#1: Program Execution

Computer Architecture 2019/2020

Jodo Soares & Ricardo Rocha

Computer Science Department, Faculty of Sciences, University of Porto

Translating and Starting a Program

We can consider four hierarchical steps when transforming a C program
in a file on disk into a process running on a computer:

® Compiler transforms the high-level language program to an assembly language
program, a symbolic form of what the machine understands

® Assembler turns the assembly [anguage program into an object file, which
includes machine code, data, and information needed to execute the program

* Linker combines independently object files and resolves all undefined labels into
an executable file

® Loader places an executable file in main memory so that it is ready to execute

High-level language program

o =
Program Compiler ——| Assembler ——| Linker ——
] [

T

Assembly language program

Computer Architecture 2019/2020 #1: Program Execution

Object Files

The object file for UNIX systems typically contains six distinct pieces:
® Object file header describes the size and position of the other 5 pieces
®* Textsegment contains the machine language code
® Static data segment contains data allocated for the life of the program

® Relocation information identifies instructions and data words that depend on
absolute addresses when the program is loaded into memory

* Symbol table contains the remaining labels that are not defined, such as global
definitions and external references

* Debugging information contains a concise description of how the modules were
compiled so that a debugger can associate machine instructions with C source
files and make data structures readable

Obiject file
header

Text
segment

Data
segment

Relocation
information

Symbol
table

Debugging
information

Computer Architecture 2019/2020

#1: Program Execution

Linking Object Files

The linker uses the relocation

information and symbol table in

each object module to resolve

all undefined labels.

® Suchreferences occurin
branch/jump instructions and
data addresses

® Thelinker produces an
executable file that has the
same format as an object file,
except that it contains no
unresolved references or
relocation information

Instructions

Object file

sub:

.
>

Relocation
records

Object file
main:
jal 2727
jal 7727
call, sub
call, printf

C library

print:

Linker

Executable file

main:
Jal printf

Jal sub
printf:

sub:

Computer Architecture 2019/2020

#1: Program Execution

Dynamic Linking

Static linking has a few disadvantages:

® The library becomes part of the executable code and, if a new library version is
released, the statically linked program keeps using the old version

® [tloads all routines in the library even if those calls are not executed

These disadvantages lead to dynamically linked libraries (DLLs) where
each library routine is loaded only when it is needed:
® [nitially, the main routine is loaded into memory and executed

®* When a routine calls another routine, the calling routine first checks to see
whether the other routine has been loaded and, if not, a relocatable linking
loader is called to load the desired routine into memory

® Astubisincluded in the binary program for each library routine reference that
indicates how to locate the appropriate library routine and load it

Computer Architecture 2019/2020 #1: Program Execution

Dynamic Linking

Text Text
Jal .—‘l | Jo | .——I
i L] w LH W
Indirection table Data | \A Data
- ® —
Stub: loads routine ID Text
and jumps to linker/loader | . ®
Linker/loader code L Text
Dynamic linker/loader
Remap DLL routine
| e
DLL COde Data/Text Text
DLL routine - DLL routine
ir | @ ir O

a. First call to DLL routine b. Subsequent calls to DLL routine

Computer Architecture 2019/2020

#1: Program Execution

