
#1 : Program Execution

Computer Architecture 2019/2020Computer Architecture 2019/2020

João Soares & Ricardo Rocha
Computer Science Department, Faculty of Sciences, University of Porto



Translating and Starting a Program

We can consider four hierarchical steps when transforming a C program 

in a file on disk into a process running on a computer:

• Compiler transforms the high-level language program to an assembly language 

program, a symbolic form of what the machine understands

• Assembler turns the assembly language program into an object file, which 

includes machine code, data, and information needed to execute the program

•

1#1 : Program ExecutionComputer Architecture 2019/2020

• Linker combines independently object files and resolves all undefined labels into 

an executable file

• Loader places an executable file in main memory so that it is ready to execute



Object Files

The object file for UNIX systems typically contains six distinct pieces:

• Object file header describes the size and position of the other 5 pieces

• Text segment contains the machine language code

• Static data segment contains data allocated for the life of the program

• Relocation information identifies instructions and data words that depend on 

absolute addresses when the program is loaded into memory

2#1 : Program ExecutionComputer Architecture 2019/2020

absolute addresses when the program is loaded into memory

• Symbol table contains the remaining labels that are not defined, such as global 

definitions and external references

• Debugging information contains a concise description of how the modules were 

compiled so that a debugger can associate machine instructions with C source 

files and make data structures readable



Linking Object Files

The linker uses the relocation 

information and symbol table in 

each object module to resolve 

all undefined labels.

• Such references occur in 

branch/jump instructions and 

3#1 : Program ExecutionComputer Architecture 2019/2020

branch/jump instructions and 

data addresses

• The linker produces an 

executable file that has the 

same format as an object file, 

except that it contains no 

unresolved references or 

relocation information



Dynamic Linking

Static linking has a few disadvantages:

• The library becomes part of the executable code and, if a new library version is 

released, the statically linked program keeps using the old version

• It loads all routines in the library even if those calls are not executed

These disadvantages lead to dynamically linked libraries (DLLs) where 

4#1 : Program ExecutionComputer Architecture 2019/2020

These disadvantages lead to dynamically linked libraries (DLLs) where 

each library routine is loaded only when it is needed:

• Initially, the main routine is loaded into memory and executed

• When a routine calls another routine, the calling routine first checks to see 

whether the other routine has been loaded and, if not, a relocatable linking 

loader is called to load the desired routine into memory

• A stub is included in the binary program for each library routine reference that 

indicates how to locate the appropriate library routine and load it



Dynamic Linking

Indirection table

Stub: loads routine ID

5#1 : Program ExecutionComputer Architecture 2019/2020

Stub: loads routine ID
and jumps to linker/loader

Linker/loader code

DLL code


