
#10 : MIPS Multi-Cycle Implementation

Computer Architecture 2019/2020Computer Architecture 2019/2020

João Soares & Ricardo Rocha
Computer Science Department, Faculty of Sciences, University of Porto

Multi-Cycle Data and Control Paths

1#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 1#10 : MIPS Multi-Cycle ImplementationComputer Architecture 2019/2020

Multi-Cycle Steps

MIPS instructions classically include five steps:

• IF – instruction fetch

• ID – instruction decode and register fetch

• EX – execute operation , address calculation or branch/jump completion

• MEM – data memory access or R-type completion

• WB – write result back to register

2#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 2#10 : MIPS Multi-Cycle ImplementationComputer Architecture 2019/2020

• WB – write result back to register

Instructions take from three to five execution steps. The first two steps

are independent of the instruction type. After these steps, an instruction

takes from one to three more cycles to complete, depending on the

instruction type.

Multi-Cycle Step Actions

3#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 3#10 : MIPS Multi-Cycle ImplementationComputer Architecture 2019/2020

Multi-Cycle Finite State Machine

4#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 4#10 : MIPS Multi-Cycle ImplementationComputer Architecture 2019/2020

Multi-Cycle Example

Example: lw $t2, 100($t1) (I-format: op rs rt address --> 35 $t1 $t2 100)

Step IF – machine state 0

• Signals ALUSrcA=0 / ALUSrcB=01 / ALUOp=00 / PCSource=00 / PCWrite

PC <= PC + 4

• Signals IorD=0 / MemRead / IRWrite

5#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 5#10 : MIPS Multi-Cycle ImplementationComputer Architecture 2019/2020

• Signals IorD=0 / MemRead / IRWrite

IR <= Memory[PC] = 35 $t1 $t2 100

Step ID – machine state 1

• Signals ALUSrcA=0 / ALUSrcB=11 / ALUOp=00

Ignored for load instructions

• A <= Reg[IR[25:21]] = Reg[$t1]

B <= Reg[IR[20:16]] = Reg[$t2]

Multi-Cycle Example

Example: lw $t2, 100($t1) (I-format: op rs rt address --> 35 $t1 $t2 100)

Step EX – machine state 2

• Signals ALUSrcA=1 / ALUSrcB=10 / ALUOp=00

ALUOut <= A + sign-extend(IR[15:0]) = Reg[$t1] + 100

6#2 : Representação em Vírgula FlutuanteComputer Architecture 2019/2020 6#10 : MIPS Multi-Cycle ImplementationComputer Architecture 2019/2020

Step MEM – machine state 3

• Signals IorD=1 / MemRead

MDR <= Memory[ALUOut] = Memory[Reg[$t1] + 100]

Step WB – machine state 4

• Signals RegDst=0 / RegWrite / MemtoReg=1

Reg[IR[20:16]] = Reg[$t2] <= MDR = Memory[Reg[$t1] + 100]

