#7 : MIPS Programming llI

Computer Architecture 2019/2020

Jodo Soares & Ricardo Rocha

Computer Science Department, Faculty of Sciences, University of Porto

Procedure Calls

The execution of a procedure call happens when one procedure (the
caller) invokes another procedure (the callee). In general, the execution
of a procedure call follows six steps:

® Putarguments in a place where the callee can access them

® Transfer control to the callee

® Acquire storage resources needed for callee execution

® Perform callee’s operations

® Putresultsin a place where the caller can access them

® Return control to the caller’s next instruction

Computer Architecture 2019/2020 #7 + MIPS Programming Il

Procedure Calls

The bookkeeping associated with procedure
calls is done in the stack segment around blocks High address
of memory called procedure frames. $fp —

By historical precedent, the stack grows from
higher addresses to lower addresses. This
convention means that you push values onto
the stack by subtracting from the stack pointer.

$sp—

* Register $fp (frame pointer) points to the base of
the current procedure frame and offers a stable
base register as it does not change in a procedure

® Register $sp (stack pointer) points to the top of
the current procedure frame and can change
within a procedure

Low address

Computer Architecture 2019/2020 #7 : MIPS Programming Il

Preserved or Not Preserved

What is preserved across a procedure call?

® 4$spis preserved by the callee by adding exactly the same amount that was
subtracted from it

® Stack above $sp is preserved by making sure the callee does not write above
s$sp, i.e., the caller will get the same data back on a load from the stack as it was
stored there

® Other registers can be preserved by saving them on the stack (if they are used)
and restoring them from there, specially registers $s0-$s7 and register sra

o reserved

Saved registers: $s0-$s7/ Temporary registers: $t0-$t9
Stack pointer register: $sp Argument registers: $a0-%$a3
Return address register: $ra Return value registers: $v0-$v1
Stack above the stack pointer Stack below the stack pointer

Computer Architecture 2019/2020 #7 : MIPS Programming Il

Procedure Call Support

MIPS conventions for procedure calling:

$a0 — $a3 registers are used to pass the first 4 arguments to the callee
$vO0 - svi1registers are used to return values to the caller

$to - $tg registers are used to hold temporary values that can be overwritten by
the callee

$s0 - $s7 registers are used to hold long-lived values that should be preserved
across calls

$sp register is the pointer to the current top location in the stack
sra register is the return address to the caller’s next instruction

jump-and-link instruction (jal) jumps to an address and simultaneously saves the
address of the following instruction (PC + 4) in register $ra

jump register instruction (jr) jumps to the address stored in register $ra

Computer Architecture 2019/2020 #7 : MIPS Programming Il

Caller Side

Save not preserved registers

* |f the caller expects to use not preserved registers ($to — $t9, $a0 — $a3 and $vo -
$v1) after the call, save its values before the call in the current procedure frame

Pass arguments
® The first 4 arguments are put in registers $ao — sa3

® Additional arguments are pushed on the stack and appear at the beginning of
the procedure frame (register $fp points to the base of the procedure frame)

Transfer control to the callee

® Execute ajalinstruction to jump to the callee’s first instruction and save the
return address in s$ra

Computer Architecture 2019/2020 #7 : MIPS Programming Il

Callee Side

Allocate memory (and update stack pointer)

® Add anew procedure frame by subtracting the required size from $sp

Save preserved registers (and update frame pointer)

* |[f the callee expects to alter preserved registers ($fp, sra and $s0 — $s7), save its
values in the new procedure frame before altering them ($fp only needs to be
saved if the frame’s size is not zero; $ra only needs to be saved if the callee itself

makes a call)
® Update sfp by adding the new frame’s size minus 4 to $sp

Put results and return control to the caller
* |[f the callee returns something, put the result(s) in $vo — $v1
® Restore all callee-saved registers ($fp, $ra and $s0 — $s7)
® Pop the procedure frame by adding its size to $sp

® Executeajrinstruction to return by jumping to the address in sra

Computer Architecture 2019/2020 #7 : MIPS Programming Il

Simple Procedure Call

int proc (int argl, int arg2) { // arguments in $a0 and $al

intr=...; // r in $s0, need to save $s0 on stack
return r; // return value in $vO
}
_main
14 $al, ... # put argument $a0
14 $al, ... # put argument $al
jal _proc # jump and 1ink

adjust stack pointer
save $s0

return value in $vO
restore $s0

restore stack pointer
return

_proc: addiu $sp, $sp, -4
SwW $s0, 0($sp)

Tw $s0, 0($sp)
addiu $sp, $sp, 4
jr $ra

H H H H W W

Computer Architecture 2019/2020 #7 : MIPS Programming Il

