
Exercises to support learning
OpenMP*

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson
Intel Corp.

timothy.g.mattson@intel.com

Teaching Assistants:
Erin Carson (ecc2z@cs.berkeley.edu)

Nick Knight (knight@cs.berkeley.edu)

David Sheffield (dsheffie@cs.berkeley.edu)

Introduction

 This set of slides supports a collection of exercises to
be used when learning OpenMP.

 Many of these are discussed in detail in our OpenMP
tutorial. You can cheat and look up the answers, but
challenge yourself and see if you can come up with the
solutions on your own.

 A few (Exercise V, VI, and X) are more advanced. IF
you are bored, skip directly to those problems. For
exercise VI there are multiple solutions. Seeing how
many different ways you can solve the problem is time
well spent.

2

Acknowledgements

 Many people have worked on these exercises
over the years.

 They are in the public domain and you can do
whatever you like with them.

 Contributions from certain people deserve
special notice:

Mark Bull (Mandelbrot set area),

Tim Mattson and Larry Meadows (Monte Carlo pi
and random number generator)

Clay Breshears (recursive matrix multiplication).

3

4

OpenMP Exercises
Topic Exercise concepts

I. OMP Intro Install sw, hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. Data Environment Mandelbrot set area Data environment details,
software optimization

VI. Practice with core
OpenMP constructs

Traverse linked lists …
the old fashioned way

Working with more complex data
structures with parallel regions
and loops

VII. OpenMP tasks Traversing linked lists Explicit tasks in OpenMP

VIII. ThreadPrivate

Monte Carlo pi Thread safe libraries

IX: Pairwise
synchronization

Producer Consumer Understanding the OpenMP
memory model and using flush

X: Working with tasks Recursive matrix
multiplication

Explicit tasks in OpenMP

5

Compiler notes: Intel on Windows

 Launch SW dev
environment

 cd to the directory that
holds your source code

 Build software for program
foo.c

 icl /Qopenmp foo.c

 Set number of threads
environment variable

 set OMP_NUM_THREADS=4

 Run your program

 foo.exe

To get rid of the “working directory name” on the prompt, type

 prompt = %

6

Compiler notes: Visual Studio

 Start “new project”

 Select win 32 console project

Set name and path

On the next panel, Click “next” instead of finish so you can
select an empty project on the following panel.

Drag and drop your source file into the source folder on the
visual studio solution explorer

Activate OpenMP

– Go to project properties/configuration
properties/C.C++/language … and activate OpenMP

 Set number of threads inside the program

 Build the project

 Run “without debug” from the debug menu.

7

Compiler notes: Linux and OSX

 Linux and OS X with gcc:

> gcc -fopenmp foo.c

> export OMP_NUM_THREADS=4

> ./a.out

 Linux and OS X with PGI:

> pgcc -mp foo.c

> export OMP_NUM_THREADS=4

> ./a.out

for the Bash shell

The gcc compiler provided with Xcode on OSX doesn’t support the

“threadprivate” construct and hence cannot be used for the “Monte Carlo Pi”

exercise. “Monte Carlo pi” is one of the latter exercises, hence for most people

this is not a problem.

8

Compiler notes: gcc on OSX

 To load a version of gcc with full OpenMP 3.1
support onto your mac running OSX, use the
following steps:

> Install mac ports from www.macports.org

> Install gcc 4.8

> sudo port install gcc48

> Modify make.def in the OpenMP exercises
directory to use the desired gcc compiler. On my
system I need to change the CC definition line in
make.def

> CC = g++-mp-4.8

9

OpenMP constructs used in these exercises

 #pragma omp parallel

 #pragma omp for

 #pragma omp critical

 #pragma omp atomic

 #pragma omp barrier

 Data environment clauses

 private (variable_list)

 firstprivate (variable_list)

 lastprivate (variable_list)

 reduction(+:variable_list)

 Tasks (remember … private data is made firstprivate by default)

 pragma omp task

 pragma omp taskwait

 #pragma threadprivate(variable_list)

Where variable_list is a

comma separated list of

variables

Print the value of the macro

_OPENMP

And its value will be

yyyymm

For the year and month of the

spec the implementation used

Put this on a line right after you

define the variables in question

10

Exercise 1, Part A: Hello world
Verify that your environment works

 Write a program that prints “hello world”.

int main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

int main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

11

Exercise 1, Part B: Hello world
Verify that your OpenMP environment works

 Write a multithreaded program that prints “hello world”.

int main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

int main()

{

 int ID = 0;

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

}

#pragma omp parallel

{

}

#include <omp.h> Switches for compiling and

linking

g++ -fopenmp Linus, OSX

pgcc -mp pgi

icl /Qopenmp intel (windows)

icpc –openmp intel (linux)

Solution

12

13

Exercise 1: Solution
A multi-threaded “Hello world” program

 Write a multithreaded program where each
thread prints “hello world”.

#include “omp.h”

int main()

{

#pragma omp parallel

 {

 int ID = omp_get_thread_num();

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

 }

}

#include “omp.h”

int main()

{

#pragma omp parallel

 {

 int ID = omp_get_thread_num();

 printf(“ hello(%d) ”, ID);

 printf(“ world(%d) \n”, ID);

 }

}

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file OpenMP include file

Parallel region with default

number of threads

Parallel region with default

number of threads

Runtime library function to

return a thread ID.

Runtime library function to

return a thread ID. End of the Parallel region End of the Parallel region

14

OpenMP Exercises
Topic Exercise concepts

I. OMP Intro Install sw, hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. Data Environment Mandelbrot set area Data environment details,
software optimization

VI. Practice with core
OpenMP constructs

Traverse linked lists …
the old fashioned way

Working with more complex data
structures with parallel regions
and loops

VII. OpenMP tasks Traversing linked lists Explicit tasks in OpenMP

VIII. ThreadPrivate

Monte Carlo pi Thread safe libraries

IX: Pairwise
synchronization

Producer Consumer Understanding the OpenMP
memory model and using flush

X: Working with tasks Recursive matrix
multiplication

Explicit tasks in OpenMP

15

Exercises 2 to 4:
Numerical Integration


4.0

(1+x2)
dx = 

0

1

 F(xi)x  
i = 0

N

Mathematically, we know that:

We can approximate the

integral as a sum of

rectangles:

Where each rectangle has

width x and height F(xi) at

the middle of interval i.

4.0

2.0

1.0

X
0.0

16

Exercises 2 to 4: Serial PI Program

static long num_steps = 100000;

double step;

int main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

See OMP_exercises/pi.c

17

Exercise 2

 Create a parallel version of the pi program
using a parallel construct.

 Pay close attention to shared versus private
variables.

 In addition to a parallel construct, you will need
the runtime library routines

int omp_get_num_threads();

int omp_get_thread_num();

double omp_get_wtime();

Time in Seconds since a fixed

point in the past

Thread ID or rank

Number of threads in the

team

18

The SPMD pattern

 The most common approach for parallel
algorithms is the SPMD or Single Program
Multiple Data pattern.

 Each thread runs the same program (Single
Program), but using the thread ID, they operate
on different data (Multiple Data) or take slightly
different paths through the code.

 In OpenMP this means:

A parallel region “near the top of the code”.

Pick up thread ID and num_threads.

Use them to split up loops and select different blocks
of data to work on.

Solution

19

20

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS];

 step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel

 {

 int i, id,nthrds;

 double x;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;

 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

 x = (i+0.5)*step;

 sum[id] += 4.0/(1.0+x*x);

 }

 }

 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;

}

Exercise 2: A simple SPMD pi program
Promote scalar to an array

dimensioned by number of

threads to avoid race

condition.

Promote scalar to an array

dimensioned by number of

threads to avoid race

condition.

This is a common trick in

SPMD programs to create a

cyclic distribution of loop

iterations

This is a common trick in

SPMD programs to create a

cyclic distribution of loop

iterations

Only one thread should copy the

number of threads to the global

value to make sure multiple threads

writing to the same address don’t

conflict.

Only one thread should copy the

number of threads to the global

value to make sure multiple threads

writing to the same address don’t

conflict.

21

OpenMP Exercises
Topic Exercise concepts

I. OMP Intro Install sw, hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. Data Environment Mandelbrot set area Data environment details,
software optimization

VI. Practice with core
OpenMP constructs

Traverse linked lists …
the old fashioned way

Working with more complex data
structures with parallel regions
and loops

VII. OpenMP tasks Traversing linked lists Explicit tasks in OpenMP

VIII. ThreadPrivate

Monte Carlo pi Thread safe libraries

IX: Pairwise
synchronization

Producer Consumer Understanding the OpenMP
memory model and using flush

X: Working with tasks Recursive matrix
multiplication

Explicit tasks in OpenMP

22

Exercise 3

 In exercise 2, you probably used an array to
create space for each thread to store its partial
sum.

 If array elements happen to share a cache line,
this leads to false sharing.

– Non-shared data in the same cache line so each
update invalidates the cache line … in essence
“sloshing independent data” back and forth
between threads.

 Modify your “pi program” from exercise 2 to
avoid false sharing due to the sum array.

23

False sharing

 If independent data elements happen to sit on the same
cache line, each update will cause the cache lines to
“slosh back and forth” between threads.

This is called “false sharing”.

 If you promote scalars to an array to support creation
of an SPMD program, the array elements are
contiguous in memory and hence share cache lines.

Result … poor scalability

 Solution:

When updates to an item are frequent, work with local copies
of data instead of an array indexed by the thread ID.

Pad arrays so elements you use are on distinct cache lines.

Solution

24

25

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ double pi; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

 int i, id,nthrds; double x, sum;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id == 0) nthreads = nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

 x = (i+0.5)*step;

 sum += 4.0/(1.0+x*x);

 }

 #pragma omp critical

 pi += sum * step;

}

}

Exercise 3: SPMD Pi without false sharing

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi in a critical region so

updates don’t conflict

Sum goes “out of scope” beyond the parallel

region … so you must sum it in here. Must

protect summation into pi in a critical region so

updates don’t conflict

No array, so

no false

sharing.

No array, so

no false

sharing.

Create a scalar local to

each thread to

accumulate partial

sums.

Create a scalar local to

each thread to

accumulate partial

sums.

26

OpenMP Exercises
Topic Exercise concepts

I. OMP Intro Install sw, hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. Data Environment Mandelbrot set area Data environment details,
software optimization

VI. Practice with core
OpenMP constructs

Traverse linked lists …
the old fashioned way

Working with more complex data
structures with parallel regions
and loops

VII. OpenMP tasks Traversing linked lists Explicit tasks in OpenMP

VIII. ThreadPrivate

Monte Carlo pi Thread safe libraries

IX: Pairwise
synchronization

Producer Consumer Understanding the OpenMP
memory model and using flush

X: Working with tasks Recursive matrix
multiplication

Explicit tasks in OpenMP

27

Exercise 4: Pi with loops

 Go back to the serial pi program and parallelize
it with a loop construct

 Your goal is to minimize the number of
changes made to the serial program.

Solution

28

29

Exercise 4: solution
#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 #pragma omp parallel

 {

 double x;

 #pragma omp for reduction(+:sum)

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 }

 pi = step * sum;

}

30

Exercise 4: solution
Using data environment clauses so parallelization only requires
changes to the pragma

#include <omp.h>

static long num_steps = 100000; double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction(+:sum)

 for (i=0;i< num_steps; i++){

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

Note: we created a parallel

program without changing

any code and by adding 2

simple lines of text!

Note: we created a parallel

program without changing

any code and by adding 2

simple lines of text!

i private by

default

i private by

default

For good OpenMP

implementations,

reduction is more

scalable than critical.

For good OpenMP

implementations,

reduction is more

scalable than critical.

31

Exercise 5: Optimizing loops

 Parallelize the matrix multiplication program in
the file matmul.c

 Can you optimize the program by playing with
how the loops are scheduled?

Solution

32

33

Matrix multiplication

#pragma omp parallel for private(tmp, i, j, k)

 for (i=0; i<Ndim; i++){

 for (j=0; j<Mdim; j++){

 tmp = 0.0;

 for(k=0;k<Pdim;k++){

 /* C(i,j) = sum(over k) A(i,k) * B(k,j) */

 tmp += *(A+(i*Ndim+k)) * *(B+(k*Pdim+j));

 }

 *(C+(i*Ndim+j)) = tmp;

 }

 }

•On a dual core laptop

•13.2 seconds 153 Mflops one thread

•7.5 seconds 270 Mflops two threads

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

34

OpenMP Exercises
Topic Exercise concepts

I. OMP Intro Install sw, hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. Data Environment Mandelbrot set area Data environment details,
software optimization

VI. Practice with core
OpenMP constructs

Traverse linked lists …
the old fashioned way

Working with more complex data
structures with parallel regions
and loops

VII. OpenMP tasks Traversing linked lists Explicit tasks in OpenMP

VIII. ThreadPrivate

Monte Carlo pi Thread safe libraries

IX: Pairwise
synchronization

Producer Consumer Understanding the OpenMP
memory model and using flush

X: Working with tasks Recursive matrix
multiplication

Explicit tasks in OpenMP

35

Exercise 6: Mandelbrot set area

 The supplied program (mandel.c) computes the
area of a Mandelbrot set.

 The program has been parallelized with
OpenMP, but we were lazy and didn’t do it
right.

 Find and fix the errors (hint … the problem is
with the data environment).

36

Exercise 6 (cont.)

 Once you have a working version, try to
optimize the program?

Try different schedules on the parallel loop.

Try different mechanisms to support mutual
exclusion … do the efficiencies change?

Solution

37

The Mandelbrot Area program
#include <omp.h>

define NPOINTS 1000

define MXITR 1000

void testpoint(void);

struct d_complex{

 double r; double i;

};

struct d_complex c;

int numoutside = 0;

int main(){

 int i, j;

 double area, error, eps = 1.0e-5;

#pragma omp parallel for default(shared) private(c,eps)

 for (i=0; i<NPOINTS; i++) {

 for (j=0; j<NPOINTS; j++) {

 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

 testpoint();

 }

 }

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);

 error=area/(double)NPOINTS;

} 38

void testpoint(void){

struct d_complex z;

 int iter;

 double temp;

 z=c;

 for (iter=0; iter<MXITR; iter++){

 temp = (z.r*z.r)-(z.i*z.i)+c.r;

 z.i = z.r*z.i*2+c.i;

 z.r = temp;

 if ((z.r*z.r+z.i*z.i)>4.0) {

 numoutside++;

 break;

 }

 }

}

When I run this program, I get a

different incorrect answer each

time I run it … there is a race

condition!!!!

Debugging parallel programs

• Find tools that work with your environment and learn to use

them. A good parallel debugger can make a huge

difference.

• But parallel debuggers are not portable and you will

assuredly need to debug “by hand” at some point.

• There are tricks to help you. The most important is to use

the default(none) pragma

39

#pragma omp parallel for default(none) private(c, eps)

 for (i=0; i<NPOINTS; i++) {

 for (j=0; j<NPOINTS; j++) {

 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

 testpoint();

 }

 }

}

Using

default(none)

generates a

compiler

error that j is

unspecified.

Area of a Mandelbrot set

• Solution is in the file mandel_par.c

• Errors:

– Eps is private but uninitialized. Two solutions

– It’s read-only so you can make it shared.

– Make it firstprivate

– The loop index variable j is shared by default. Make it private.

– The variable c has global scope so “testpoint” may pick up the global

value rather than the private value in the loop. Solution … pass C as

an arg to testpoint

– Updates to “numoutside” are a race. Protect with an atomic.

40

The Mandelbrot Area program
#include <omp.h>

define NPOINTS 1000

define MXITR 1000

struct d_complex{

 double r; double i;

};

void testpoint(struct d_complex);

struct d_complex c;

int numoutside = 0;

int main(){

 int i, j;

 double area, error, eps = 1.0e-5;

#pragma omp parallel for default(shared) private(c, j) \

 firstpriivate(eps)

 for (i=0; i<NPOINTS; i++) {

 for (j=0; j<NPOINTS; j++) {

 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;

 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;

 testpoint(c);

 }

 }

area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-

numoutside)/(double)(NPOINTS*NPOINTS);

 error=area/(double)NPOINTS;

}
41

void testpoint(struct d_complex c){

struct d_complex z;

 int iter;

 double temp;

 z=c;

 for (iter=0; iter<MXITR; iter++){

 temp = (z.r*z.r)-(z.i*z.i)+c.r;

 z.i = z.r*z.i*2+c.i;

 z.r = temp;

 if ((z.r*z.r+z.i*z.i)>4.0) {

 #pragma omp atomic

 numoutside++;

 break;

 }

 }

}

Other errors found using a

debugger or by inspection:

• eps was not initialized

• Protect updates of numoutside

• Which value of c did testpoint()

see? Global or private?

42

OpenMP Exercises
Topic Exercise concepts

I. OMP Intro Install sw, hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. Data Environment Mandelbrot set area Data environment details,
software optimization

VI. Practice with core
OpenMP constructs

Traverse linked lists …
the old fashioned way

Working with more complex data
structures with parallel regions
and loops

VII. OpenMP tasks Traversing linked lists Explicit tasks in OpenMP

VIII. ThreadPrivate

Monte Carlo pi Thread safe libraries

IX: Pairwise
synchronization

Producer Consumer Understanding the OpenMP
memory model and using flush

X: Working with tasks Recursive matrix
multiplication

Explicit tasks in OpenMP

43

list traversal

 p=head;

 while (p) {

 process(p);

 p = p->next;

 }

• When we first created OpenMP, we focused on common use
cases in HPC … Fortran arrays processed over “regular”
loops.

• Recursion and “pointer chasing” were so far removed from
our Fortan focus that we didn’t even consider more general
structures.

• Hence, even a simple list traversal is exceedingly difficult
with the original versions of OpenMP.

44

Exercise 7: linked lists the hard way

 Consider the program linked.c

Traverses a linked list computing a sequence of
Fibonacci numbers at each node.

 Parallelize this program using constructs
defined in worksharing constructs … i.e. don’t
use tasks).

 Once you have a correct program, optimize it.

Solution

45

46

Linked lists without tasks
 See the file Linked_omp25.c

 while (p != NULL) {

 p = p->next;

 count++;

 }

 p = head;

 for(i=0; i<count; i++) {

 parr[i] = p;

 p = p->next;

 }

 #pragma omp parallel

 {

 #pragma omp for schedule(static,1)

 for(i=0; i<count; i++)

 processwork(parr[i]);

 }

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Default schedule Static,1

One Thread 48 seconds 45 seconds

Two Threads 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

47

Linked lists without tasks: C++ STL
 See the file Linked_cpp.cpp

 std::vector<node *> nodelist;

 for (p = head; p != NULL; p = p->next)

 nodelist.push_back(p);

int j = (int)nodelist.size();

#pragma omp parallel for schedule(static,1)

 for (int i = 0; i < j; ++i)

 processwork(nodelist[i]);

C++, default sched. C++, (static,1) C, (static,1)

One Thread 37 seconds 49 seconds 45 seconds

Two Threads 47 seconds 32 seconds 28 seconds

Copy pointer to each node into an array

Count number of items in the linked list

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

48

OpenMP Exercises
Topic Exercise concepts

I. OMP Intro Install sw, hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. Data Environment Mandelbrot set area Data environment details,
software optimization

VI. Practice with core
OpenMP constructs

Traverse linked lists …
the old fashioned way

Working with more complex data
structures with parallel regions
and loops

VII. OpenMP tasks Traversing linked lists Explicit tasks in OpenMP

VIII. ThreadPrivate

Monte Carlo pi Thread safe libraries

IX: Pairwise
synchronization

Producer Consumer Understanding the OpenMP
memory model and using flush

X: Working with tasks Recursive matrix
multiplication

Explicit tasks in OpenMP

49

Exercise 8: tasks in OpenMP

 Consider the program linked.c

Traverses a linked list computing a sequence of
Fibonacci numbers at each node.

 Parallelize this program using tasks.

 Compare your solution’s complexity to an
approach without tasks.

50

Linked lists with tasks (OpenMP 3)
 See the file Linked_omp3_tasks.c

#pragma omp parallel

{

 #pragma omp single

 {

 p=head;

 while (p) {

 #pragma omp task firstprivate(p)

 processwork(p);

 p = p->next;

 }

 }

}

Creates a task with its

own copy of “p”

initialized to the value

of “p” when the task is

defined

51

OpenMP Exercises
Topic Exercise concepts

I. OMP Intro Install sw, hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. Data Environment Mandelbrot set area Data environment details,
software optimization

VI. Practice with core
OpenMP constructs

Traverse linked lists …
the old fashioned way

Working with more complex data
structures with parallel regions
and loops

VII. OpenMP tasks Traversing linked lists Explicit tasks in OpenMP

VIII. ThreadPrivate

Monte Carlo pi Thread safe libraries

IX: Pairwise
synchronization

Producer Consumer Understanding the OpenMP
memory model and using flush

X: Working with tasks Recursive matrix
multiplication

Explicit tasks in OpenMP

52

Exercise 9: Monte Carlo Calculations
Using Random numbers to solve tough problems

 Sample a problem domain to estimate areas, compute
probabilities, find optimal values, etc.

 Example: Computing π with a digital dart board:

 Throw darts at the circle/square.

 Chance of falling in circle is
proportional to ratio of areas:

Ac = r2 * π

As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4

 Compute π by randomly choosing
points, count the fraction that falls in
the circle, compute pi.

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

53

Exercise 9

 We provide three files for this exercise
pi_mc.c: the monte carlo method pi program

 random.c: a simple random number generator

 random.h: include file for random number generator

 Create a parallel version of this program without
changing the interfaces to functions in random.c
This is an exercise in modular software … why should a user

of your parallel random number generator have to know any
details of the generator or make any changes to how the
generator is called?

The random number generator must be threadsafe.

 Extra Credit:
Make your random number generator numerically correct (non-

overlapping sequences of pseudo-random numbers).

Solution

54

55

Parallel Programmers love Monte Carlo
algorithms

#include “omp.h”

static long num_trials = 10000;

int main ()

{

 long i; long Ncirc = 0; double pi, x, y;

 double r = 1.0; // radius of circle. Side of squrare is 2*r

 seed(0,-r, r); // The circle and square are centered at the origin

 #pragma omp parallel for private (x, y) reduction (+:Ncirc)

 for(i=0;i<num_trials; i++)

 {

 x = random(); y = random();

 if (x*x + y*y) <= r*r) Ncirc++;

 }

 pi = 4.0 * ((double)Ncirc/(double)num_trials);

 printf("\n %d trials, pi is %f \n",num_trials, pi);

}

Embarrassingly parallel: the
parallelism is so easy its

embarrassing.

Add two lines and you have a
parallel program.

56

Computers and random numbers
 We use “dice” to make random numbers:

Given previous values, you cannot predict the next value.

There are no patterns in the series … and it goes on forever.

 Computers are deterministic machines … set an initial
state, run a sequence of predefined instructions, and
you get a deterministic answer

By design, computers are not random and cannot produce
random numbers.

 However, with some very clever programming, we can
make “pseudo random” numbers that are as random as
you need them to be … but only if you are very careful.

 Why do I care? Random numbers drive statistical
methods used in countless applications:

Sample a large space of alternatives to find statistically good
answers (Monte Carlo methods).

57

Linear Congruential Generator (LCG)
 LCG: Easy to write, cheap to compute, portable, OK quality

 If you pick the multiplier and addend correctly, LCG has a
period of PMOD.

 Picking good LCG parameters is complicated, so look it up
(Numerical Recipes is a good source). I used the following:

 MULTIPLIER = 1366

 ADDEND = 150889

 PMOD = 714025

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;

random_last = random_next;

58

LCG code
static long MULTIPLIER = 1366;

static long ADDEND = 150889;

static long PMOD = 714025;

long random_last = 0;

double random ()

{

 long random_next;

 random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;

 random_last = random_next;

 return ((double)random_next/(double)PMOD);

}

Seed the pseudo random

sequence by setting

random_last

59

Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,

trail 1

LCG 4 threads,

trial 2

LCG, 4 threads,

trial 3

L
o

g
 1

0 R
e

la
tiv

e
 e

rro
r

Log10 number of samples

Run the same

program the

same way and

get different

answers!

That is not

acceptable!

Issue: my LCG

generator is not

threadsafe

Run the same

program the

same way and

get different

answers!

That is not

acceptable!

Issue: my LCG

generator is not

threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core

laptop (Intel T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.

60

LCG code: threadsafe version
static long MULTIPLIER = 1366;

static long ADDEND = 150889;

static long PMOD = 714025;

long random_last = 0;

#pragma omp threadprivate(random_last)

double random ()

{

 long random_next;

 random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;

 random_last = random_next;

 return ((double)random_next/(double)PMOD);

}

random_last carries

state between random

number computations,

To make the generator

threadsafe, make

random_last

threadprivate so each

thread has its own copy.

61

Thread safe random number generators

L
o

g
1

0 R
e

la
tiv

e
 e

rro
r

Log10 number of samples
Thread safe

version gives the

same answer

each time you

run the program.

But for large

number of

samples, its

quality is lower

than the one

thread result!

Why?

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 LCG - one

thread

LCG 4 threads,

trial 1

LCT 4 threads,

trial 2

LCG 4 threads,

trial 3

LCG 4 threads,

thread safe

62

Pseudo Random Sequences

 Random number Generators (RNGs) define a sequence of pseudo-random
numbers of length equal to the period of the RNG

 In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

 Grab arbitrary seeds and you may generate overlapping sequences

 E.g. three sequences … last one wraps at the end of the RNG period.

 Overlapping sequences = over-sampling and bad statistics … lower
quality or even wrong answers!

Thread 1

Thread 2

Thread 3

63

Parallel random number generators
 Multiple threads cooperate to generate and use

random numbers.

 Solutions:

Replicate and Pray

Give each thread a separate, independent
generator

Have one thread generate all the numbers.

Leapfrog … deal out sequence values “round
robin” as if dealing a deck of cards.

Block method … pick your seed so each
threads gets a distinct contiguous block.

 Other than “replicate and pray”, these are difficult
to implement. Be smart … buy a math library that
does it right.

If done right, can

generate the

same sequence

regardless of the

number of

threads …

Nice for

debugging, but

not really

needed

scientifically.

Intel’s Math kernel Library supports

all of these methods.

64

MKL Random number generators (RNG)

#define BLOCK 100

double buff[BLOCK];

VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,
 BLOCK, buff, low, hi)

vslDeleteStream(&stream);

 MKL includes several families of RNGs in its vector statistics library.

 Specialized to efficiently generate vectors of random numbers

Initialize a

stream or

pseudo

random

numbers

Select type of

RNG and set seed

Fill buff with BLOCK pseudo rand.

nums, uniformly distributed with

values between lo and hi.
Delete the stream when you are done

65

Wichmann-Hill generators (WH)

 WH is a family of 273 parameter sets each defining a non-
overlapping and independent RNG.

 Easy to use, just make each stream threadprivate and initiate
RNG stream so each thread gets a unique WG RNG.

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

 …

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);

66

Independent Generator for each
thread

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6

WH one

thread

WH, 2

threads

WH, 4

threads

L
o

g
1

0 R
e

la
tiv

e
 e

rro
r

Log10 number of samples

Notice that

once you get

beyond the

high error,

small sample

count range,

adding threads

doesn’t

decrease

quality of

random

sampling.

67

 #pragma omp single

 { nthreads = omp_get_num_threads();

 iseed = PMOD/MULTIPLIER; // just pick a seed

 pseed[0] = iseed;

 mult_n = MULTIPLIER;

 for (i = 1; i < nthreads; ++i)

 {

 iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);

 pseed[i] = iseed;

 mult_n = (mult_n * MULTIPLIER) % PMOD;

 }

 }

 random_last = (unsigned long long) pseed[id];

Leap Frog method
 Interleave samples in the sequence of pseudo random numbers:

Thread i starts at the ith number in the sequence

Stride through sequence, stride length = number of threads.

 Result … the same sequence of values regardless of the number
of threads.

One thread

computes offsets

and strided

multiplier

LCG with Addend = 0 just

to keep things simple

Each thread stores offset starting

point into its threadprivate “last

random” value

68

Same sequence with many threads.
 We can use the leapfrog method to generate the

same answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and

one for the y values (WH+1). Also used the leapfrog method to deal out iterations among threads.

69

OpenMP Exercises
Topic Exercise concepts

I. OMP Intro Install sw, hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. Data Environment Mandelbrot set area Data environment details,
software optimization

VI. Practice with core
OpenMP constructs

Traverse linked lists …
the old fashioned way

Working with more complex data
structures with parallel regions
and loops

VII. OpenMP tasks Traversing linked lists Explicit tasks in OpenMP

VIII. ThreadPrivate

Monte Carlo pi Thread safe libraries

IX: Pairwise
synchronization

Producer Consumer Understanding the OpenMP
memory model and using flush

X: Working with tasks Recursive matrix
multiplication

Explicit tasks in OpenMP

70

Exercise 10: producer consumer

 Parallelize the “prod_cons.c” program.

 This is a well known pattern called the
producer consumer pattern

One thread produces values that another thread
consumes.

Often used with a stream of produced values to
implement “pipeline parallelism”

 The key is to implement pairwise
synchronization between threads.

71

Exercise 10: prod_cons.c

int main()

{

 double *A, sum, runtime; int flag = 0;

 A = (double *)malloc(N*sizeof(double));

 runtime = omp_get_wtime();

 fill_rand(N, A); // Producer: fill an array of data

 sum = Sum_array(N, A); // Consumer: sum the array

 runtime = omp_get_wtime() - runtime;

 printf(" In %lf seconds, The sum is %lf \n",runtime,sum);

}

72

Pair wise synchronizaion in OpenMP

 OpenMP lacks synchronization constructs that
work between pairs of threads.

 When this is needed you have to build it
yourself.

 Pair wise synchronization

Use a shared flag variable

Reader spins waiting for the new flag value

Use flushes to force updates to and from memory

Solution

73

74

Exercise 10: producer consumer
int main()

{

 double *A, sum, runtime; int numthreads, flag = 0;

 A = (double *)malloc(N*sizeof(double));

 #pragma omp parallel sections

 {

 #pragma omp section

 {

 fill_rand(N, A);

 #pragma omp flush

 flag = 1;

 #pragma omp flush (flag)

 }

 #pragma omp section

 {

 #pragma omp flush (flag)

 while (flag != 1){

 #pragma omp flush (flag)

 }

 #pragma omp flush

 sum = Sum_array(N, A);

 }

 }

}

Use flag to Signal when the

“produced” value is ready

Flush forces refresh to memory.

Guarantees that the other thread

sees the new value of A

Notice you must put the flush inside the while

loop to make sure the updated flag variable is

seen

Flush needed on both “reader” and “writer”

sides of the communication

75

OpenMP Exercises
Topic Exercise concepts

I. OMP Intro Install sw, hello_world Parallel regions

II. Creating threads Pi_spmd_simple Parallel, default data
environment, runtime library
calls

III. Synchronization Pi_spmd_final False sharing, critical, atomic

IV. Parallel loops Pi_loop, Matmul For, schedule, reduction,

V. Data Environment Mandelbrot set area Data environment details,
software optimization

VI. Practice with core
OpenMP constructs

Traverse linked lists …
the old fashioned way

Working with more complex data
structures with parallel regions
and loops

VII. OpenMP tasks Traversing linked lists Explicit tasks in OpenMP

VIII. ThreadPrivate

Monte Carlo pi Thread safe libraries

IX: Pairwise
synchronization

Producer Consumer Understanding the OpenMP
memory model and using flush

X: Working with tasks Recursive matrix
multiplication

Explicit tasks in OpenMP

Recursive matrix multiplication

 Quarter each input matrix and output matrix

 Treat each submatrix as a single element and multiply

 8 submatrix multiplications, 4 additions

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

76

How to multiply submatrices?

 Use the same routine that is computing the full matrix
multiplication

Quarter each input submatrix and output submatrix

Treat each sub-submatrix as a single element and multiply

A B C

A1,1 A1,2

A2,1 A2,2

B1,1 B1,2

B2,1 B2,2

C1,1 C1,2

C2,1 C2,2

C111,1 = A111,1·B111,1 + A111,2·B112,1 +

 A121,1·B211,1 + A121,2·B212,1

C1,1 = A1,1·B1,1 + A1,2·B2,1

77

A1,1

A111,1 A111,2

A112,1 A112,2

B1,1

B111,1 B111,2

B112,1 B112,2

C1,1

C111,1 C111,2

C112,1 C112,2

C1,1 = A1,1·B1,1 + A1,2·B2,1

C2,1 = A2,1·B1,1 + A2,2·B2,1

C1,2 = A1,1·B1,2 + A1,2·B2,2

C2,2 = A2,1·B1,2 + A2,2·B2,2

Recursively multiply submatrices

 Also need stopping criteria for recursion

78

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,

 double **A, double **B, double **C)

{// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

// C11 += A11*B11

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C);

// C11 += A12*B21

 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C);

 . . .

}

 Need range of indices to define each submatrix to be
used

79

Exercise 11: Recursive matrix
multiplication

 Consider the program matmul_recur.c. This
program implements a recursive algorithm for
multiply two square matrices.

Parallelize this program using OpenMP tasks.

Optimize the program. How does performance with
the optimized version of the program compare to the
loop-based program from exercise 5

Solution

80

#define THRESHOLD 32768 // product size below which simple matmult code is called

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,
 double **A, double **B, double **C)

// Dimensions: A[mf..ml][pf..pl] B[pf..pl][nf..nl] C[mf..ml][nf..nl]

{
 if ((ml-mf)*(nl-nf)*(pl-pf) < THRESHOLD)
 matmult (mf, ml, nf, nl, pf, pl, A, B, C);
 else
 {
#pragma omp task
{
 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C11 += A11*B11
 matmultrec(mf, mf+(ml-mf)/2, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C11 += A12*B21
}
#pragma omp task
{
 matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C12 += A11*B12
 matmultrec(mf, mf+(ml-mf)/2, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C12 += A12*B22
}
#pragma omp task
{
 matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf, pf+(pl-pf)/2, A, B, C); // C21 += A21*B11
 matmultrec(mf+(ml-mf)/2, ml, nf, nf+(nl-nf)/2, pf+(pl-pf)/2, pl, A, B, C); // C21 += A22*B21
}
#pragma omp task
{
 matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, C); // C22 += A21*B12
 matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, C); // C22 += A22*B22
}
#pragma omp taskwait

 }
}

Recursive Solution

81

 Could be executed in parallel as 4 tasks

 Each task executes the two calls for the same output submatrix of C

 However, the same number of multiplication operations needed

