
#7 : MIPS Programming III

Computer Architecture 2019/2020Computer Architecture 2019/2020

João Soares & Ricardo Rocha
Computer Science Department, Faculty of Sciences, University of Porto

Procedure Calls

The execution of a procedure call happens when one procedure (the

caller) invokes another procedure (the callee). In general, the execution

of a procedure call follows six steps:

• Put arguments in a place where the callee can access them

• Transfer control to the callee

1#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 1#7 : MIPS Programming IIIComputer Architecture 2019/2020

• Transfer control to the callee

• Acquire storage resources needed for callee execution

• Perform callee’s operations

• Put results in a place where the caller can access them

• Return control to the caller’s next instruction

Procedure Calls

The bookkeeping associated with procedure

calls is done in the stack segment around blocks

of memory called procedure frames.

By historical precedent, the stack grows from

higher addresses to lower addresses. This

convention means that you push values onto

2#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 2#7 : MIPS Programming IIIComputer Architecture 2019/2020

convention means that you push values onto

the stack by subtracting from the stack pointer.

• Register $fp (frame pointer) points to the base of

the current procedure frame and offers a stable

base register as it does not change in a procedure

• Register $sp (stack pointer) points to the top of

the current procedure frame and can change

within a procedure

Preserved or Not Preserved

What is preserved across a procedure call?

• $sp is preserved by the callee by adding exactly the same amount that was

subtracted from it

• Stack above $sp is preserved by making sure the callee does not write above

$sp, i.e., the caller will get the same data back on a load from the stack as it was

stored there

• Other registers can be preserved by saving them on the stack (if they are used)

3#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 3#7 : MIPS Programming IIIComputer Architecture 2019/2020

• Other registers can be preserved by saving them on the stack (if they are used)

and restoring them from there, specially registers $s0–$s7 and register $ra

Procedure Call Support

MIPS conventions for procedure calling:
• $a0 – $a3 registers are used to pass the first 4 arguments to the callee

• $v0 – $v1 registers are used to return values to the caller

• $t0 – $t9 registers are used to hold temporary values that can be overwritten by
the callee

• $s0 – $s7 registers are used to hold long-lived values that should be preserved

4#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 4#7 : MIPS Programming IIIComputer Architecture 2019/2020

• $s0 – $s7 registers are used to hold long-lived values that should be preserved
across calls

• $sp register is the pointer to the current top location in the stack

• $ra register is the return address to the caller’s next instruction

• jump-and-link instruction (jal) jumps to an address and simultaneously saves the
address of the following instruction (PC + 4) in register $ra

• jump register instruction (jr) jumps to the address stored in register $ra

Caller Side

Save not preserved registers

• If the caller expects to use not preserved registers ($t0 – $t9, $a0 – $a3 and $v0 –

$v1) after the call, save its values before the call in the current procedure frame

Pass arguments

• The first 4 arguments are put in registers $a0 – $a3

5#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 5#7 : MIPS Programming IIIComputer Architecture 2019/2020

• The first 4 arguments are put in registers $a0 – $a3

• Additional arguments are pushed on the stack and appear at the beginning of

the procedure frame (register $fp points to the base of the procedure frame)

Transfer control to the callee

• Execute a jal instruction to jump to the callee’s first instruction and save the

return address in $ra

Callee Side

Allocate memory (and update stack pointer)

• Add a new procedure frame by subtracting the required size from $sp

Save preserved registers (and update frame pointer)

• If the callee expects to alter preserved registers ($fp, $ra and $s0 – $s7), save its

values in the new procedure frame before altering them ($fp only needs to be

saved if the frame’s size is not zero; $ra only needs to be saved if the callee itself

6#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 6#7 : MIPS Programming IIIComputer Architecture 2019/2020

saved if the frame’s size is not zero; $ra only needs to be saved if the callee itself

makes a call)

• Update $fp by adding the new frame’s size minus 4 to $sp

Put results and return control to the caller

• If the callee returns something, put the result(s) in $v0 – $v1

• Restore all callee-saved registers ($fp, $ra and $s0 – $s7)

• Pop the procedure frame by adding its size to $sp

• Execute a jr instruction to return by jumping to the address in $ra

Simple Procedure Call

int proc (int arg1, int arg2) { int proc (int arg1, int arg2) { int proc (int arg1, int arg2) { int proc (int arg1, int arg2) { // arguments in $a0 and $a1// arguments in $a0 and $a1// arguments in $a0 and $a1// arguments in $a0 and $a1

int r = ...;int r = ...;int r = ...;int r = ...; // r in $s0, need to save $s0 on stack// r in $s0, need to save $s0 on stack// r in $s0, need to save $s0 on stack// r in $s0, need to save $s0 on stack

return r;return r;return r;return r; // return value in $v0// return value in $v0// return value in $v0// return value in $v0

}}}}

--

_main: ..._main: ..._main: ..._main: ...

li $a0, ... li $a0, ... li $a0, ... li $a0, ... # put argument $a0# put argument $a0# put argument $a0# put argument $a0

li $a1, ... li $a1, ... li $a1, ... li $a1, ... # put argument $a1# put argument $a1# put argument $a1# put argument $a1

7#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 7#7 : MIPS Programming IIIComputer Architecture 2019/2020

li $a1, ... li $a1, ... li $a1, ... li $a1, ... # put argument $a1# put argument $a1# put argument $a1# put argument $a1

jal _proc jal _proc jal _proc jal _proc # jump and link# jump and link# jump and link# jump and link

............

_proc: addiu $sp, $sp, _proc: addiu $sp, $sp, _proc: addiu $sp, $sp, _proc: addiu $sp, $sp, ----4 4 4 4 # adjust stack pointer# adjust stack pointer# adjust stack pointer# adjust stack pointer

sw $s0, 0($sp) sw $s0, 0($sp) sw $s0, 0($sp) sw $s0, 0($sp) # save $s0# save $s0# save $s0# save $s0

... # return value in $v0# return value in $v0# return value in $v0# return value in $v0

lw $s0, 0($sp) lw $s0, 0($sp) lw $s0, 0($sp) lw $s0, 0($sp) # restore $s0# restore $s0# restore $s0# restore $s0

addiu $sp, $sp, 4 addiu $sp, $sp, 4 addiu $sp, $sp, 4 addiu $sp, $sp, 4 # restore stack pointer# restore stack pointer# restore stack pointer# restore stack pointer

jr $ra jr $ra jr $ra jr $ra # return# return# return# return

