
1

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

An Introduction Into OpenMP

Ruud van der Pas

Senior Staff Engineer
Scalable Systems Group

Sun Microsystems

IWOMP 2005
University of Oregon
Eugene, Oregon, USA

June 1-4, 2005

2

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Outline
❑ The OpenMP Programming Model

❑OpenMP Guided Tour

❑OpenMP Overview

● Clauses

● Worksharing constructs

● Synchronization constructs

● Environment variables

● Global Data

● Runtime functions

❑Wrap-up

3

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The OpenMP Programming Model

4

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

0 1 P

Memory

5

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Shared Memory Model

T
private

T
private

T
private

T
private

T

private

Programming Model

Shared
Memory

✔All threads have access to the
same, globally shared,
memory

✔Data can be shared or private

✔ Shared data is accessible by
all threads

✔ Private data can be accessed
only by the threads that owns
it

✔Data transfer is transparent to
the programmer

✔ Synchronization takes place,
but it is mostly implicit

6

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

About Data
 In a shared memory parallel program variables have a

"label" attached to them:

☞ Labelled "Private" ⇨ Visible to one thread only

✔ Change made in local data, is not seen by others
✔ Example - Local variables in a function that is

executed in parallel

☞ Labelled "Shared" ⇨ Visible to all threads

✔ Change made in global data, is seen by all others
✔ Example - Global data

7

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The OpenMP execution model

Fork and Join Model

Master
Thread

Worker
Threads

Parallel region

Parallel region

Synchronization

"threads"

8

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

TID = 0
for (i=0,1,2,3,4)

TID = 1
for (i=5,6,7,8,9)

Example - Matrix times vector

i = 0 i = 5

i = 1 i = 6

a[1] = sum a[6] = sum
sum =  b[i=1][j]*c[j] sum =  b[i=6][j]*c[j]

... etc ...

for (i=0; i<m; i++)
{
 sum = 0.0;
 for (j=0; j<n; j++)
 sum += b[i][j]*c[j];
 a[i] = sum;

 }

 #pragma omp parallel for default(none) \
 private(i,j,sum) shared(m,n,a,b,c)

= *

j

i

a[0] = sum a[5] = sum
sum =  b[i=0][j]*c[j] sum =  b[i=5][j]*c[j]

9

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

OpenMP Guided Tour

10

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

http://www.openmp.org

http://www.compunity.org

11

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

When to consider using OpenMP?
❑ The compiler may not be able to do the parallelization in

the way you like to see it:

● A loop is not parallelized

✔ The data dependency analysis is not able to
determine whether it is safe to parallelize or not

● The granularity is not high enough

✔ The compiler lacks information to parallelize at
the highest possible level

❑ This is when explicit parallelization through OpenMP
directives and functions comes into the picture

12

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

About OpenMP
❑ The OpenMP programming model is a powerful, yet

compact, de-facto standard for Shared Memory
Programming

❑ Languages supported: Fortran and C/C++

❑ Current release of the standard: 2.5

● Specifications released May 2005

❑We will now present an overview of OpenMP

❑Many details will be left out

❑ For specific information, we refer to the OpenMP
language reference manual (http://www.openmp.org)

13

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Terminology
❑OpenMP Team := Master + Workers

❑ A Parallel Region is a block of code executed by all
threads simultaneously

☞ The master thread always has thread ID 0

☞ Thread adjustment (if enabled) is only done before entering a
parallel region

☞ Parallel regions can be nested, but support for this is
implementation dependent

☞ An "if" clause can be used to guard the parallel region; in case
the condition evaluates to "false", the code is executed
serially

❑ A work-sharing construct divides the execution of the
enclosed code region among the members of the team;
in other words: they split the work

14

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

A loop parallelized with OpenMP

!$omp parallel default(none) &
!$omp shared(n,x,y) private(i)
!$omp do
 do i = 1, n
 x(i) = x(i) + y(i)
 end do
!$omp end do
!$omp end parallel

#pragma omp parallel default(none) \
 shared(n,x,y) private(i)
{
 #pragma omp for
 for (i=0; i<n; i++)
 x[i] += y[i];
} /*-- End of parallel region --*/

clauses

15

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Components of OpenMP

 Parallel regions

 Work sharing

 Synchronization

 Data scope attributes

☞ private

☞ firstprivate

☞ lastprivate

☞ shared

☞ reduction

 Orphaning

Directives Environment
variables

 Number of threads

 Scheduling type

 Dynamic thread
adjustment

 Nested parallelism

Runtime
environment

 Number of threads

 Thread ID

 Dynamic thread
adjustment

 Nested parallelism

 Timers

 API for locking

16

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Directive format

❑ Fortran: directives are case insensitive

● Syntax: sentinel directive [clause [[,] clause]...]

● The sentinel is one of the following:

✔ !$OMP or C$OMP or *$OMP (fixed format)

✔ !$OMP (free format)

❑ Continuation: follows the language syntax

❑ Conditional compilation: !$ or C$ -> 2 spaces

❑ C: directives are case sensitive

● Syntax: #pragma omp directive [clause [clause] ...]

❑ Continuation: use \ in pragma

❑ Conditional compilation: _OPENMP macro is set

17

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

A more elaborate example

for (i=0; i<n; i++)
 z[i] = x[i] + y[i];

scale = sum(a,0,n) + sum(z,0,n) + f;

#pragma omp barrier synchronization

#pragma omp for nowait

parallel loop
(work will be distributed)

Statement is executed
by all threads

f = 1.0; Statement is executed
by all threads

#pragma omp for nowait

parallel loop
(work will be distributed)

#pragma omp parallel if (n>limit) default(none) \
 shared(n,a,b,c,x,y,z) private(f,i,scale)
{

} /*-- End of parallel region --*/

p
a

ralle
l reg

io
n

for (i=0; i<n; i++)
 a[i] = b[i] + c[i];

18

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Another OpenMP example
 1 void mxv_row(int m,int n,double *a,double *b,double *c)
 2 {
 3 int i, j;
 4 double sum;
 5
 6 #pragma omp parallel for default(none) \
 7 private(i,j,sum) shared(m,n,a,b,c)
 8 for (i=0; i<m; i++)
 9 {
10 sum = 0.0;
11 for (j=0; j<n; j++)
12 sum += b[i*n+j]*c[j];
13 a[i] = sum;
14 } /*-- End of parallel for --*/
15 }

% cc -c -fast -xrestrict -xopenmp -xloopinfo mxv_row.c
"mxv_row.c", line 8: PARALLELIZED, user pragma used
"mxv_row.c", line 11: not parallelized

19

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

0 1 10 100 1000 10000 100000 1000000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

OpenMP - 1 CPU

OpenMP - 2 CPUs

OpenMP - 4 CPUs

OpenMP performance

SunFire 6800
UltraSPARC III Cu @ 900 MHz
8 MB L2-cache

Memory Footprint (KByte)

P
er

fo
rm

an
ce

 (
M

fl
o

p
/s

)

Matrix too
small *

*) With the IF-clause in OpenMP this performance
degradation can be avoided

s
ca

le
s

20

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Some OpenMP Clauses

21

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

About OpenMP clauses
❑Many OpenMP directives support clauses

❑ These clauses are used to specify additional information
with the directive

❑ For example, private(a) is a clause to the for directive:

● #pragma omp for private(a)

❑ Before we present an overview of all the directives, we
discuss several of the OpenMP clauses first

❑ The specific clause(s) that can be used, depends on the
directive

22

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The if/private/shared clauses

✔ Only execute in parallel if
expression evaluates to true

✔ Otherwise, execute serially

if (scalar expression)

✔ No storage association with original object

✔ All references are to the local object

✔ Values are undefined on entry and exit

✔ Data is accessible by all threads in the team

✔ All threads access the same address space

private (list)

shared (list)

#pragma omp parallel if (n > threshold) \
 shared(n,x,y) private(i)
 {
 #pragma omp for
 for (i=0; i<n; i++)
 x[i] += y[i];
 } /*-- End of parallel region --*/

23

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

About storage association
❑ Private variables are undefined on entry and exit of the

parallel region

❑ The value of the original variable (before the parallel
region) is undefined after the parallel region !

❑ A private variable within a parallel region has no storage
association with the same variable outside of the region

❑ Use the first/last private clause to override this
behaviour

❑We will illustrate these concepts with an example

24

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Example private variables
main()
{
 A = 10;

 for (i=0; i<n; i++)
 {

 B = A + i;

 }

 C = B;

}

#pragma omp for private(i,A,B) ...

/*-- A undefined, unless declared
 firstprivate --*/

/*-- B undefined, unless declared
 lastprivate --*/

#pragma omp parallel
{

} /*-- End of OpenMP parallel region --*/

#pragma omp for private(i,B) firstprivate(A) ...#pragma omp for private(i) firstprivate(A) lastprivate(B)...

25

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The first/last private clauses

firstprivate (list)

✔ All variables in the list are initialized with the
value the original object had before entering
the parallel construct

✔ The thread that executes the sequentially last
iteration or section updates the value of the
objects in the list

lastprivate (list)

26

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The default clause

default (none | shared | private)

✔ No implicit defaults

✔ Have to scope all variables explicitly

none

✔ All variables are shared

✔ The default in absence of an explicit "default" clause

✔ All variables are private to the thread

✔ Includes common block data, unless THREADPRIVATE

Fortran

C/C++
Note: default(private) is
not supported in C/C++

default (none | shared)

shared

private

27

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

 sum = 0.0
!$omp parallel default(none) &
!$omp shared(n,x) private(i)
!$omp do reduction (+:sum)
 do i = 1, n
 sum = sum + x(i)
 end do
!$omp end do
!$omp end parallel
 print *,sum

The reduction clause - example

Variable SUM is a
shared variable

☞ Care needs to be taken when updating shared variable SUM

☞ With the reduction clause, the OpenMP compiler generates
code such that a race condition is avoided

28

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The reduction clause

reduction ([operator | intrinsic]) : list)

✔ Reduction variable(s) must be shared variables

✔ A reduction is defined as:

Fortran

C/C++

x = x operator expr
x = expr operator x
x = intrinsic (x, expr_list)
x = intrinsic (expr_list, x)

x = x operator expr
x = expr operator x
x++, ++x, x--, --x
x <binop> = expr

Fortran C/C++

✔ Note that the value of a reduction variable is undefined
from the moment the first thread reaches the clause till
the operation has completed

✔ The reduction can be hidden in a function call

Check the docs
for details

reduction (operator : list)

29

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The nowait clause
❑ To minimize synchronization, some OpenMP

directives/pragmas support the optional nowait clause

❑ If present, threads will not synchronize/wait at the end of
that particular construct

❑ In Fortran the nowait is appended at the closing part of
the construct

❑ In C, it is one of the clauses on the pragma

!$omp do
 :
 :
!$omp end do nowait

#pragma omp for nowait
{
 :
}

30

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The parallel region

!$omp parallel [clause[[,] clause] ...]

 "this will be executed in parallel"

!$omp end parallel (implied barrier)

#pragma omp parallel [clause[[,] clause] ...]
{
 "this will be executed in parallel"

} (implied barrier)

A parallel region is a block of code executed by multiple
threads simultaneously

31

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The parallel region - clauses

if (scalar expression)
private (list)
shared (list)
default (none|shared) (C/C++)
default (none|shared|private) (Fortran)
reduction (operator: list)
copyin (list)
firstprivate (list)
num_threads (scalar_int_expr)

A parallel region supports the following clauses:

32

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Worksharing Directives

33

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Work-sharing constructs
The OpenMP work-sharing constructs

☞ The work is distributed over the threads
☞ Must be enclosed in a parallel region
☞ Must be encountered by all threads in the team, or none at all
☞ No implied barrier on entry; implied barrier on exit (unless

nowait is specified)
☞ A work-sharing construct does not launch any new threads

#pragma omp for
{

}

!$OMP DO

!$OMP END DO

#pragma omp sections
{

}

!$OMP SECTIONS

!$OMP END SECTIONS

#pragma omp single
{

}

!$OMP SINGLE

!$OMP END SINGLE

34

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The WORKSHARE construct

Fortran has a fourth worksharing construct:

!$OMP WORKSHARE

 <array syntax>

!$OMP END WORKSHARE [NOWAIT]

Example:

!$OMP WORKSHARE
 A(1:M) = A(1:M) + B(1:M)
!$OMP END WORKSHARE NOWAIT

35

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The omp for/do directive

!$omp do [clause[[,] clause] ...]
<original do-loop>

!$omp end do [nowait]

The iterations of the loop are distributed over the threads

#pragma omp for [clause[[,] clause] ...]
<original for-loop>

private firstprivate
lastprivate reduction
ordered* schedule
nowait

Clauses supported:

covered later

*) Required if ordered sections are in the dynamic extent of this construct

36

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The omp for directive - example

#pragma omp parallel default(none)\
 shared(n,a,b,c,d) private(i)
 {
 #pragma omp for nowait

 #pragma omp for nowait

 } /*-- End of parallel region --*/
(implied barrier)

for (i=0; i<n; i++)
 d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;

37

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Load balancing
❑ Load balancing is an important aspect of performance

❑ For regular operations (e.g. a vector addition), load
balancing is not an issue

❑ For less regular workloads, care needs to be taken in
distributing the work over the threads

❑ Examples of irregular worloads:

● Transposing a matrix

● Multiplication of triangular matrices

● Parallel searches in a linked list

❑ For these irregular situations, the schedule clause
supports various iteration scheduling algorithms

38

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The schedule clause/1

schedule (static | dynamic | guided [, chunk])
schedule (runtime)

✔ Distribute iterations in blocks of size "chunk" over the
threads in a round-robin fashion

✔ In absence of "chunk", each thread executes approx. N/P
chunks for a loop of length N and P threads

static [, chunk]

Example: Loop of length 16, 4 threads:

TID 0 1 2 3

no chunk 1-4 5-8 9-12 13-16

chunk = 2 1-2 3-4 5-6 7-8

9-10 11-12 13-14 15-16

39

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The schedule clause/2

✔ Fixed portions of work; size is controlled by the value of
chunk

✔ When a thread finishes, it starts on the next portion of
work

✔ Same dynamic behaviour as "dynamic", but size of the
portion of work decreases exponentially

✔ Iteration scheduling scheme is set at runtime through
environment variable OMP_SCHEDULE

dynamic [, chunk]

guided [, chunk]

runtime

40

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The experiment

0 50 100 150 200 250 300 350 400 450 500

3

2

1

0

3

2

1

0

3

2

1

0

static

dynamic, 5

guided, 5

Iteration Number

T
h

re
ad

 ID

500 iterations on 4 threads

41

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The SECTIONS directive

!$omp sections [clause(s)]
!$omp section

<code block1>
!$omp section

<code block2>
!$omp section
 :
!$omp end sections [nowait]

The individual code blocks are distributed over the threads

private firstprivate
lastprivate reduction
nowait

Clauses supported:

#pragma omp sections [clause(s)]
{
#pragma omp section

<code block1>
#pragma omp section

<code block2>
#pragma omp section
 :
}

Note: The SECTION directive must be within the lexical extent of
the SECTIONS/END SECTIONS pair

42

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The sections directive - example
#pragma omp parallel default(none)\
 shared(n,a,b,c,d) private(i)
 {
 #pragma omp sections nowait
 {
 #pragma omp section

 #pragma omp section

 } /*-- End of sections --*/

 } /*-- End of parallel region --*/

for (i=0; i<n; i++)
 d[i] = 1.0/c[i];

for (i=0; i<n-1; i++)
 b[i] = (a[i] + a[i+1])/2;

43

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Short-cuts
#pragma omp parallel
#pragma omp for
 for (...)

!$omp parallel do
 ...
!$omp end parallel do

#pragma omp parallel for
for (....)

!$omp parallel
!$omp sections
 ...
!$omp end sections
!$omp end parallel

#pragma omp parallel
#pragma omp sections
{ ...}

!$omp parallel sections
 ...
!$omp end parallel sections

#pragma omp parallel sections
{ ... }

Single PARALLEL sections

!$omp parallel
!$omp workshare
 ...
!$omp end workshare
!$omp end parallel

!$omp parallel workshare
 ...
!$omp end parallel workshare

Single WORKSHARE loop

!$omp parallel
!$omp do
 ...
!$omp end do
!$omp end parallel

Single PARALLEL loop

44

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Orphaning

♦The OpenMP standard does not restrict worksharing and
synchronization directives (omp for, omp single, critical,
barrier, etc.) to be within the lexical extent of a parallel
region. These directives can be orphaned

♦That is, they can appear outside the lexical extent of a
parallel region

 :
!$omp parallel
 :
 call dowork()
 :
!$omp end parallel
 :

 subroutine dowork()
 :
!$omp do
 do i = 1, n
 :
 end do
!$omp end do
 :

orphaned
work-sharing

directive

45

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

More on orphaning

♦When an orphaned worksharing or synchronization directive is
encountered within the dynamic extent of a parallel region, its
behaviour will be similar to the non-orphaned case

♦When an orphaned worksharing or synchronization directive is
encountered in the sequential part of the program (outside the
dynamic extent of any parallel region), it will be executed by the
master thread only. In effect, the directive will be ignored

 (void) dowork(); !- Sequential FOR

#pragma omp parallel
{
 (void) dowork(); !- Parallel FOR
}

void dowork()
{
#pragma for
 for (i=0;....)
 {
 :
 }
}

46

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Parallelizing bulky loops

for (i=0; i<n; i++) /* Parallel loop */
{
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more code in this loop>
 }

}

47

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Step 1: “Outlining”

void FuncPar(i,m,c,....)
{
 float a, b; /* Private data */
 int j;
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more code in this loop>
 }

}

Still a sequential program

Should behave identically

Easy to test for correctness

But, parallel by design

for (i=0; i<n; i++) /* Parallel loop */
{
 (void) FuncPar(i,m,c,...)
}

48

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Step 2: Parallelize

Minimal scoping required

Less error prone

for (i=0; i<n; i++) /* Parallel loop */
{
 (void) FuncPar(i,m,c,...)
}

void FuncPar(i,m,c,....)
{
 float a, b; /* Private data */
 int j;
 a = ...
 b = ... a ..
 c[i] =

 for (j=0; j<m; j++)
 {
 <a lot more code in this loop>
 }

}

/*-- End of parallel for --*/

#pragma omp parallel for private(i) shared(m,c,..)

49

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Synchronization Controls

50

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Barrier/1

Suppose we run each of these two loops in parallel over i:

This may give us a wrong answer (one day)

Why ?

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

51

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Barrier/2

We need to have updated all of a[] first, before using a[]

for (i=0; i < N; i++)
 a[i] = b[i] + c[i];

All threads wait at the barrier point and only continue
when all threads have reached the barrier point

wait !

barrier
for (i=0; i < N; i++)
 d[i] = a[i] + b[i];

52

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Barrier/3

Barrier Region

idle

idle

idle

!$omp barrier

Each thread waits until all others have reached this point:

#pragma omp barrier

time

53

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

When to use barriers ?
❑When data is updated asynchronously and the data

integrity is at risk

❑ Examples:

● Between parts in the code that read and write the
same section of memory

● After one timestep/iteration in a solver

❑ Unfortunately, barriers tend to be expensive and also
may not scale to a large number of processors

❑ Therefore, use them with care

54

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

for (i=0; i < N; i++){

 sum += a[i];

}

Critical region/1

If sum is a shared variable, this loop can not be run in parallel

We can use a critical region for this:

one at a time can proceed

next in line, please

for (i=0; i < N; i++){

 sum += a[i];

}

55

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Critical region/2
❑ Useful to avoid a race condition, or to perform I/O (but

which still will have random order)

❑ Be aware that your parallel computation may be
serialized and so this could introduce a scalability
bottleneck (Amdahl's law)

critical region time

56

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Critical region/3

!$omp critical [(name)]
<code-block>

!$omp end critical [(name)]

All threads execute the code, but only one at a time:

#pragma omp critical [(name)]
{<code-block>}

There is no implied
barrier on entry or

exit !

!$omp atomic
<statement>

#pragma omp atomic
<statement>

This is a lightweight, special
form of a critical section

#pragma omp atomic
 a[indx[i]] += b[i];

57

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

#pragma omp parallel for
for (i=0; i < N; i++)
{

 "read a[0..N-1]";

}

for (i=0; i < N; i++)
{

 "read a[0..N-1]";

}

Single processor region/1

This construct is ideally suited for I/O or initialization

Serial

one volunteer requested

thanks, we're done

"declare A to be be shared"

Parallel

May have to insert a
barrier here

58

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Single processor region/2
❑ Usually, there is a barrier needed after this region

❑Might therefore be a scalability bottleneck (Amdahl's
law)

single processor
region

Threads wait
in the barrier

time

59

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

SINGLE and MASTER construct

!$omp single [clause[[,] clause] ...]
<code-block>

!$omp end single [nowait]

Only one thread in the team executes the code enclosed
#pragma omp single [clause[[,] clause] ...]
{

<code-block>
}

!$omp master
<code-block>

!$omp end master

Only the master thread executes the code block:

#pragma omp master
{<code-block>} There is no implied

barrier on entry or
exit !

60

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

More synchronization directives
The enclosed block of code is executed in the order in

which iterations would be executed sequentially:

Expensive !
!$omp ordered

<code-block>
!$omp end ordered

#pragma omp ordered
{<code-block>}

Ensure that all threads in a team have a consistent view of
certain objects in memory:

In the absence of a list,
all visible variables are

flushed!$omp flush [(list)]

#pragma omp flush [(list)]

61

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

OpenMP Environment Variables

62

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

OpenMP environment variables

Note: The names are in uppercase, the values are case insensitive

(1) The chunk size approximately equals the number of iterations (N) divided by
the number of threads (P)

(2) The number of threads will be limited to the number of on-line processors in
the system. This can be changed by setting OMP_DYNAMIC to FALSE.

(3) Multi-threaded execution of inner parallel regions in nested parallel regions
is supported as of Sun Studio 10

1

static, “N/P” (1)

OMP_DYNAMIC { TRUE | FALSE } TRUE (2)

OMP_NESTED { TRUE | FALSE } FALSE (3)

OpenMP environment variable Default for Sun OpenMP

OMP_NUM_THREADS n

OMP_SCHEDULE “schedule,[chunk]”

63

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

OpenMP and Global Data

64

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Global data - example

 include "global.h"

!$omp parallel private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end do
!$omp end parallel

subroutine suba(j)

include "global.h"

do i = 1, m
 b(i) = j
end do

do i = 1, m
 a(i,j) = func_call(b(i))
end do

return
end

Race
condition !

common /work/a(m,n),b(m)

file global.h

65

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Global data - race condition

call suba(1)

Thread 1

call suba(2)

Thread 2
S

h
ar

ed

subroutine suba(j=1)

do i = 1, m
 a(i,1)=func_call(b(i))
end do

do i = 1, m
 b(i) = 1
end do

subroutine suba(j=2)

do i = 1, m
 a(i,2)=func_call(b(i))
end do

do i = 1, m
 b(i) = 2
end do

66

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

integer, parameter:: nthreads=4
common /work/a(m,n)
common /tprivate/b(m,nthreads)

Example - solution

subroutine suba(j)

include "global.h"

TID = omp_get_thread_num()+1
do i = 1, m
 b(i,TID) = j
end do

do i = 1, m
 a(i,j)=func_call(b(i,TID))
end do

return
end

new file global.h

☞ By expanding array B, we can give
each thread unique access to it's
storage area

☞ Note that this can also be done
using dynamic memory (allocatable,
malloc,)

 include "global.h"

!$omp parallel private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end do
!$omp end parallel

67

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

common /work/a(m,n)
common /tprivate/b(m)
!$omp threadprivate(/tprivate/)

Example - solution 2

subroutine suba(j)

include "global.h"

do i = 1, m
 b(i) = j
end do

do i = 1, m
 a(i,j) = func_call(b(i))
end do

return
end

☞ The compiler will create thread private
copies of array B, to give each thread
unique access to it's storage area

☞ Note that the number of copies will be
automatically adapted to the number of
threads

 include "global.h"

!$omp parallel private(j)
 do j = 1, n
 call suba(j)
 end do
!$omp end do
!$omp end parallel

new file global.h

68

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

About global data
❑Global data is shared and requires special care

❑ A problem may arise in case multiple threads access the
same memory section simultaneously:

● Read-only data is no problem

● Updates have to be checked for race conditions

❑ It is your responsibility to deal with this situation

❑ In general one can do the following:

● Split the global data into a part that is accessed in serial parts
only and a part that is accessed in parallel

● Manually create thread private copies of the latter

● Use the thread ID to access these private copies

❑ Alternative: Use OpenMP's threadprivate construct

69

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The threadprivate construct

❑ Thread private copies of the designated global variables
and common blocks will be made

❑ Several restrictions and rules apply when doing this:

● The number of threads has to remain the same for all the
parallel regions (i.e. no dynamic threads)

✔ Sun implementation supports changing the number of threads

● Initial data is undefined, unless copyin is used

●

❑ Check the documentation when using threadprivate !

❑OpenMP's threadprivate directive

!$omp threadprivate (/cb/ [,/cb/] ...)

#pragma omp threadprivate (list)

70

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

The copyin clause

copyin (list)

✔ Applies to THREADPRIVATE common blocks only

✔ At the start of the parallel region, data of the master
thread is copied to the thread private copies

 common /cblock/velocity
 common /fields/xfield, yfield, zfield

! create thread private common blocks

!$omp threadprivate (/cblock/, /fields/)

!$omp parallel &
!$omp default (private) &
!$omp copyin (/cblock/, zfield)

Example:

71

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

OpenMP Runtime Functions

72

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

OpenMP runtime environment
❑OpenMP provides various user-callable functions

▶ To control and query the parallel environment

▶ General purpose semaphore/lock routines

✔ Nested locks are supported, but will not be
covered here

❑ The runtime functions take precedence over the
corresponding environment variables

❑ Recommended to use under control of an #ifdef for
_OPENMP (C/C++) or conditional compilation (Fortran)

❑ C/C++ programs need to include <omp.h>

❑ Fortran: may want to use “USE omp_lib”

73

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

OpenMP runtime library
❑OpenMP Fortran library routines are external functions

❑ Their names start with OMP_ but usually have an integer
or logical return type

❑ Therefore these functions must be declared explicitly

❑On Sun systems the following features are available:

● USE omp_lib

● INCLUDE 'omp_lib.h'

● #include “omp_lib.h” (preprocessor directive)

❑ Compilation with -Xlist will also report any type
mismatches

❑ The f95 -XlistMP option for more extensive checking can
be used as well

74

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Runtime library overview
Name Functionality
omp_set_num_threads Set number of threads
omp_get_num_threads Return number of threads in team
omp_get_max_threads Return maximum number of threads
omp_get_thread_num Get thread ID
omp_get_num_procs Return maximum number of processors
omp_in_parallel Check whether in parallel region
omp_set_dynamic Activate dynamic thread adjustment

(but implementation is free to ignore this)
omp_get_dynamic Check for dynamic thread adjustment
omp_set_nested Activate nested parallelism

(but implementation is free ignore this)
omp_get_nested Check for nested parallelism
omp_get_wtime Returns wall clock time
omp_get_wtick Number of seconds between clock ticks

75

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

OpenMP locking routines
❑ Locks provide greater flexibility over critical sections and

atomic updates:

● Possible to implement asynchronous behaviour

● Not block structured

❑ The so-called lock variable, is a special variable:

● Fortran: type INTEGER and of a KIND large enough to
hold an address

● C/C++: type omp_lock_t and omp_nest_lock_t for nested
locks

❑ Lock variables should be manipulated through the API only

❑ It is illegal, and behaviour is undefined, in case a lock variable
is used without the appropriate initialization

76

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Nested locking
❑ Simple locks: may not be locked if already in a locked state

❑ Nestable locks: may be locked multiple times by the same
thread before being unlocked

❑ In the remainder, we will discuss simple locks only

❑ The interface for functions dealing with nested locks is
similar (but using nestable lock variables):

Simple locks Nestable locks

omp_init_lock omp_init_nest_lock
omp_destroy_lock omp_destroy_nest_lock
omp_set_lock omp_set_nest_lock
omp_unset_lock omp_unset_nest_lock
omp_test_lock omp_test_nest_lock

77

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

OpenMP locking example

Other Work

parallel region - begin

TID = 0 TID = 1

Protected
Region

acquire lock

release lock

Protected
Region

acquire lock

release lock

Other Work

parallel region - end

♦The protected region
contains the update of a
shared variable

♦One thread will acquire
the lock and perform the
update

♦Meanwhile, the other
thread will do some other
work

♦When the lock is released
again, the other thread
will perform the update

78

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Locking example - the code
 Program Locks

 Call omp_init_lock (LCK)

!$omp parallel shared(SUM,LCK) private(TID)

 TID = omp_get_thread_num()

 Do While (omp_test_lock (LCK) .EQV. .FALSE.)
 Call Do_Something_Else(TID)
 End Do

 Call Do_Work(SUM,TID)

 Call omp_unset_lock (LCK)

!$omp end parallel

 Call omp_destroy_lock (LCK)

 Stop
 End

Initialize lock variable

Check availability of lock
(will also set the lock)

Release lock again

Remove lock association

79

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Example output for 2 threads

 TID: 1 at 09:07:27 => entered parallel region
 TID: 1 at 09:07:27 => done with WAIT loop and has the lock
 TID: 1 at 09:07:27 => ready to do the parallel work
 TID: 1 at 09:07:27 => this will take about 18 seconds
 TID: 0 at 09:07:27 => entered parallel region
 TID: 0 at 09:07:27 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:32 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:37 => WAIT for lock - will do something else for 5 seconds
 TID: 0 at 09:07:42 => WAIT for lock - will do something else for 5 seconds
 TID: 1 at 09:07:45 => done with my work
 TID: 1 at 09:07:45 => done with work loop - released the lock
 TID: 1 at 09:07:45 => ready to leave the parallel region
 TID: 0 at 09:07:47 => done with WAIT loop and has the lock
 TID: 0 at 09:07:47 => ready to do the parallel work
 TID: 0 at 09:07:47 => this will take about 18 seconds
 TID: 0 at 09:08:05 => done with my work
 TID: 0 at 09:08:05 => done with work loop - released the lock
 TID: 0 at 09:08:05 => ready to leave the parallel region
Done at 09:08:05 - value of SUM is 1100

Note: program has been instrumented to get this information

Used to check the answer

80

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Wrap-Up

81

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Summary
❑OpenMP provides for a compact, but yet powerful,

programming model for shared memory programming

❑OpenMP supports Fortran, C and C++

❑OpenMP programs are portable to a wide range of
systems

❑ An OpenMP program can be written such that the
sequential version is still “built-in”

82

RvdP/V1.1 An Introduction Into OpenMP Copyright©2005 Sun Microsystems

IWOMP 2005

Thank You !

(shameless plug: come to our OMPlab talk to hear more
about the Sun OpenMP environment and features)

