
1

A “Hands-on” Introduction to
OpenMP*

Tim Mattson
Principal Engineer
Intel Corporation

timothy.g.mattson@intel.com

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Larry Meadows
Principal Engineer
Intel Corporation

lawrence.f.meadows@intel.com

2

Preliminaries: part 1

Disclosures
The views expressed in this tutorial are those of the
people delivering the tutorial.

– We are not speaking for our employers.
– We are not speaking for the OpenMP ARB

This is a new tutorial for us:
Help us improve … tell us how you would make this
tutorial better.

3

Preliminaries: Part 2
Our plan for the day .. Active learning!

We will mix short lectures with short exercises.
You will use your laptop for the exercises … that
way you’ll have an OpenMP environment to take
home so you can keep learning on your own.

Please follow these simple rules
Do the exercises we assign and then change things
around and experiment.

– Embrace active learning!
Don’t cheat: Do Not look at the solutions before
you complete an exercise … even if you get really
frustrated.

4

Our Plan for the day

Tasks and other OpenMP 3
features

Linked listIX OpenMP 3 and tasks

Point to point synch with flushProducer
consumer

VIII. Memory model

For, schedules, sectionsLinked list,
matmul

VII. Worksharing and
schedule

Data environment details,
modular software,
threadprivate

Pi_mcVI. Data Environment

Single, master, runtime
libraries, environment
variables, synchronization, etc.

No exerciseV. Odds and ends

For, reductionPi_loopIV. Parallel loops

False sharing, critical, atomicPi_spmd_finalIII. Synchronization

Parallel, default data
environment, runtime library
calls

Pi_spmd_simpleII. Creating threads

Parallel regionsInstall sw,
hello_world

I. OMP Intro

conceptsExerciseTopic

Break

Break

lunch

5

Outline

Introduction to OpenMP
Creating Threads
Synchronization
Parallel Loops
Synchronize single masters and stuff
Data environment
Schedule your for and sections
Memory model
OpenMP 3.0 and Tasks

6

OpenMP* Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

A set of compiler directives and library
routines for parallel application programmers
Greatly simplifies writing multi-threaded (MT)

programs in Fortran, C and C++
Standardizes last 20 years of SMP practice

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

7

OpenMP Basic Defs: Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Sy
st

em
 la

ye
r

Directives,
Compiler

OpenMP library Environment
variablesPr

og
.

L a
y e

r

Application

End User

U
se

r l
ay

er

Shared Address Space

Proc3Proc2Proc1 ProcN

H
W

8

OpenMP core syntax
Most of the constructs in OpenMP are compiler
directives.

#pragma omp construct [clause [clause]…]
Example

#pragma omp parallel num_threads(4)
Function prototypes and types in the file:

#include <omp.h>
Most OpenMP* constructs apply to a
“structured block”.

Structured block: a block of one or more statements
with one point of entry at the top and one point of
exit at the bottom.
It’s OK to have an exit() within the structured block.

9

Exercise 1, Part A: Hello world
Verify that your environment works
Write a program that prints “hello world”.

void main()
{

int ID = 0;

printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}

void main()
{

int ID = 0;

printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}

10

Exercise 1, Part B: Hello world
Verify that your OpenMP environment works
Write a multithreaded program that prints “hello world”.

void main()
{

int ID = 0;

printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}

void main()
{

int ID = 0;

printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}

#pragma omp parallel

{

}

#include “omp.h”

Switches for compiling and linking

-fopenmp gcc

-mp pgi

/Qopenmp intel

11

Exercise 1: Solution
A multi-threaded “Hello world” program

Write a multithreaded program where each
thread prints “hello world”.

#include “omp.h”
void main()
{

#pragma omp parallel
{

int ID = omp_get_thread_num();
printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}
}

#include “omp.h”
void main()
{

#pragma omp parallel
{

int ID = omp_get_thread_num();
printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}
}

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include fileOpenMP include file

Parallel region with default
number of threads

Parallel region with default
number of threads

Runtime library function to
return a thread ID.

Runtime library function to
return a thread ID.End of the Parallel regionEnd of the Parallel region

12

OpenMP Overview:
How do threads interact?
OpenMP is a multi-threading, shared address
model.

– Threads communicate by sharing variables.
Unintended sharing of data causes race
conditions:

– race condition: when the program’s outcome
changes as the threads are scheduled differently.

To control race conditions:
– Use synchronization to protect data conflicts.

Synchronization is expensive so:
– Change how data is accessed to minimize the need

for synchronization.

13

Outline

Introduction to OpenMP
Creating Threads
Synchronization
Parallel Loops
Synchronize single masters and stuff
Data environment
Schedule your for and sections
Memory model
OpenMP 3.0 and Tasks

14

OpenMP Programming Model:
Fork-Join Parallelism:

Master thread spawns a team of threads as needed.

Parallelism added incrementally until performance goals
are met: i.e. the sequential program evolves into a
parallel program.

Parallel Regions
Master
Thread
in red

A Nested
Parallel
region

A Nested
Parallel
region

Sequential Parts

15

Thread Creation: Parallel Regions

You create threads in OpenMP* with the parallel
construct.
For example, To create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

Each thread calls Each thread calls pooh(ID,A) for for ID = = 0 to to 3

Each thread
executes a
copy of the
code within

the
structured

block

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain
number of threads

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

16

Thread Creation: Parallel Regions
You create threads in OpenMP* with the parallel
construct.
For example, To create a 4 thread Parallel region:

double A[1000];

#pragma omp parallel num_threads(4)
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

Each thread calls Each thread calls pooh(ID,A) for for ID = = 0 to to 3

Each thread
executes a
copy of the
code within

the
structured

block

Each thread
executes a
copy of the
code within

the
structured

block

clause to request a certain
number of threads

clause to request a certain
number of threads

Runtime function
returning a thread ID

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

17

Thread Creation: Parallel Regions example

Each thread executes the
same code redundantly.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID, A);

}
printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A
is shared
between all
threads.

A single
copy of A
is shared
between all
threads.

Threads wait here for all threads to
finish before proceeding (i.e. a barrier)

Threads wait here for all threads to
finish before proceeding (i.e. a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

18

Exercises 2 to 4:
Numerical Integration

∫ 4.0
(1+x2) dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

Where each rectangle has
width Δx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X0.0

19

Exercises 2 to 4: Serial PI Program

static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}}

20

Exercise 2

Create a parallel version of the pi program
using a parallel construct.
Pay close attention to shared versus private
variables.
In addition to a parallel construct, you will need
the runtime library routines

int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

Time in Seconds since a
fixed point in the past

Thread ID or rank

Number of threads in
the team

21

Outline

Introduction to OpenMP
Creating Threads
Synchronization
Parallel Loops
Synchronize single masters and stuff
Data environment
Schedule your for and sections
Memory model
OpenMP 3.0 and Tasks

22

Discussed
later

Synchronization

High level synchronization:
– critical
– atomic
– barrier
– ordered

Low level synchronization
– flush
– locks (both simple and nested)

Synchronization is
used to impose order

constraints and to
protect access to

shared data

23

Synchronization: critical
Mutual exclusion: Only one thread at a time
can enter a critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id;i<niters;i+nthrds){

B = big_job(i);

#pragma omp critical
consume (B, res);

}
}

Threads wait
their turn –
only one at a
time calls
consume()

Threads wait
their turn –
only one at a
time calls
consume()

24

Synchronization: Atomic
Atomic provides mutual exclusion but only
applies to the update of a memory location (the
update of X in the following example)

#pragma omp parallel

{
double tmp, B;

B = DOIT();

#pragma omp atomic
X += big_ugly(B);

}

#pragma omp parallel

{
double tmp, B;

B = DOIT();

tmp = big_ugly(B);

#pragma omp atomic
X += tmp;

}

Atomic only protects
the read/update of X

25

Exercise 3

In exercise 2, you probably used an array to
create space for each thread to store its partial
sum.
If array elements happen to share a cache line,
this leads to false sharing.

– Non-shared data in the same cache line so each
update invalidates the cache line … in essence
“sloshing independent data” back and forth
between threads.

Modify your “pi program” from exercise 2 to
avoid false sharing due to the sum array.

26

Outline

Introduction to OpenMP
Creating Threads
Synchronization
Parallel Loops
Synchronize single masters and stuff
Data environment
Schedule your for and sections
Memory model
OpenMP 3.0 and Tasks

27

Discussed later

SPMD vs. worksharing
A parallel construct by itself creates an SPMD
or “Single Program Multiple Data” program …
i.e., each thread redundantly executes the
same code.
How do you split up pathways through the
code between threads within a team?

This is called worksharing
– Loop construct
– Sections/section constructs
– Single construct
– Task construct …. Coming in OpenMP 3.0

28

The loop worksharing Constructs
The loop workharing construct splits up loop
iterations among the threads in a team
#pragma omp parallel
{
#pragma omp for

for (I=0;I<N;I++){
NEAT_STUFF(I);

}
}

Loop construct
name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each
thread by default. You could do this

explicitly with a “private(I)” clause

29

Loop worksharing Constructs
A motivating example

for(i=0;I<N;i++) { a[i] = a[i] + b[i];}for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
if (id == Nthrds-1)iend = N;
for(i=istart;I<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
if (id == Nthrds-1)iend = N;
for(i=istart;I<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel
#pragma omp for

for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
#pragma omp for

for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

30

Combined parallel/worksharing construct

OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

double res[MAX]; int i;
#pragma omp parallel
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge();
}

}

These are equivalent These are equivalent

double res[MAX]; int i;
#pragma omp parallel for

for (i=0;i< MAX; i++) {
res[i] = huge();

}

31

Working with loops
Basic approach

Find compute intensive loops
Make the loop iterations independent .. So they can
safely execute in any order without loop-carried
dependencies
Place the appropriate OpenMP directive and test

int i, j, A[MAX];
j = 5;
for (i=0;i< MAX; i++) {

j +=2;
A[i] = big(j);

}

int i, A[MAX];
#pragma omp parallel for
for (i=0;i< MAX; i++) {

int j = 5 + 2*i;
A[i] = big(j);

}
Remove loop

carried
dependence

Note: loop index
“i” is private by

default

32

Reduction

We are combining values into a single accumulation
variable (ave) … there is a true dependence between
loop iterations that can’t be trivially removed
This is a very common situation … it is called a
“reduction”.
Support for reduction operations is included in most
parallel programming environments.

double ave=0.0, A[MAX]; int i;
for (i=0;i< MAX; i++) {

ave + = A[i];
}

ave = ave/MAX;

How do we handle this case?

33

Reduction
OpenMP reduction clause:

reduction (op : list)
Inside a parallel or a work-sharing construct:

– A local copy of each list variable is made and initialized
depending on the “op” (e.g. 0 for “+”).

– Compiler finds standard reduction expressions containing
“op” and uses them to update the local copy.

– Local copies are reduced into a single value and
combined with the original global value.

The variables in “list” must be shared in the enclosing
parallel region.

double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
for (i=0;i< MAX; i++) {

ave + = A[i];
}

ave = ave/MAX;

34

OpenMP: Reduction operands/initial-values
Many different associative operands can be used with reduction:
Initial values are the ones that make sense mathematically.

0-
1*
0+

Initial valueOperator

C/C++ only

~0&

0^

0|

1&&
0||

Initial valueOperator

Fortran Only

0.IEOR.
0.IOR.

All bits on.IAND.

Most neg. numberMAX*
Largest pos. numberMIN*

.false..NEQV.

.true..EQV.

.true..AND.
.false..OR.

Initial valueOperator

35

Exercise 4

Go back to the serial pi program and parallelize
it with a loop construct
Your goal is to minimize the number changes
made to the serial program.

36

Outline

Introduction to OpenMP
Creating Threads
Synchronization
Parallel Loops
Synchronize single masters and stuff
Data environment
Schedule your for and sections
Memory model
OpenMP 3.0 and Tasks

37

Synchronization: Barrier
Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
A[id] = big_calc4(id);

}
implicit barrier at the end
of a parallel region
implicit barrier at the end
of a parallel region

implicit barrier at the end of a
for worksharing construct
implicit barrier at the end of a
for worksharing construct

no implicit barrier
due to nowait
no implicit barrier
due to nowait

38

Master Construct
The master construct denotes a structured
block that is only executed by the master thread.
The other threads just skip it (no
synchronization is implied).

#pragma omp parallel
{

do_many_things();
#pragma omp master

{ exchange_boundaries(); }
#pragma omp barrier

do_many_other_things();
}

39

Single worksharing Construct
The single construct denotes a block of code that is
executed by only one thread (not necessarily the
master thread).
A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel
{

do_many_things();
#pragma omp single

{ exchange_boundaries(); }
do_many_other_things();

}

40

Synchronization: ordered

The ordered region executes in the sequential
order.

#pragma omp parallel private (tmp)
#pragma omp for ordered reduction(+:res)

for (I=0;I<N;I++){
tmp = NEAT_STUFF(I);

#pragma ordered
res += consum(tmp);

}

41

Synchronization: Lock routines
Simple Lock routines:

A simple lock is available if it is unset.
– omp_init_lock(), omp_set_lock(),

omp_unset_lock(), omp_test_lock(),
omp_destroy_lock()

Nested Locks
A nested lock is available if it is unset or if it is set but
owned by the thread executing the nested lock function

– omp_init_nest_lock(), omp_set_nest_lock(),
omp_unset_nest_lock(), omp_test_nest_lock(),
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the
lock, so you don’t need to use a flush on the lock variable.

A lock implies a
memory fence
(a “flush”) of

all thread
visible

variables

42

Synchronization: Simple Locks
Protect resources with locks.

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{

id = omp_get_thread_num();
tmp = do_lots_of_work(id);
omp_set_lock(&lck);

printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);

}
omp_destroy_lock(&lck);

Wait here for
your turn.
Wait here for
your turn.

Release the lock
so the next thread
gets a turn.

Release the lock
so the next thread
gets a turn.

Free-up storage when done.Free-up storage when done.

43

Runtime Library routines
Runtime environment routines:

– Modify/Check the number of threads
– omp_set_num_threads(), omp_get_num_threads(),

omp_get_thread_num(), omp_get_max_threads()
– Are we in an active parallel region?

– omp_in_parallel()
– Do you want the system to dynamically vary the number of

threads from one parallel construct to another?
– omp_set_dynamic, omp_get_dynamic();

– How many processors in the system?
– omp_num_procs()

…plus a few less commonly used routines.

44

Runtime Library routines
To use a known, fixed number of threads in a program,
(1) tell the system that you don’t want dynamic adjustment of
the number of threads, (2) set the number of threads, then (3)
save the number you got.

#include <omp.h>
void main()
{ int num_threads;

omp_set_dynamic(0);
omp_set_num_threads(omp_num_procs());

#pragma omp parallel
{ int id=omp_get_thread_num();

#pragma omp single
num_threads = omp_get_num_threads();

do_lots_of_stuff(id);
}

}

Protect this op since Memory
stores are not atomic

Request as many threads as
you have processors.

Disable dynamic adjustment of the
number of threads.

Even in this case, the system may give you fewer
threads than requested. If the precise # of threads
matters, test for it and respond accordingly.

Even in this case, the system may give you fewer
threads than requested. If the precise # of threads
matters, test for it and respond accordingly.

45

Environment Variables

Set the default number of threads to use.
– OMP_NUM_THREADS int_literal

Control how “omp for schedule(RUNTIME)”
loop iterations are scheduled.

– OMP_SCHEDULE “schedule[, chunk_size]”

… Plus several less commonly used environment variables.

46

Outline

Introduction to OpenMP
Creating Threads
Synchronization
Parallel Loops
Synchronize single masters and stuff
Data environment
Schedule your for and sections
Memory model
OpenMP 3.0 and Tasks

47

Data environment:
Default storage attributes

Shared Memory programming model:
– Most variables are shared by default

Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE

variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called

from parallel regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.

48

double A[10];
int main() {
int index[10];
#pragma omp parallel

work(index);
printf(“%d\n”, index[0]);

}

extern double A[10];
void work(int *index) {
double temp[10];
static int count;
...

}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

A, index and count are
shared by all threads.

temp is local to each
thread

* Third party trademarks and names are the property of their respective owner.

49

Data sharing:
Changing storage attributes

One can selectively change storage attributes for
constructs using the following clauses*

– SHARED
– PRIVATE
– FIRSTPRIVATE

The final value of a private inside a parallel loop can be
transmitted to the shared variable outside the loop with:

– LASTPRIVATE
The default attributes can be overridden with:

– DEFAULT (PRIVATE | SHARED | NONE)

All the clauses on this page
apply to the OpenMP construct
NOT to the entire region.

All the clauses on this page
apply to the OpenMP construct
NOT to the entire region.

All data clauses apply to parallel constructs and worksharing constructs except
“shared” which only applies to parallel constructs.

DEFAULT(PRIVATE) is Fortran only

50

Data Sharing: Private Clause

void wrong() {
int tmp = 0;

#pragma omp for private(tmp)
for (int j = 0; j < 1000; ++j)

tmp += j;
printf(“%d\n”, tmp);

}

private(var) creates a new local copy of var for each thread.
– The value is uninitialized
– In OpenMP 2.5 the value of the shared variable is undefined after

the region

tmp was not
initialized
tmp was not
initialized

tmp: 0 in 3.0,
unspecified in 2.5
tmp: 0 in 3.0,
unspecified in 2.5

51

Data Sharing: Private Clause
When is the original variable valid?

int tmp;
void danger() {

tmp = 0;
#pragma omp parallel private(tmp)

work();
printf(“%d\n”, tmp);

}

The original variable’s value is unspecified in OpenMP 2.5.
In OpenMP 3.0, if it is referenced outside of the construct

– Implementations may reference the original variable or a copy …..
A dangerous programming practice!

extern int tmp;
void work() {

tmp = 5;
}

unspecified which
copy of tmp
unspecified which
copy of tmptmp has unspecified

value
tmp has unspecified
value

52

Data Sharing: Firstprivate Clause

Firstprivate is a special case of private.
– Initializes each private copy with the corresponding

value from the master thread.

tmp: 0 in 3.0, unspecified in 2.5tmp: 0 in 3.0, unspecified in 2.5

void useless() {
int tmp = 0;

#pragma omp for firstprivate(tmp)
for (int j = 0; j < 1000; ++j)

tmp += j;
printf(“%d\n”, tmp);

}

Each thread gets its own
tmp with an initial value of 0
Each thread gets its own
tmp with an initial value of 0

53

Data sharing: Lastprivate Clause

Lastprivate passes the value of a private from the
last iteration to a global variable.

tmp is defined as its value at the “last
sequential” iteration (i.e., for j=999)
tmp is defined as its value at the “last
sequential” iteration (i.e., for j=999)

void closer() {
int tmp = 0;

#pragma omp parallel for firstprivate(tmp) \
lastprivate(tmp)
for (int j = 0; j < 1000; ++j)

tmp += j;
printf(“%d\n”, tmp);

}

Each thread gets its own tmp
with an initial value of 0
Each thread gets its own tmp
with an initial value of 0

54

Data Sharing:
A data environment test

Consider this example of PRIVATE and FIRSTPRIVATE

Are A,B,C local to each thread or shared inside the parallel region?
What are their initial values inside and values after the parallel region?

variables A,B, and C = 1
#pragma omp parallel private(B) firstprivate(C)

Inside this parallel region ...
“A” is shared by all threads; equals 1
“B” and “C” are local to each thread.

– B’s initial value is undefined
– C’s initial value equals 1

Outside this parallel region ...
The values of “B” and “C” are unspecified in OpenMP 2.5, and in
OpenMP 3.0 if referenced in the region but outside the construct.

55

Data Sharing: Default Clause

Note that the default storage attribute is DEFAULT(SHARED) (so
no need to use it)

Exception: #pragma omp task
To change default: DEFAULT(PRIVATE)

each variable in the construct is made private as if specified in a
private clause
mostly saves typing

DEFAULT(NONE): no default for variables in static extent. Must
list storage attribute for each variable in static extent. Good
programming practice!

Only the Fortran API supports default(private).

C/C++ only has default(shared) or default(none).

56

Data Sharing: Default Clause Example

itotal = 1000
C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)

np = omp_get_num_threads()
each = itotal/np
………

C$OMP END PARALLEL

itotal = 1000
C$OMP PARALLEL PRIVATE(np, each)

np = omp_get_num_threads()
each = itotal/np
………

C$OMP END PARALLEL

These two
code
fragments are
equivalent

57

Data Sharing: tasks (OpenMP 3.0)
The default for tasks is usually firstprivate, because the task may
not be executed until later (and variables may have gone out of
scope).
Variables that are shared in all constructs starting from the
innermost enclosing parallel construct are shared, because the
barrier guarantees task completion.

#pragma omp parallel shared(A) private(B)
{

...
#pragma omp task

{
int C;
compute(A, B, C);

}
}

A is shared
B is firstprivate
C is private

3.0

58

Data sharing: Threadprivate

Makes global data private to a thread
Fortran: COMMON blocks
C: File scope and static variables, static class members

Different from making them PRIVATE
with PRIVATE global variables are masked.
THREADPRIVATE preserves global scope within each
thread

Threadprivate variables can be initialized using
COPYIN or at time of definition (using language-
defined initialization capabilities).

59

A threadprivate example (C)

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{

counter++;
return (counter);

}

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{

counter++;
return (counter);

}

Use threadprivate to create a counter for each
thread.

60

Data Copying: Copyin

parameter (N=1000)
common/buf/A(N)

!$OMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

… Now each thread sees threadprivate array A initialied
… to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

parameter (N=1000)
common/buf/A(N)

!$OMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

… Now each thread sees threadprivate array A initialied
… to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin
clause.

61

Data Copying: Copyprivate

#include <omp.h>
void input_parameters (int, int); // fetch values of input parameters
void do_work(int, int);

void main()
{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)
{

#pragma omp single copyprivate (Nsize, choice)
input_parameters (Nsize, choice);

do_work(Nsize, choice);
}

}

#include <omp.h>
void input_parameters (int, int); // fetch values of input parameters
void do_work(int, int);

void main()
{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)
{

#pragma omp single copyprivate (Nsize, choice)
input_parameters (Nsize, choice);

do_work(Nsize, choice);
}

}

Used with a single region to broadcast values of privates
from one member of a team to the rest of the team.

62

Exercise 5: Monte Carlo Calculations
Using Random numbers to solve tough problems

Sample a problem domain to estimate areas, compute
probabilities, find optimal values, etc.
Example: Computing π with a digital dart board:

Throw darts at the circle/square.
Chance of falling in circle is
proportional to ratio of areas:

Ac = r2 * π
As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4
Compute π by randomly choosing
points, count the fraction that falls in
the circle, compute pi.

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

63

Exercise 5
We provide three files for this exercise

pi_mc.c: the monte carlo method pi program
random.c: a simple random number generator
random.h: include file for random number generator

Create a parallel version of this program without
changing the interfaces to functions in random.c

This is an exercise in modular software … why should a user
of your parallel random number generator have to know any
details of the generator or make any changes to how the
generator is called?

Extra Credit:
Make the random number generator threadsafe.
Make your random number generator numerically correct (non-
overlapping sequences of pseudo-random numbers).

64

Outline

Introduction to OpenMP
Creating Threads
Synchronization
Parallel Loops
Synchronize single masters and stuff
Data environment
Schedule your for and sections
Memory model
OpenMP 3.0 and Tasks

65

Sections worksharing Construct
The Sections worksharing construct gives a
different structured block to each thread.

#pragma omp parallel
{

#pragma omp sections
{
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

}

#pragma omp parallel
{

#pragma omp sections
{
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

}

By default, there is a barrier at the end of the “omp
sections”. Use the “nowait” clause to turn off the barrier.

66

loop worksharing constructs:
The schedule clause
The schedule clause affects how loop iterations are
mapped onto threads

schedule(static [,chunk])
– Deal-out blocks of iterations of size “chunk” to each thread.

schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all

iterations have been handled.

schedule(guided[,chunk])
– Threads dynamically grab blocks of iterations. The size of the

block starts large and shrinks down to size “chunk” as the
calculation proceeds.

schedule(runtime)
– Schedule and chunk size taken from the OMP_SCHEDULE

environment variable (or the runtime library … for OpenMP 3.0).

67

Special case of dynamic
to reduce scheduling
overhead

GUIDED

Unpredictable, highly
variable work per
iteration

DYNAMIC

Pre-determined and
predictable by the
programmer

STATIC

When To UseSchedule Clause

loop work-sharing constructs:
The schedule clauseThe schedule clause

Least work at
runtime :
scheduling
done at
compile-time

Least work at
runtime :
scheduling
done at
compile-time

Most work at
runtime :
complex
scheduling
logic used at
run-time

Most work at
runtime :
complex
scheduling
logic used at
run-time

68

Exercise 6: hard

Consider the program linked.c
Traverses a linked list computing a sequence of
Fibonacci numbers at each node.

Parallelize this program using constructs
defined in OpenMP 2.5 (loop worksharing
constructs).
Once you have a correct program, optimize it.

69

Exercise 6: easy

Parallelize the matrix multiplication program in
the file matmul.c
Can you optimize the program by playing with
how the loops are scheduled?

70

Outline

Introduction to OpenMP
Creating Threads
Synchronization
Parallel Loops
Synchronize single masters and stuff
Data environment
Schedule your for and sections
Memory model
OpenMP 3.0 and Tasks

71

OpenMP memory model

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

a

. . .

A memory model is defined in terms of:
Coherence: Behavior of the memory system when a single
address is accessed by multiple threads.
Consistency: Orderings of accesses to different addresses by
multiple threads.

OpenMP supports a shared memory model.
All threads share an address space, but it can get complicated:

72

Source code

Program order

memory
a b

Commit order

private view

thread thread

private view
threadprivatethreadprivatea ab b

Wa Wb Ra Rb . . .

OpenMP Memory Model: Basic Terms

compiler

Executable code

Code order

Wb Rb Wa Ra . . .

RW’s in any
semantically

equivalent order

73

Consistency: Memory Access Re-ordering

Re-ordering:
Compiler re-orders program order to the code order
Machine re-orders code order to the memory
commit order

At a given point in time, the temporary view of
memory may vary from shared memory.
Consistency models based on orderings of
Reads (R), Writes (W) and Synchronizations (S):

R→R, W→W, R→W, R→S, S→S, W→S

74

Consistency

Sequential Consistency:
In a multi-processor, ops (R, W, S) are sequentially
consistent if:

– They remain in program order for each
processor.

– They are seen to be in the same overall order by
each of the other processors.

Program order = code order = commit order
Relaxed consistency:

Remove some of the ordering constraints for
memory ops (R, W, S).

75

OpenMP and Relaxed Consistency

OpenMP defines consistency as a variant of
weak consistency:

S ops must be in sequential order across threads.
Can not reorder S ops with R or W ops on the same
thread

– Weak consistency guarantees
S→W, S→R , R→S, W→S, S→S

The Synchronization operation relevant to this
discussion is flush.

76

Flush
Defines a sequence point at which a thread is
guaranteed to see a consistent view of memory with
respect to the “flush set”.
The flush set is:

“all thread visible variables” for a flush construct without an
argument list.
a list of variables when the “flush(list)” construct is used.

The action of Flush is to guarantee that:
– All R,W ops that overlap the flush set and occur prior to the

flush complete before the flush executes
– All R,W ops that overlap the flush set and occur after the

flush don’t execute until after the flush.
– Flushes with overlapping flush sets can not be reordered.

Memory ops: R = Read, W = write, S = synchronization

77

Synchronization: flush example
Flush forces data to be updated in memory so other
threads see the most recent value

double A;

A = compute();

flush(A); // flush to memory to make sure other
// threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in
other shared memory API’s.

Note: OpenMP’s flush is analogous to a fence in
other shared memory API’s.

78

Exercise 7: producer consumer

Parallelize the “prod_cons.c” program.
This is a well known pattern called the
producer consumer pattern

One thread produces values that another thread
consumes.
Often used with a stream of produced values to
implement “pipeline parallelism”

The key is to implement pairwise
synchronization between threads.

79

Exercise 7: prod_cons.c
int main()
{
double *A, sum, runtime; int flag = 0;

A = (double *)malloc(N*sizeof(double));

runtime = omp_get_wtime();

fill_rand(N, A); // Producer: fill an array of data

sum = Sum_array(N, A); // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf seconds, The sum is %lf \n",runtime,sum);
}

I need to put the
prod/cons pair

inside a loop so its
true pipeline
parallelism.

80

What is the Big Deal with Flush?
Compilers routinely reorder instructions implementing
a program

This helps better exploit the functional units, keep machine
busy, hide memory latencies, etc.

Compiler generally cannot move instructions:
past a barrier
past a flush on all variables

But it can move them past a flush with a list of
variables so long as those variables are not accessed
Keeping track of consistency when flushes are used
can be confusing … especially if “flush(list)” is used.

Note: the flush operation does not actually synchronize
different threads. It just ensures that a thread’s values

are made consistent with main memory.

81

Outline

Introduction to OpenMP
Creating Threads
Synchronization
Parallel Loops
Synchronize single masters and stuff
Data environment
Schedule your for and sections
Memory model
OpenMP 3.0 and Tasks

82

OpenMP pre-history

OpenMP based upon SMP directive
standardization efforts PCF and aborted ANSI
X3H5 – late 80’s

Nobody fully implemented either standard
Only a couple of partial implementations

Vendors considered proprietary API’s to be a
competitive feature:

Every vendor had proprietary directives sets
Even KAP, a “portable” multi-platform parallelization
tool used different directives on each platform

PCF – Parallel computing forum KAP – parallelization tool from KAI.

83

History of OpenMP

SGI

Cray

Merged,
needed
commonality
across
products

KAI ISV - needed
larger market

was tired of
recoding for
SMPs. Urged
vendors to
standardize.

ASCI

Wrote a
rough draft
straw man
SMP API

DEC

IBM

Intel

HP

Other vendors
invited to join

1997

84

OpenMP Release History

OpenMP
Fortran 1.1
OpenMP

Fortran 1.1

OpenMP
C/C++ 1.0
OpenMP

C/C++ 1.0

OpenMP
Fortran 2.0
OpenMP

Fortran 2.0

OpenMP
C/C++ 2.0
OpenMP

C/C++ 2.0

1998

20001999

2002

OpenMP
Fortran 1.0
OpenMP

Fortran 1.0

1997

OpenMP
2.5

OpenMP
2.5

2005

A single
specification
for Fortran, C
and C++

OpenMP
3.0

OpenMP
3.0

tasking,
other new
features

2008

85

Tasks

Adding tasking is the biggest addition for 3.0

Worked on by a separate subcommittee
led by Jay Hoeflinger at Intel

Re-examined issue from ground up
quite different from Intel taskq’s

3.0

86

General task characteristics

A task has
Code to execute
A data environment (it owns its data)
An assigned thread that executes the code and
uses the data

Two activities: packaging and execution
Each encountering thread packages a new instance
of a task (code and data)
Some thread in the team executes the task at some
later time

3.0

87

Definitions
Task construct – task directive plus structured
block
Task – the package of code and instructions
for allocating data created when a thread
encounters a task construct
Task region – the dynamic sequence of
instructions produced by the execution of a
task by a thread

3.0

88

Tasks and OpenMP
Tasks have been fully integrated into OpenMP
Key concept: OpenMP has always had tasks, we just
never called them that.

Thread encountering parallel construct packages
up a set of implicit tasks, one per thread.
Team of threads is created.
Each thread in team is assigned to one of the tasks
(and tied to it).
Barrier holds original master thread until all implicit
tasks are finished.

We have simply added a way to create a task explicitly
for the team to execute.
Every part of an OpenMP program is part of one task or
another!

3.0

89

task Construct

#pragma omp task [clause[[,]clause] ...]
structured-block

if (expression)
untied
shared (list)
private (list)
firstprivate (list)
default(shared | none)

where clause can be one of:

3.0

90

The if clause

When the if clause argument is false
The task is executed immediately by the encountering
thread.
The data environment is still local to the new task...
...and it’s still a different task with respect to
synchronization.

It’s a user directed optimization
when the cost of deferring the task is too great
compared to the cost of executing the task code
to control cache and memory affinity

3.0

91

When/where are tasks complete?

At thread barriers, explicit or implicit
applies to all tasks generated in the current parallel
region up to the barrier
matches user expectation

At task barriers
i.e. Wait until all tasks defined in the current task have
completed.
#pragma omp taskwait

Note: applies only to tasks generated in the current task,
not to “descendants” .

3.0

92

Example – parallel pointer chasing
using tasks

#pragma omp parallel
{

#pragma omp single private(p)
{
p = listhead ;
while (p) {

#pragma omp task
process (p)

p=next (p) ;
}

}
}

p is firstprivate inside
this task

3.0

93

Example – parallel pointer chasing on
multiple lists using tasks

#pragma omp parallel
{

#pragma omp for private(p)
for (int i =0; i <numlists ; i++) {

p = listheads [i] ;
while (p) {
#pragma omp task

process (p)
p=next (p) ;
}

}
}

3.0

94

Example: postorder tree traversal

void postorder(node *p) {
if (p->left)

#pragma omp task
postorder(p->left);

if (p->right)
#pragma omp task

postorder(p->right);
#pragma omp taskwait // wait for descendants

process(p->data);
}

Parent task suspended until children tasks complete

Task scheduling point

3.0

95

Task switching

Certain constructs have task scheduling points
at defined locations within them
When a thread encounters a task scheduling
point, it is allowed to suspend the current task
and execute another (called task switching)
It can then return to the original task and
resume

3.0

96

Task switching example

#pragma omp single
{

for (i=0; i<ONEZILLION; i++)
#pragma omp task

process(item[i]);
}

Too many tasks generated in an eye-blink
Generating task will have to suspend for a while
With task switching, the executing thread can:

execute an already generated task (draining the
“task pool”)
dive into the encountered task (could be very
cache-friendly)

3.0

97

Thread switching
#pragma omp single
{

#pragma omp task
for (i=0; i<ONEZILLION; i++)

#pragma omp task
process(item[i]);

}

Eventually, too many tasks are generated
Generating task is suspended and executing thread switches to a
long and boring task
Other threads get rid of all already generated tasks, and start
starving…

With thread switching, the generating task can be resumed by a
different thread, and starvation is over
Too strange to be the default: the programmer is responsible!

untied

3.0

98

Dealing with taskprivate data

The Taskprivate directive was removed from
OpenMP 3.0

Too expensive to implement
Restrictions on task scheduling allow
threadprivate data to be used

User can avoid thread switching with tied tasks
Task scheduling points are well defined

3.0

99

Conclusions on tasks
Enormous amount of work by many people

Tightly integrated into 3.0 spec

Flexible model for irregular parallelism

Provides balanced solution despite often conflicting
goals

Appears that performance can be reasonable

3.0

100

Nested parallelism
Better support for nested parallelism
Per-thread internal control variables

Allows, for example, calling
omp_set_num_threads() inside a parallel region.
Controls the team sizes for next level of parallelism

Library routines to determine depth of nesting,
IDs of parent/grandparent etc. threads, team
sizes of parent/grandparent etc. teams

omp_get_active_level()
omp_get_ancestor(level)
omp_get_teamsize(level)

3.0

101

Parallel loops
Guarantee that this works … i.e. that the same
schedule is used in the two loops:

!$omp do schedule(static)
do i=1,n

a(i) =
end do
!$omp end do nowait
!$omp do schedule(static)
do i=1,n

.... = a(i)
end do

3.0

102

Loops (cont.)

Allow collapsing of perfectly nested loops

Will form a single loop and then parallelize that

!$omp parallel do collapse(2)
do i=1,n

do j=1,n
.....

end do
end do

3.0

103

Loops (cont.)

Made schedule(runtime) more useful
can get/set it with library routines

omp_set_schedule()
omp_get_schedule()

allow implementations to implement their own
schedule kinds

Added a new schedule kind AUTO which gives
full freedom to the runtime to determine the
scheduling of iterations to threads.
Allowed C++ Random access iterators as loop
control variables in parallel loops

3.0

104

Portable control of threads

Added environment variable to control the size
of child threads’ stack

OMP_STACKSIZE

Added environment variable to hint to runtime
how to treat idle threads

OMP_WAIT_POLICY
ACTIVE keep threads alive at barriers/locks
PASSIVE try to release processor at barriers/locks

3.0

105

Control program execution
Added environment variable and runtime
routines to get/set the maximum number of
active levels of nested parallelism

OMP_MAX_ACTIVE_LEVELS
omp_set_max_active_levels()
omp_get_max_active_levels()

Added environment variable to set maximum
number of threads in use

OMP_THREAD_LIMIT
omp_get_thread_limit()

3.0

106

Odds and ends
Allow unsigned ints in parallel for loops
Disallow use of the original variable as master thread’s
private variable
Make it clearer where/how private objects are
constructed/destructed
Relax some restrictions on allocatable arrays and
Fortran pointers
Plug some minor gaps in memory model
Allow C++ static class members to be threadprivate
Improve C/C++ grammar
Minor fixes and clarifications to 2.5

3.0

107

Exercise 8: tasks in OpenMP

Consider the program linked.c
Traverses a linked list computing a sequence of
Fibonacci numbers at each node.

Parallelize this program using tasks.
Compare your solution’s complexity compared
to the approach without tasks.

108

Conclusion

OpenMP 3.0 is a major upgrade … expands the
range of algorithms accessible from OpenMP.
OpenMP is fun and about “as easy as we can
make it” for applications programmers working
with shared memory platforms.

109

OpenMP Organizations

OpenMP architecture review board URL,
the “owner” of the OpenMP specification:

www.openmp.org
OpenMP User’s Group (cOMPunity) URL:

www.compunity.org

Get involved, join compunity and
help define the future of OpenMP
Get involved, join compunity and
help define the future of OpenMP

110

Books about OpenMP

A new book about
OpenMP 2.5 by a team of
authors at the forefront of
OpenMP’s evolution.

A book about how to
“think parallel” with
examples in OpenMP, MPI
and java

111

OpenMP Papers
Sosa CP, Scalmani C, Gomperts R, Frisch MJ. Ab initio quantum chemistry on a
ccNUMA architecture using OpenMP. III. Parallel Computing, vol.26, no.7-8, July
2000, pp.843-56. Publisher: Elsevier, Netherlands.

Couturier R, Chipot C. Parallel molecular dynamics using OPENMP on a shared
memory machine. Computer Physics Communications, vol.124, no.1, Jan. 2000,
pp.49-59. Publisher: Elsevier, Netherlands.

Bentz J., Kendall R., “Parallelization of General Matrix Multiply Routines Using
OpenMP”, Shared Memory Parallel Programming with OpenMP, Lecture notes in
Computer Science, Vol. 3349, P. 1, 2005

Bova SW, Breshearsz CP, Cuicchi CE, Demirbilek Z, Gabb HA. Dual-level parallel
analysis of harbor wave response using MPI and OpenMP. International Journal
of High Performance Computing Applications, vol.14, no.1, Spring 2000, pp.49-64.
Publisher: Sage Science Press, USA.

Ayguade E, Martorell X, Labarta J, Gonzalez M, Navarro N. Exploiting multiple
levels of parallelism in OpenMP: a case study. Proceedings of the 1999
International Conference on Parallel Processing. IEEE Comput. Soc. 1999,
pp.172-80. Los Alamitos, CA, USA.

Bova SW, Breshears CP, Cuicchi C, Demirbilek Z, Gabb H. Nesting OpenMP in
an MPI application. Proceedings of the ISCA 12th International Conference.
Parallel and Distributed Systems. ISCA. 1999, pp.566-71. Cary, NC, USA.

112

OpenMP Papers (continued)
Jost G., Labarta J., Gimenez J., What Multilevel Parallel Programs do when you
are not watching: a Performance analysis case study comparing MPI/OpenMP,
MLP, and Nested OpenMP, Shared Memory Parallel Programming with OpenMP,
Lecture notes in Computer Science, Vol. 3349, P. 29, 2005
Gonzalez M, Serra A, Martorell X, Oliver J, Ayguade E, Labarta J, Navarro N.
Applying interposition techniques for performance analysis of OPENMP parallel
applications. Proceedings 14th International Parallel and Distributed Processing
Symposium. IPDPS 2000. IEEE Comput. Soc. 2000, pp.235-40.
Chapman B, Mehrotra P, Zima H. Enhancing OpenMP with features for locality
control. Proceedings of Eighth ECMWF Workshop on the Use of Parallel
Processors in Meteorology. Towards Teracomputing. World Scientific Publishing.
1999, pp.301-13. Singapore.
Steve W. Bova, Clay P. Breshears, Henry Gabb, Rudolf Eigenmann, Greg Gaertner,
Bob Kuhn, Bill Magro, Stefano Salvini. Parallel Programming with Message
Passing and Directives; SIAM News, Volume 32, No 9, Nov. 1999.
Cappello F, Richard O, Etiemble D. Performance of the NAS benchmarks on a
cluster of SMP PCs using a parallelization of the MPI programs with OpenMP.
Lecture Notes in Computer Science Vol.1662. Springer-Verlag. 1999, pp.339-50.
Liu Z., Huang L., Chapman B., Weng T., Efficient Implementationi of OpenMP for
Clusters with Implicit Data Distribution, Shared Memory Parallel Programming with
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 121, 2005

113

OpenMP Papers (continued)

B. Chapman, F. Bregier, A. Patil, A. Prabhakar, “Achieving
performance under OpenMP on ccNUMA and software distributed
shared memory systems,” Concurrency and Computation: Practice and
Experience. 14(8-9): 713-739, 2002.
J. M. Bull and M. E. Kambites. JOMP: an OpenMP-like interface for
Java. Proceedings of the ACM 2000 conference on Java Grande, 2000,
Pages 44 - 53.
L. Adhianto and B. Chapman, “Performance modeling of
communication and computation in hybrid MPI and OpenMP
applications, Simulation Modeling Practice and Theory, vol 15, p. 481-
491, 2007.
Shah S, Haab G, Petersen P, Throop J. Flexible control structures for
parallelism in OpenMP; Concurrency: Practice and Experience, 2000;
12:1219-1239. Publisher John Wiley & Sons, Ltd.
Mattson, T.G., How Good is OpenMP? Scientific Programming, Vol. 11,
Number 2, p.81-93, 2003.
Duran A., Silvera R., Corbalan J., Labarta J., “Runtime Adjustment of
Parallel Nested Loops”, Shared Memory Parallel Programming with
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 137, 2005

114

Appendix: Solutions to exercises
Exercise 1: hello world
Exercise 2: Simple SPMD Pi program
Exercise 3: SPMD Pi without false sharing
Exercise 4: Loop level Pi
Exercise 5: Producer-consumer
Exercise 6: Monte Carlo Pi and random numbers
Exercise 7: hard, linked lists without tasks
Exercise 7: easy, matrix multiplication
Exercise 8: linked lists with tasks

115

Exercise 1: Solution
A multi-threaded “Hello world” program

Write a multithreaded program where each
thread prints “hello world”.

#include “omp.h”
void main()
{

#pragma omp parallel
{

int ID = omp_get_thread_num();
printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}
}

#include “omp.h”
void main()
{

#pragma omp parallel
{

int ID = omp_get_thread_num();
printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}
}

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include fileOpenMP include file

Parallel region with default
number of threads

Parallel region with default
number of threads

Runtime library function to
return a thread ID.

Runtime library function to
return a thread ID.End of the Parallel regionEnd of the Parallel region

116

Appendix: Solutions to exercises
Exercise 1: hello world
Exercise 2: Simple SPMD Pi program
Exercise 3: SPMD Pi without false sharing
Exercise 4: Loop level Pi
Exercise 5: Producer-consumer
Exercise 6: Monte Carlo Pi and random numbers
Exercise 7: hard, linked lists without tasks
Exercise 7: easy, matrix multiplication
Exercise 8: linked lists with tasks

117

The SPMD pattern
The most common approach for parallel
algorithms is the SPMD or Single Program
Multiple Data pattern.
Each thread runs the same program (Single
Program), but using the thread ID, they operate
on different data (Multiple Data) or take slightly
different paths through the code.
In OpenMP this means:

A parallel region “near the top of the code”.
Pick up thread ID and num_threads.
Use them to split up loops and select different blocks
of data to work on.

118

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
{

int i, id,nthrds;
double x;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;
}

Exercise 2: A simple SPMD pi program
Promote scalar to an
array dimensioned by
number of threads to
avoid race condition.

Promote scalar to an
array dimensioned by
number of threads to
avoid race condition.

This is a common trick in
SPMD programs to create
a cyclic distribution of loop
iterations

This is a common trick in
SPMD programs to create
a cyclic distribution of loop
iterations

Only one thread should copy
the number of threads to the
global value to make sure
multiple threads writing to the
same address don’t conflict.

Only one thread should copy
the number of threads to the
global value to make sure
multiple threads writing to the
same address don’t conflict.

119

Appendix: Solutions to exercises
Exercise 1: hello world
Exercise 2: Simple SPMD Pi program
Exercise 3: SPMD Pi without false sharing
Exercise 4: Loop level Pi
Exercise 5: Producer-consumer
Exercise 6: Monte Carlo Pi and random numbers
Exercise 7: hard, linked lists without tasks
Exercise 7: easy, matrix multiplication
Exercise 8: linked lists with tasks

120

False sharing
If independent data elements happen to sit on the same
cache line, each update will cause the cache lines to
“slosh back and forth” between threads.

This is called “false sharing”.
If you promote scalars to an array to support creation
of an SPMD program, the array elements are
contiguous in memory and hence share cache lines.

Result … poor scalability
Solution:

When updates to an item are frequent, work with local copies
of data instead of an array indexed by the thread ID.
Pad arrays so elements you use are on distinct cache lines.

121

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ double pi; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

int i, id,nthrds; double x, sum;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
#pragma omp critical

pi += sum * step;
}
}

Exercise 3: SPMD Pi without false sharing

Sum goes “out of scope” beyond the
parallel region … so you must sum it in
here. Must protect summation into pi in
a critical region so updates don’t conflict

Sum goes “out of scope” beyond the
parallel region … so you must sum it in
here. Must protect summation into pi in
a critical region so updates don’t conflict

No array, so
no false
sharing.

No array, so
no false
sharing.

Create a scalar local
to each thread to
accumulate partial
sums.

Create a scalar local
to each thread to
accumulate partial
sums.

122

Appendix: Solutions to exercises
Exercise 1: hello world
Exercise 2: Simple SPMD Pi program
Exercise 3: SPMD Pi without false sharing
Exercise 4: Loop level Pi
Exercise 5: Producer-consumer
Exercise 6: Monte Carlo Pi and random numbers
Exercise 7: hard, linked lists without tasks
Exercise 7: easy, matrix multiplication
Exercise 8: linked lists with tasks

123

Exercise 4: solution
#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction(+:sum)
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}
Note: we created a parallel
program without changing
any code and by adding 4

simple lines!

Note: we created a parallel
program without changing
any code and by adding 4

simple lines!

i private
by default

i private
by default

For good OpenMP
implementations,
reduction is more

scalable than critical.

For good OpenMP
implementations,
reduction is more

scalable than critical.

124

Appendix: Solutions to exercises
Exercise 1: hello world
Exercise 2: Simple SPMD Pi program
Exercise 3: SPMD Pi without false sharing
Exercise 4: Loop level Pi
Exercise 5: Monte Carlo Pi and random numbers
Exercise 6: hard, linked lists without tasks
Exercise 6: easy, matrix multiplication
Exercise 7: Producer-consumer
Exercise 8: linked lists with tasks

125

Computers and random numbers
We use “dice” to make random numbers:

Given previous values, you cannot predict the next value.
There are no patterns in the series … and it goes on forever.

Computers are deterministic machines … set an initial
state, run a sequence of predefined instructions, and
you get a deterministic answer

By design, computers are not random and cannot produce
random numbers.

However, with some very clever programming, we can
make “pseudo random” numbers that are as random as
you need them to be … but only if you are very careful.
Why do I care? Random numbers drive statistical
methods used in countless applications:

Sample a large space of alternatives to find statistically good
answers (Monte Carlo methods).

126

Monte Carlo Calculations:
Using Random numbers to solve tough problems

Sample a problem domain to estimate areas, compute
probabilities, find optimal values, etc.
Example: Computing π with a digital dart board:

Throw darts at the circle/square.
Chance of falling in circle is
proportional to ratio of areas:

Ac = r2 * π
As = (2*r) * (2*r) = 4 * r2

P = Ac/As = π /4
Compute π by randomly choosing
points, count the fraction that falls in
the circle, compute pi.

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

N= 10 π = 2.8

N=100 π = 3.16

N= 1000 π = 3.148

127

Parallel Programmers love Monte Carlo
algorithms

#include “omp.h”
static long num_trials = 10000;
int main ()
{

long i; long Ncirc = 0; double pi, x, y;
double r = 1.0; // radius of circle. Side of squrare is 2*r
seed(0,-r, r); // The circle and square are centered at the origin
#pragma omp parallel for private (x, y) reduction (+:Ncirc)
for(i=0;i<num_trials; i++)
{

x = random(); y = random();
if (x*x + y*y) <= r*r) Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);
printf("\n %d trials, pi is %f \n",num_trials, pi);

}

Embarrassingly parallel: the
parallelism is so easy its

embarrassing.
Add two lines and you have a

parallel program.

128

Linear Congruential Generator (LCG)
LCG: Easy to write, cheap to compute, portable, OK quality

If you pick the multiplier and addend correctly, LCG has a
period of PMOD.
Picking good LCG parameters is complicated, so look it up
(Numerical Recipes is a good source). I used the following:

MULTIPLIER = 1366
ADDEND = 150889
PMOD = 714025

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

129

LCG code
static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
double random ()
{

long random_next;

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

Seed the pseudo random
sequence by setting

random_last

130

Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

LCG - one thread

LCG, 4 threads,
trail 1
LCG 4 threads,
trial 2
LCG, 4 threads,
trial 3

Log 10 R
elative error

Log10 number of samples

Run the same
program the

same way and
get different

answers!

That is not
acceptable!

Issue: my LCG
generator is

not threadsafe

Run the same
program the

same way and
get different

answers!

That is not
acceptable!

Issue: my LCG
generator is

not threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core
laptop (Intel T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.

131

LCG code: threadsafe version
static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;
#pragma omp threadprivate(random_last)
double random ()
{

long random_next;

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

return ((double)random_next/(double)PMOD);
}

random_last carries
state between random
number computations,

To make the generator
threadsafe, make

random_last
threadprivate so each

thread has its own copy.

132

Thread safe random number generators

Log
10 R

elative error

Log10 number of samples Thread safe
version gives the

same answer
each time you

run the program.

But for large
number of

samples, its
quality is lower

than the one
thread result!

Why?
0.00001

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6 LCG - one

thread
LCG 4 threads,
trial 1
LCT 4 threads,
trial 2
LCG 4 threads,
trial 3
LCG 4 threads,
thread safe

133

Pseudo Random Sequences
Random number Generators (RNGs) define a sequence of pseudo-random
numbers of length equal to the period of the RNG

In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

Grab arbitrary seeds and you may generate overlapping sequences
E.g. three sequences … last one wraps at the end of the RNG period.

Overlapping sequences = over-sampling and bad statistics … lower
quality or even wrong answers!

Thread 1
Thread 2

Thread 3

134

Parallel random number generators
Multiple threads cooperate to generate and use
random numbers.
Solutions:

Replicate and Pray
Give each thread a separate, independent
generator
Have one thread generate all the numbers.
Leapfrog … deal out sequence values “round
robin” as if dealing a deck of cards.
Block method … pick your seed so each
threads gets a distinct contiguous block.

Other than “replicate and pray”, these are difficult
to implement. Be smart … buy a math library that
does it right.

If done right,
can generate the
same sequence

regardless of
the number of

threads …

Nice for
debugging, but

not really
needed

scientifically.

Intel’s Math kernel Library supports
all of these methods.

135

MKL Random number generators (RNG)

#define BLOCK 100
double buff[BLOCK];
VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream,
BLOCK, buff, low, hi)

vslDeleteStream(&stream);

MKL includes several families of RNGs in its vector statistics library.
Specialized to efficiently generate vectors of random numbers

Initialize a
stream or
pseudo
random
numbers

Select type of
RNG and set seed

Fill buff with BLOCK pseudo rand.
nums, uniformly distributed with

values between lo and hi.
Delete the stream when you are done

136

Wichmann-Hill generators (WH)
WH is a family of 273 parameter sets each defining a non-
overlapping and independent RNG.
Easy to use, just make each stream threadprivate and initiate
RNG stream so each thread gets a unique WG RNG.

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

…

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);

137

Independent Generator for each
thread

0.0001

0.001

0.01

0.1

1
1 2 3 4 5 6

WH one
thread
WH, 2
threads
WH, 4
threads

Log
10 R

elative error

Log10 number of samples
Notice that

once you get
beyond the
high error,

small sample
count range,

adding threads
doesn’t

decrease
quality of
random

sampling.

138

#pragma omp single
{ nthreads = omp_get_num_threads();

iseed = PMOD/MULTIPLIER; // just pick a seed
pseed[0] = iseed;
mult_n = MULTIPLIER;
for (i = 1; i < nthreads; ++i)

{
iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);
pseed[i] = iseed;
mult_n = (mult_n * MULTIPLIER) % PMOD;

}

}
random_last = (unsigned long long) pseed[id];

Leap Frog method
Interleave samples in the sequence of pseudo random numbers:

Thread i starts at the ith number in the sequence
Stride through sequence, stride length = number of threads.

Result … the same sequence of values regardless of the number
of threads.

One thread
computes offsets
and strided
multiplier

LCG with Addend = 0
just to keep things
simple

Each thread stores offset
starting point into its
threadprivate “last random”
value

139

Same sequence with many threads.
We can use the leapfrog method to generate the
same answer for any number of threads

4 threads2 threadsOne threadSteps

3.1416583.1416583.14165810000000

3.1403483.1403483.1403481000000

3.139643.139643.13964100000

3.11683.11683.116810000

3.1563.1563.1561000

Used the MKL library with two generator streams per computation: one for the x values (WH) and
one for the y values (WH+1). Also used the leapfrog method to deal out iterations among threads.

140

Appendix: Solutions to exercises
Exercise 1: hello world
Exercise 2: Simple SPMD Pi program
Exercise 3: SPMD Pi without false sharing
Exercise 4: Loop level Pi
Exercise 5: Monte Carlo Pi and random numbers
Exercise 6: hard, linked lists without tasks
Exercise 6: easy, matrix multiplication
Exercise 7: Producer-consumer
Exercise 8: linked lists with tasks

141

Linked lists without tasks
See the file Linked_omp25.c

while (p != NULL) {
p = p->next;
count++;

}
p = head;
for(i=0; i<count; i++) {

parr[i] = p;
p = p->next;

}
#pragma omp parallel
{

#pragma omp for schedule(static,1)
for(i=0; i<count; i++)

processwork(parr[i]);
}

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

28 seconds39 secondsTwo Threads
45 seconds48 secondsOne Thread
Static,1Default schedule

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

142

Linked lists without tasks: C++ STL
See the file Linked_cpp.cpp

std::vector<node *> nodelist;
for (p = head; p != NULL; p = p->next)

nodelist.push_back(p);

int j = (int)nodelist.size();
#pragma omp parallel for schedule(static,1)

for (int i = 0; i < j; ++i)
processwork(nodelist[i]);

47 seconds
37 seconds
C++, default sched.

28 seconds32 secondsTwo Threads
45 seconds49 secondsOne Thread
C, (static,1)C++, (static,1)

Copy pointer to each node into an array

Count number of items in the linked list

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

143

Appendix: Solutions to exercises
Exercise 1: hello world
Exercise 2: Simple SPMD Pi program
Exercise 3: SPMD Pi without false sharing
Exercise 4: Loop level Pi
Exercise 5: Monte Carlo Pi and random numbers
Exercise 6: hard, linked lists without tasks
Exercise 6: easy, matrix multiplication
Exercise 7: Producer-consumer
Exercise 8: linked lists with tasks

144

Matrix multiplication
#pragma omp parallel for private(tmp, i, j, k)

for (i=0; i<Ndim; i++){
for (j=0; j<Mdim; j++){

tmp = 0.0;
for(k=0;k<Pdim;k++){

/* C(i,j) = sum(over k) A(i,k) * B(k,j) */
tmp += *(A+(i*Ndim+k)) * *(B+(k*Pdim+j));

}
*(C+(i*Ndim+j)) = tmp;

}
}

•On a dual core laptop

•13.2 seconds 153 Mflops one thread

•7.5 seconds 270 Mflops two threads
Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

145

Appendix: Solutions to exercises
Exercise 1: hello world
Exercise 2: Simple SPMD Pi program
Exercise 3: SPMD Pi without false sharing
Exercise 4: Loop level Pi
Exercise 5: Monte Carlo Pi and random numbers
Exercise 6: hard, linked lists without tasks
Exercise 6: easy, matrix multiplication
Exercise 7: Producer-consumer
Exercise 8: linked lists with tasks

146

Pair wise synchronizaion in OpenMP

OpenMP lacks synchronization constructs that
work between pairs of threads.
When this is needed you have to build it
yourself.
Pair wise synchronization

Use a shared flag variable
Reader spins waiting for the new flag value
Use flushes to force updates to and from memory

147

Exercise 7: producer consumer
int main()
{

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));

#pragma omp parallel sections
{

#pragma omp section
{

fill_rand(N, A);
#pragma omp flush
flag = 1;
#pragma omp flush (flag)

}
#pragma omp section
{

#pragma omp flush (flag)
while (flag != 1){

#pragma omp flush (flag)
}
#pragma omp flush
sum = Sum_array(N, A);

}
}

}

Use flag to Signal when the
“produced” value is ready

Flush forces refresh to memory.
Guarantees that the other
thread sees the new value of A

Notice you must put the flush inside the
while loop to make sure the updated flag
variable is seen

Flush needed on both “reader” and
“writer” sides of the communication

148

Appendix: Solutions to exercises
Exercise 1: hello world
Exercise 2: Simple SPMD Pi program
Exercise 3: SPMD Pi without false sharing
Exercise 4: Loop level Pi
Exercise 5: Monte Carlo Pi and random numbers
Exercise 6: hard, linked lists without tasks
Exercise 6: easy, matrix multiplication
Exercise 7: Producer-consumer
Exercise 8: linked lists with tasks

149

Linked lists with tasks (intel taskq)
See the file Linked_intel_taskq.c

#pragma omp parallel
{

#pragma intel omp taskq
{
while (p != NULL) {

#pragma intel omp task captureprivate(p)
processwork(p);

p = p->next;
}

}
}

30 seconds28 secondsTwo Threads
48 seconds45 secondsOne Thread
Intel taskqArray, Static, 1

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2

150

Linked lists with tasks (OpenMP 3)
See the file Linked_intel_taskq.c

#pragma omp parallel
{

#pragma omp single
{

p=head;
while (p) {

#pragma omp task firstprivate(p)
processwork(p);

p = p->next;
}

}
}

Creates a task with
its own copy of “p”

initialized to the
value of “p” when
the task is defined

151

Compiler notes: Intel on Windows
Intel compiler:

Launch SW dev environment … on my laptop I use:
– start/intel software development tools/intel C++

compiler 10.1/C+ build environment for 32 bit
apps

cd to the directory that holds your source code
Build software for program foo.c

– icl /Qopenmp foo.c
Set number of threads environment variable

– set OMP_NUM_THREADS=4
Run your program

– foo.exe To get rid of the pwd on the
prompt, type

prompt = %

152

Compiler notes: Visual Studio
Start “new project”
Select win 32 console project

Set name and path
On the next panel, Click “next” instead of finish so you can
select an empty project on the following panel.
Drag and drop your source file into the source folder on the
visual studio solution explorer
Activate OpenMP

– Go to project properties/configuration
properties/C.C++/language … and activate OpenMP

Set number of threads inside the program
Build the project
Run “without debug” from the debug menu.

153

Notes from the SC08 tutorial
It seemed to go very well. We had over 50 people who stuck it out
throughout the day.
Most people brought their laptops (only 7 loaner laptops were used). And
of those with laptops, most had preloaded an OS.
The chaos at the beginning was much less than I expected. I had fears of
an hour or longer to get everyone setup. But thanks to PGI providing a
license key in a temp file, we were able to get everyone installed in short
order.
Having a team of 4 (two speakers and two assistants) worked well. It
would have been messier without a hardcore compiler person such as
Larry. With dozens of different configurations, he had to do some serious
trouble-shooting to get the most difficult cases up and running.
The exercises used early in the course were good. The ones after lunch
were too hard. I need to refine the exercise set. One idea is to for each
slot have an “easy” exercise and a “hard” exercise. This will help me
keep the group’s experience more balanced.
Most people didn’t get the threadprivate exercise. The few people who
tried the linked-list exercise were amazingly creative … one even gettting
a single/nowait version to work.

