#12 : Performance

Computer Architecture 2019/2020 João Soares & Ricardo Rocha

Computer Science Department, Faculty of Sciences, University of Porto

CPU Clocking

The duration of a complete clock cycle is the **clock period** and the number of cycles per second is the **clock rate (or clock frequency)**, which is the inverse of the clock period.

$$ClockRate(Hz) = \frac{1}{ClockPeriod(s)}$$

Clock period (duration of a clock cycle)

• e.g., 250ps (picoseconds) = 0.25ns (nanoseconds) = 250×10^{-12} s (seconds)

Clock rate (cycles per second)

• e.g., 4.0GHz = 4000MHz = 4.0×10^{9} Hz = $1/(250 \times 10^{-12}$ s)

CPUTime=InstructionCount×CPI×ClockPeriod = InstructionCount×CPI ClockRate

Components of performance	Units of measure
CPU execution time for a program	Seconds for the program
Instruction count	Instructions executed for the program
Clock cycles per instruction (CPI)	Average number of clock cycles per instruction
Clock cycle time	Seconds per clock cycle

#12 : Performance

CPU time can be divided into the clock cycles that the CPU spends executing the instructions with no misses (CPIPerfect) and the clock cycles that the CPU spends waiting for the memory system (CPIStall).

CPI = CPIPerfect + CPIStall

Memory-stall clock cycles can be defined as the sum of the stall cycles coming from reads plus those coming from writes. For simplicity, let's assume that the read/write miss rates and miss penalties are the same:

$$CPIStall = \frac{MemoryAccesses}{Instructions} \times MissRate \times MissPenalty$$

If we consider separate caches/memories for instructions and data then:

 ${\sf CPIStall} = {\sf CPIStallInstructionAccess} + {\sf CPIStallDataAccess}$

In more detail:

CPIStall = 1×MissRateInstructionAccess×MissPenalty + <u>LoadStores</u> + <u>Instructions</u>×MissRateDataAccess×MissPenalty With multilevel caches, memory-stall clock cycles can be defined as the sum of the stall cycles coming from the several cache levels (L1, L2, ...). For simplicity, let's assume single instruction/data caches:

CPIStall = MissRate × MissPenalty = MissRateL1 × MissPenaltyL1 + GlobalMissRateL2 × MissPenaltyL2 + ...

The global miss rate for a level L represents the miss rate for the set of levels up to L:

GlobalMissRateL2 = MissRateL1×MissRateL2 GlobalMissRateL3 = MissRateL1×MissRateL2×MissRateL3