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Performance

Two key goals to be achieved with the design of parallel applications are:

• Performance – the capacity to reduce the time needed to solve a problem as the

computing resources increase

• Scalability – the capacity to increase performance as the size of the problem

increases
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The main factors limiting the performance and the scalability of an

application can be divided into:

• Architectural limitations

• Algorithmic limitations



Factors Limiting Performance

Architectural limitations:

• Latency and bandwidth

• Data coherency

• Memory capacity

Algorithmic limitations:
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Algorithmic limitations:

• Missing parallelism (sequential code)

• Communication frequency

• Synchronization frequency

• Poor scheduling (task granularity/load balancing)



Performance Metrics

There are 2 distinct classes of performance metrics:

• Performance metrics for processors/cores – assess the performance of a

processing unit, normally done by measuring the speed or the number of

operations that it does in a certain period of time

• Performance metrics for parallel applications – assess the performance of a

parallel application, normally done by comparing the execution time with

multiple processing units against the execution time with just one processing
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multiple processing units against the execution time with just one processing

unit

Here, we are mostly interested in metrics that measure the performance

of parallel applications.



Performance Metrics for Processors/Cores

Some of the best known metrics are:

• MIPS – Millions of Instructions Per Second

• MFLOPS – Millions of FLoating point Operations Per Second

• SPECint – SPEC (Standard Performance Evaluation Corporation) benchmarks that

evaluate processor performance on integer arithmetic (first release in 1992)

• SPECfp – SPEC benchmarks that evaluate processor performance on floating
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• SPECfp – SPEC benchmarks that evaluate processor performance on floating

point operations (first release in 1989)

• Whetstone – synthetic benchmarks to assess processor performance on floating

point operations (first release in 1972)

• Dhrystone – synthetic benchmarks to assess processor performance on integer

arithmetic (first release in 1984)



Performance Metrics for Parallel Applications

Some of the best known metrics are:

• Speedup

• Efficiency

• Redundancy

• Utilization
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There also some laws/metrics that try to explain and assert the potential
performance of a parallel application. The best known are:

• Amdahl’s law

• Gustafson-Barsis’ law

• Karp-Flatt metric

• Isoefficiency metric



Speedup

Speedup is a measure of performance. It measures the ratio between the

sequential execution time and the parallel execution time.
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T(1) is the execution time with one processing unit

T(p) is the execution time with p processing units

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

T(p) 1000 520 280 160 100

S(p) 1 1.92 3.57 6.25 10.00



Efficiency

Efficiency is a measure of the usage of the computational capacity. It

measures the ratio between performance and the number of resources

available to achieve that performance.

)(

)1()(
)(

pTp

T

p

pS
pE

×
==

8R. Rocha and F. Silva (DCC-FCUP) Performance Metrics Parallel Computing 15/16

S(p) is the speedup for p processing units

)( pTpp ×

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

S(p) 1 1.92 3.57 6.25 10.00

E(p) 1 0.96 0.89 0.78 0.63



Redundancy

Redundancy measures the increase in the required computation when

using more processing units. It measures the ratio between the number

of operations performed by the parallel execution and by the sequential

execution.
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O(1) is the total number of operations performed by one processing unit

O(p) is the total number of operations performed by p processing units

)1(O

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

O(p) 10000 10250 11000 12250 15000

R(p) 1 1.03 1.10 1.23 1.50



Utilization

Utilization is a measure of the good use of the computational capacity. It

measures the ratio between the computational capacity used during

parallel execution and the capacity that was available.

)()()( pEpRpU ×=
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1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

R(p) 1 1.03 1.10 1.23 1.50

E(p) 1 0.96 0.89 0.78 0.63

U(p) 1 0.99 0.98 0.96 0.95



Amdahl’s Law

We can divide the computations performed by a parallel application in

three major classes:

• C(seq) – computations that can be done only sequencially

• C(par) – computations that can be done in parallel

• C(com) – computations related to parallel communication and synchronization
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Using these classes, the speedup of an application can be defined as:
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Amdahl’s Law

Since C(com) ≥≥≥≥ 0 then:

Let f be the fraction of the computation that can be realized only 
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sequentially:
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Amdahl’s Law

Simplifying:
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Amdahl’s Law

Let 0 ≤≤≤≤ f ≤≤≤≤ 1 be the fraction of the computation that can be realized only

sequentially then Amdahl’s law tells us that the maximum speedup that

a parallel application can achieve with p processing units is:
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Amdahl’s law can also be used to determine the limit of maximum

speedup that a parallel application can achieve regardless of the

number of processing units available.
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Amdahl’s Law

Suppose one wants to determine if it is advantageous to develop a

parallel version of a certain application. Through experimentation, it was

verified that 90% of the execution time is spent in procedures that can

be parallelizable. What is the maximum speedup that can be achieved

with a parallel version of the application executing on 8 processing

units?
1
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units?

And the limit of maximum speedup that can be achieved?
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Limitations of Amdahl’s Law

Amdahl’s law ignores the costs with communication/synchronization

operations associated with the parallel version of the problem. For that

reason, it can result in predictions not very realistic for certain problems.

Consider a parallel application with complexity O(n2) (where n is the size

of the problem) whose execution pattern is the following:
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of the problem) whose execution pattern is the following:

• Execution time of the sequential part (input and output of data):

• Execution time of the parallel part:

• Total communication/synchronization points per processing unit:

• Execution time due to communication/synchronization:
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Limitations of Amdahl’s Law

What is the maximum speedup that can be achieved?

• Using Amdahl’s law:
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• Using the speedup measure:
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Limitations of Amdahl’s Law

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

Amdahl’s

law

n = 10000 1 1.95 3.70 6.72 11.36

n = 20000 1 1.98 3.89 7.51 14.02
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law
n = 30000 1 1.99 3.94 7.71 14.82

Speedup

measure

n = 10000 1 1.61 2.11 2.22 2.57

n = 20000 1 1.87 3.21 4.71 6.64

n = 30000 1 1.93 3.55 5.89 9.29



Gustafson-Barsis’ Law

Consider again the speedup measure defined previously:

Let f be the fraction of the parallel computation spent executing
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sequential computations then (1 - f) is the fraction of the time spent in

the parallel part:
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Gustafson-Barsis’ Law

Then:
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Simplifying:
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Gustafson-Barsis’ Law

Let 0 ≤≤≤≤ f ≤≤≤≤ 1 be the fraction of parallel computation spent executing

sequential computations then Gustafson-Barsis’ law tells us that the

maximum speedup that a parallel application can achieve with p

processing units is:

( )pfppS −×+≤ 1)(
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While Amdahl’s law starts from the sequential execution time to

estimate the maximum speedup that can be achieved with multiple

processing units, Gustafson-Barsis’ law does the opposite, i.e., it starts

from the parallel execution time to estimate the maximum speedup in

comparison with the sequential execution.

( )pfppS −×+≤ 1)(



Gustafson-Barsis’ Law

Consider that a certain application executes in 220 seconds in 64

processing units. What is the maximum speedup of the application

knowing that, by experimentation, 5% of the execution time is spent on

sequential computations.

)641()05.0(64)( −×+≤pS
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Gustafson-Barsis’ Law

Consider that a certain company wants to buy a supercomputer with

16384 processors to achieve a speedup of 15000 in an important and

fundamental problem. What is the maximum fraction of the parallel

execution that can be spent in sequential computations to achieve the

expected speedup?
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Limitations of Gustafson-Barsis’ Law

By using the parallel execution time as the starting point, instead of the

sequential execution time, the Gustafson-Barsis law assumes that the

execution time with one processing unit is, in the worst case, p times

slower than the execution with p processing units.

This may not be true if the available memory for the execution with one
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This may not be true if the available memory for the execution with one

processing unit is insufficient when compared to the computation with

p processing units. For this reason, the estimated speedup by the

Gustafson-Barsis law is often designated as scaled speedup.



Karp-Flatt Metric

Let us consider again the definitions of sequential and parallel execution

time:
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Let e be the experimentally determined sequential fraction of a parallel

computation:
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Karp-Flatt Metric

Then:

If one considers that C(com) is negligible then:
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On the other hand:
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Karp-Flatt Metric

Simplifying:
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Karp-Flatt Metric

Let S(p) be the speedup of a parallel application with p > 1 processing

units then the Karp-Flatt metric tells us that the experimentally

determined sequential fraction is:
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The Karp-Flatt metric is interesting because by neglecting the costs with

communication/synchronization operations associated with parallelism,

allows us to determine, a posteriori, the relevance of the C(com)

component in the eventual decrease of the application’s efficiency.

p
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Karp-Flatt Metric

By definition, the experimentally determined sequential fraction is a

constant value that does not depend on the number of processing units.
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On the other hand, the Karp-Flatt metric is a function of the number of

processing units.

p

ppS
e

1
1

1

)(

1

−

−

=



Karp-Flatt Metric

Considering that the efficiency of an application is a decreasing function

on the number of processing units, the Karp-Flatt metric allows us to

determine the relevance of C(com) component in that decrease.

• If the values of e are constant as we increase the number of processing units

then that means that the C(com) component is also constant, i.e., the efficiency

decrease is due to the scarce parallelism available in the application

•
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• If the values of e increase as we increase the number of processing units then

that means that the C(com) component is also increasing, i.e., the efficienct

decrease is due to the excessive costs associated with the parallel computation

(initialization, communication and/or synchronization costs)

The Karp-Flatt metric allows us to detect sources of inefficiency not

considered by the model which assumes that p processing units execute

the parallel part p times faster than executing with just one unit.



Karp-Flatt Metric

Consider the speedups obtained by a parallel application:

2 CPUs 3 CPUs 4 CPUs 5 CPUs 6 CPUs 7 CPUs 8 CPUs

S(p) 1.82 2.50 3.08 3.57 4.00 4.38 4.71

e 0.099 0.100 0.100 0.100 0.100 0.100 0.100

31R. Rocha and F. Silva (DCC-FCUP) Performance Metrics Parallel Computing 15/16

What is the main reason for the application to just achieve a speedup of

4.71 with 8 processors?

• Given that e not increases with the number of processors, the main reason for

the small speedup is the scarce parallelism avaiable in the application



Karp-Flatt Metric

Consider the speedups obtained by a parallel application:

2 CPUs 3 CPUs 4 CPUs 5 CPUs 6 CPUs 7 CPUs 8 CPUs

S(p) 1.87 2.61 3.23 3.73 4.14 4.46 4.71

e 0.070 0.075 0.079 0.085 0.090 0.095 0.100
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What is the main reason for the application to just achieve a speedup of

4.71 with 8 processors?

• Given that e increases with the number of processors, the main reason for the

small speedup are the excessive costs associated to the parallel computation



Efficiency and Scalability

From the previous results, we can conclude that the efficiency of an

application is:

• A decreasing function on the number of processing units

• Typically, an increasing function on the size of the probem
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Problem size fixed (n) Number of processing units fixed (p)



Efficiency and Scalability

An application is said to be scalable when it shows capacity to maintain

the same efficiency as the number of processing units and the size of

the problem are increased proportionally.

1 CPU 2 CPUs 4 CPUs 8 CPUs 16 CPUs

n = 10000 1 0.81 0.53 0.28 0.16
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The scalability of an application reflects its capacity of making use of

more computational resources effectively.

Efficiency

n = 10000 1 0.81 0.53 0.28 0.16

n = 20000 1 0.94 0.80 0.59 0.42

n = 30000 1 0.96 0.89 0.74 0.58



Isoefficiency Metric

Typically, the efficiency of an application is an increasing function on the

size of the problem since the complexity of communication is, usually,

smaller than the complexity of computation, i.e., to maintain the same

level of efficiency as we increase the number of processing units one

needs to increase the size of the problem. The isoefficiency metric

formalizes this idea.
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formalizes this idea.

Let us consider again the definition of speedup:
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Isoefficiency Metric

Let T0(p) be the execution time spent by p processing units on the

parallel algorithm performing computations not done in the sequential

algorithm:

Simplifying:
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Simplifying:
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Isoefficiency Metric

Then:

)(
)(1

)(
)1(                    

)(

)(1

)1(

)(
     

)1(

)(
1

1
)(         

0
0

0

pT
pE

pE
T

pE

pE

T

pT

T

pT
pE

×
−

=⇒
−

=⇒

+

=

37R. Rocha and F. Silva (DCC-FCUP) Performance Metrics Parallel Computing 15/16

If one wants to maintain the same level of efficiency as we increase the

number of processing units, then:
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Isoefficiency Metric

Let E(p) be the efficiency of a parallel application with p processing units

then the isoefficiency metric tells us that, to maintain the same level of

efficiency as we increase the number of processing units, the size of the

problem must be increased so that the following inequality is satisfied:

)()1( 0 pTcT ×≥
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The applicability of the isoefficiency metric may depend on the available

memory, since the maximum size of the problem that can be solved is

limited by that quantity.
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Isoefficiency Metric

Suppose that the isoefficiency metric for a problem of size n is given as a

function on the number of processing units p:

If M(n) designates the quantity of required memory to solve a problem

of size n then:
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of size n then:

That is, to maintain the same level of efficiency, the quantity of memory

required per processing unit is:
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Isoefficiency Metric

To maintain the same level of efficiency, as we increase the number of 

processing units, there is a memory limit on the size of the problem.

M
e

m
o

ry p
e

r p
ro

ce
ssin

g
 

Efficiency can not be maintained

and should decrease

ppc log××

pc×

40R. Rocha and F. Silva (DCC-FCUP) Performance Metrics Parallel Computing 15/16

M
e

m
o

ry p
e

r p
ro

ce
ssin

g
 u

n
it

Effciency can

be maintained

Number of processing units

Memory limit

c

pc log×



Isoefficiency Metric

Consider that the sequential version of a certain application has

complexity O(n3) and that the execution time spent by each of the p

processing units of the parallel version in communication and

synchronization operations is O(n2 log p). If the amount of memory

necessary to represent a problem of size n is n2, what is the scalability of

the application in terms of memory?
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the application in terms of memory?

Thus, the scalability of the application is low.
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Superlinear Speedup

We say that the speedup is superlinear when the ratio between the

sequential execution time and the parallel execution time with p

processing units is greater than p.
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Some factors that may make the speedup superlinear are:

• Almost inexistent initialization, comunication and/or synchronization costs

• Tolerancy to communication latency

• Increased memory capacity (the problem may start to fit all in memory)

• Subdivision of the problem (smaller tasks may generate less cache misses)

• Computation randomness in optimization problems or with multiple solutions


