
Advanced OpenMP, SC'2001 1

OpenMP Tutorial
Part 2: Advanced OpenMP

Tim Mattson
Intel Corporation

Computational Software Laboratory

Rudolf Eigenmann
Purdue University

School of Electrical and
Computer Engineering

Advanced OpenMP, SC'2001 2

SC’2000 Tutorial Agenda

l Summary of OpenMP basics
l OpenMP: The more subtle/advanced stuff
l OpenMP case studies
l Automatic parallelism and tools support
l Mixing OpenMP and MPI
l The future of OpenMP

Advanced OpenMP, SC'2001 3

Summary of OpenMP Basics
l  Parallel Region

C$omp parallel #pragma omp parallel
l  Worksharing

C$omp do #pragma omp for
C$omp sections #pragma omp sections
C$omp single #pragma omp single
C$omp workshare #pragma omp workshare

l  Data Environment
u directive: threadprivate
u clauses: shared, private, lastprivate, reduction, copyin,

copyprivate
l  Synchronization

u directives: critical, barrier, atomic, flush, ordered, master
l  Runtime functions/environment variables

Agenda
l Summary of OpenMP basics
l OpenMP: The more subtle/advanced stuff

u More on Parallel Regions
u Advanced Synchronization
u Remaining Subtle Details

l OpenMP case studies
l Automatic parallelism and tools support
l Mixing OpenMP and MPI
l The future of OpenMP

Advanced OpenMP, SC'2001 5

OpenMP: Some subtle details
l Dynamic mode (the default mode):

– The number of threads used in a parallel region can
vary from one parallel region to another.

– Setting the number of threads only sets the
maximum number of threads - you could get less.

l Static mode:
– The number of threads is fixed between parallel

regions.
l OpenMP lets you nest parallel regions, but…

– A compiler can choose to serialize the nested
parallel region (i.e. use a team with only one
thread).

Advanced OpenMP, SC'2001 6

Static vs dynamic mode

l An example showing a static code that uses
threadprivate data between parallel regions.

Advanced OpenMP, SC'2001 7

EPCC Microbenchmarks

l A few slides showing overheads measured
with the EPCC microbenchmarks.

Advanced OpenMP, SC'2001 8

Nested Parallelism

l OpenMP lets you nest parallel regions.

l But a conforming implementation can ignore the
nesting by serializing inner parallel regions.

Advanced OpenMP, SC'2001 9

OpenMP:
The numthreads() clause
l  The numthreads clause is used to request a number of

threads for a parallel region:

 integer id, N

C$OMP PARALLEL NUMTHREADS(2 * NUM_PROCS)

 id = omp_get_thread_num()
 res(id) = big_job(id)

C$OMP END PARALLEL

l  NUMTHREADS only effects the parallel region on
which it appears.

Any integer expression

New in
OpenMP 2.0

Advanced OpenMP, SC'2001 10

Nested parallelism challenges
l  Is nesting important enough for us to worry

about?
l Nesting is incomplete in OpenMP. Algorithm

designers want systems to give us nesting
when we ask for it.
u What does it mean to ask for more threads than

processors? What should a system do when this
happens?

l The set_num_threads routine can only be
called in a serial region. Do all the nested
parallel regions have to have the same number
of threads?

Advanced OpenMP, SC'2001 11

OpenMP:
The if clause
l  The if clause is used to turn parallelism on or off in a

program:

 integer id, N

C$OMP PARALLEL PRIVATE(id) IF(N.gt.1000)

 id = omp_get_thread_num()
 res(id) = big_job(id)

C$OMP END PARALLEL

l  The parallel region is executed with multiple threads
only if the logical expression in the IF clause is .TRUE.

Make a copy of id
for each thread.

Advanced OpenMP, SC'2001 12

OpenMP:
OpenMP macro
l  OpenMP defines the macro _OPENMP as YYYYMM where

YYYY is the year and MM is the month of the OpenMP
specification used by the compiler

 int id = 0;

#ifdef _OPENMP

 id = omp_get_thread_num();
 printf(“ I am %d \n”,id);

#endif

OpenMP: Environment Variables: The full set

l  Control how “omp for schedule(RUNTIME)” loop
iterations are scheduled.

– OMP_SCHEDULE “schedule[, chunk_size]”
l  Set the default number of threads to use.

– OMP_NUM_THREADS int_literal
l  Can the program use a different number of threads in

each parallel region?
– OMP_DYNAMIC TRUE || FALSE

l  Do you want nested parallel regions to create new
teams of threads, or do you want them to be
serialized?

– OMP_NESTED TRUE || FALSE

OpenMP: Library routines: Part 2
l  Runtime environment routines:

– Modify/Check the number of threads
– omp_set_num_threads(), omp_get_num_threads(),

omp_get_thread_num(), omp_get_max_threads()
–  Turn on/off nesting and dynamic mode

– omp_set_nested(), omp_get_nested(),
omp_set_dynamic(), omp_get_dynamic()

– Are we in a parallel region?
– omp_in_parallel()

– How many processors in the system?
– omp_num_procs()

Agenda
l Summary of OpenMP basics
l OpenMP: The more subtle/advanced stuff

u More on Parallel Regions
u Advanced Synchronization
u Remaining Subtle Details

l OpenMP case studies
l Automatic parallelism and tools support
l Mixing OpenMP and MPI
l The future of OpenMP

OpenMP: Library routines: The full set
l  Lock routines

– omp_init_lock(), omp_set_lock(),
omp_unset_lock(), omp_test_lock()

l  Runtime environment routines:
– Modify/Check the number of threads

– omp_set_num_threads(), omp_get_num_threads(),
omp_get_thread_num(), omp_get_max_threads()

–  Turn on/off nesting and dynamic mode
– omp_set_nested(), omp_get_nested(),

omp_set_dynamic(), omp_get_dynamic()
– Are we in a parallel region?

– omp_in_parallel()
– How many processors in the system?

– omp_num_procs()

… and likewise
for nestable locks

OpenMP: Library Routines
l Protect resources with locks.

 omp_lock_t lck;
 omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{
 id = omp_get_thread_num();
 tmp = do_lots_of_work(id);
 omp_set_lock(&lck);
 printf(“%d %d”, id, tmp);
 omp_unset_lock(&lck);
}

Wait here for
your turn.

Release the lock
so the next thread
gets a turn.

OpenMP: Atomic Synchronization
l Atomic applies only to the update of x.

C$OMP PARALLEL PRIVATE(B)
 B = DOIT(I)

C$OMP ATOMIC
 X = X + foo(B)

C$OMP END PARALLEL

C$OMP PARALLEL PRIVATE(B, tmp)
 B = DOIT(I)

 tmp = foo(B)
C$OMP CRITICAL

 X = X + tmp

C$OMP END PARALLEL

Some thing the
two of these
are the same,
but they aren’t
if there are side
effects in foo()
and they
involve shared
data.

OpenMP: Synchronization

l  The flush construct denotes a sequence point where a
thread tries to create a consistent view of memory.

– All memory operations (both reads and writes) defined
prior to the sequence point must complete.

– All memory operations (both reads and writes) defined
after the sequence point must follow the flush.

–  Variables in registers or write buffers must be updated in
memory.

l  Arguments to flush specify which variables are
flushed. No arguments specifies that all thread visible
variables are flushed.

Advanced OpenMP, SC'2001 20

OpenMP:
A flush example
l  This example shows how flush is used to implement

pair-wise synchronization.
 integer ISYNC(NUM_THREADS)

C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)
 IAM = OMP_GET_THREAD_NUM()
 ISYNC(IAM) = 0

C$OMP BARRIER
 CALL WORK()
 ISYNC(IAM) = 1 ! I’m all done; signal this to other threads

C$OMP FLUSH(ISYNC)
 DO WHILE (ISYNC(NEIGH) .EQ. 0)

C$OMP FLUSH(ISYNC)
 END DO

C$OMP END PARALLEL

Make sure other threads can
see my write.

Make sure the read picks up a
good copy from memory.

Note: OpenMP’s flush is analogous to a fence in
other shared memory API’s.

Advanced OpenMP, SC'2001 21

OpenMP:
Implicit synchronization

l Barriers are implied on the following OpenMP
constructs:

l Flush is implied on the following OpenMP
constructs:

barrier
critical, end critical
end do
end parallel

end sections
end single
ordered, end ordered
parallel

end parallel
end do (except when nowait is used)
end sections (except when nowait is used)
end single (except when nowait is used)

Advanced OpenMP, SC'2001 22

Synchronization challenges

l OpenMP only includes synchronization
directives that “have a sequential reading”. Is
that enough?
u Do we need conditions variables?
u Monotonic flags?
u Other pairwise synchronization?

l When can a programmer know they need or
don’t need flush? If we implied flush on locks,
would we even need this confusing construct?

Agenda
l Summary of OpenMP basics
l OpenMP: The more subtle/advanced stuff

u More on Parallel Regions
u Advanced Synchronization
u Remaining Subtle Details

l OpenMP case studies
l Automatic parallelism and tools support
l Mixing OpenMP and MPI
l The future of OpenMP

Advanced OpenMP, SC'2001 24

OpenMP:
Some Data Scope clause details
l The data scope clauses take a list argument

– The list can include a common block name as a
short hand notation for listing all the variables in
the common block.

l Default private for some loop indices:
– Fortran: loop indices are private even if they are

specified as shared.
– C: Loop indices on “work-shared loops” are

private when they otherwise would be shared.
l Not all privates are undefined

– Allocatable arrays in Fortran
– Class type (I.e. non-POD) variables in C++.

See the OpenMP spec.
for more details.

Advanced OpenMP, SC'2001 25

OpenMP: More subtle details
l Variables privitized in a parallel region can not

be reprivitized on an enclosed omp for.
l Assumed size and assumed shape

arrays can not be privitized.
l Fortran pointers or allocatable arrays can not

lastprivate or firstprivate.
l When a common block is listed in a data

clause, its constituent elements can’t appear
in other data clauses.

l  If a common block element is privitized, it is no
longer associated with the common block.

This restriction
will be dropped
in OpenMP 2.0

Advanced OpenMP, SC'2001 26

OpenMP:
directive nesting
l  For, sections and single directives binding to the same

parallel region can’t be nested.
l  Critical sections with the same name can’t be nested.
l  For, sections, and single can not appear in the dynamic

extent of critical, ordered or master.
l  Barrier can not appear in the dynamic extent of for,

ordered, sections, single., master or critical
l  Master can not appear in the dynamic extent of for,

sections and single.
l  Ordered are not allowed inside critical
l  Any directives legal inside a parallel region are also

legal outside a parallel region in which case they are
treated as part of a team of size one.

Agenda
l Summary of OpenMP basics
l OpenMP: The more subtle/advanced stuff
l OpenMP case studies

u Parallelization of the SPEC OMP 2001
benchmarks

u Performance tuning method
l Automatic parallelism and tools support
l Mixing OpenMP and MPI
l The future of OpenMP

Advanced OpenMP, SC'2001 28

The SPEC OMP2001 Applications

Code Applications Language lines
ammp Chemistry/biology C 13500
applu Fluid dynamics/physics Fortran 4000
apsi Air pollution Fortran 7500
art Image Recognition/
 neural networks C 1300
fma3d Crash simulation Fortran 60000
gafort Genetic algorithm Fortran 1500
galgel Fluid dynamics Fortran 15300
equake Earthquake modeling C 1500
mgrid Multigrid solver Fortran 500
swim Shallow water modeling Fortran 400
wupwise Quantum chromodynamics Fortran 2200

Advanced OpenMP, SC'2001 29

Basic Characteristics
Code Parallel Total
 Coverage Runtime (sec) # of parallel
 (%) Seq. 4-cpu regions
ammp 99.11 16841 5898 7
applu 99.99 11712 3677 22
apsi 99.84 8969 3311 24
art 99.82 28008 7698 3
equake 99.15 6953 2806 11
fma3d 99.45 14852 6050 92/30*

gafort 99.94 19651 7613 6
galgel 95.57 4720 3992 31/32*
mgrid 99.98 22725 8050 12
swim 99.44 12920 7613 8
wupwise 99.83 19250 5788 10

 * lexical parallel regions / parallel regions called at runtime

Advanced OpenMP, SC'2001 30

Wupwise

l Quantum chromodynamics model written in
Fortran 90

l Parallelization was relatively straightforward
u 10 OMP PARALLEL regions
u PRIVATE and (2) REDUCTION clauses
u 1 critical section

l Loop coalescing was used to increase the size
of parallel sections

Advanced OpenMP, SC'2001 31

C$OMP PARALLEL
C$OMP+ PRIVATE (AUX1, AUX2, AUX3),
C$OMP+ PRIVATE (I, IM, IP, J, JM, JP, K, KM, KP, L, LM, LP),
C$OMP+ SHARED (N1, N2, N3, N4, RESULT, U, X)

C$OMP DO
 DO 100 JKL = 0, N2 * N3 * N4 - 1

 L = MOD (JKL / (N2 * N3), N4) + 1
 LP=MOD(L,N4)+1

 K = MOD (JKL / N2, N3) + 1
 KP=MOD(K,N3)+1

 J = MOD (JKL, N2) + 1
 JP=MOD(J,N2)+1

 DO 100 I=(MOD(J+K+L,2)+1),N1,2

 IP=MOD(I,N1)+1

 CALL GAMMUL(1,0,X(1,(IP+1)/2,J,K,L),AUX1)
 CALL SU3MUL(U(1,1,1,I,J,K,L),'N',AUX1,AUX3)

 CALL GAMMUL(2,0,X(1,(I+1)/2,JP,K,L),AUX1)
 CALL SU3MUL(U(1,1,2,I,J,K,L),'N',AUX1,AUX2)
 CALL ZAXPY(12,ONE,AUX2,1,AUX3,1)

 CALL GAMMUL(3,0,X(1,(I+1)/2,J,KP,L),AUX1)
 CALL SU3MUL(U(1,1,3,I,J,K,L),'N',AUX1,AUX2)
 CALL ZAXPY(12,ONE,AUX2,1,AUX3,1)

 CALL GAMMUL(4,0,X(1,(I+1)/2,J,K,LP),AUX1)
 CALL SU3MUL(U(1,1,4,I,J,K,L),'N',AUX1,AUX2)
 CALL ZAXPY(12,ONE,AUX2,1,AUX3,1)

 CALL ZCOPY(12,AUX3,1,RESULT(1,(I+1)/2,J,K,L),1)

 100 CONTINUE
C$OMP END DO
C$OMP END PARALLEL

Major parallel loop
in Wupwise

Logic added to
support loop
collalescing

Advanced OpenMP, SC'2001 32

Swim
l Shallow Water model written in F77/F90
l Swim is known to be highly parallel
l Code contains several doubly-nested loops

The outer loops are parallelized
!$OMP PARALLEL DO
 DO 100 J=1,N
 DO 100 I=1,M
 CU(I+1,J) = .5D0*(P(I+1,J)+P(I,J))*U(I+1,J)
 CV(I,J+1) = .5D0*(P(I,J+1)+P(I,J))*V(I,J+1)
 Z(I+1,J+1) = (FSDX*(V(I+1,J+1)-V(I,J+1))-FSDY*(U(I+1,J+1)
 -U(I+1,J)))/(P(I,J)+P(I+1,J)+P(I+1,J+1)+P(I,J+1))
 H(I,J) = P(I,J)+.25D0*(U(I+1,J)*U(I+1,J)+U(I,J)*U(I,J)
 +V(I,J+1)*V(I,J+1)+V(I,J)*V(I,J))
 100 CONTINUE

Example
parallel
loop

Advanced OpenMP, SC'2001 33

Mgrid

l Multigrid electromagnetism in F77/F90
l Major parallel regions inrprj3, basic multigrid

iteration
l Simple loop nest patterns, similar to Swim,

several 3-nested loops
l Parallelized through the Polaris automatic

parallelizing source-to-source translator

Advanced OpenMP, SC'2001 34

Applu
l  Non-linear PDES time stepping SSOR in F77
l  Major parallel regions in ssor.f, basic SSOR iteration
l  Basic parallelization over the outer of 3D loop,

temporaries held private

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(M,I,J,K,tmp2)
 tmp2 = dt
!$omp do
 do k = 2, nz - 1
 do j = jst, jend
 do i = ist, iend
 do m = 1, 5
 rsd(m,i,j,k) = tmp2 * rsd(m,i,j,k)
 end do
 end do
 end do
 end do
!$omp end do
!$OMP END PARALLEL

Up to
4-nested
loops:

Advanced OpenMP, SC'2001 35

Galgel

l CFD in F77/F90
l Major parallel regions in heat transfer

calculation
l Loop coalescing applied to increase parallel

regions, guided self scheduling in loop with
irregular iteration times

Advanced OpenMP, SC'2001 36

!$OMP PARALLEL
!$OMP+ DEFAULT(NONE)
!$OMP+ PRIVATE (I, IL, J, JL, L, LM, M, LPOP, LPOP1),
!$OMP+ SHARED (DX, HtTim, K, N, NKX, NKY, NX, NY, Poj3, Poj4, XP, Y),
!$OMP+ SHARED (WXXX, WXXY, WXYX, WXYY, WYXX, WYXY, WYYX, WYYY),
!$OMP+ SHARED (WXTX, WYTX, WXTY, WYTY, A, Ind0)
 If (Ind0 .NE. 1) then
 ! Calculate r.h.s.

C ++++++ - HtCon(i,j,l)*Z(j)*X(l) ++++++++++++++++++++++++++++++++++++

!$OMP DO SCHEDULE(GUIDED)
 Ext12: Do LM = 1, K
 L = (LM - 1) / NKY + 1
 M = LM - (L - 1) * NKY

 Do IL=1,NX
 Do JL=1,NY
 Do i=1,NKX
 Do j=1,NKY

 LPOP(NKY*(i-1)+j, NY*(IL-1)+JL) =
 WXTX(IL,i,L) * WXTY(JL,j,M) + WYTX(IL,i,L) * WYTY(JL,j,M)
 End Do
 End Do
 End Do
 End Do

C LPOP1(i) = LPOP(i,j)*X(j)

 LPOP1(1:K) = MATMUL(LPOP(1:K,1:N), Y(K+1:K+N))

C Poj3 = LPOP1

 Poj3(NKY*(L-1)+M, 1:K) = LPOP1(1:K)

C Xp = <LPOP1,Z>

 Xp(NKY*(L-1)+M) = DOT_PRODUCT (Y(1:K), LPOP1(1:K))

C Poj4(*,i) = LPOP(j,i)*Z(j)

 Poj4(NKY*(L-1)+M,1:N) =
 MATMUL(TRANSPOSE(LPOP(1:K,1:N)), Y(1:K))

 End Do Ext12
!$OMP END DO

C DX = DX - HtTim*Xp
!$OMP DO
 DO LM = 1, K
 DX(LM) = DX(LM) - DOT_PRODUCT (HtTim(LM,1:K), Xp(1:K))
 END DO
!$OMP END DO NOWAIT

 Else

C ************ Jacobian ***************************************

CA = A - HtTim * Poj3

!$OMP DO
 DO LM = 1, K
 A(1:K,LM) = A(1:K,LM) -
 MATMUL(HtTim(1:K,1:K), Poj3(1:K,LM))
 END DO
!$OMP END DO NOWAIT

CA = A - HtTim * Poj4

!$OMP DO
 DO LM = 1, N
 A(1:K,K+LM) = A(1:K,K+LM) -
 MATMUL(HtTim(1:K,1:K), Poj4(1:K,LM))
 END DO
!$OMP END DO NOWAIT

 End If
!$OMP END PARALLEL

 Return
 End

Major parallel loop in
subroutine syshtN.f
of Galgel

Advanced OpenMP, SC'2001 37

APSI
l 3D air pollution model
l Relatively flat profile
l Parts of work arrays used as shared and other

parts used as private data
!$OMP PARALLEL 
!$OMP+PRIVATE(II,MLAG,HELP1,HELPA1) 
!$OMP DO 
 DO 20 II=1,NZTOP 
 MLAG=NXNY1+II*NXNY 
C 
C HORIZONTAL DISPERSION PART 2 2 2 2 
C ---- CALCULATE WITH DIFFUSION EIGENVALUES THE K D C/DX ,K D C/DY 
C X Y 
 CALL DCTDX(NX,NY,NX1,NFILT,C(MLAG),DCDX(MLAG), 
 HELP1,HELPA1,FX,FXC,SAVEX) 
 IF(NY.GT.1) CALL DCTDY(NX,NY,NY1,NFILT,C(MLAG),DCDY(MLAG), 
 HELP1,HELPA1,FY,FYC,SAVEY) 
 20 CONTINUE 
!$OMP END DO 
!$OMP END PARALLEL 

Sample
parallel loop
from run.f

Advanced OpenMP, SC'2001 38

Gafort

l Genetic algorithm in Fortran
l Most “interesting” loop: shuffle the population.

u Original loop is not parallel; performs pair-wise
swap of an array element with another, randomly
selected element. There are 40,000 elements.

u Parallelization idea:
– Perform the swaps in parallel
– Need to prevent simultaneous access to same

array element: use one lock per array element à
40,000 locks.

Advanced OpenMP, SC'2001 39

!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp, my_cpu_id)
 my_cpu_id = 1
!$ my_cpu_id = omp_get_thread_num() + 1
!$OMP DO
 DO j=1,npopsiz-1
 CALL ran3(1,rand,my_cpu_id,0)
 iother=j+1+DINT(DBLE(npopsiz-j)*rand)
!$ IF (j < iother) THEN
!$ CALL omp_set_lock(lck(j))
!$ CALL omp_set_lock(lck(iother))
!$ ELSE
!$ CALL omp_set_lock(lck(iother))
!$ CALL omp_set_lock(lck(j))
!$ END IF
 itemp(1:nchrome)=iparent(1:nchrome,iother)
 iparent(1:nchrome,iother)=iparent(1:nchrome,j)
 iparent(1:nchrome,j)=itemp(1:nchrome)
 temp=fitness(iother)
 fitness(iother)=fitness(j)
 fitness(j)=temp
!$ IF (j < iother) THEN
!$ CALL omp_unset_lock(lck(iother))
!$ CALL omp_unset_lock(lck(j))
!$ ELSE
!$ CALL omp_unset_lock(lck(j))
!$ CALL omp_unset_lock(lck(iother))
!$ END IF
 END DO
!$OMP END DO
!$OMP END PARALLEL

Parallel loop
In shuffle.f
of Gafort

Exclusive access
to array
elements.
Ordered locking
prevents
deadlock.

Advanced OpenMP, SC'2001 40

Fma3D

l 3D finite element mechanical simulator
l Largest of the SPEC OMP codes: 60,000 lines
l Uses OMP DO, REDUCTION, NOWAIT,

CRITICAL
l Key to good scaling was critical section
l Most parallelism from simple DOs

u Of the 100 subroutines only four have parallel
sections; most of them in fma1.f90

l Conversion to OpenMP took substantial work

Advanced OpenMP, SC'2001 41

!$OMP PARALLEL DO &
!$OMP DEFAULT(PRIVATE), SHARED(PLATQ,MOTION,MATERIAL,STATE_VARIABLES), &
!$OMP SHARED(CONTROL,TIMSIM,NODE,SECTION_2D,TABULATED_FUNCTION,STRESS),&
!$OMP SHARED(NUMP4) REDUCTION(+:ERRORCOUNT), &
!$OMP REDUCTION(MIN:TIME_STEP_MIN), &
!$OMP REDUCTION(MAX:TIME_STEP_MAX)

 DO N = 1,NUMP4

 ... (66 lines deleted)

 MatID = PLATQ(N)%PAR%MatID

 CALL PLATQ_MASS (NEL,SecID,MatID)

 ... (35 lines deleted)

 CALL PLATQ_STRESS_INTEGRATION (NEL,SecID,MatID)

 ... (34 lines deleted)

!$OMP END PARALLEL DO

Parallel loop in platq.f90 of Fma3D

Contains
large
critical
section

Advanced OpenMP, SC'2001 42

Subroutine platq_mass.f90
of Fma3D

 SUBROUTINE PLATQ_MASS (NEL,SecID,MatID)

 ... (54 lines deleted)

!$OMP CRITICAL (PLATQ_MASS_VALUES)
 DO i = 1,4
 NODE(PLATQ(NEL)%PAR%IX(i))%Mass = NODE(PLATQ(NEL)%PAR%IX(i))%Mass + QMass
 MATERIAL(MatID)%Mass = MATERIAL(MatID)%Mass + QMass
 MATERIAL(MatID)%Xcm = MATERIAL(MatID)%Xcm + QMass * Px(I)
 MATERIAL(MatID)%Ycm = MATERIAL(MatID)%Ycm + QMass * Py(I)
 MATERIAL(MatID)%Zcm = MATERIAL(MatID)%Zcm + QMass * Pz(I)
!!
!! Compute inertia tensor B wrt the origin from nodal point masses.
!!
 MATERIAL(MatID)%Bxx = MATERIAL(MatID)%Bxx + (Py(I)*Py(I)+Pz(I)*Pz(I))*QMass
 MATERIAL(MatID)%Byy = MATERIAL(MatID)%Byy + (Px(I)*Px(I)+Pz(I)*Pz(I))*QMass
 MATERIAL(MatID)%Bzz = MATERIAL(MatID)%Bzz + (Px(I)*Px(I)+Py(I)*Py(I))*QMass
 MATERIAL(MatID)%Bxy = MATERIAL(MatID)%Bxy - Px(I)*Py(I)*QMass
 MATERIAL(MatID)%Bxz = MATERIAL(MatID)%Bxz - Px(I)*Pz(I)*QMass
 MATERIAL(MatID)%Byz = MATERIAL(MatID)%Byz - Py(I)*Pz(I)*QMass
 ENDDO
!!
!!
!! Compute nodal isotropic inertia
!!
 RMass = QMass * (PLATQ(NEL)%PAR%Area + SECTION_2D(SecID)%Thickness**2) / 12.0D+0
!!
!!
 NODE(PLATQ(NEL)%PAR%IX(5))%Mass = NODE(PLATQ(NEL)%PAR%IX(5))%Mass + RMass
 NODE(PLATQ(NEL)%PAR%IX(6))%Mass = NODE(PLATQ(NEL)%PAR%IX(6))%Mass + RMass
 NODE(PLATQ(NEL)%PAR%IX(7))%Mass = NODE(PLATQ(NEL)%PAR%IX(7))%Mass + RMass
 NODE(PLATQ(NEL)%PAR%IX(8))%Mass = NODE(PLATQ(NEL)%PAR%IX(8))%Mass + RMass
!$OMP END CRITICAL (PLATQ_MASS_VALUES)
!!
!!
 RETURN
 END

This is a large array reduction

Advanced OpenMP, SC'2001 43

Art

l  Image processing
l Good scaling required combining two

dimensions into single dimension
l Uses OMP DO, SCHEDULE(DYNAMIC)
l Dynamic schedule needed because of

embedded conditional

Advanced OpenMP, SC'2001 44

#pragma omp for private (k,m,n, gPassFlag) schedule(dynamic)
 for (ij = 0; ij < ijmx; ij++) {
 j = ((ij/inum) * gStride) + gStartY;
 i = ((ij%inum) * gStride) +gStartX;
 k=0;
 for (m=j;m<(gLheight+j);m++)
 for (n=i;n<(gLwidth+i);n++)
 f1_layer[o][k++].I[0] = cimage[m][n];

 gPassFlag =0;
 gPassFlag = match(o,i,j, &mat_con[ij], busp);

 if (gPassFlag==1) {
 if (set_high[o][0]==TRUE) {
 highx[o][0] = i;
 highy[o][0] = j;
 set_high[o][0] = FALSE;
 }
 if (set_high[o][1]==TRUE) {
 highx[o][1] = i;
 highy[o][1] = j;
 set_high[o][1] = FALSE;
 }
 }
 }

Key loop
in Art

Loop
collalescing

Advanced OpenMP, SC'2001 45

Ammp

l Molecular Dynamics
l Very large loop in rectmm.c
l Good parallelism required great deal of work
l Uses OMP FOR, SCHEDULE(GUIDED), about

20,000 locks
l Guided scheduling needed because of loop

with conditional execution.

Advanced OpenMP, SC'2001 46

Parallel loop in
rectmm.c of
Ammp

#pragma omp parallel for private (n27ng0, nng0, ing0, i27ng0, natoms, ii, a1, a1q, a1serial,
 inclose, ix, iy, iz, inode, nodelistt, r0, r, xt, yt, zt, xt2, yt2, zt2, xt3, yt3, zt3, xt4,
 yt4, zt4, c1, c2, c3, c4, c5, k, a1VP , a1dpx , a1dpy , a1dpz , a1px, a1py, a1pz, a1qxx ,
 a1qxy , a1qxz ,a1qyy , a1qyz , a1qzz, a1a, a1b, iii, i, a2, j, k1, k2 ,ka2, kb2, v0, v1, v2,
 v3, kk, atomwho, ia27ng0, iang0, o) schedule(guided)

 for(ii=0; ii< jj; ii++)
 ...

 for(inode = 0; inode < iii; inode ++)
 if((*nodelistt)[inode].innode > 0) {
 for(j=0; j< 27; j++)
 if(j == 27)

 ...
 if(atomwho->serial > a1serial)
 for(kk=0; kk< a1->dontuse; kk++)
 if(atomwho == a1->excluded[kk])

 ...
 for(j=1; j< (*nodelistt)[inode].innode -1 ; j++)

 ...
 if(atomwho->serial > a1serial)
 for(kk=0; kk< a1->dontuse; kk++)
 if(atomwho == a1->excluded[kk]) goto SKIP2;

 ...
 for (i27ng0=0 ; i27ng0<n27ng0; i27ng0++)

 ...
 ...

 for(i=0; i< nng0; i++)
 ...

 if(v3 > mxcut || inclose > NCLOSE)
 ...
 ...

(loop body contains 721 lines)

Advanced OpenMP, SC'2001 47

Performance Tuning Example 3:
EQUAKE
EQUAKE: Earthquake simulator in C
(run on a 4 processor SUN Enterprise system – note

super linear speedup)

EQUAKE is hand-
parallelized with
relatively few code
modifications.

0
1
2
3
4
5
6
7
8

original
sequential

initial
OpenMP

improved
allocate

Advanced OpenMP, SC'2001 48

EQUAKE: Tuning Steps

l Step1:
Parallelizing the four most time-consuming

loops

– inserted OpenMP pragmas for parallel loops
and private data

– array reduction transformation
l Step2:

A change in memory allocation

Advanced OpenMP, SC'2001 49

EQUAKE
Code
Samples

 /* malloc w1[numthreads][ARCHnodes][3] */

#pragma omp parallel for
 for (j = 0; j < numthreads; j++)
 for (i = 0; i < nodes; i++) { w1[j][i][0] = 0.0; ...; }

#pragma omp parallel private(my_cpu_id,exp,...)
{
 my_cpu_id = omp_get_thread_num();

#pragma omp for
 for (i = 0; i < nodes; i++)
 while (...) {
 ...
 exp = loop-local computation;
 w1[my_cpu_id][...][1] += exp;
 ...
 }
}
#pragma omp parallel for
 for (j = 0; j < numthreads; j++) {
 for (i = 0; i < nodes; i++) { w[i][0] += w1[j][i]
[0]; ...;}

Advanced OpenMP, SC'2001 50

OpenMP Features Used
Code sections locks guided dynamic critical nowait

ammp 7 20k 2
applu 22 14
apsi 24
art 3 1
equake 11
fma3d 92/30 1 2
gafort 6 40k
galgel 31/32* 7 3
mgrid 12 11
swim 8
wupwise 10 1

 * static sections / sections called at runtime

“Feature” used to deal with NUMA machines: rely on first-touch page placement. If necessary, put

initialization into a parallel loop to avoid placing all data on the master processor.

Advanced OpenMP, SC'2001 51

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fm
a3

d

ga
fo

rt

ga
lg

el

m
gr

id

sw
im

w
up

w
is

e

Benchmark

S
pe

ed
up

2 CPU Measured 2 CPU Amdahl's 4 CPU Measured 4 CPU Amdahl's

Overall Performance

2 2

2

4

4

M

M

A

A

Advanced OpenMP, SC'2001 52

What Tools Did We Use for
Performance Analysis and Tuning?
l Compilers

u for several applications, the starting point for our
performance tuning of Fortran codes was the
compiler-parallelized program.

u It reports: parallelized loops, data dependences.
l Subroutine and loop profilers

u focusing attention on the most time-consuming
loops is absolutely essential.

l Performance tables:
u typically comparing performance differences at the

loop level.

Advanced OpenMP, SC'2001 53

Guidelines for Fixing
“Performance Bugs”
l The methodology that worked for us:

u Use compiler-parallelized code as a starting point
u Get loop profile and compiler listing
u Inspect time-consuming loops (biggest potential for

improvement)
– Case 1. Check for parallelism where the compiler

could not find it
– Case 2. Improve parallel loops where the

speedup is limited

Advanced OpenMP, SC'2001 54

Performance Tuning

Case 1: if the loop is not yet parallelized, do this:
l Check for parallelism:

u read the compiler explanation
u a variable may be independent even if the compiler

detects dependences (compilers are conservative)
u check if conflicting array is privatizable (compilers

don’t perform array privatization well)
l  If you find parallelism, add OpenMP parallel

directives, or make the information explicit for
the parallelizer

Advanced OpenMP, SC'2001 55

Performance Tuning
Case 2: if the loop is parallel but does not perform well,

consider several optimization factors:

Parallelization
overhead

Memory

CPU CPU CPU

Spreading
overhead

High overheads are caused by:
• parallel startup cost
• small loops
• additional parallel code
• over-optimized inner loops
• less optimization for parallel code

• load imbalance
• synchronized section
• non-stride-1 references
• many shared references
• low cache affinity

serial
program

parallel
program

Agenda
l Summary of OpenMP basics
l OpenMP: The more subtle/advanced stuff
l OpenMP case studies
l Automatic parallelism and tools support
l Mixing OpenMP and MPI
l The future of OpenMP

Advanced OpenMP, SC'2001 57

Generating OpenMP Programs
Automatically

OpenMP
program

user
inserts

directives

parallelizing
compiler
inserts
directives

user
tunes

program

Source-to-source
restructurers:
•  F90 to F90/OpenMP
•  C to C/OpenMP

Examples:
•  SGI F77 compiler
 (-apo -mplist option)
•  Polaris compiler

Advanced OpenMP, SC'2001 58

The Basics About
Parallelizing Compilers
l  Loops are the primary source of parallelism in

scientific and engineering applications.
l  Compilers detect loops that have independent

iterations.

DO I=1,N
 A(expression1) = …
 … = A(expression2)
ENDDO

The loop is
independent if, for
different iterations,
expression1 is always
different from
expression2

Advanced OpenMP, SC'2001 59

Basic Program Transformations

Data privatization:

DO i=1,n
 work(1:n) = ….
 .
 .
 .
 … = work(1:n)
ENDDO

C$OMP PARALLEL DO
C$OMP+ PRIVATE (work)
DO i=1,n
 work(1:n) = ….
 .
 .
 .
 … = work(1:n)
ENDDO

Each processor is given a separate version of the
private data, so there is no sharing conflict

Advanced OpenMP, SC'2001 60

Basic Program Transformations

Reduction recognition:

DO i=1,n
 ...
 sum = sum + a(i)
 …
 ENDDO

C$OMP PARALLEL DO
C$OMP+ REDUCTION (+:sum)
DO i=1,n
 ...
 sum = sum + a(i)
 …
ENDDO

Each processor will accumulate partial sums, followed
by a combination of these parts at the end of the loop.

Advanced OpenMP, SC'2001 61

Basic Program Transformations
Induction variable substitution:
i1 = 0
i2 = 0
DO i =1,n
 i1 = i1 + 1
 B(i1) = ...

 i2 = i2 + i
 A(i2) = …

 ENDDO

C$OMP PARALLEL DO
DO i =1,n

 B(i) = ...

 A((i**2 + i)/2) = …

ENDDO

The original loop contains data dependences: each
processor modifies the shared variables i1, and i2.

Advanced OpenMP, SC'2001 62

Compiler Options

Examples of options from the KAP parallelizing
compiler (KAP includes some 60 options)
u optimization levels

–  optimize : simple analysis, advanced analysis, loop
interchanging, array expansion

–  aggressive: pad common blocks, adjust data layout
u subroutine inline expansion

–  inline all, specific routines, how to deal with libraries
u try specific optimizations

–  e.g., recurrence and reduction recognition, loop fusion
(These transformations may degrade performance)

Advanced OpenMP, SC'2001 63

More About Compiler Options
u Limits on amount of optimization:

–  e.g., size of optimization data structures, number of optimization
variants tried

u Make certain assumptions:
–  e.g., array bounds are not violated, arrays are not aliased

u Machine parameters:
–  e.g., cache size, line size, mapping

u Listing control

Note, compiler options can be a substitute for advanced
compiler strategies. If the compiler has limited
information, the user can help out.

Advanced OpenMP, SC'2001 64

Inspecting the Translated Program

l Source-to-source restructurers:
u  transformed source code is the actual output
u  Example: KAP

l Code-generating compilers:
u  typically have an option for viewing the translated

(parallel) code
u  Example: SGI f77 -apo -mplist

This can be the starting point for code tuning

Advanced OpenMP, SC'2001 65

Compiler Listing
The listing gives many useful clues for improving the

performance:
u Loop optimization tables
u Reports about data dependences
u Explanations about applied transformations
u The annotated, transformed code
u Calling tree
u Performance statistics

The type of reports to be included in the listing can be
set through compiler options.

Advanced OpenMP, SC'2001 66

5-processor
Sun Ultra SMP

BDNA
Native Parallelizer

Polaris to Native Directives

Polaris to OpenMP

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Sp
ee

du
p

ARC2D

FLO52Q
HYDRO2D

MDG
SWIM

TOMCATV
TRFD 1 2 3 4 5

Performance of
Parallelizing Compilers

Advanced OpenMP, SC'2001 67

Tuning
Automatically-Parallelized Code

l This task is similar to explicit parallel
programming.

l Two important differences :
u The compiler gives hints in its listing, which may

tell you where to focus attention. E.g., which
variables have data dependences.

u You don’t need to perform all transformations by
hand. If you expose the right information to the
compiler, it will do the translation for you.

(E.g., C$assert independent)

Advanced OpenMP, SC'2001 68

Why Tuning Automatically-
Parallelized Code?

Hand improvements can pay off because
l compiler techniques are limited

E.g., array reductions are parallelized by only
few compilers

l compilers may have insufficient
information

E.g.,
u loop iteration range may be input data
u variables are defined in other subroutines (no

interprocedural analysis)

Advanced OpenMP, SC'2001 69

Performance Tuning Tools

OpenMP
program

user
inserts

directives

parallelizing
compiler
inserts
directives

user
tunes

program

we need
tool support

Advanced OpenMP, SC'2001 70

Profiling Tools

l Timing profiles (subroutine or loop level)
u shows most time-consuming program sections

l Cache profiles
u point out memory/cache performance problems

l Data-reference and transfer volumes
u show performance-critical program properties

l  Input/output activities
u point out possible I/O bottlenecks

l Hardware counter profiles
u large number of processor statistics

Advanced OpenMP, SC'2001 71

KAI GuideView: Performance
Analysis

l  Speedup curves
u Amdahl’s Law vs. Actual

times
l  Whole program time

breakdown
u Productive work vs
u Parallel overheads

l  Compare several runs
u Scaling processors

l  Breakdown by section
u Parallel regions
u Barrier sections
u Serial sections

l  Breakdown by thread
l  Breakdown overhead

u Types of runtime calls
u Frequency and time

KAI’s new VGV tool combines GuideView with VAMPIR for
monitoring mixed OpenMP/MPI programs

Advanced OpenMP, SC'2001 72

GuideView

Analyze each
Parallel region

Find serial
regions that are
hurt by
parallelism

Sort or filter
regions to
navigate to
hotspots

www.kai.com

Advanced OpenMP, SC'2001 73

SGI SpeedShop and WorkShop

l Suite of performance tools from SGI
l Measurements based on

u pc-sampling and call-stack sampling
– based on time [prof,gprof]
– based on R10K/R12K hw counters

u basic block counting [pixie]
l Analysis on various domains

u program graph, source and disassembled code
u per-thread as well as cumulative data

Advanced OpenMP, SC'2001 74

SpeedShop and WorkShop

Addresses the performance Issues:
l Load imbalance

u Call stack sampling based on time (gprof)
l Synchronization Overhead

u Call stack sampling based on time (gprof)
u Call stack sampling based on hardware counters

l Memory Hierarchy Performance
u Call stack sampling based on hardware counters

Advanced OpenMP, SC'2001 75

WorkShop: Call Graph View

Advanced OpenMP, SC'2001 76

WorkShop: Source View

Advanced OpenMP, SC'2001 77

Purdue Ursa Minor/Major

l  Integrated environment for compilation and
performance analysis/tuning

l Provides browsers for many sources of
information:

call graphs, source and transformed program,
compilation reports, timing data, parallelism
estimation, data reference patterns, performance
advice, etc.

l www.ecn.purdue.edu/ParaMount/UM/

Advanced OpenMP, SC'2001 78

Ursa Minor/Major

Performance Spreadsheet

Program Structure View

Advanced OpenMP, SC'2001 79

TAU
Tuning Analysis Utilities
Performance Analysis Environment for C++,

Java, C, Fortran 90, HPF, and HPC++
l compilation facilitator
l call graph browser
l source code browser
l profile browsers
l speedup extrapolation
l www.cs.uoregon.edu/research/paracomp/tau/

Advanced OpenMP, SC'2001 80

TAU
Tuning Analysis Utilities

Agenda
l Summary of OpenMP basics
l OpenMP: The more subtle/advanced stuff
l OpenMP case studies
l Automatic parallelism and tools support
l Mixing OpenMP and MPI
l The future of OpenMP

What is MPI?
The message Passing Interface
l MPI created by an international forum in the

early 90’s.
l  It is huge -- the union of many good ideas

about message passing API’s.
u over 500 pages in the spec
u over 125 routines in MPI 1.1 alone.
u Possible to write programs using only a couple of

dozen of the routines
l MPI 1.1 - MPIch reference implementation.
l MPI 2.0 - Exists as a spec, full

implementations? Only one that I know of.

Advanced OpenMP, SC'2001 83

How do people use MPI?
The SPMD Model

Replicate the program.

Add glue code

Break up the data

A sequential program
working on a data set

• A parallel program working
on a decomposed data set.

•  Coordination by passing
messages.

Advanced OpenMP, SC'2001 84

Pi program in MPI
#include <mpi.h>
void main (int argc, char *argv[])
{

 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;

 MPI_Init(&argc, &argv) ;
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;
 for (i=myrank*my_steps; i<(myrank+1)*my_steps ; i++)
 {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 sum *= step ;
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD) ;

}

Advanced OpenMP, SC'2001 85

How do people mix MPI and OpenMP?

Replicate the program.

Add glue code

Break up the data

A sequential program
working on a data set

• Create the MPI program with
its data decomposition.

•  Use OpenMP inside each
MPI process.

Advanced OpenMP, SC'2001 86

Pi program with MPI and OpenMP
#include <mpi.h>
#include “omp.h”
void main (int argc, char *argv[])
{

 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;

 MPI_Init(&argc, &argv) ;
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;

#pragma omp parallel do
 for (i=myrank*my_steps; i<(myrank+1)*my_steps ; i++)
 {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 sum *= step ;
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD) ;

}

Get the MPI
part done
first, then add
OpenMP
pragma
where it
makes sense
to do so

Advanced OpenMP, SC'2001 87

Mixing OpenMP and MPI
Let the programmer beware!
l  Messages are sent to a process on a system not to a

particular thread
u Safest approach -- only do MPI inside serial regions.
u … or, do them inside MASTER constructs.
u … or, do them inside SINGLE or CRITICAL

– But this only works if your MPI is really thread safe!

l  Environment variables are not propagated by mpirun.
You’ll need to broadcast OpenMP parameters and set
them with the library routines.

Advanced OpenMP, SC'2001 88

Mixing OpenMP and MPI
l  OpenMP and MPI coexist by default:

– MPI will distribute work across processes, and these
processes may be threaded.

– OpenMP will create multiple threads to run a job on a
single system.

l  But be careful … it can get tricky:
– Messages are sent to a process on a system not to a

particular thread.
– Make sure you implementation of MPI is threadsafe.
– Mpirun doesn’t distribute environment variables so your

OpenMP program shouldn’t depend on them.

Advanced OpenMP, SC'2001 89

Dangerous Mixing of MPI and OpenMP
l  The following will work on some MPI implementations, but

may fail for others: MPI libraries are not always thread safe.
MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;
#pragma omp parallel
{
 int tag, swap_neigh, stat, omp_id = omp_thread_num();
 long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
 big_ugly_calc1(omp_id, mpi_id, buffer);
 // Finds MPI id and tag
so
 neighbor(omp_id, mpi_id, &swap_neigh, &tag); // messages don’t
conflict

 MPI_Send (buffer, BUFF_SIZE, MPI_LONG, swap_neigh,
 tag, MPI_COMM_WORLD);
 MPI_Recv (incoming, buffer_count, MPI_LONG, swap_neigh,
 tag, MPI_COMM_WORLD, &stat);

 big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical
 consume(buffer, omp_id, mpi_id);
}

Advanced OpenMP, SC'2001 90

Messages and threads

l Keep message passing and threaded sections
of your program separate:
u Setup message passing outside OpenMP regions
u Surround with appropriate directives (e.g. critical

section or master)
u For certain applications depending on how it is

designed it may not matter which thread handles a
message.

– Beware of race conditions though if two threads
are probing on the same message and then
racing to receive it.

Advanced OpenMP, SC'2001 91

Safe Mixing of MPI and OpenMP
Put MPI in sequential regions

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel for
for (I=0;I<N;I++) {
 U[I] = big_calc(I);
}

 MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, swap_neigh,
 tag, MPI_COMM_WORLD);

 MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,
 tag, MPI_COMM_WORLD, &stat);

#pragma omp parallel for
for (I=0;I<N;I++) {
 U[I] = other_big_calc(I, incoming);
}

consume(U, mpi_id);

Advanced OpenMP, SC'2001 92

Safe Mixing of MPI and OpenMP
Protect MPI calls inside a parallel region

MPI_Init(&argc, &argv) ; MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel
{
#pragma omp for
 for (I=0;I<N;I++) U[I] = big_calc(I);

#pragma master
{
 MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD);

 MPI_Recv (incoming, count, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD,
 &stat);
}
#pragma omp barrier
#pragma omp for
 for (I=0;I<N;I++) U[I] = other_big_calc(I, incoming);

#pragma omp master
 consume(U, mpi_id);
}

Advanced OpenMP, SC'2001 93

MPI and Environment Variables

l Environment variables are not propagated by
mpirun, so you may need to explicitly set the
requested number of threads with
OMP_NUM_THREADS().

Agenda
l Summary of OpenMP basics
l OpenMP: The more subtle/advanced stuff
l OpenMP case studies
l Automatic parallelism and tools support
l Mixing OpenMP and MPI
l The future of OpenMP

u Updating C/C++
u Longer Term issues

Advanced OpenMP, SC'2001 95

Updating OpenMP for C/C++

l Two step process to update C/C++
u OpenMP 2.0: Bring the 1.0 specification up to date:

– Line up OpenMP C/C++ with OpenMP Fortran 2.0
– Line up OpenMP C/C++ with C99.

u OpenMP 3.0: Add new functionality to extend the
scope and value of OpenMP.

l Target is to have a public review draft of
OpenMP 2.0 C/C++ at SC’2001.

Advanced OpenMP, SC'2001 96

OpenMP 2.0 for C/C++
Line up with OpenMP 2.0 for Fortran

l Specification of the number of threads with the
NUM_THREADS clause.

l Broadcast a value with the COPYPRIVATE
clause.

l Extension to THREADPRIVATE.
l Extension to CRITICAL.
l New timing routines.
l Lock functions can be used in parallel regions.

Advanced OpenMP, SC'2001 97

NUM_THREADS Clause
l  Used with a parallel construct to request number of

threads used in the parallel region.
–  supersedes the omp_set_num_threads library function,

and the OMP_NUM_THREADS environment variable.

#include <omp.h>
main () {
...
omp_set_dynamic(1);
...
#pragma omp parallel for num_threads(10)
 for (i=0; i<10; i++)
 {
 ...
 }
}

Advanced OpenMP, SC'2001 98

COPYPRIVATE
l Broadcast a private variable from one member

of a team to the other members.
l Can only be used in combination with SINGLE

float x, y;
#pragma omp threadprivate(x, y)

void init(float a, float b)
{
 #pragma omp single copyprivate(a,b,x,y)
 {
 get_values(a,b,x,y);
 }
}

Advanced OpenMP, SC'2001 99

Extension to THREADPRIVATE
l OpenMP Fortran 2.0 allows SAVE’d variables to

be made THREADPRIVATE.
l The corresponding functionality in OpenMP C/

C++ is for function local static variables to be
made THREADPRIVATE.

int sub()
{
 static int gamma = 0;
 static int counter = 0;
#pragma omp threadprivate(counter)
 gamma++;
 counter++:
 return(gamma);
}

Advanced OpenMP, SC'2001 100

Extension to CRITICAL Construct
l  In OpenMP C/C++ 1.0, critical regions can not contain

worksharing constructs.
l  This is allowed in OpenMP C/C++ 2.0, as long as the

worksharing constructs do not bind to the same
parallel region as the critical construct.

void f() {
int i = 1;
#pragma omp parallel sections
 {
#pragma omp section
 {
#pragma omp critical (name)
 {
#pragma omp parallel
 {
#pragma omp single
 {
 i++;
 } } } } } }

Advanced OpenMP, SC'2001 101

Timing Routines

l Two functions have been added in order to
support a portable wall-clock timer:
u double omp_get_wtime(void);

 returns elapsed wall-clock time
u double omp_get_wtick(void);

 returns seconds between successive clock ticks.

double start;
double end;
start = omp_get_wtime();
… work to be timed …
end = omp_get_wtime();
printf(“Work took %f sec. Time.\n”, end-start);

Advanced OpenMP, SC'2001 102

Thread-safe Lock Functions
l OpenMP 2.0 C/C++ lets users initialise locks in

a parallel region.

#include <omp.h>

omp_lock_t *new_lock()
{
 omp_lock_t *lock_ptr;
#pragma omp single copyprivate(lock_ptr)
 {
 lock_ptr = (omp_lock_t *)
 malloc(sizeof(omp_lock_t));
 omp_init_lock(lock_ptr);
 }
return lock_ptr;
}

Advanced OpenMP, SC'2001 103

Reprivatization
l  Private variables can be marked private again in a

nested directive. They do not have to be shared in the
enclosing parallel region anymore.

l  This does not apply to the FIRSTPRIVATE and
LASTPRIVATE directives.

int a;
...
#pragma omp parallel private(a)
{
 ...
#pragma omp parallel for private(a)
for (i=0; i<n; i++) {
 ...
 }
}

Advanced OpenMP, SC'2001 104

l C99 variable length arrays are complete types,
thus they can be specified anywhere complete
types are allowed.

l Examples are the private, firstprivate, and
lastprivate clauses.

void f(int m, int C[m][m])
{
double v1[m];
...
#pragma omp parallel firstprivate(C, v1)
...
}

OpenMP 2.0 for C/C++
Line up with C99

Agenda
l Summary of OpenMP basics
l OpenMP: The more subtle/advanced stuff
l OpenMP case studies
l Automatic parallelism and tools support
l Mixing OpenMP and MPI
l The future of OpenMP

u Updating C/C++
u Longer Term issues

Advanced OpenMP, SC'2001 106

OpenMP Organization

The ARB
(one representative from
each member organization)

The Futures Committee:
Chair Tim Mattson

The Fortran Committee:
Chair Tim Mattson

The C/C++ Committee:
Chair Larry Meadows

Corp. Officers
CEO: Tim Mattson
CFO: Sanjiv Shah
Secretary: Steve Rowan

Board of Directors
Sanjiv Shah
Greg Astfalk
Bill Blake
Dave Klepacki

Currently
inactive

The seat of
Power in the
organization

Advanced OpenMP, SC'2001 107

OpenMP
I’m worried about OpenMP

l The ARB is below critical mass.
l We are largely restricted to supercomputing.

– I want general purpose programmers to use
OpenMP. Bring on the game developers.

l Can we really “make a difference” if all we do is
worry about programming shared memory
computers?

– To have a sustained impact, maybe we need to
broaden our agenda to more general
programming problems.

l OpenMP isn’t modular enough – it doesn’t
work well with other technologies.

Advanced OpenMP, SC'2001 108

OpenMP ARB membership

l Due to acquisitions and changing business
climate, the number of officially distinct ARB
members is shrinking.

– KAI acquired by Intel.
– Compaq’s compiler group joining Intel.
– Compaq merging with HP.
– Cray sold to Terra and dropped out of OpenMP

ARB.
l We need fresh blood. cOMPunity is an exciting

addition, but it would be nice to have more.

Advanced OpenMP, SC'2001 109

Bring more programmers into OpenMP:
Tools for OpenMP

l OpenMP is an explicit model that works closely
with the compiler.

l OpenMP is conceptually well oriented to
support a wide range of tools.

– But other then KAI tools (which aren’t available
everywhere) there are no portable tools to work
with OpenMP.

l Do we need standard Tool interfaces to make it
easier for vendors and researchers to create
tools?

– We are currently looking into this on the futures
committee.

Check out the Mohr, Malony et. al. paper at EWOMP’2001

Advanced OpenMP, SC'2001 110

Bring more programmers into OpenMP:
Move beyond array driven algorithms

l OpenMP workshare constructs currently
support:

– iterative algorithms (omp for).
– static non-iterative algorithms (omp sections).

l But we don’t support
– Dynamic non-iterative algorithms?
– Recursive algorithms?

We are looking very closely at the task queue
proposal from KAI.

Advanced OpenMP, SC'2001 111

OpenMP Work queues

nodeptr list, p;

for (p=list; p!=NULL; p=p->next)
 process(p->data);

nodeptr list, p;

#pragma omp parallel taskq
for (p=list; p!=NULL; p=p->next)
#pragma omp task

 process(p->data);

OpenMP can’t deal with a simple pointer following loop

KAI has proposed (and implemented) a taskq constuct to
deal with this case:

Reference: Shah, Haab, Petersen and Throop, EWOMP’1999 paper.

We need an
independent
evaluation of
this technology

Advanced OpenMP, SC'2001 112

How should we move OpenMP beyond SMP?

l OpenMP is inherently an SMP model, but all
shared memory vendors build NUMA and
DVSM machines.

l What should we do?
– Add HPF-like data distribution.
– Work with thread affinity, clever page migration

and a smart OS.
– Give up?

Advanced OpenMP, SC'2001 113

OpenMP must be more modular
l Define how OpenMP Interfaces to “other

stuff”:
– How can an OpenMP program work with

components implemented with OpenMP?
– How can OpenMP work with other thread

environments?

l Support library writers:
– OpenMP needs an analog to MPI’s contexts.

We don’t have any solid proposals on the table
to deal with these problems.

Advanced OpenMP, SC'2001 114

The role of academic research

l We need reference implementations for any
new feature added to OpenMP.
u OpenMP’s evolution depends on good academic

research on new API features.
l We need a good, community, open source

OpenMP compiler for academics to try-out new
API enhancements.
u Any suggestions?

OpenMP will go nowhere without help from
research organizations

Advanced OpenMP, SC'2001 115

Summary

l OpenMP is:
u A great way to write parallel code for shared

memory machines.
u A very simple approach to parallel programming.
u Your gateway to special, painful errors (race

conditions).
l OpenMP impacts clusters:

– Mixing MPI and OpenMP.
– Distributed shared memory.

Advanced OpenMP, SC'2001 116

Reference Material on OpenMP*
OpenMP Homepage www.openmp.org:
The primary source of information about OpenMP and its development.

Books:
Parallel programming in OpenMP, Chandra, Rohit, San Francisco, Calif. : Morgan Kaufmann ; London :

Harcourt, 2000, ISBN: 1558606718

OpenMP Workshops:
WOMPAT: Workshop on OpenMP Applications and Tools

WOMPAT 2000: www.cs.uh.edu/wompat2000/
WOMPAT 2001: www.ece.purdue.edu/~eigenman/wompat2001/
 Papers published in Lecture Notes in Computer Science #2104

EWOMP: European Workshop on OpenMP
EWOMP 2000: www.epcc.ed.ac.uk/ewomp2000/
EWOMP 2001: www.ac.upc.ed/ewomp2001/, held in conjunction with PACT 2001

 WOMPEI: International Workshop on OpenMP, Japan
WOMPEI 2000: research.ac.upc.jp/wompei/, held in conjunction with ISHPC 2000
 Papers published in Lecture Notes in Computer Science, #1940

* Third party trademarks and names are the property of their respective owner.

Advanced OpenMP, SC'2001 117

OpenMP Homepage www.openmp.org:

Corbalan J, Labarta J. Improving processor allocation through run-time measured efficiency. Proceedings 15th International Parallel and
Distributed Processing Symposium. IPDPS 2001. IEEE Comput. Soc. 2001, pp.6 pp.. Los Alamitos, CA, USA.

Saito T, Abe A, Takayama K. Benchmark of parallelization methods for unstructured shock capturing code. Proceedings 15th International
Parallel and Distributed Processing Symposium. IPDPS 2001. IEEE Comput. Soc. 2001, pp.8 pp.. Los Alamitos, CA, USA.

Mattson TG. High performance computing at Intel: the OSCAR software solution stack for cluster computing. Proceedings First IEEE/
ACM International Symposium on Cluster Computing and the Grid. IEEE Comput. Soc. 2001, pp.22-5. Los Alamitos, CA, USA.

Mattson, T.G. An Introduction to OpenMP 2.0, Proceedings 3rd International Symposium on High Performance Computing, Lecture Notes
in Computer Science, Number 1940, 2000 pp. 384-390, Tokyo Japan.

Scherer A, Gross T, Zwaenepoel W. Adaptive parallelism for OpenMP task parallel programs. Languages, Compilers, and Run-Time
Systems for Scalable Computers. 5th International Workshop, LCR 2000. Lecture Notes in Computer Science Vol.1915 . Springer-Verlag.
2000, pp.113-27. Berlin, Germany.

Tanaka Y, Taura K, Sato M, Yonezawa A. Performance evaluation of OpenMP applications with nested parallelism. Languages, Compilers,
and Run-Time Systems for Scalable Computers. 5th International Workshop, LCR 2000. Selected Papers (Lecture Notes in Computer
Science Vol.1915). Springer-Verlag. 2000, pp.100-12. Berlin, Germany.

Nikolopoulos DS, Papatheodorou TS, Polychronopoulos CD, Labarta J, Ayguade E. UPMLIB: a runtime system for tuning the memory
performance of OpenMP programs on scalable shared-memory multiprocessors. Languages, Compilers, and Run-Time Systems for
Scalable Computers. 5th International Workshop, LCR 2000. Selected Papers (Lecture Notes in Computer Science Vol.1915). Springer-
Verlag. 2000, pp.85-99. Berlin, Germany.

Gottlieb S, Tamhankar S. Benchmarking MILC code with OpenMP and MPI. Elsevier. Nuclear Physics B-Proceedings Supplements, vol.94,
March 2001, pp.841-5. Netherlands.

Balsara DS, Norton CD. Highly parallel structured adaptive mesh refinement using parallel language-based approaches. Parallel
Computing, vol.27, no.1-2, Jan. 2001, pp.37-70. Publisher: Elsevier, Netherlands.

Hoeflinger J, Alavilli P, Jackson T, Kuhn B. Producing scalable performance with OpenMP: Experiments with two CFD applications.
Parallel Computing, vol.27, no.4, March 2001, pp.391-413. Publisher: Elsevier, Netherlands.

Advanced OpenMP, SC'2001 118

Gonzalez JA, Leon C, Piccoli F, Printista M, Roda JL, Rodriguez C, Sande F. Towards standard nested parallelism. Recent
Advances in Parallel Virtual Machine and Message Passing Interface. 7th European PVM/MPI Users' Group Meeting. Proceedings
(Lecture Notes in Computer Science Vol.1908). Springer-Verlag. 2000, pp.96-103. Berlin, Germany.

 Benkner S, Brandes T. Exploiting data locality on scalable shared memory machines with data parallel programs. Euro-Par 2000
Parallel Processing. 6th International Euro-Par Conference. Proceedings (Lecture Notes in Computer Science Vol.1900). Springer-
Verlag. 2000, pp.647-57. Berlin, Germany.

Seon Wook Kim, Eigenmann R. Where does the speedup go: quantitative modeling of performance losses in shared-memory
programs. Parallel Processing Letters, vol.10, no.2-3, June-Sept. 2000, pp.227-38. Publisher: World Scientific, Singapore.

Baxter R, Bowers M, Graham P, Wojcik G, Vaughan D, Mould J. An OpenMP approach to parallel solvers in PZFlex. Developments
in Engineering Computational Technology. Fifth International Conference on Computational Structures Technology and the Second
International Conference on Engineering Computational Technology. Civil-Comp Press. 2000, pp.241-7. Edinburgh, UK.

Chapman B, Merlin J, Pritchard D, Bodin F, Mevel Y, Sorevik T, Hill L. Program development tools for clusters of shared memory
multiprocessors. Journal of Supercomputing, vol.17, no.3, Nov. 2000, pp.311-22. Publisher: Kluwer Academic Publishers,
Netherlands.

Vitela JE, Hanebutte UR, Gordillo JL, Cortina LM. Comparative study of message passing and shared memory parallel
programming models in neural network training. Proceedings of the High Performance Computing Symposium - HPC 2000. SCS.
2000, pp.136-41. San Diego, CA, USA.

Berrendorf R, Nieken G. Performance characteristics for OpenMP constructs on different parallel computer architectures.
Concurrency Practice & Experience, vol.12, no.12, Oct. 2000, pp.1261-73. Publisher: Wiley, UK.

Hisley D, Agrawal G, Satya-Narayana P, Pollock L. Porting and performance evaluation of irregular codes using OpenMP.
Concurrency Practice & Experience, vol.12, no.12, Oct. 2000, pp.1241-59. Publisher: Wiley, UK.

Shah S, Haab G, Petersen P, Throop J. Flexible control structures for parallelism in OpenMP. Concurrency Practice & Experience,
vol.12, no.12, Oct. 2000, pp.1219-39. Publisher: Wiley, UK.

Gonzalez M, Ayguade E, Martorell X, Labarta J, Navarro N, Oliver J. NanosCompiler: supporting flexible multilevel parallelism
exploitation in OpenMP. Concurrency Practice & Experience, vol.12, no.12, Oct. 2000, pp.1205-18. Publisher: Wiley, UK.

Advanced OpenMP, SC'2001 119

Brunschen C, Brorsson M. OdinMP/CCp-a portable implementation of OpenMP for C. Concurrency Practice & Experience, vol.12,
no.12, Oct. 2000, pp.1193-203. Publisher: Wiley, UK.

Adhianto L, Bodin F, Chapman B, Hascoet L, Kneer A, Lancaster D, Wolton L, Wirtz M. Tools for OpenMP application
development: the POST project. Concurrency Practice & Experience, vol.12, no.12, Oct. 2000, pp.1177-91. Publisher: Wiley, UK.

Kuhn B, Petersen P, O'Toole E. OpenMP versus threading in C/C++. Concurrency Practice & Experience, vol.12, no.12, Oct. 2000,
pp.1165-76. Publisher: Wiley, UK.

Brieger L. HPF to OpenMP on the Origin2000: a case study. Concurrency Practice & Experience, vol.12, no.12, Oct. 2000, pp.
1147-54. Publisher: Wiley, UK.

Hadish Gebremedhin A, Manne F. Scalable parallel graph colouring algorithms. Concurrency Practice & Experience, vol.12, no.12,
Oct. 2000, pp.1131-46. Publisher: Wiley, UK.

Smith L, Kent P. Development and performance of a mixed OpenMP/MPI quantum Monte Carlo code. Concurrency Practice &
Experience, vol.12, no.12, Oct. 2000, pp.1121-9. Publisher: Wiley, UK.

Diederichs K. Computing in macromolecular crystallography using a parallel architecture. Journal of Applied Crystallography, vol.
33, pt.4, Aug. 2000, pp.1154-61. Publisher: Munksgaard International Booksellers & Publishers, Denmark.

Couturier R. Three different parallel experiments in numerical simulation. Technique et Science Informatiques, vol.19, no.5, May
2000, pp.625-48. Publisher: Editions Hermes, France.

Piecuch P, Landman JI. Parallelization of multi-reference coupled-cluster method. Parallel Computing, vol.26, no.7-8, July 2000, pp.
913-43. Publisher: Elsevier, Netherlands.

Hong-Soog Kim, Young-Ha Yoon, Sang-Og Na, Dong-Soo Han. ICU-PFC: an automatic parallelizing compiler. Proceedings Fourth
International Conference/Exhibition on High Performance Computing in the Asia-Pacific Region. IEEE Comput. Soc. Part vol.1,
2000, pp.243-6 vol.1. Los Alamitos, CA, USA.

Alan J. Wallcraft: SPMD OpenMP versus MPI for ocean models. Concurrency - Practice and Experience 12(12): 1155-1164 (2000)

JOMPan OpenMP-like interface for Java; J. M. Bull and M. E. Kambites; Proceedings of the ACM 2000 conference on Java
Grande, 2000, Pages 44 - 53.

Sosa CP, Scalmani C, Gomperts R, Frisch MJ. Ab initio quantum chemistry on a ccNUMA architecture using OpenMP. III. Parallel
Computing, vol.26, no.7-8, July 2000, pp.843-56. Publisher: Elsevier, Netherlands.

Advanced OpenMP, SC'2001 120

Bova SW, Breshears CP, Cuicchi C, Demirbilek Z, Gabb H. Nesting OpenMP in an MPI application. Proceedings of the ISCA 12th
International Conference. Parallel and Distributed Systems. ISCA. 1999, pp.566-71. Cary, NC, USA.

Gonzalez M, Serra A, Martorell X, Oliver J, Ayguade E, Labarta J, Navarro N. Applying interposition techniques for performance
analysis of OPENMP parallel applications. Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS
2000. IEEE Comput. Soc. 2000, pp.235-40. Los Alamitos, CA, USA.

Chapman B, Mehrotra P, Zima H. Enhancing OpenMP with features for locality control. Proceedings of Eighth ECMWF Workshop
on the Use of Parallel Processors in Meteorology. Towards Teracomputing. World Scientific Publishing. 1999, pp.301-13. Singapore.

Cappello F, Richard O, Etiemble D. Performance of the NAS benchmarks on a cluster of SMP PCs using a parallelization of the MPI
programs with OpenMP. Parallel Computing Technologies. 5th International Conference, PaCT-99. Proceedings (Lecture Notes in
Computer Science Vol.1662). Springer-Verlag. 1999, pp.339-50. Berlin, Germany.

Couturier R, Chipot C. Parallel molecular dynamics using OPENMP on a shared memory machine. Computer Physics
Communications, vol.124, no.1, Jan. 2000, pp.49-59. Publisher: Elsevier, Netherlands.

Bova SW, Breshearsz CP, Cuicchi CE, Demirbilek Z, Gabb HA. Dual-level parallel analysis of harbor wave response using MPI and
OpenMP. International Journal of High Performance Computing Applications, vol.14, no.1, Spring 2000, pp.49-64. Publisher: Sage
Science Press, USA.

Majumdar A. Parallel performance study of Monte Carlo photon transport code on shared-, distributed-, and distributed-shared-
memory architectures. Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000. IEEE Comput.
Soc. 2000, pp.93-9. Los Alamitos, CA, USA.

Bettenhausen MH, Ludeking L, Smithe D, Hayes S. Progress toward a parallel MAGIC. IEEE Conference Record - Abstracts. 1999
IEEE International Conference on Plasma Science. 26th IEEE International Conference. IEEE. 1999, pp.214. Piscataway, NJ, USA.

Cappello F, Richard O, Etiemble D. Investigating the performance of two programming models for clusters of SMP PCs.
Proceedings Sixth International Symposium on High-Performance Computer Architecture. HPCA-6. IEEE Comput. Soc. 1999, pp.
349-59. Los Alamitos, CA, USA.

Giordano M, Furnari MM. HTGviz: a graphic tool for the synthesis of automatic and user-driven program parallelization in the
compilation process. High Performance Computing. Second International Symposium, ISHPC'99. Proceedings. Springer-Verlag.
1999, pp.312-19. Berlin, Germany.

Advanced OpenMP, SC'2001 121

Saito H, Stavrakos N, Polychronopoulos C. Multithreading runtime support for loop and functional parallelism. High Performance
Computing. Second International Symposium, ISHPC'99. Proceedings. Springer-Verlag. 1999, pp.133-44. Berlin, Germany.

Voss M, Eigenmann R. Dynamically adaptive parallel programs. High Performance Computing. Second International Symposium,
ISHPC'99. Proceedings. Springer-Verlag. 1999, pp.109-20. Berlin, Germany.

Cappello F, Richard O. Performance characteristics of a network of commodity multiprocessors for the NAS benchmarks using a
hybrid memory model. 1999 International Conference on Parallel Architectures and Compilation Techniques. IEEE Comput. Soc.
1999, pp.108-16. Los Alamitos, CA, USA.

Linden P, Chakarova R, Faxen T, Pazsit I. Neural network software for unfolding positron lifetime spectra. High-Performance
Computing and Networking. 7th International Conference, HPCN Europe 1999. Proceedings. Springer-Verlag. 1999, pp.1194-8.
Berlin, Germany.

Silber G-A, Darte A. The Nestor library: a tool for implementing Fortran source to source transformations. High-Performance
Computing and Networking. 7th International Conference, HPCN Europe 1999. Proceedings. Springer-Verlag. 1999, pp.653-62.
Berlin, Germany.

Kessler CW, Seidl H. ForkLight: a control-synchronous parallel programming language. High-Performance Computing and
Networking. 7th International Conference, HPCN Europe 1999. Proceedings. Springer-Verlag. 1999, pp.525-34. Berlin, Germany.

Prins JF, Chatterjee S, Simons M. Irregular computations in Fortran-expression and implementation strategies. Scientific
Programming, vol.7, no.3-4, 1999, pp.313-26. Publisher: IOS Press, Netherlands.

Adve SV, Pai VS, Ranganathan P. Recent advances in memory consistency models for hardware shared memory systems.
Proceedings of the IEEE, vol.87, no.3, March 1999, pp.445-55. Publisher: IEEE, USA.

Chapman B, Mehrotra P. OpenMP and HPF: integrating two paradigms. Euro-Par'98 Parallel Processing. 4th International Euro-
Par Conference. Proceedings. Springer-Verlag. 1998, pp.650-8. Berlin, Germany.

Rauchwerger L, Arzu F, Ouchi K. Standard Templates Adaptive Parallel Library (STAPL). Languages, Compilers, and Run-Time
Systems for Scalable Computers. 4th International Workshop, LCR '98. Selected Papers. Springer-Verlag. 1998, pp.402-9. Berlin,
Germany.

Beckmann CJ, McManus DD, Cybenko G. Horizons in scientific and distributed computing. Computing in Science & Engineering,
vol.1, no.1, Jan.-Feb. 1999, pp.23-30. Publisher: IEEE Comput. Soc, USA.

Advanced OpenMP, SC'2001 122

Scherer A, Honghui Lu, Gross T, Zwaenepoel W. Transparent adaptive parallelism on NOWS using OpenMP. ACM. Sigplan Notices
(Acm Special Interest Group on Programming Languages), vol.34, no.8, Aug. 1999, pp.96-106. USA.

Ayguade E, Martorell X, Labarta J, Gonzalez M, Navarro N. Exploiting multiple levels of parallelism in OpenMP: a case study.
Proceedings of the 1999 International Conference on Parallel Processing. IEEE Comput. Soc. 1999, pp.172-80. Los Alamitos, CA,
USA.

Honghui Lu, Hu YC, Zwaenepoel W. OpenMP on networks of workstations. Proceedings of ACM/IEEE SC98: 10th Anniversary.
High Performance Networking and Computing Conference. IEEE Comput. Soc. 1998, pp.13 pp.. Los Alamitos, CA, USA.

Throop J. OpenMP: shared-memory parallelism from the ashes. Computer, vol.32, no.5, May 1999, pp.108-9. Publisher: IEEE
Comput. Soc, USA.

Hu YC, Honghui Lu, Cox AL, Zwaenepoel W. OpenMP for networks of SMPs. Proceedings 13th International Parallel Processing
Symposium and 10th Symposium on Parallel and Distributed Processing. IPPS/SPDP 1999. IEEE Comput. Soc. 1999, pp.302-10. Los
Alamitos, CA, USA.

Still CH, Langer SH, Alley WE, Zimmerman GB. Shared memory programming with OpenMP. Computers in Physics, vol.12, no.6,
Nov.-Dec. 1998, pp.577-84. Publisher: AIP, USA.

Chapman B, Mehrotra P. OpenMP and HPF: integrating two paradigms. Euro-Par'98 Parallel Processing. 4th International Euro-
Par Conference. Proceedings. Springer-Verlag. 1998, pp.650-8. Berlin, Germany.

Dagum L, Menon R. OpenMP: an industry standard API for shared-memory programming. IEEE Computational Science &
Engineering, vol.5, no.1, Jan.-March 1998, pp.46-55. Publisher: IEEE, USA.

Clark D. OpenMP: a parallel standard for the masses. IEEE Concurrency, vol.6, no.1, Jan.-March 1998, pp.10-12. Publisher: IEEE,
USA.

Extra Slides
A series of parallel pi programs

RR

®

Advanced OpenMP, SC'2001 124

Some OpenMP Commands to
support Exercises

PI Program: an example

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

Parallel Pi Program

l Let’s speed up the program with multiple
threads.

l Consider the Win32 threads library:
u Thread management and interaction is explicit.
u Programmer has full control over the threads

Solution: Win32 API, PI

#include <windows.h>
#define NUM_THREADS 2
HANDLE thread_handles[NUM_THREADS];
CRITICAL_SECTION hUpdateMutex;
static long num_steps = 100000;
double step;
double global_sum = 0.0;

void Pi (void *arg)
{
 int i, start;
 double x, sum = 0.0;

 start = *(int *) arg;
 step = 1.0/(double) num_steps;

 for (i=start;i<= num_steps; i=i+NUM_THREADS){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 EnterCriticalSection(&hUpdateMutex);
 global_sum += sum;
 LeaveCriticalSection(&hUpdateMutex);
}

void main ()
{
 double pi; int i;
 DWORD threadID;
 int threadArg[NUM_THREADS];

 for(i=0; i<NUM_THREADS; i++) threadArg[i] = i+1;

 InitializeCriticalSection(&hUpdateMutex);

 for (i=0; i<NUM_THREADS; i++){
 thread_handles[i] = CreateThread(0, 0,

 (LPTHREAD_START_ROUTINE) Pi,
 &threadArg[i], 0, &threadID);

}

 WaitForMultipleObjects(NUM_THREADS,

 thread_handles, TRUE,INFINITE);

 pi = global_sum * step;

 printf(" pi is %f \n",pi);
}

Doubles code size!

Solution: Keep it simple

Threads libraries:
– Pro: Programmer has control over everything
– Con: Programmer must control everything

Full
control

Increased
complexity

Programmers
scared away

Sometimes a simple evolutionary
approach is better

OpenMP PI Program:
Parallel Region example (SPMD Program)

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum[NUM_THREADS] = {0.0};

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
{ double x; int i, id;

 id = omp_get_thraead_num();
 for (i=id;i< num_steps; i=i+NUM_THREADS){
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }

}
 for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step;

}

SPMD
Programs:
Each thread
runs the same
code with the
thread ID
selecting any
thread specific
behavior.

OpenMP PI Program:
Work sharing construct
#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum[NUM_THREADS] = {0.0};

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
{ double x; int i, id;

 id = omp_get_thraead_num();
#pragma omp for

 for (i=id;i< num_steps; i++){
 x = (i+0.5)*step;
 sum[id] += 4.0/(1.0+x*x);
 }

} for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step;
}

OpenMP PI Program:
private clause and a critical section

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, sum, pi=0.0;

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel private (x, sum,i)
{
 id = omp_get_thread_num();

 for (i=id,sum=0.0;i< num_steps;i=i+NUM_THREADS){
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

#pragma omp critical
 pi += sum * step;

}
}

Note: We didn’t
need to create an
array to hold local
sums or clutter the
code with explicit
declarations of “x”
and “sum”.

OpenMP PI Program :
Parallel for with a reduction

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for reduction(+:sum) private(x)
 for (i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}
OpenMP adds 2 to 4

lines of code

Advanced OpenMP, SC'2001 133

MPI: Pi program
#include <mpi.h>
void main (int argc, char *argv[])
{

 int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
 step = 1.0/(double) num_steps ;

 MPI_Init(&argc, &argv) ;
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
 my_steps = num_steps/numprocs ;
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)
 {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }
 sum *= step ;
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD) ;
}

