI_SENDRECV is just an extension of point-to-point communications. It is
completely compatible with point-to-point communications in the sense that mes-
sages sent with MPI_SENDRECV can be received by a usual point-to-point receive and
vice versa. In fact, all MPI_SENDRECV does is to combine a send and a receive into a
single MPI call and make them happen simultaneously to avoid deadlock. It has noth-
ing to do with collective communication and need not involve all processes in the
communicator. As one might expect, the arguments to MPI_SEND_RECV are basically
the union of the arguments to a send and receive call:

MPI_SENDRECV (sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag, comm, status)

There is also a variant called MPI_SENDRECV_REPLACE which uses the same buffer
for sending and receiving. Both variants are blocking — there is no non-blocking form
since this would offer nothing over and above two separate non-blocking calls. In fig-
ure Figure 40: process 1 only receives, process 6 only sends and process 3 does neither.
A nice trick is to use MPI_NULL_PROC which makes the code more symmetric. The
communication in Figure 40: could work thus with MPI_SENDRECV:

Table 8:  Communications from Figure 40:

Process dest source

0 2 2

1 MPI_NULL_PROC 4

2 0 0

3 MPI_NULL_PROC MPI_NULL_PROC

4 1 5

6 4 6

6 5 MPI_NULL_PROC

10

32 4

5
6

communicator
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10  For further information on
MPI

The first book published about MPI is by Gropp, Lusk and Skjellum and contains a
thorough description of MPI and of the major communication interfaces in use when
MPI was designed. There is likely to be a flurry of introductory MPI books aimed at
specific audiences. Review articles have been written by D. Walker and C.H. Still
among others.

Useful Universal Resource Locators:

• Some MPI Home Pages:

http://www.mcs.anl.gov/Projects/mpi

ftp://unix.hensa.ac.uk/parallel/standards/mpi

• MPI Sstandard Document [1]:

http://www.mcs.anl.gov/mpi/mpi-report/mpi-report.html

• MPI Frequently Asked Questions:

http://www.cs.msstate.edu/dist_computing/mpi-faq.html

• EPCC TEC Technical Watch Report:

http://www.epcc.ed.ac.uk/epcc-tec

• EPCC Native Implementation of MPI:

http://www.epcc.ed.ac.uk/t3dmpi/Product

• A list of MPI implementations:

http://www.osc.edu/mpi/
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Appendix A:

Compiling and Running MPI
Programs on lomond

This appendix contains information on how to compile MPI programs on the
University of Edinburgh HPC Service (lomond ). General information on running
programs on this service can be found in the document “Introduction to the University
of Edinburgh HPC Service” which is available at:

http://www.epcc.ed.ac.uk/sun/introdoc.html

A.1  Compilation
A.1.1 Fortran compilation

Fortran source files are compiled using the tmf90  command

To compile the file hello.F , you would type the command:

lomond$ tmf90 -o hello hello.F -lmpi

You may use extensions .f or .F  (FORTRAN 77 fixed format layout) or .f90  or .F90

(Fortran 90 free-format layout).

A.1.2 C compilation

C source files are compiled using the tmcc  command

To compile the file hello.c,  you would type the command:

lomond$ tmcc -o hello hello.c -lmpi

A.2  Execution
To execute a compiled (C or Fortran) program:

lomond$ bsub -I -q fe-int -n 2 pam ./hello

This enters the job interactively into the fe-int  queue on 2 processors.

Alternatively:

lomond$ bsub -o logfile [-x] -q hpc-course -n 4 pam ./hello
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enters the job into the hpc-course  queue on 4 processors, storing the results in a file
called logfile . Use of the (optional) -x  switch gives exclusive access to the machine
which is useful for timing purposes when necessary.

The job start software pam is required for all queues.

A.3  Use of MPI with Fortran 90
Whether compiling by hand or using make files, the user should be aware that there
are no Fortran 90 bindings with MPI yet. Programs utilising MPI should use
FORTRAN 77 syntax and constructs (although Fortran 90 file layout is permitted).
Use of Fortran 90 features such as user-defined data types, or array sections in MPI
calls is not allowed.

We stress again the fact that there are no Fortran 90 bindings available with MPI and
that extreme care should be taken when using MPI with CF90.

The support for Fortran which is available with this implementation of MPI
corresponds more or less to the ``Basic Fortran Support’’ described in section 10.2 of
the draft MPI-2 standard. This is viewable on the WWW at:

http://www.epcc.ed.ac.uk/epcc-tec/documents/mpi-20-html/node234.html

Users intending to use MPI with Fortran 90  should study this information carefully,
as there are several issues whose significance must be fully appreciated before MPI
can be used with confidence in this context.

For example, array sections must not be passed to to non-blocking operations because
of copy-in/out problems. So, the non-blocking:

     real :: x(8), y(8,8)
       .
     call MPI_isend(x(1:4),4,...)
     call MPI_isend(y(3,:),8,...)
       .

should be avoided, whereas the blocking is allowed:

     real :: x(8), y(8,8)
       .
     call MPI_send(x(1:4),4,...)
     call MPI_send(y(3,:),8,...)
       .

Here is a very simple example of the use of MPI with CF90:

     kelvin: cat hello.f90
     ! prints Hello message, and stops.

     program hello
     implicit none
     include “mpif.h”
     integer ierror, rank, size

     ! initialise mpi
     call mpi_init(ierror)

     ! get ranks (processor number)
     call mpi_comm_rank(mpi_comm_world,rank,ierror)
     call mpi_comm_size(mpi_comm_world,size,ierror)

     ! main program
     write(unit=6, fmt=*)’Hello from processor ‘,rank,’ of ‘,size,’!’
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     ! close mpi
     call mpi_finalize(ierror)

     end

     kelvin: f90 -X4 -lmpi -lsma -I/usr/include/mpp hello.f90

     darwin: a.out
      Hello from processor  0  of  4 !
      Hello from processor  2  of  4 !
      Hello from processor  3  of  4 !
      Hello from processor  1  of  4 !
     darwin:

A.4  Using a Makefile
Sometimes – especially if a large number of source files are being used, it is
convenient to use a Makefile for compilation. Below two template Makefiles have
been provided to compile Fortran or C code. These have been made as simple as
possible.

First, for Fortran code we have:

#####################################################################
# Fortran sample Makefile.
#####################################################################
# Fortran sources.
SRC= ising.f startup.f sweeps.f energy.f edges.f

OBJ=$(SRC:.f=.o)

FC = tmf90

# Flags used for compilation:
# -c as usual

FFLAGS =

LDFLAGS =
LIBS = -lmpi

.f.o:
$(FC) $(FFLAGS) $<

ising: $(OBJ)
$(FC) $(LDFLAGS) -o $@ $(OBJ) $(LIBS)

and for C code we have:

#####################################################################
# Example C Makefile.
#####################################################################
# C sources.
SRC =ising.c startup.c sweeps.c energy.c edges.c

OBJ =$(SRC:.c=.o)

CC = tmcc

# -c as usual
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CFLAGS = -c
LIBS = -lmpi

.c.o:
$(COMP) $(CFLAGS) $<

ising: $(OBJ)
$(COMP) $(LDFLAGS) -o $@ $(OBJ) $(LIBS)


