
#3 : Data Representation

Computer Architecture 2019/2020

Ricardo RochaRicardo Rocha
Computer Science Department, Faculty of Sciences, University of Porto

Slides based on the book

‘Computer Organization and Design, The Hardware/Software Interface, 5th Edition

David Patterson and John Hennessy, Morgan Kaufmann’

Sections 2.1 – 2.4, 2.9, 3.1 – 3.2 and 3.5

Stored Program Concept

Modern computers are built on two key principles:

• Instructions are represented as numbers

• Programs are stored in memory to be read or written, just like data

These principles lead to the stored program concept:

• No distinction between data and program in memory – memory can contain the

1#3 : Data RepresentationComputer Architecture 2019/2020

• No distinction between data and program in memory – memory can contain the

source code for a program, the corresponding compiled machine code, the data

that the compiled program is using, and even the compiler that generated the

machine code

• Programs are shipped as files of binary numbers

• Computers can inherit ready-made software provided they are compatible with

an existing instruction set – such compatibility often leads industry to align

around a small number of instruction set architectures

Stored Program Concept

2#3 : Data RepresentationComputer Architecture 2019/2020

Character Data

Byte-encoded character sets

• ASCII: 128 characters (95 graphic, 33 control)

• Latin-1: 256 characters (ASCII, +96 more graphic characters)

Unicode 32-bit character set

• Most of the world’s alphabets plus symbols

3#3 : Data RepresentationComputer Architecture 2019/2020

• Most of the world’s alphabets plus symbols

• Variable-length encodings: UTF-8 (one to four 8-bit code units), UTF-16 (one or

two 16-bit code units)

• Fixed-length encoding: UTF-32 (32-bit code units)

ASCII

4#3 : Data RepresentationComputer Architecture 2019/2020

UTF-8 was designed for backward compatibility with ASCII. The first 128

characters correspond one-to-one with ASCII, so that valid ASCII text is

valid UTF-8 encoded text as well. The next 1920 characters need two

bytes and use 11 significant bits (number of Xs in the table below) to

cover alphabets like Latin, Greek, Arabic, etc. Three and four bytes are

used for more specific alphabets like Chinese, Korean, Japanese, etc.

UTF-8

5#3 : Data RepresentationComputer Architecture 2019/2020

used for more specific alphabets like Chinese, Korean, Japanese, etc.

Strings

Characters are normally combined into strings, which have a variable

number of characters. There are three choices for representing a string:

• The first position of the string is reserved to give the length of a string

• An accompanying variable has the length of the string (as in a structure)

• The last position of a string is indicated by a specific character used to mark the

end of a string

6#3 : Data RepresentationComputer Architecture 2019/2020

end of a string

C uses the third choice, terminating a string with a byte whose value is 0

(named null in ASCII).

• For example, the string “AC” is represented by 3 bytes with the decimal

numbers <81, 83, 0>

Unsigned Integers N-Bits

Range from 0 to (2n – 1)

• Using 32 bits, range from 0 to +4,294,967,295

0
0

1
1

2
2

1
1 2222 xxxxx n

n
n

n ++++=
−

−

−

−
L

7#3 : Data RepresentationComputer Architecture 2019/2020

32 bits example:

0000 0000 0000 0000 0000 0000 0000 10112

= 1×23 + 1×21 + 1×20

= 8 + 2 + 1

= 11

Two’s Complement Signed Integers N-Bits

Range from (–2n–1) to (2n–1 – 1)

• Using 32 bits, range from –2,147,483,648 to +2,147,483,647

• Note that –(–2n–1) = 2n–1 cannot be represented

0
0

1
1

2
2

1
1 2222 xxxxx n

n
n

n ++++−=
−

−

−

−
L

8#3 : Data RepresentationComputer Architecture 2019/2020

• Note that –(–2n–1) = 2n–1 cannot be represented

32 bits example:

1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22

= –2,147,483,648 + 2,147,483,644

= –4

Two’s Complement Signed Integers N-Bits

Most significant (leftmost) bit is the sign bit:

• 1 for negative numbers

• 0 for non-negative numbers

Non-negative numbers have the same unsigned and two’s complement

representation.

9#3 : Data RepresentationComputer Architecture 2019/2020

representation.

Some specific numbers in 32 bits:

0 0000 0000 0000 0000 0000 0000 0000 00002

Most-positive 0111 1111 1111 1111 1111 1111 1111 11112

–1 1111 1111 1111 1111 1111 1111 1111 11112

Most-negative 1000 0000 0000 0000 0000 0000 0000 00002

Two’s Complement Shortcuts

A quick way to negate a two’s complement binary number is to simply

invert every 0 to 1 and every 1 to 0, then add one to the result.

xx

 ... xx

−=+

−==+

1

111111111 2

10#3 : Data RepresentationComputer Architecture 2019/2020

8 bits example:

+2 = 0000 00102

–2 = (1111 1101 + 1)2 = 1111 11102

+2 = (0000 0001 + 1)2 = 0000 00102

xx −=+ 1

Two’s Complement Shortcuts

To convert a two’s complement binary number represented in N bits to a

number represented with more than N bits, the shortcut is to take the

sign bit from the smaller quantity and replicate it to fill the new bits of

the larger quantity. This shortcut is commonly called sign extension.

From 8 bits to 16 bits:

11#3 : Data RepresentationComputer Architecture 2019/2020

From 8 bits to 16 bits:

+2 = 0000 00102 � 0000 0000 0000 00102

–2 = 1111 11102 � 1111 1111 1111 11102

Integer Addition

Addition works as expected, digits are added bit by bit, from right to

left, with carries passed to the next left digit, just as is done by hand.

Subtraction simply uses addition – the appropriate operands are first

negated before being added.

12#3 : Data RepresentationComputer Architecture 2019/2020

Integer Addition

Overflow occurs when the result cannot be represented with the

available hardware.

• Adding operands with different signs, overflow cannot occur

• Adding two positive operands and the sum is negative (sign bit is 1), overflow

• Adding two negative operands and the sum is positive (sign bit is 0), overflow

13#3 : Data RepresentationComputer Architecture 2019/2020

Floating Point Numbers

Scientific notation renders numbers with a single digit to the left of the

decimal point:

• 0.315576×1010 = 3.15576×109 (seconds in a typical century)

• 0.1×10–10 = 1.0×10–9 (seconds in a nanosecond)

Normalized number is a scientific notation number without leading 0s:

14#3 : Data RepresentationComputer Architecture 2019/2020

Normalized number is a scientific notation number without leading 0s:

• 3.15576×109

• 1.0×10–9

Computer arithmetic that supports binary numbers represented in

normalized scientific notation in which the binary point is not fixed (in

this case, the leading number is always 1), is called floating point.

Floating Point Numbers

Floating-point numbers are a multiple of the size of a word (32 bits):

• Single precision format requires one word (32 bits)

• Double precision format requires two words (64 bits)

es .m)(211 2 ××−

15#3 : Data RepresentationComputer Architecture 2019/2020

A designer of a floating-point representation must find a compromise

between the size of the mantissa (m) and the size of the exponent (e)

since adding a bit to one side requires taking one bit from the other side.

• Increasing the size of the mantissa enhances the precision of the fraction

• Increasing the size of the exponent increases the range of numbers represented

IEEE 754 Precision Formats

IEEE 754 single precision format

IEEE 754 double precision format

16#3 : Data RepresentationComputer Architecture 2019/2020

To pack even more bits, IEEE 754 makes the leading 1-bit implicit, i.e., a

number is actually 24 bits long in single precision (implied 1 plus 23-bit

fraction) and 53 bits long in double precision (1+52).

• The term significand represents the 24- or 53-bit number (1 plus mantissa)

IEEE 754 Precision Formats

IEEE 754 designers also wanted a representation that could be easily

processed by integer comparison instructions, especially for sorting.

• This is why the sign is in the most significant bit, allowing a quick test of less

than, greater than, or equal to 0

• Placing the exponent before the significand also simplifies sorting, since

numbers with bigger exponents look larger than with smaller exponents

•

17#3 : Data RepresentationComputer Architecture 2019/2020

• However, exponents with different signs pose a challenge since the desirable

notation must represent the most negative exponent as 00…00 and the most

positive as 11…11 – this is called biased notation, with the bias being the number

subtracted from the normal unsigned representation to determine the real value

IEEE 754 Precision Formats

For example, without biased notation, the number 1.0×2–1 would be

greater than 1.0×21 if using integer comparison.

18#3 : Data RepresentationComputer Architecture 2019/2020

The exponent bias are:

• 127 for single precision

• 1023 for double precision

IEEE 754 Precision Formats

For single precision numbers, the range is then from:

• as small as ±1.000000000000000000000002×2–126

• to as large as ± 1.111111111111111111111112×2127

biases m)(−

×+×−
102)1(1

19#3 : Data RepresentationComputer Architecture 2019/2020

Single precision example:

–0.75 = –(0.50 + 0.25) = –(2–1 + 2–2) = –0.112×20 = –1.12× 2–1 (normalized)

= (–1)1
×(12 + 0.1000 0000 0000 0000 0000 0002)× 2126–127 (single precision)

IEEE 754 Precision Formats

20#3 : Data RepresentationComputer Architecture 2019/2020

Special cases

• Divide by 0 is represented as infinity

• Invalid operations, such as 0/0 or subtracting infinity from infinity, is represented

as NaN (Not a Number)

Denormalized Numbers

Rather than having a gap between 0 and the smallest normalized

number, IEEE allows denormalized numbers. They allow a number to

degrade in significance until it becomes 0. They have the same exponent

as zero but a nonzero mantissa.

biass m)(−

××−
121

21#3 : Data RepresentationComputer Architecture 2019/2020

as zero but a nonzero mantissa.

For example, the smallest positive single precision normalized number is:

• 1.000000000000000000000002 ×2–126 = 2–126

But the smallest single precision denormalized number is:

• 0.000000000000000000000012 ×2–126 = 2–149

For double precision, the denorm gap goes from 2–1022 to 2–1074.

Floating Point Addition

Assume a decimal notation with 4 decimal digits of the significand and 2

decimal digits of the exponent and the following two numbers:

• 99.99 and 0.1610 (9.999×101 + 1.610×10–1 = 100.151)

The steps to add the two numbers using floating point addition are:

• = 9.999×101 + 0.01610××××101 (align decimal point of smaller exponent)

22#3 : Data RepresentationComputer Architecture 2019/2020

• = 9.999×101 + 0.01610××××101 (align decimal point of smaller exponent)

• = 9.999×101 + 0.016×101 (round number to four decimal digits)

• = 10.015×101 (sum significands)

• = 1.0015××××102 (normalize and adjust exponent)

• = 1.0015×102 (check for overflow or underflow)

• = 1.002×102 (round number to four decimal digits)

• = 1.002×102 (check for normalization and repeat steps if necessary)

• = 100.2

Floating Point Addition

Assume now a binary notation with 4 bits of the significand and 8 bits of

the exponent and the following two numbers:

• 0.5 and –0.4375 (0.5 –0.4375 = 0.0625)

• 0.5 = 0.12×20 = 1.0002××××2–1

• –0.4375 = –(0.25 + 0.125 + 0.0625) = –0.01112×20 = –1.1102××××2–2

The steps to add the two numbers using floating point addition are:

23#3 : Data RepresentationComputer Architecture 2019/2020

The steps to add the two numbers using floating point addition are:

• = 1.0002×2–1 – 0.1112××××2–1 (align decimal point of smaller exponent)

• = 0.0012×2–1 (sum significands)

• = 1.0002××××2–4 (normalize and adjust exponent)

• = 1.0002×2–4 (check for overflow or underflow)

• = 1.0002×2–4 (round number to four bits)

• = 1.0002×2–4 (check for normalization and repeat steps if necessary)

• = 0.0625

Floating Point Addition

Overflow/Underflow occurs when a

positive/negative exponent becomes too

large to fit in the exponent field.

Rounding sounds simple enough, but to

round accurately requires the hardware to

include extra bits in the calculation.

24#3 : Data RepresentationComputer Architecture 2019/2020

include extra bits in the calculation.

• If every intermediate result had to be

truncated to the exact number of digits,

there would be no opportunity to round

• To improve rounding accuracy, IEEE 754

keeps extra bits on the right during

intermediate additions

Rounding with IEEE 754

One possible algorithm is round to the nearest even, which always

creates a 0 in the least significant bit in the tie-breaking case.

• The two first extra bits kept on the right during intermediate calculations of

floating-point numbers are called guard and round bits

• A third bit, named sticky bit, is set whenever there are nonzero bits to the right

of the round bits

25#3 : Data RepresentationComputer Architecture 2019/2020

Rounding rules:

• m0x → m (round down)

• m11 → m + 0…01 (round up)

• m10 ʌ sticky=1 → m + 0…01 (round up)

• m10 ʌ sticky=0 → m + 0…01 (round up if least sigficant bit of m is 1)

• m10 ʌ sticky=0 → m (round down if least sigficant bit of m is 0)

MIPS Registers

Unlike programs in high-level languages, in MIPS the operands of

arithmetic instructions are restricted – they must be from a limited

number of special locations built directly in hardware called registers.

One major difference between the variables of a programming language

26#3 : Data RepresentationComputer Architecture 2019/2020

One major difference between the variables of a programming language

and registers is the limited number of registers, typically 32 on current

computers like MIPS.

MIPS Registers

27#3 : Data RepresentationComputer Architecture 2019/2020

Memory is just a large, single-dimensional array, with the address acting

as the index to that array, starting at 0.

Memory

28#3 : Data RepresentationComputer Architecture 2019/2020

Memory

To access a word in memory, instructions must supply the memory

address in multiples of 4 bytes (32 bits).

29#3 : Data RepresentationComputer Architecture 2019/2020

Registers and Memory in MIPS

Billions of data elements are kept in memory, but the processor can

keep only a small amount of data in registers.

In MIPS, arithmetic operations occur only on registers, thus MIPS must

include instructions that transfer data between memory and registers.

Such instructions are called data transfer instructions.

30#3 : Data RepresentationComputer Architecture 2019/2020

Such instructions are called data transfer instructions.

The data transfer instruction that copies data from memory to a register

is traditionally called a load instruction. The instruction complementary

to load is traditionally called a store instruction and it copies data from a

register to memory.

Registers and Memory in MIPS

Registers take less time to access and have higher throughput than

memory, making data in registers faster to access and simpler to use:

• MIPS arithmetic instructions can read two registers, operate on them, and write

the result to another register

• A MIPS data transfer instruction only reads one operand or writes one operand,

without operating on it

•

31#3 : Data RepresentationComputer Architecture 2019/2020

• Operating on memory data requires loads and stores to/from registers, i.e.,

more instructions to be executed

Compilers must use registers efficiently:

• Use registers for variables as much as possible

• Only spill to memory for less frequently used variables

• Register optimization is important

Endianness

Endianness is the order of bytes in the hardware. Processors can number

bytes within a word so the byte with the lowest number is either the

rightmost (little-endian) or leftmost (big-endian). MIPS is little-endian.

32#3 : Data RepresentationComputer Architecture 2019/2020

