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SC’2000 Tutorial Agenda 

l Summary of OpenMP basics 
l OpenMP: The more subtle/advanced stuff  
l OpenMP case studies 
l Automatic parallelism and tools support 
l Mixing OpenMP and MPI 
l The future of OpenMP  
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Summary of OpenMP Basics 
l  Parallel Region 

C$omp parallel                #pragma omp parallel 
l  Worksharing 

C$omp do                      #pragma omp for 
C$omp sections            #pragma omp sections 
C$omp single                #pragma omp single 
C$omp workshare        #pragma omp workshare 

l  Data Environment  
u directive: threadprivate 
u clauses: shared, private, lastprivate, reduction, copyin, 

copyprivate 
l  Synchronization 

u directives: critical, barrier, atomic, flush, ordered, master 
l  Runtime functions/environment variables 



Agenda 
l Summary of OpenMP basics 
l OpenMP: The more subtle/advanced stuff  

u More on Parallel Regions 
u Advanced Synchronization 
u Remaining Subtle Details 

l OpenMP case studies 
l Automatic parallelism and tools support 
l Mixing OpenMP and MPI 
l The future of OpenMP  
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OpenMP: Some subtle details 
l Dynamic mode (the default mode): 

– The number of threads used in a parallel region can 
vary from one parallel region to another.  

– Setting the number of threads only sets  the 
maximum number of threads - you could get less.  

l Static mode: 
– The number of threads is fixed between parallel 

regions.  
l OpenMP lets you nest parallel regions, but… 

– A compiler can choose to serialize the nested 
parallel region (i.e. use a team with only one 
thread). 
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Static vs dynamic mode 

l An example showing a static code that uses 
threadprivate data between parallel regions. 
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EPCC Microbenchmarks 

l A few slides showing overheads measured 
with the EPCC microbenchmarks. 
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Nested Parallelism 

l OpenMP lets you nest parallel regions. 

l But a conforming implementation can ignore the 
nesting by serializing inner parallel regions. 
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OpenMP: 
The numthreads() clause 
l  The numthreads clause is used to request a number of 

threads for a parallel region: 

         integer id, N 

C$OMP PARALLEL NUMTHREADS(2 * NUM_PROCS)  

              id = omp_get_thread_num() 
              res(id) = big_job(id) 

C$OMP END PARALLEL 

l  NUMTHREADS only effects the parallel region on 
which it appears. 

Any integer expression 

New in 
OpenMP 2.0 
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Nested parallelism challenges 
l  Is nesting important enough for us to worry 

about? 
l Nesting is incomplete in OpenMP. Algorithm 

designers want systems to give us nesting 
when we ask for it. 
u What does it mean to ask for more threads than 

processors?  What should a system do when this 
happens? 

l The set_num_threads routine can only be 
called in a serial region.  Do all the nested 
parallel regions have to have the same number 
of threads? 
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OpenMP: 
The if clause 
l  The if clause is used to turn parallelism on or off in a 

program: 

         integer id, N 

C$OMP PARALLEL PRIVATE(id)  IF(N.gt.1000)  

              id = omp_get_thread_num() 
              res(id) = big_job(id) 

C$OMP END PARALLEL 

l  The parallel region is executed with multiple threads 
only if the logical expression in the IF clause is .TRUE.  

Make a copy of id 
for each thread. 
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OpenMP: 
OpenMP macro 
l  OpenMP defines the macro _OPENMP as YYYYMM where 

YYYY is the year and MM is the month of the OpenMP 
specification used by the compiler  

         int id = 0; 

#ifdef _OPENMP   

              id = omp_get_thread_num(); 
              printf(“ I am %d \n”,id); 

#endif 



OpenMP: Environment Variables: The full set 

l  Control how “omp for schedule(RUNTIME)” loop 
iterations are scheduled. 

– OMP_SCHEDULE “schedule[, chunk_size]” 
l  Set the default number of threads to use. 

– OMP_NUM_THREADS int_literal 
l  Can the program use a different number of threads in 

each parallel region? 
– OMP_DYNAMIC TRUE || FALSE 

l  Do you want nested parallel regions to create new 
teams of threads, or do you want them to be 
serialized? 

– OMP_NESTED TRUE || FALSE 



OpenMP: Library routines: Part 2 
l  Runtime environment routines: 

– Modify/Check the number of threads 
– omp_set_num_threads(), omp_get_num_threads(), 

omp_get_thread_num(), omp_get_max_threads() 
–  Turn on/off nesting and dynamic mode 

– omp_set_nested(), omp_get_nested(),  
omp_set_dynamic(), omp_get_dynamic() 

– Are we in a parallel region? 
– omp_in_parallel() 

– How many processors in the system? 
– omp_num_procs() 



Agenda 
l Summary of OpenMP basics 
l OpenMP: The more subtle/advanced stuff  

u More on Parallel Regions 
u Advanced Synchronization 
u Remaining Subtle Details 

l OpenMP case studies 
l Automatic parallelism and tools support 
l Mixing OpenMP and MPI 
l The future of OpenMP  



OpenMP: Library routines: The full set 
l  Lock routines 

– omp_init_lock(), omp_set_lock(),  
omp_unset_lock(), omp_test_lock() 

l  Runtime environment routines: 
– Modify/Check the number of threads 

– omp_set_num_threads(), omp_get_num_threads(), 
omp_get_thread_num(), omp_get_max_threads() 

–  Turn on/off nesting and dynamic mode 
– omp_set_nested(), omp_get_nested(),  

omp_set_dynamic(), omp_get_dynamic() 
– Are we in a parallel region? 

– omp_in_parallel() 
– How many processors in the system? 

– omp_num_procs() 

… and likewise 
for nestable locks 



OpenMP: Library Routines 
l Protect resources with locks. 

  omp_lock_t lck; 
     omp_init_lock(&lck); 
#pragma omp parallel private (tmp, id) 
{ 
     id = omp_get_thread_num(); 
     tmp = do_lots_of_work(id); 
     omp_set_lock(&lck); 
        printf(“%d %d”, id, tmp); 
     omp_unset_lock(&lck); 
}     

Wait here for 
your turn. 

Release the lock 
so the next thread 
gets a turn. 



OpenMP: Atomic Synchronization 
l Atomic applies only to the update of x.   

C$OMP PARALLEL PRIVATE(B)  
 B =  DOIT(I) 

C$OMP ATOMIC 
 X = X + foo(B) 

C$OMP END PARALLEL 

C$OMP PARALLEL PRIVATE(B, tmp)  
 B =  DOIT(I) 

           tmp = foo(B) 
C$OMP CRITICAL 

 X = X + tmp 

C$OMP END PARALLEL 

Some thing the 
two of these 
are the same, 
but they aren’t 
if there are side 
effects in foo() 
and they 
involve shared 
data. 



OpenMP: Synchronization 

l  The flush construct denotes a sequence point where a 
thread tries to create a consistent view of memory. 

– All memory operations (both reads and writes) defined 
prior to the sequence point must complete.  

– All memory operations (both reads and writes) defined 
after  the sequence point must follow the flush. 

–  Variables in registers or write buffers must be updated in 
memory. 

l  Arguments to flush specify which variables are 
flushed. No arguments specifies that all thread visible 
variables are flushed. 
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OpenMP: 
A flush example 
l  This example shows how  flush is used to implement 

pair-wise synchronization.  
 integer ISYNC(NUM_THREADS) 

C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC) 
 IAM = OMP_GET_THREAD_NUM() 
 ISYNC(IAM) = 0 

C$OMP BARRIER 
 CALL WORK() 
 ISYNC(IAM) = 1    ! I’m all done; signal this to other threads 

C$OMP FLUSH(ISYNC) 
 DO WHILE (ISYNC(NEIGH) .EQ. 0) 

C$OMP FLUSH(ISYNC) 
 END DO 

C$OMP END PARALLEL 

Make sure other threads can 
see my write. 

Make sure the read picks up a 
good copy from memory. 

Note: OpenMP’s flush is analogous to a fence in 
other shared memory API’s. 
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OpenMP: 
Implicit synchronization 

l Barriers are implied on the following OpenMP 
constructs: 

l Flush is implied on the following OpenMP 
constructs: 

barrier 
critical, end critical 
end do 
end parallel 

end sections 
end single 
ordered, end ordered 
parallel 

end parallel 
end do  (except when nowait is used) 
end sections (except when nowait is used)  
end single (except when nowait is used) 
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Synchronization challenges 

l OpenMP only includes synchronization 
directives that “have a sequential reading”.  Is 
that enough?  
u Do we need conditions variables? 
u Monotonic flags?   
u Other pairwise synchronization? 

l When can a programmer know they need or 
don’t need flush?  If we implied flush on locks, 
would we even need this confusing construct? 



Agenda 
l Summary of OpenMP basics 
l OpenMP: The more subtle/advanced stuff  

u More on Parallel Regions 
u Advanced Synchronization 
u Remaining Subtle Details 

l OpenMP case studies 
l Automatic parallelism and tools support 
l Mixing OpenMP and MPI 
l The future of OpenMP  
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OpenMP:  
Some Data Scope clause details 
l The data scope clauses take a list argument 

– The list can include a common block name as a 
short hand notation for listing all the variables in 
the common block.  

l Default private for some loop indices: 
– Fortran: loop indices are  private even if they are 

specified as shared. 
– C: Loop indices on “work-shared loops” are 

private when  they otherwise would be shared. 
l Not all privates are undefined 

– Allocatable arrays in Fortran 
– Class type (I.e. non-POD) variables in C++. 

See the OpenMP spec. 
for more details. 
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OpenMP: More subtle details 
l Variables privitized in a parallel region can not 

be reprivitized on an enclosed omp for. 
l Assumed size and assumed shape  

arrays can not be privitized. 
l Fortran pointers or allocatable arrays can not 

lastprivate or firstprivate. 
l When a common block is listed in a data 

clause, its constituent elements can’t appear 
in other data clauses.  

l  If a common block element is privitized, it is no 
longer associated with the common block. 

This restriction 
will be dropped 
in OpenMP 2.0 
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OpenMP: 
directive nesting 
l  For, sections and single directives binding to the same 

parallel region can’t be nested. 
l  Critical sections with the same name can’t be nested. 
l  For, sections, and single can not appear in the dynamic 

extent of critical, ordered or master. 
l  Barrier can not appear in the dynamic extent of for, 

ordered, sections, single., master or critical 
l  Master can not appear in the dynamic extent of for, 

sections and single. 
l  Ordered are not allowed inside critical 
l  Any directives legal inside a parallel region are also 

legal outside a parallel region in which case they are 
treated as part of a team of size one. 



Agenda 
l Summary of OpenMP basics 
l OpenMP: The more subtle/advanced stuff  
l OpenMP case studies 

u Parallelization of the SPEC OMP 2001 
benchmarks 

u Performance tuning method 
l Automatic parallelism and tools support 
l Mixing OpenMP and MPI 
l The future of OpenMP  
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The SPEC OMP2001 Applications 

Code         Applications   Language    lines  
ammp   Chemistry/biology         C            13500  
applu    Fluid dynamics/physics    Fortran       4000   
apsi     Air pollution             Fortran       7500   
art        Image Recognition/                         
           neural networks           C              1300   
fma3d      Crash simulation          Fortran     60000  
gafort     Genetic algorithm         Fortran       1500   
galgel     Fluid dynamics            Fortran     15300  
equake     Earthquake modeling       C              1500   
mgrid      Multigrid solver          Fortran         500    
swim       Shallow water modeling    Fortran         400    
wupwise   Quantum chromodynamics   Fortran       2200   
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Basic Characteristics 
Code         Parallel              Total 
                Coverage       Runtime (sec)       # of parallel 
                    (%)               Seq.  4-cpu            regions 
ammp       99.11        16841   5898          7   
applu       99.99        11712   3677         22  
apsi        99.84          8969   3311         24  
art         99.82        28008   7698          3   
equake     99.15          6953   2806         11  
fma3d      99.45        14852   6050                   92/30* 

gafort      99.94        19651   7613          6       
galgel      95.57          4720   3992                   31/32*  
mgrid      99.98        22725   8050         12      
swim       99.44        12920   7613          8       
wupwise    99.83        19250   5788         10      
 
                  * lexical parallel regions /  parallel regions called at runtime 
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Wupwise 

l Quantum chromodynamics  model written in 
Fortran 90 

l Parallelization was relatively straightforward  
u 10 OMP PARALLEL regions 
u PRIVATE and (2) REDUCTION clauses 
u 1 critical section 

l Loop coalescing was used to increase the size 
of parallel sections 
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C$OMP PARALLEL 
C$OMP+        PRIVATE (AUX1, AUX2, AUX3), 
C$OMP+        PRIVATE (I, IM, IP, J, JM, JP, K, KM, KP, L, LM, LP), 
C$OMP+        SHARED (N1, N2, N3, N4, RESULT, U, X) 
 
C$OMP DO 
      DO 100 JKL = 0, N2 * N3 * N4 - 1 
 
          L = MOD (JKL / (N2 * N3), N4) + 1 
          LP=MOD(L,N4)+1 
 
          K = MOD (JKL / N2, N3) + 1 
          KP=MOD(K,N3)+1 
 
          J = MOD (JKL, N2) + 1 
          JP=MOD(J,N2)+1 
 
          DO 100 I=(MOD(J+K+L,2)+1),N1,2 
 
               IP=MOD(I,N1)+1 
 
              CALL GAMMUL(1,0,X(1,(IP+1)/2,J,K,L),AUX1) 
              CALL SU3MUL(U(1,1,1,I,J,K,L),'N',AUX1,AUX3) 
 
              CALL GAMMUL(2,0,X(1,(I+1)/2,JP,K,L),AUX1) 
              CALL SU3MUL(U(1,1,2,I,J,K,L),'N',AUX1,AUX2) 
              CALL ZAXPY(12,ONE,AUX2,1,AUX3,1) 
 
              CALL GAMMUL(3,0,X(1,(I+1)/2,J,KP,L),AUX1) 
              CALL SU3MUL(U(1,1,3,I,J,K,L),'N',AUX1,AUX2) 
              CALL ZAXPY(12,ONE,AUX2,1,AUX3,1) 
 
              CALL GAMMUL(4,0,X(1,(I+1)/2,J,K,LP),AUX1) 
              CALL SU3MUL(U(1,1,4,I,J,K,L),'N',AUX1,AUX2) 
              CALL ZAXPY(12,ONE,AUX2,1,AUX3,1) 
 
              CALL ZCOPY(12,AUX3,1,RESULT(1,(I+1)/2,J,K,L),1) 
 
 100  CONTINUE 
C$OMP END DO 
C$OMP END PARALLEL 

Major parallel loop 
in Wupwise 

Logic added to 
support loop 
collalescing 
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Swim 
l Shallow Water model written in F77/F90 
l Swim is known to be highly parallel 
l Code contains several doubly-nested loops   

The outer loops are parallelized 
!$OMP PARALLEL DO 
      DO 100 J=1,N 
      DO 100 I=1,M 
      CU(I+1,J) = .5D0*(P(I+1,J)+P(I,J))*U(I+1,J) 
      CV(I,J+1) = .5D0*(P(I,J+1)+P(I,J))*V(I,J+1) 
      Z(I+1,J+1) = (FSDX*(V(I+1,J+1)-V(I,J+1))-FSDY*(U(I+1,J+1) 
                          -U(I+1,J)))/(P(I,J)+P(I+1,J)+P(I+1,J+1)+P(I,J+1)) 
      H(I,J) = P(I,J)+.25D0*(U(I+1,J)*U(I+1,J)+U(I,J)*U(I,J) 
                          +V(I,J+1)*V(I,J+1)+V(I,J)*V(I,J)) 
  100 CONTINUE 
 

Example 
parallel 
loop 
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Mgrid 

l Multigrid electromagnetism in F77/F90 
l Major parallel regions inrprj3, basic multigrid 

iteration 
l Simple loop nest patterns, similar to Swim, 

several 3-nested loops 
l Parallelized through the Polaris automatic 

parallelizing source-to-source translator 
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Applu 
l  Non-linear PDES time stepping SSOR in F77 
l  Major parallel regions in ssor.f, basic SSOR iteration 
l  Basic parallelization over the outer of 3D loop, 

temporaries held private 

!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(M,I,J,K,tmp2) 
         tmp2 = dt 
!$omp do 
         do k = 2, nz - 1 
            do j = jst, jend 
               do i = ist, iend 
                  do m = 1, 5 
                     rsd(m,i,j,k) = tmp2 * rsd(m,i,j,k) 
                  end do 
               end do 
            end do 
         end do 
!$omp end do 
!$OMP END PARALLEL 
 
 

Up to  
4-nested  
loops: 
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Galgel 

l CFD in F77/F90 
l Major parallel regions in heat transfer 

calculation 
l Loop coalescing applied to increase parallel 

regions, guided self scheduling in loop with 
irregular iteration times 
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!$OMP PARALLEL 
!$OMP+  DEFAULT(NONE) 
!$OMP+  PRIVATE (I, IL, J, JL, L, LM, M, LPOP, LPOP1), 
!$OMP+  SHARED (DX, HtTim, K, N, NKX, NKY, NX, NY, Poj3, Poj4, XP, Y), 
!$OMP+  SHARED (WXXX, WXXY, WXYX, WXYY, WYXX, WYXY, WYYX, WYYY), 
!$OMP+  SHARED (WXTX, WYTX, WXTY, WYTY, A, Ind0) 
           If (Ind0 .NE. 1) then 
                                   ! Calculate r.h.s. 
 
C ++++++ - HtCon(i,j,l)*Z(j)*X(l) ++++++++++++++++++++++++++++++++++++ 
 
!$OMP DO SCHEDULE(GUIDED) 
                Ext12: Do LM = 1, K 
                 L = (LM - 1) / NKY + 1 
                 M = LM - (L - 1) * NKY 
 
                  Do IL=1,NX 
                   Do JL=1,NY 
                    Do i=1,NKX 
                     Do j=1,NKY 
 
                        LPOP( NKY*(i-1)+j, NY*(IL-1)+JL ) = 
                                  WXTX(IL,i,L) * WXTY(JL,j,M) + WYTX(IL,i,L) * WYTY(JL,j,M) 
                     End Do 
                    End Do 
                   End Do 
                  End Do 
 
C .............. LPOP1(i) = LPOP(i,j)*X(j) ............................ 
 
                  LPOP1(1:K) = MATMUL( LPOP(1:K,1:N), Y(K+1:K+N) ) 
 
C .............. Poj3 = LPOP1 ....................................... 
 
                  Poj3( NKY*(L-1)+M, 1:K) = LPOP1(1:K) 
 
C ............... Xp = <LPOP1,Z> .................................... 
 
                Xp(NKY*(L-1)+M) =  DOT_PRODUCT (Y(1:K), LPOP1(1:K) ) 
 
C ............... Poj4(*,i) = LPOP(j,i)*Z(j) ......................... 
 
                  Poj4( NKY*(L-1)+M,1:N) = 
                                                MATMUL( TRANSPOSE( LPOP(1:K,1:N) ), Y(1:K) ) 
 
                 End Do Ext12 
!$OMP END DO 
 
 

C ............ DX = DX - HtTim*Xp ........................... 
!$OMP DO 
                 DO LM = 1, K 
                  DX(LM) = DX(LM) - DOT_PRODUCT (HtTim(LM,1:K), Xp(1:K)) 
                 END DO 
!$OMP END DO NOWAIT 
 
           Else 
 
C ************ Jacobian *************************************** 
 
C ...........A = A - HtTim * Poj3 ....................... 
 
!$OMP DO 
                 DO LM = 1, K 
                 A(1:K,LM) = A(1:K,LM) - 
                                                  MATMUL( HtTim(1:K,1:K), Poj3(1:K,LM) ) 
                 END DO 
!$OMP END DO NOWAIT 
 
C ...........A = A - HtTim * Poj4 ....................... 
 
!$OMP DO 
                 DO LM = 1, N 
                 A(1:K,K+LM) = A(1:K,K+LM) - 
                                               MATMUL( HtTim(1:K,1:K), Poj4(1:K,LM) ) 
                 END DO 
!$OMP END DO NOWAIT 
 
           End If 
!$OMP END PARALLEL 
 
       Return 
      End 

Major parallel loop in 
subroutine syshtN.f  
of Galgel 
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APSI 
l 3D air pollution model 
l Relatively  flat profile 
l Parts of work arrays used as shared and other 

parts used as private data 
!$OMP PARALLEL 
!$OMP+PRIVATE(II,MLAG,HELP1,HELPA1) 
!$OMP DO 
      DO 20 II=1,NZTOP 
         MLAG=NXNY1+II*NXNY 
C 
C                  HORIZONTAL DISPERSION PART          2    2    2    2 
C ----   CALCULATE WITH  DIFFUSION EIGENVALUES THE  K D C/DX ,K D C/DY 
C                                                    X         Y 
         CALL DCTDX(NX,NY,NX1,NFILT,C(MLAG),DCDX(MLAG), 
                                 HELP1,HELPA1,FX,FXC,SAVEX) 
         IF(NY.GT.1) CALL DCTDY(NX,NY,NY1,NFILT,C(MLAG),DCDY(MLAG), 
                                                      HELP1,HELPA1,FY,FYC,SAVEY) 
  20  CONTINUE 
!$OMP END DO 
!$OMP END PARALLEL 
  
 

Sample 
parallel loop 
from run.f 
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Gafort 

l Genetic algorithm in Fortran 
l Most “interesting” loop: shuffle the population. 

u Original loop is not parallel; performs pair-wise 
swap of an array element with another, randomly 
selected element. There are 40,000 elements. 

u Parallelization idea:  
– Perform the swaps in parallel 
– Need to prevent simultaneous access to same 

array element: use one lock per array element   à 
40,000 locks. 
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!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp, my_cpu_id)  
      my_cpu_id = 1 
!$   my_cpu_id = omp_get_thread_num() + 1 
!$OMP DO 
      DO j=1,npopsiz-1 
         CALL ran3(1,rand,my_cpu_id,0) 
         iother=j+1+DINT(DBLE(npopsiz-j)*rand) 
!$      IF (j < iother) THEN 
!$         CALL omp_set_lock(lck(j)) 
!$         CALL omp_set_lock(lck(iother)) 
!$      ELSE 
!$         CALL omp_set_lock(lck(iother)) 
!$         CALL omp_set_lock(lck(j)) 
!$      END IF 
        itemp(1:nchrome)=iparent(1:nchrome,iother) 
        iparent(1:nchrome,iother)=iparent(1:nchrome,j) 
        iparent(1:nchrome,j)=itemp(1:nchrome) 
        temp=fitness(iother) 
        fitness(iother)=fitness(j) 
        fitness(j)=temp 
!$     IF (j < iother) THEN 
!$         CALL omp_unset_lock(lck(iother)) 
!$         CALL omp_unset_lock(lck(j)) 
!$     ELSE 
!$         CALL omp_unset_lock(lck(j)) 
!$         CALL omp_unset_lock(lck(iother)) 
!$     END IF 
    END DO 
!$OMP END DO 
!$OMP END PARALLEL 
  
 

Parallel loop 
In shuffle.f 
of Gafort 

Exclusive access 
to array 
elements. 
Ordered locking 
prevents 
deadlock. 
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Fma3D 

l 3D finite element mechanical simulator 
l Largest of the SPEC OMP codes: 60,000 lines 
l Uses OMP DO, REDUCTION, NOWAIT, 

CRITICAL 
l Key to good scaling was critical section 
l Most parallelism from simple DOs 

u Of the 100 subroutines only four have parallel 
sections; most of them in fma1.f90 

l Conversion to OpenMP took substantial work 
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!$OMP PARALLEL DO & 
!$OMP   DEFAULT(PRIVATE), SHARED(PLATQ,MOTION,MATERIAL,STATE_VARIABLES), & 
!$OMP   SHARED(CONTROL,TIMSIM,NODE,SECTION_2D,TABULATED_FUNCTION,STRESS),& 
!$OMP   SHARED(NUMP4) REDUCTION(+:ERRORCOUNT),                          & 
!$OMP   REDUCTION(MIN:TIME_STEP_MIN),                                   & 
!$OMP   REDUCTION(MAX:TIME_STEP_MAX) 
 
      DO N = 1,NUMP4 
        
       ... (66 lines deleted) 
 
        MatID = PLATQ(N)%PAR%MatID 
 
        CALL PLATQ_MASS ( NEL,SecID,MatID ) 
 
       ... (35 lines deleted)  
 
        CALL PLATQ_STRESS_INTEGRATION ( NEL,SecID,MatID ) 
 
       ... (34 lines deleted) 
 
!$OMP END PARALLEL DO 
  
 

Parallel loop in platq.f90 of Fma3D 

Contains 
large 
critical  
section 
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Subroutine platq_mass.f90  
of Fma3D 

 SUBROUTINE PLATQ_MASS ( NEL,SecID,MatID ) 
 
      ... (54 lines deleted) 
 
!$OMP CRITICAL (PLATQ_MASS_VALUES) 
      DO i = 1,4 
        NODE(PLATQ(NEL)%PAR%IX(i))%Mass = NODE(PLATQ(NEL)%PAR%IX(i))%Mass + QMass 
        MATERIAL(MatID)%Mass = MATERIAL(MatID)%Mass + QMass 
        MATERIAL(MatID)%Xcm  = MATERIAL(MatID)%Xcm  + QMass * Px(I) 
        MATERIAL(MatID)%Ycm  = MATERIAL(MatID)%Ycm  + QMass * Py(I) 
        MATERIAL(MatID)%Zcm  = MATERIAL(MatID)%Zcm  + QMass * Pz(I) 
!! 
!! Compute inertia tensor B wrt the origin from nodal point masses. 
!! 
        MATERIAL(MatID)%Bxx = MATERIAL(MatID)%Bxx + (Py(I)*Py(I)+Pz(I)*Pz(I))*QMass 
        MATERIAL(MatID)%Byy = MATERIAL(MatID)%Byy + (Px(I)*Px(I)+Pz(I)*Pz(I))*QMass 
        MATERIAL(MatID)%Bzz = MATERIAL(MatID)%Bzz + (Px(I)*Px(I)+Py(I)*Py(I))*QMass 
        MATERIAL(MatID)%Bxy = MATERIAL(MatID)%Bxy - Px(I)*Py(I)*QMass 
        MATERIAL(MatID)%Bxz = MATERIAL(MatID)%Bxz - Px(I)*Pz(I)*QMass 
        MATERIAL(MatID)%Byz = MATERIAL(MatID)%Byz - Py(I)*Pz(I)*QMass 
      ENDDO 
!! 
!! 
!! Compute nodal isotropic inertia 
!! 
      RMass = QMass * (PLATQ(NEL)%PAR%Area + SECTION_2D(SecID)%Thickness**2) / 12.0D+0 
!! 
!! 
      NODE(PLATQ(NEL)%PAR%IX(5))%Mass = NODE(PLATQ(NEL)%PAR%IX(5))%Mass + RMass 
      NODE(PLATQ(NEL)%PAR%IX(6))%Mass = NODE(PLATQ(NEL)%PAR%IX(6))%Mass + RMass 
      NODE(PLATQ(NEL)%PAR%IX(7))%Mass = NODE(PLATQ(NEL)%PAR%IX(7))%Mass + RMass 
      NODE(PLATQ(NEL)%PAR%IX(8))%Mass = NODE(PLATQ(NEL)%PAR%IX(8))%Mass + RMass 
!$OMP END CRITICAL (PLATQ_MASS_VALUES) 
!! 
!! 
      RETURN 
      END 
  
 

This is a large array reduction 
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Art 

l  Image processing 
l Good scaling required combining two 

dimensions into single dimension 
l Uses OMP DO, SCHEDULE(DYNAMIC) 
l Dynamic schedule needed because of 

embedded conditional 
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#pragma omp for private (k,m,n, gPassFlag) schedule(dynamic)  
    for (ij = 0; ij < ijmx; ij++)  {   
       j = ((ij/inum) * gStride) + gStartY; 
       i = ((ij%inum) * gStride) +gStartX; 
       k=0; 
       for (m=j;m<(gLheight+j);m++) 
         for (n=i;n<(gLwidth+i);n++) 
           f1_layer[o][k++].I[0] = cimage[m][n]; 
                   
       gPassFlag =0; 
       gPassFlag = match(o,i,j, &mat_con[ij], busp); 
 
       if (gPassFlag==1) { 
          if (set_high[o][0]==TRUE) { 
            highx[o][0] = i; 
            highy[o][0] = j; 
            set_high[o][0] = FALSE; 
          } 
        if (set_high[o][1]==TRUE)  { 
          highx[o][1] = i; 
          highy[o][1] = j; 
          set_high[o][1] = FALSE; 
        } 
       }   
    } 

Key loop 
in Art  

Loop 
collalescing 
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Ammp 

l Molecular Dynamics 
l Very large loop in rectmm.c 
l Good parallelism required great deal of work 
l Uses OMP FOR, SCHEDULE(GUIDED), about 

20,000 locks 
l Guided scheduling needed because of loop 

with conditional execution. 
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Parallel loop in 
rectmm.c of 
Ammp 

#pragma omp parallel for private (n27ng0, nng0, ing0, i27ng0, natoms, ii, a1, a1q, a1serial, 
    inclose, ix, iy, iz, inode, nodelistt, r0, r, xt, yt, zt, xt2, yt2, zt2, xt3, yt3, zt3, xt4, 
    yt4, zt4, c1, c2, c3, c4, c5, k, a1VP , a1dpx , a1dpy , a1dpz , a1px, a1py, a1pz, a1qxx , 
    a1qxy , a1qxz ,a1qyy , a1qyz , a1qzz, a1a, a1b, iii, i, a2, j, k1, k2 ,ka2, kb2, v0, v1, v2, 
    v3, kk, atomwho, ia27ng0, iang0,  o ) schedule(guided) 
 
     for( ii=0; ii<  jj; ii++) 
     ...  

 for( inode = 0; inode < iii; inode ++) 
     if( (*nodelistt)[inode].innode > 0) { 
       for(j=0; j< 27; j++) 
       if( j == 27  ) 

     ... 
      if(  atomwho->serial > a1serial) 
   for( kk=0; kk< a1->dontuse; kk++) 
       if( atomwho == a1->excluded[kk])  

     ... 
      for( j=1; j< (*nodelistt)[inode].innode -1 ; j++) 

     ... 
   if( atomwho->serial > a1serial) 
       for( kk=0; kk< a1->dontuse; kk++) 
    if( atomwho == a1->excluded[kk]) goto SKIP2; 

     ... 
 for (i27ng0=0 ; i27ng0<n27ng0; i27ng0++)  

     ... 
     ... 

 for( i=0; i< nng0; i++) 
     ... 

     if( v3 > mxcut || inclose > NCLOSE ) 
     ... 
     ... 
    
 
(loop body contains 721 lines) 
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Performance Tuning Example 3: 
EQUAKE 
EQUAKE: Earthquake simulator in C  
(run on a 4 processor SUN Enterprise system – note 

super linear speedup) 

EQUAKE is hand-
parallelized with 
relatively few code 
modifications.  

0
1
2
3
4
5
6
7
8

original
sequential

initial
OpenMP

improved
allocate
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EQUAKE: Tuning Steps 

l Step1:   
Parallelizing the four most time-consuming 

loops 

– inserted OpenMP pragmas for parallel loops 
and private data 

– array reduction transformation 
l Step2:  

A change in memory allocation 
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EQUAKE  
Code  
Samples 

 /* malloc w1[numthreads][ARCHnodes][3] */ 
 
#pragma omp parallel for 
  for (j = 0; j < numthreads; j++)  
    for (i = 0; i < nodes; i++) { w1[j][i][0] = 0.0; ...; } 
 
#pragma omp parallel private(my_cpu_id,exp,...) 
{ 
  my_cpu_id = omp_get_thread_num(); 
 
#pragma omp for 
  for (i = 0; i < nodes; i++)  
    while (...) { 
      ... 
      exp = loop-local computation; 
      w1[my_cpu_id][...][1] += exp; 
      ... 
  } 
} 
#pragma omp parallel for 
  for (j = 0; j < numthreads; j++) { 
    for (i = 0; i < nodes; i++) { w[i][0] += w1[j][i]
[0]; ...;} 
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OpenMP Features Used 
Code      sections    locks    guided   dynamic   critical   nowait 

 
ammp        7       20k          2   
applu      22                                            14  
apsi       24  
art          3                                 1  
equake      11  
fma3d                  92/30                                                            1    2 
gafort       6       40k   
galgel                 31/32*                  7                              3  
mgrid        12                                            11      
swim          8       
wupwise    10                                            1      

    
  * static sections /  sections called at runtime 

 
“Feature” used to deal with NUMA machines: rely on first-touch page placement. If necessary, put 

initialization into a parallel loop to avoid placing all data on the master processor. 
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What Tools Did We Use for 
Performance Analysis and Tuning? 
l Compilers 

u for several applications, the starting point for our 
performance tuning of Fortran codes was the 
compiler-parallelized program.  

u It reports: parallelized loops, data dependences. 
l Subroutine and loop profilers 

u focusing attention on the  most time-consuming 
loops is absolutely essential. 

l Performance tables: 
u typically comparing performance differences at the 

loop level. 
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Guidelines for Fixing 
“Performance Bugs” 
l The methodology that worked for us: 

u Use compiler-parallelized code as a starting point 
u Get loop profile and compiler listing 
u Inspect time-consuming loops (biggest potential  for 

improvement) 
– Case 1. Check for parallelism where the compiler 

could not find it 
– Case 2. Improve parallel loops where the 

speedup is limited 
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Performance Tuning 

Case 1: if the loop is not yet parallelized, do this: 
l Check for parallelism: 

u read the compiler explanation 
u a variable may be independent even if the compiler 

detects dependences (compilers are conservative) 
u check if conflicting array is privatizable (compilers 

don’t perform array privatization well) 
l  If you find parallelism, add OpenMP parallel 

directives, or make the information explicit for 
the parallelizer 
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Performance Tuning 
Case 2: if the loop is parallel but does not perform well, 

consider several optimization factors: 
  

Parallelization  
overhead 

Memory 

CPU CPU CPU 

Spreading  
overhead 

High overheads are caused by: 
• parallel startup cost 
• small loops 
• additional parallel code 
• over-optimized inner loops 
• less optimization for  parallel code 

• load imbalance 
• synchronized section 
• non-stride-1 references 
• many shared references 
• low cache affinity 

serial 
program 

parallel 
program 



Agenda 
l Summary of OpenMP basics 
l OpenMP: The more subtle/advanced stuff  
l OpenMP case studies 
l Automatic parallelism and tools support 
l Mixing OpenMP and MPI 
l The future of OpenMP  
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Generating OpenMP Programs 
Automatically 

OpenMP 
program 

user 
inserts 

directives 

parallelizing 
compiler 
inserts 
directives 

user 
tunes 

program 

Source-to-source 
restructurers: 
•  F90 to F90/OpenMP 
•  C     to C/OpenMP 

Examples: 
•  SGI F77 compiler 
  (-apo -mplist option) 
•  Polaris  compiler 
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The Basics About 
Parallelizing Compilers 
l  Loops are the primary source of parallelism in 

scientific and engineering applications.  
l  Compilers detect loops that have independent 

iterations. 

DO I=1,N 
     A(expression1) = … 
        … = A(expression2) 
ENDDO 

The loop is 
independent if, for 
different iterations, 
expression1 is always  
different from 
expression2 
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Basic Program Transformations 

Data privatization: 

DO i=1,n 
      work(1:n) = …. 
       . 
       . 
       . 
       …  =   work(1:n) 
ENDDO 

C$OMP PARALLEL DO 
C$OMP+ PRIVATE (work) 
DO i=1,n 
      work(1:n) = …. 
       . 
       . 
       . 
       …  =   work(1:n) 
ENDDO 

Each processor is given a separate version of the 
private data, so there is no sharing conflict  
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Basic Program Transformations 

Reduction recognition: 

DO i=1,n 
      ... 
  sum = sum + a(i)  
      …  
 ENDDO 

C$OMP PARALLEL DO 
C$OMP+ REDUCTION (+:sum) 
DO i=1,n 
     ... 
     sum = sum + a(i)  
      …  
ENDDO 

Each processor will accumulate partial sums, followed 
by a combination of these parts at the end of the loop. 
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Basic Program Transformations 
Induction variable substitution: 
i1 = 0 
i2 = 0 
DO i =1,n 
     i1 = i1 + 1 
     B(i1) = ... 
     
     i2 = i2 + i 
     A(i2) = …  
 
 ENDDO 

C$OMP PARALLEL DO  
DO i =1,n 
 
     B(i) = ... 
 
     A((i**2 + i)/2) = … 
 
ENDDO 

The original loop contains data dependences: each 
processor modifies the shared variables i1, and i2. 
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Compiler Options 

Examples of  options from the KAP parallelizing 
compiler (KAP includes some 60 options) 
u optimization levels  

–  optimize : simple analysis, advanced analysis, loop 
interchanging, array expansion 

–  aggressive: pad common blocks, adjust data layout 
u subroutine inline expansion 

–  inline all, specific routines, how to deal with libraries 
u try specific optimizations 

–  e.g., recurrence and reduction recognition, loop fusion  
(These transformations may degrade performance) 
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More About Compiler Options 
u Limits on amount of optimization:  

–  e.g., size of optimization data structures, number of optimization 
variants tried 

u Make certain assumptions:  
–  e.g., array bounds are not violated, arrays are not aliased 

u Machine parameters:  
–  e.g., cache size, line size, mapping 

u Listing control  

Note, compiler options can be a substitute for advanced 
compiler strategies. If the compiler has limited 
information, the user can help out. 
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Inspecting the Translated Program 

l Source-to-source restructurers: 
u  transformed source code is the actual output 
u  Example: KAP 

l Code-generating compilers: 
u  typically have an option for viewing the translated 

(parallel) code 
u  Example: SGI f77 -apo -mplist 

This can be the starting point for code tuning 
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Compiler Listing 
The listing gives many useful clues for improving the 

performance: 
u Loop optimization tables 
u Reports about data dependences 
u Explanations about applied transformations 
u The annotated, transformed code 
u Calling tree 
u Performance statistics 

The type of reports to be included in the listing can be 
set through compiler options. 
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Tuning  
Automatically-Parallelized Code 

l This task is similar to explicit parallel 
programming. 

l Two important differences : 
u The compiler gives hints in its listing,  which may 

tell you where to focus attention. E.g., which 
variables have data dependences. 

u You don’t need to perform all transformations by 
hand. If you expose the right information to the 
compiler, it will do the translation for you.  

(E.g., C$assert independent) 
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Why Tuning Automatically-
Parallelized Code? 

Hand improvements can pay off because 
l compiler techniques are limited 

E.g., array reductions are parallelized by only 
few compilers 

l compilers may have insufficient 
information  

E.g., 
u loop iteration range may be input data 
u variables are defined in other subroutines (no 

interprocedural analysis) 
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Performance Tuning Tools 

OpenMP 
program 

user 
inserts 

directives 

parallelizing 
compiler 
inserts 
directives 

user 
tunes 

program 

we need  
tool support 



Advanced OpenMP, SC'2001 70 

Profiling Tools 

l Timing profiles (subroutine or loop level) 
u shows most time-consuming program sections 

l Cache profiles 
u point out  memory/cache performance problems 

l Data-reference and transfer volumes 
u show performance-critical program properties 

l  Input/output activities 
u point out possible I/O bottlenecks 

l Hardware counter profiles 
u large number of processor statistics 
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KAI GuideView: Performance 
Analysis 

l  Speedup curves 
u Amdahl’s Law vs. Actual 

times 
l  Whole program time 

breakdown 
u Productive work vs 
u Parallel overheads 

l  Compare several runs 
u Scaling processors 

l  Breakdown by section 
u Parallel regions 
u Barrier sections 
u Serial sections 

l  Breakdown by thread 
l  Breakdown overhead 

u Types of runtime calls 
u Frequency and time 

KAI’s new VGV tool combines GuideView with VAMPIR for 
monitoring mixed OpenMP/MPI programs 
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GuideView 

Analyze each 
Parallel region 

Find serial 
regions that are 
hurt by 
parallelism 

Sort or filter 
regions to 
navigate to 
hotspots 

www.kai.com 
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SGI SpeedShop and WorkShop 

l Suite of performance tools from SGI 
l Measurements based on 

u pc-sampling and call-stack sampling 
– based on time [prof,gprof] 
– based on R10K/R12K hw counters 

u basic block counting [pixie] 
l Analysis on various domains 

u program graph, source and disassembled code 
u per-thread as well as cumulative data 
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SpeedShop and WorkShop 

Addresses the performance Issues: 
l Load imbalance 

u Call stack sampling based on time (gprof) 
l Synchronization Overhead 

u Call stack sampling based on time (gprof)  
u Call stack sampling based on hardware counters 

l Memory Hierarchy Performance 
u Call stack sampling based on hardware counters 
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WorkShop:    Call Graph View 
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WorkShop:   Source View 
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Purdue Ursa Minor/Major 

l  Integrated environment for compilation and 
performance analysis/tuning 

l Provides browsers for many sources of 
information:  

call graphs, source and transformed program, 
compilation reports, timing data, parallelism 
estimation, data reference patterns, performance 
advice, etc.  

l www.ecn.purdue.edu/ParaMount/UM/ 
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Ursa Minor/Major 

Performance Spreadsheet 

Program Structure View 
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TAU  
Tuning Analysis Utilities 
Performance Analysis Environment for C++, 

Java, C, Fortran 90, HPF, and HPC++ 
l compilation facilitator 
l call graph browser 
l source code browser 
l profile browsers 
l speedup extrapolation 
l www.cs.uoregon.edu/research/paracomp/tau/ 
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TAU  
Tuning Analysis Utilities 



Agenda 
l Summary of OpenMP basics 
l OpenMP: The more subtle/advanced stuff  
l OpenMP case studies 
l Automatic parallelism and tools support 
l Mixing OpenMP and MPI 
l The future of OpenMP  



What is MPI? 
The message Passing Interface 
l MPI created by an international forum in the 

early 90’s. 
l  It is huge -- the union of many good ideas 

about message passing API’s. 
u over 500 pages in the spec 
u over 125 routines in MPI 1.1 alone. 
u Possible to write programs using only a couple of 

dozen of the routines 
l MPI 1.1 - MPIch reference implementation.  
l MPI 2.0 - Exists as a spec, full 

implementations? Only one that I know of. 
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How do people use MPI? 
The SPMD Model 

Replicate the program. 

Add glue code 

Break up the data 

A sequential program 
working on a data set 

• A parallel program working 
on a decomposed data set. 

•  Coordination by passing 
messages. 
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Pi program in MPI  
#include <mpi.h> 
void main (int argc, char *argv[]) 
{ 

 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ; 
 step = 1.0/(double) num_steps ; 

   MPI_Init(&argc, &argv) ; 
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ; 
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ; 
 my_steps = num_steps/numprocs ; 
 for (i=myrank*my_steps; i<(myrank+1)*my_steps ; i++) 
 { 
    x = (i+0.5)*step; 
    sum += 4.0/(1.0+x*x); 
 } 
 sum *= step ;  
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
  MPI_COMM_WORLD) ; 

} 
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How do people mix MPI and OpenMP? 
 

Replicate the program. 

Add glue code 

Break up the data 

A sequential program 
working on a data set 

• Create the MPI program with 
its data decomposition. 

•  Use OpenMP inside each 
MPI process. 
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Pi program with MPI and OpenMP 
#include <mpi.h> 
#include “omp.h” 
void main (int argc, char *argv[]) 
{ 

 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ; 
 step = 1.0/(double) num_steps ; 

   MPI_Init(&argc, &argv) ; 
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ; 
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ; 
 my_steps = num_steps/numprocs ; 

#pragma omp parallel do 
 for (i=myrank*my_steps; i<(myrank+1)*my_steps ; i++) 
 { 
    x = (i+0.5)*step; 
    sum += 4.0/(1.0+x*x); 
 } 
 sum *= step ;  
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
  MPI_COMM_WORLD) ; 

} 

Get the MPI 
part done 
first, then add 
OpenMP 
pragma 
where it 
makes sense 
to do so 
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Mixing OpenMP and MPI 
Let the programmer beware! 
l  Messages are sent to a process on a system not to a 

particular thread 
u Safest approach -- only do MPI inside serial regions. 
u … or,  do them inside MASTER constructs. 
u … or,  do them inside SINGLE or CRITICAL 

– But this only works if your MPI is really thread safe! 

l  Environment variables are not propagated by mpirun.  
You’ll need to broadcast OpenMP parameters and set 
them with the library routines. 
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Mixing OpenMP and MPI 
l  OpenMP and MPI coexist by default: 

– MPI will distribute work across processes, and these 
processes may be threaded. 

– OpenMP will create multiple threads to run a job on a 
single system. 

l  But be careful … it can get tricky: 
– Messages are sent to a process on a system not to a 

particular thread. 
– Make sure you implementation of MPI is threadsafe. 
– Mpirun doesn’t distribute environment variables so your 

OpenMP program shouldn’t depend on them. 
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Dangerous Mixing of MPI and OpenMP 
l  The following will work on some MPI implementations, but 

may fail for others: MPI libraries are not always thread safe. 
MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ; 
#pragma omp parallel  
{ 
     int tag, swap_neigh, stat, omp_id = omp_thread_num(); 
     long buffer [BUFF_SIZE], incoming [BUFF_SIZE]; 
     big_ugly_calc1(omp_id, mpi_id, buffer); 
                                                                                  // Finds MPI id and tag 
so 
     neighbor(omp_id, mpi_id, &swap_neigh, &tag);  // messages don’t 
conflict 
    
     MPI_Send (buffer,   BUFF_SIZE, MPI_LONG, swap_neigh,  
                    tag, MPI_COMM_WORLD); 
     MPI_Recv (incoming, buffer_count, MPI_LONG, swap_neigh,  
                    tag,  MPI_COMM_WORLD, &stat); 
 
     big_ugly_calc2(omp_id, mpi_id, incoming, buffer); 
#pragma critical 
    consume(buffer, omp_id, mpi_id); 
} 
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Messages and threads 

l Keep message passing and threaded sections 
of your program separate: 
u Setup message passing outside OpenMP regions 
u Surround with appropriate directives (e.g. critical 

section or master) 
u For certain applications depending on how it is 

designed it may not matter which thread handles a 
message.  

– Beware of race conditions though if two threads 
are probing on the same message and then 
racing to receive it. 
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Safe Mixing of MPI and OpenMP 
Put MPI in sequential regions 

MPI_Init(&argc, &argv) ;      MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ; 
 
// a whole bunch of initializations 
 
#pragma omp parallel for  
for (I=0;I<N;I++) { 
     U[I] =  big_calc(I); 
} 
 
     MPI_Send (U,   BUFF_SIZE, MPI_DOUBLE, swap_neigh,  
                    tag, MPI_COMM_WORLD); 

 MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,  
                    tag,  MPI_COMM_WORLD, &stat); 
 
#pragma omp parallel for  
for (I=0;I<N;I++) { 
     U[I] =  other_big_calc(I, incoming); 
} 
 
consume(U, mpi_id); 
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Safe Mixing of MPI and OpenMP 
Protect MPI calls inside a parallel region 

MPI_Init(&argc, &argv) ;      MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ; 
 
// a whole bunch of initializations 
 
#pragma omp parallel 
{ 
#pragma omp for 
    for (I=0;I<N;I++)    U[I] =  big_calc(I); 
 
#pragma master 
{ 
     MPI_Send (U,   BUFF_SIZE, MPI_DOUBLE, neigh, tag,  MPI_COMM_WORLD); 

 MPI_Recv (incoming, count, MPI_DOUBLE, neigh,  tag,  MPI_COMM_WORLD,          
                                                                                                                           &stat); 
} 
#pragma omp barrier 
#pragma omp for  
    for (I=0;I<N;I++)   U[I] =  other_big_calc(I, incoming); 
 
#pragma omp master 
    consume(U, mpi_id); 
} 
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MPI and Environment Variables 

l Environment variables are not propagated by 
mpirun, so you may need to explicitly set the 
requested number of threads with 
OMP_NUM_THREADS(). 
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Updating OpenMP for C/C++ 

l Two step process to update C/C++ 
u OpenMP 2.0: Bring the 1.0 specification up to date: 

– Line up OpenMP C/C++ with OpenMP Fortran 2.0 
– Line up OpenMP C/C++ with C99. 

u OpenMP 3.0: Add new functionality to extend the 
scope and value of OpenMP. 

l Target is to have a public review draft of 
OpenMP 2.0 C/C++ at SC’2001. 
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OpenMP 2.0 for C/C++ 
Line up with OpenMP 2.0 for Fortran 

l Specification of the number of threads with the 
NUM_THREADS clause. 

l Broadcast a value with the COPYPRIVATE 
clause. 

l Extension to THREADPRIVATE. 
l Extension to CRITICAL. 
l New timing routines. 
l Lock functions can be used in parallel regions. 
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NUM_THREADS Clause 
l  Used with a parallel construct to request number of 

threads used in the parallel region. 
–  supersedes the omp_set_num_threads library function, 

and the OMP_NUM_THREADS environment variable. 

#include <omp.h> 
main () { 
... 
omp_set_dynamic(1); 
... 
#pragma omp parallel for num_threads(10) 
   for (i=0; i<10; i++) 
      { 
         ... 
      } 
} 
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COPYPRIVATE 
l Broadcast a private variable from one member 

of a team to the other members. 
l Can only be used in combination with SINGLE 

float x, y; 
#pragma omp threadprivate(x, y) 
 
void init(float a, float b) 
{ 
   #pragma omp single copyprivate(a,b,x,y) 
   { 
       get_values(a,b,x,y); 
    } 
} 
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Extension to THREADPRIVATE 
l OpenMP Fortran 2.0 allows SAVE’d variables to 

be made THREADPRIVATE. 
l The corresponding functionality in OpenMP C/

C++ is for function local static variables to be 
made THREADPRIVATE.  

int sub() 
{ 
  static int gamma = 0; 
  static int counter = 0; 
#pragma omp threadprivate(counter) 
  gamma++; 
  counter++: 
  return(gamma); 
} 
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Extension to CRITICAL Construct 
l  In OpenMP C/C++ 1.0, critical regions can not contain 

worksharing constructs. 
l  This is allowed in OpenMP C/C++ 2.0, as long as the 

worksharing constructs do not bind to the same 
parallel region as the critical construct. 

void f() { 
int i = 1; 
#pragma omp parallel sections 
  { 
#pragma omp section 
    { 
#pragma omp critical (name) 
      { 
#pragma omp parallel 
        { 
#pragma omp single 
           {  
              i++;  
           } } } } } } 
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Timing Routines 

l Two functions have been added in order to 
support a portable wall-clock timer: 
u double omp_get_wtime(void); 

 returns elapsed wall-clock time 
u double omp_get_wtick(void); 

 returns seconds between successive clock ticks. 

double start; 
double end; 
start = omp_get_wtime(); 
… work to be timed … 
end = omp_get_wtime(); 
printf(“Work took %f sec. Time.\n”, end-start); 
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Thread-safe Lock Functions 
l OpenMP 2.0 C/C++ lets users initialise locks in 

a parallel region. 

#include <omp.h> 
 
omp_lock_t *new_lock() 
{ 
  omp_lock_t *lock_ptr; 
#pragma omp single copyprivate(lock_ptr) 
  { 
    lock_ptr = (omp_lock_t *)  
                  malloc(sizeof(omp_lock_t)); 
    omp_init_lock( lock_ptr ); 
  } 
return lock_ptr; 
} 



Advanced OpenMP, SC'2001 103 

Reprivatization 
l  Private variables can be marked private again in a 

nested directive. They do not have to be shared in the 
enclosing parallel region anymore. 

l  This does not apply to the FIRSTPRIVATE and 
LASTPRIVATE directives. 

int a; 
... 
#pragma omp parallel private(a) 
{ 
 ... 
#pragma omp parallel for private(a) 
for (i=0; i<n; i++) { 
  ... 
  } 
} 
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l C99 variable length arrays are complete types, 
thus they can be specified anywhere complete 
types are allowed. 

l Examples are the private, firstprivate, and 
lastprivate clauses. 

void f(int m, int C[m][m]) 
{ 
double v1[m]; 
... 
#pragma omp parallel firstprivate(C, v1) 
... 
} 

OpenMP 2.0 for C/C++ 
Line up with C99 



Agenda 
l Summary of OpenMP basics 
l OpenMP: The more subtle/advanced stuff  
l OpenMP case studies 
l Automatic parallelism and tools support 
l Mixing OpenMP and MPI 
l The future of OpenMP 

u Updating C/C++ 
u Longer Term issues  



Advanced OpenMP, SC'2001 106 

OpenMP Organization 

The ARB  
(one representative from 
each member organization) 

The Futures Committee:  
Chair Tim Mattson 

The Fortran Committee:  
Chair Tim Mattson 

The C/C++ Committee:  
Chair Larry Meadows 

Corp. Officers 
CEO: Tim Mattson 
CFO: Sanjiv Shah 
Secretary: Steve Rowan 

Board of Directors 
Sanjiv Shah 
Greg Astfalk 
Bill Blake 
Dave Klepacki 

Currently 
inactive 

The seat of 
Power in the 
organization 
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OpenMP 
I’m worried about OpenMP 

l The ARB is below critical mass. 
l We are largely restricted to supercomputing. 

– I want general purpose programmers to use 
OpenMP.  Bring on the game developers. 

l Can we really “make a difference” if all we do is 
worry about programming shared memory 
computers?    

– To have a sustained impact, maybe we need to 
broaden our agenda to more general 
programming problems. 

l OpenMP isn’t modular enough – it doesn’t 
work well with other technologies. 
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OpenMP ARB membership 

l Due to acquisitions and changing business 
climate, the number of officially distinct ARB 
members is shrinking. 

– KAI acquired by Intel. 
– Compaq’s compiler group joining Intel.  
– Compaq merging with HP. 
– Cray sold to Terra and dropped out of OpenMP 

ARB. 
l We need fresh blood. cOMPunity is an exciting 

addition, but it would be nice to have more. 
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Bring more programmers into OpenMP: 
Tools for OpenMP 

l OpenMP is an explicit model that works closely 
with the compiler. 

l OpenMP is conceptually well oriented to 
support a wide range of tools. 

– But other then KAI tools (which aren’t available 
everywhere) there are no portable tools to work 
with OpenMP. 

l Do we need standard Tool interfaces to make it 
easier for vendors and researchers to create 
tools? 

– We are currently looking into this on the futures 
committee.   

Check out the Mohr, Malony et. al. paper at EWOMP’2001 



Advanced OpenMP, SC'2001 110 

Bring more programmers into OpenMP: 
Move beyond array driven algorithms 

l OpenMP workshare constructs currently 
support: 

– iterative algorithms (omp for). 
– static non-iterative algorithms (omp sections). 

l But we don’t support 
– Dynamic non-iterative algorithms? 
– Recursive algorithms? 

We are looking very closely at the task queue 
proposal from KAI.   
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OpenMP Work queues 

nodeptr list, p; 

for (p=list; p!=NULL; p=p->next) 
 process(p->data); 

nodeptr list, p; 

#pragma omp parallel taskq 
for (p=list; p!=NULL; p=p->next) 
#pragma omp task 

 process(p->data); 

OpenMP can’t deal with a simple pointer following loop 

KAI has proposed (and implemented) a taskq constuct to 
deal with this case: 

Reference: Shah, Haab, Petersen and Throop, EWOMP’1999 paper. 

We need an 
independent 
evaluation of 
this technology 
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How should we move OpenMP beyond SMP? 

l OpenMP is inherently an SMP model, but all 
shared memory vendors build NUMA and 
DVSM machines. 

l What should we do? 
– Add HPF-like data distribution. 
– Work with thread affinity, clever page migration 

and a smart OS. 
– Give up? 
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OpenMP must be more modular 
l Define how OpenMP Interfaces to “other 

stuff”: 
– How can an OpenMP program work with 

components implemented with OpenMP? 
– How can OpenMP work with other thread 

environments? 

l Support library writers: 
– OpenMP needs an analog to MPI’s contexts. 

We don’t have any solid proposals on the table 
to deal with these problems. 
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The role of academic research 

l We need reference implementations for any 
new feature added to OpenMP. 
u OpenMP’s evolution depends on good academic 

research on new API features. 
l We need a good, community, open source 

OpenMP compiler for academics to try-out new 
API enhancements.   
u Any suggestions? 

OpenMP will go nowhere without help from 
research organizations 
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Summary 

l OpenMP is: 
u A great way to write parallel code for shared 

memory machines. 
u A very simple approach to parallel programming. 
u Your gateway to special, painful errors (race 

conditions). 
l OpenMP impacts clusters: 

– Mixing MPI and OpenMP. 
– Distributed shared memory.  
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Reference Material on OpenMP* 
OpenMP Homepage www.openmp.org: 
The primary source of information about OpenMP and its development. 
 
Books: 
Parallel programming in OpenMP, Chandra, Rohit, San Francisco, Calif. : Morgan Kaufmann ; London : 

Harcourt, 2000, ISBN: 1558606718 
 
OpenMP Workshops: 
WOMPAT: Workshop on OpenMP Applications and Tools 

WOMPAT 2000: www.cs.uh.edu/wompat2000/ 
WOMPAT 2001: www.ece.purdue.edu/~eigenman/wompat2001/ 
                           Papers published in Lecture Notes in Computer Science #2104 

EWOMP: European Workshop on OpenMP 
EWOMP 2000: www.epcc.ed.ac.uk/ewomp2000/ 
EWOMP 2001: www.ac.upc.ed/ewomp2001/, held in conjunction with PACT 2001 
 

 WOMPEI: International Workshop on OpenMP, Japan 
WOMPEI 2000: research.ac.upc.jp/wompei/, held in conjunction with ISHPC 2000 
                          Papers published in Lecture Notes in Computer Science, #1940 

 

* Third party trademarks and names are the property of their respective owner. 
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Some OpenMP Commands to 
support Exercises 



PI Program: an example 

static long num_steps = 100000; 
double step; 
void main () 
{    int i;    double x, pi, sum = 0.0; 
 

   step = 1.0/(double) num_steps; 
 

   for (i=1;i<= num_steps; i++){ 
    x = (i-0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

} 



Parallel Pi Program 

l Let’s speed up the program with multiple 
threads. 

l Consider the Win32 threads library: 
u Thread management and interaction is explicit. 
u Programmer has full control over the threads 



Solution: Win32 API, PI 

#include <windows.h> 
#define NUM_THREADS 2 
HANDLE thread_handles[NUM_THREADS]; 
CRITICAL_SECTION hUpdateMutex; 
static long num_steps = 100000; 
double step; 
double global_sum = 0.0; 
 
void Pi (void *arg) 
{ 
    int i, start; 
   double x, sum = 0.0; 
 
 
   start = *(int *) arg; 
   step = 1.0/(double) num_steps; 
 
   for (i=start;i<= num_steps; i=i+NUM_THREADS){ 
         x = (i-0.5)*step; 
        sum = sum + 4.0/(1.0+x*x); 
   } 
   EnterCriticalSection(&hUpdateMutex); 
   global_sum += sum; 
   LeaveCriticalSection(&hUpdateMutex); 
} 

void main () 
{ 
   double pi; int i; 
   DWORD threadID; 
   int threadArg[NUM_THREADS]; 
 
   for(i=0; i<NUM_THREADS; i++)   threadArg[i] = i+1; 
 
   InitializeCriticalSection(&hUpdateMutex); 
 
   for (i=0; i<NUM_THREADS; i++){ 
                 thread_handles[i] = CreateThread(0, 0, 

  (LPTHREAD_START_ROUTINE) Pi, 
  &threadArg[i], 0, &threadID); 

} 
 
   WaitForMultipleObjects(NUM_THREADS,  

  thread_handles, TRUE,INFINITE); 
 
   pi = global_sum * step; 
 
   printf(" pi is %f \n",pi); 
} 
 

Doubles code size! 



Solution: Keep it simple 

Threads libraries: 
– Pro: Programmer has control over everything 
– Con: Programmer must control everything 

Full 
control 

Increased 
complexity 

Programmers 
scared away 

Sometimes a simple evolutionary  
approach is better 



OpenMP PI Program:   
Parallel Region example (SPMD Program) 

#include <omp.h> 
static long num_steps = 100000;         double step; 
#define NUM_THREADS 2 
void main () 
{    int i;    double x, pi, sum[NUM_THREADS] = {0.0}; 

   step = 1.0/(double) num_steps; 
   omp_set_num_threads(NUM_THREADS); 

#pragma omp parallel  
{    double x;     int i, id; 

   id = omp_get_thraead_num(); 
   for (i=id;i< num_steps; i=i+NUM_THREADS){ 
    x = (i+0.5)*step; 
    sum[id] += 4.0/(1.0+x*x); 
   } 

} 
   for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step; 

} 

SPMD 
Programs: 
Each thread 
runs the same 
code with the 
thread ID 
selecting any  
thread specific 
behavior. 



OpenMP PI Program:   
Work sharing construct 
#include <omp.h> 
static long num_steps = 100000;         double step; 
#define NUM_THREADS 2 
void main () 
{    int i;    double x, pi, sum[NUM_THREADS] = {0.0}; 

   step = 1.0/(double) num_steps; 
   omp_set_num_threads(NUM_THREADS); 

#pragma omp parallel  
{    double x;     int i, id; 

   id = omp_get_thraead_num();       
#pragma omp for 

   for (i=id;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum[id] += 4.0/(1.0+x*x); 
   } 

}    for(i=0, pi=0.0;i<NUM_THREADS;i++)pi += sum[i] * step; 
} 



OpenMP PI Program:   
private clause and a critical section 

#include <omp.h> 
static long num_steps = 100000;         double step; 
#define NUM_THREADS 2 
void main () 
{    int i;    double  x, sum, pi=0.0; 

   step = 1.0/(double) num_steps; 
   omp_set_num_threads(NUM_THREADS); 

#pragma omp parallel private (x, sum,i) 
{    
                id = omp_get_thread_num(); 

   for (i=id,sum=0.0;i< num_steps;i=i+NUM_THREADS){ 
    x = (i+0.5)*step; 
    sum += 4.0/(1.0+x*x); 
   } 

#pragma omp critical 
   pi += sum * step; 

} 
} 

Note: We didn’t 
need to create an 
array to hold local 
sums or clutter the 
code with explicit 
declarations of “x” 
and “sum”. 



OpenMP PI Program :   
Parallel for with a reduction 

#include <omp.h> 
static long num_steps = 100000;         double step; 
#define NUM_THREADS 2 
void main () 
{    int i;    double x, pi, sum = 0.0; 

   step = 1.0/(double) num_steps; 
   omp_set_num_threads(NUM_THREADS); 

#pragma omp parallel for reduction(+:sum) private(x) 
   for (i=1;i<= num_steps; i++){ 
    x = (i-0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

} 
OpenMP adds 2 to 4 

lines of code 
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MPI: Pi program 
#include <mpi.h> 
void main (int argc, char *argv[]) 
{ 

 int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ; 
 step = 1.0/(double) num_steps ; 

   MPI_Init(&argc, &argv) ; 
 MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ; 
 MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ; 
 my_steps = num_steps/numprocs ; 
 for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++) 
 { 
    x = (i+0.5)*step; 
    sum += 4.0/(1.0+x*x); 
 } 
 sum *= step ;  
 MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,  

                                         MPI_COMM_WORLD) ; 
} 


