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Instruction Set

The words of a computer’s language are called instructions and the
vocabulary of commands understood by a given architecture is called an
instruction set. Common groups of instructions are:

Arithmetic instructions

Logical instructions

Data transfer instructions
Conditional branch instructions

Unconditional jump instructions

Different computers have different instruction sets but with many
aspects in common. Early computers had very simple instruction sets but
many modern computers also have simple instruction sets.
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Complex Instruction Set Computer (CISC)

A CISCis a computer in which single instructions can execute several
low-level operations (such as a load from memory, an arithmetic

operation, and a memory store) or are capable of multi-step operations
or addressing modes within single instructions.

The term was retroactively coined in contrast to RISC and has therefore
become an umbrella term for everything that is not RISC. The typical
differentiating characteristics is that most RISC designs use uniform
instruction length for almost all instructions, and employ strictly
separate load/store-instructions.
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Complex Instruction Set Computer (CISC)

Examples of architectures that have been retroactively labeled CISC:
* Intel 8080, iAPX432 and x86-family (most personal computers)
®* MOS Technology 6502-family
® Motorola 6800, 6809 and 68000-families
® National Semiconductor 32016 and NS320xx-line

* Zilog Z80, Z8 and Z8000-families
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Reduced Instruction Set Computer (RISC)

Various suggestions have been made regarding a precise definition of
RISC, but the general concept is that such a computer has a small set of
simple and general instructions, rather than a large set of complex and
specialized instructions. Another common RISC characteristic is its
load/store architecture in which memory is accessed through specific
instructions rather than as a part of most instructions.
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Reduced Instruction Set Computer (RISC)

The term RISC was coined by David Patterson in the Berkeley RISC
project, although somewhat similar concepts had appeared before.
Another project associated with the popularization of the term RISC s
the MIPS project that grew out of a graduate course by John Hennessy
at Stanford University in 1981, which resulted in a functioning system in
1983, and could run simple programs by 1984.

Virtually all new instruction sets since 1982 have followed the RISC
philosophy of fixed instruction lengths, load-store instruction sets,
limited addressing modes, and limited operations.
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Reduced Instruction Set Computer (RISC)

Examples of RISC architectures:
°* ARM (e.g., smartphones, tablets, laptops and embedded systems)
* Alpha
® Hitachi SH
* |IBM PowerPC
* Inteli860,i960
* MIPS (e.g., gateways, routers and video game consoles)
® Sun SPARC
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MIPS (from Wikipedia)

MIPS (Microprocessor without Interlocked Pipelined Stages]p] Is a reduced instruction set computer (RISC) instruction set

architecture {ISan*i"-L)[B]:’!""'[‘”:19 developed by MIPS Computer Systems (an American company that i1s now called MIPS Technologies).

There are multiple versions of MIPS: including MIPS [, 11, 1, IV, and V; as well as five releases of MIP532/64 (for 32- and 64-bit
implementations, respectively). The early MIPS architectures were 32-bit only; 64-bit versions were developed later. As of April
2017, the current version of MIPS is MIPS32/64 Release 6.71° MIPS32/64 primarily differs from MIPS |-V by defining the privileged
kermel mode System Control Coprocessor in addition to the user mode architecture.

Computer architecture courses in universities and technical schools often study the MIPS architecture " The architecture greatly

influenced later RISC architectures such as Alpha.

As of April 2017, MIPS processors are used in embedded systems such as residential gateways and routers. Originally, MIPS was
designed for general-purpose computing. During the 1980s and 1990s, MIPS processors for personal, workstation, and server
computers were used by many companies such as Digital Equipment Corporation, MIPS Computer Systems, NEC, Pyramid
Technology, SiCortex, Siemens Nixdorf, Silicon Graphics, and Tandem Computers. Historically, video game consoles such as the
MNintendo 64, Sony PlayStation, PlayStation 2, and PlayStation Portable used MIPS processors. MIPS processors also used to be
popular in supercomputers during the 1990s, but all such systems have dropped off the TOPS00 list. These uses were
complemented by embedded applications at first, but during the 1990s, MIPS became a major presence in the embedded
processor market, and by the 2000s, most MIPS processors were for these applications. In the mid- to late-1990s, it was estimated

that one in three RISC microprocessors produced was a MIPS pmcessnr_[al
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Registers

MIPS has 32 registers, numbered from 0 to 31, each with 32 bits (64-bit
versions also exist). To identify a register in MIPS we need 5 bits (25=32).

Name | Rogistor number Usage

$zero 0 The constant value O

$v0=$v1 2-3 Values for results and expression evaluation
$a0-%a3 4-7 Arguments

$t0-$t7/ 8-15 Temporaries

$s0-%$s7/ 16-23 Saved

$t8-$1t9 24-25 More temporaries

$gp 28 Global pointer

$sp 29 Stack pointer

$fp 30 Frame pointer

$ra 31 Return address
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Instruction Format

MIPS instructions are encoded in binary, as 32-bit instruction words,
called machine code. The layout of an instruction is called the
instruction format. Only 3 different formats exist.

Thame | hess | Commems

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits |All MIPS instructions are 32 bits long
R-format op rs rt rd shamt funct |Arithmetic instruction format

[-format op rs rt address/immediate Transfer, branch,1mm. format
J-format op target address Jump instruction format

B e S S

R add $s1,%$s2,%s3
sub R 0 18 19 17 0] 34 sub $s1,%$s52,%$s3
addi | 8 18 17 100 addi $s1,%$s2,100
Iw | 35 18 17 100 lw $s1,100(%$s2)
SW | 43 18 17 100 sw $51,100(%$s2)
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Instruction Fields

Thame | mede | commems

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits |All MIPS instructions are 32 bits long
R-format op rs rt rd shamt funct | Arithmetic instruction format
[-format op rs rt address/immediate Transfer, branch,imm. format
J-format op target address Jump instruction format

MIPS fields have names to make them easier to discuss:
® op - basic operation of the instruction, traditionally called the opcode
® rs—the first register source operand
® rt-the second register source operand
* rd - the register destination operand, which gets the result of the operation
® shamt - shift amount to be used in shift instructions, zero otherwise

* funct - often called the function code, selects the specific variant of the
operation in the opcode field
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Instruction Opcodes

28-26 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
31-29
0(000) R-format Bltz/gez jump jump & Tink|brancheq |branch blez bgtz
ne
1(001) add addiu set Tess set less andj ori Xori load upper
immediate than imm. than imm. immediate
unsigned
2(010) TLB FIPL
3(011)
4(100) load byte load half Twl load word load byte | 1oad Twr
unsigned |half
unsigned
5(101) store byte store half | swl store word SWr
6(110) load linked | Twcl
word
7(111) store cond. swcl
word
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R-format Function Codes

op(31:26)=000000 (R-format), funct(5:0)

2-0 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
5-3
0(000) shift left shift right|sra sllv srilv srav
logical logical
1(001) jump register|jalr syscall break
2(010) mfhi mthi mflo mtlo
3(011) mult multu div divu
4(100) add addu subtract subu and or Xor not or (nor)
5(101) set 1.t. set 1.¢.
unsigned
6(110)
7(111)
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From Assembly to Machine Code

Let’s see an example of a R-format instruction, first as a combination of
decimal numbers and then of binary numbers. Consider the instruction:

add sto, s$st1, $s2

The op and funct fields in combination (0 and 32 in this case) tell that
this instruction performs addition (add).

The rs and rt fields, registers $s1(17) and $s2 (18), are the source
operands, and the rd field, register $to (8), is the destination operand.

The shamt field is unused in this instruction, so it is set to o.
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From Assembly to Machine Code

Thus, the decimal representation of instruction add $to, $s1, $s2 is:

® op = 0 (arithmetic)

rs =17 ($s1)
rt =18 ($s2)
rd = 8 (5to)

shamt = 0 (not used)
funct = 32 (add)

0 17 18 8 0 32
And the binary representation is:
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
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Arithmetic and Logical Instructions

add ss1, $s2, $s3
addu $st, $s2, $s3
addi $s1, $s2, 20
addiu $s1, $s2, 20
sub $s1, $s2, $s3
and $si1, $s2, $s3
andi $s1, $s2, 20
or $s1, $s2, $s3
nor $s1, $s2, $S3
sll $s1, $s2, 10

srl $s1, $s2, 10

SS1=SS2 + $S3
SS1=$S2 + $S3
$S1=2$S2+20
$S1=2$S2+20
SS1=$S2 — $S3
$S1 =552 & $S3
$S1=5s2 & 20
$s1=$s2 | $s3
$s1=~ (%52 ] $s3)
$S1=S8S2<< 10

$S1=S8S2>>10

(add)

(add unsigned, no overflow)
(add immediate, sign-extend)
(add immediate unsigned)
(subtract)

(and, bit-by-bit)

(and immediate)

(or)

(nor)

(shift left logical)

(shift right logical)
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Data Transfer Instructions

Iw $s1, 20($s2) $s1= Mem[$s2 + 20] (load word, from memory)
Ih $s1, 20($s2) $s1= Mem[$s2 + 20] (load half word, 2 bytes)

lhu $s1, 20($s2) $s1= Mem[s$s2 +20] (load half word, no sign ext.)
Ib $s1, 20($s2) $s1= Mem[$s2 + 20] (load byte)

Ibu $s1, 20($s2) $s1= Mem[$s2 + 20] (load byte, no sign extension)
li $s1, 20 $51=20 (load immediate)

la $s1, L $s1=1L (load address)

move $s1, $s2 $s1=§s2 (data move)

sw $s1, 20($s2) Mem[$s2 + 20] = $s1 (store word, to memory)

sh $s1, 20($s2) Mem[$s2 + 20] = $s1 (store half word)

sb $s1, 20($s2) Mem[$s2 + 20] = $s1 (store byte)
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Branch Instructions

if ($51==$52) (branch on equal)

beq $s1, $s2, 25

beq $s1, $s2, L
bne $s1, $s2, L
blt $s1, $s2, L
bgt $s1, $s2, L
ble $s1, $s2, L
slt $s1, $s2, $s3

slti $s1, $s2, 20

go to (PC+4+100)

if ($s1==3$s2)goto L (branc
if ($s1!=$s2)gotoL (branc
if ($s1<$s2)gotoL (branc
if ($s1>¢s2)gotoL (branc
if ($s1<=3$s2)gotoL (branc

h on equal)
h on not equal)
h on less than)

h on greater than)

h on less than or equal)

if ($s2<$s3)s$s1=1 (setonlessthan, for use

else $s1=0

with beg/bne)

if ($s2<20)s$s1=1  (seton less than immediate)

else $s1=0
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Jump Instructions

j 2500 go t0 10000 (jump to target address)

jL gotolL (jump to target address)

jal L sra=PC+4;gotoL (jump and link, for procedure call)

jr $ra go to $ra (jump register, for procedure return)
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From Assembly to Machine Code

Thame | mede | commems

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits |All MIPS instructions are 32 bits long
R-format op rs rt rd shamt funct | Arithmetic instruction format
[-format op rs rt address/immediate Transfer, branch,imm. format
J-format op target address Jump instruction format

Remember that, in branch (I-format) and jump (J-format) instructions,
the address and target address fields need to be shifted left 2 bits to

correctly represent a valid instruction address (32-bits aligned).
beq $s1, $s2, 25 (25<<2 =100)

j 2500 2500<<2 = 10000
( )
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Pseudo-Instructions

Most assembler instructions represent machine instructions one-to-one.
The assembler can also treat common variations of machine instructions
as if they were instructions in their own right. Such instructions are
called pseudo-instructions.

The hardware need not implement the pseudo-instructions, but their
appearance in assembly language simplifies programming. Register $at
(assembler temporary) is reserved for this purpose.

blt $s1,$s2,L = slt $at, $s1, $s2

bne $at, $zero, L
li $s1, 20 - addiu $s1, $zero, 20
move $to, $st1 > addu sto, $zero, $t1
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Addressing Modes

MIPS addressing modes are:

Immediate addressing where the operand is a constant in the instruction itself
Register addressing where the operand is a register

Base or displacement addressing where the operand is at the memory location
whose address is the sum of a register and a constant in the instruction

PC-relative addressing where the branch address is the sum of the PC with a
constant in the instruction

Pseudo-direct addressing where the jump address is a constant in the
instruction concatenated with the upper bits of the PC
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Addressing Modes

1. Immediate addressing

op| rs | rt Immediate

2. Register addressing

op|rs|{rt|rd]...][funct Registers

- Register

3. Base addressing

op | rs | rt Address Memory
Y
Register @ ~ [[Byte ] Halfword Word
*
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Addressing Modes

4. PC-relative addressing

op | rs | rt Address Memory

!
PC @—» Word
*

5. Pseudodirect addressing

op Address Memory

PC Word

FIGURE 2.18 Illlustration of the five MIPS addressing modes. The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of
load and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself.
Modes 4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the
PC and mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. Note that a
single operation can use more than one addressing mode. Add, for example, uses both immediate (add1)
and register (add) addressing.
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Simple Arithmetic Expression

r«=XX+y)-@+w; // $s0=(%s1 + $s2) - ($s3 + $s4)

add $t0, $s1, $s2 # $t0 = $s1 + §$s2
add $tl1, $s3, $s4 # $tl = $s3 + $s4
sub $s0, $t0, $t1 # $s0 = $t0 - $t1
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Simple Array Expression

Tw  $t0, 32($s0) # $t0 = $s0[32/4] (Mem[$s0 + 32])
add $t0, $s1, $t0 # $t0 = $s1 + $tO
sw $t0, 48($s0) # $s0[48/4] = $t0 (Mem[$sO + 48])
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Simple Conditional Statement

if X=y) r=2z+ w; // if ($s1 == $s2) $s0 = $s3 + $s4
else r=2z - w; // else $s0 = $s3 - $s4

bne $s1, $s2, _else # $sl1 != $s2 > _else
add $s0, $s3, $s4 # $s0 = $s3 + $s4
j _end # > _end
_else:
sub $s0, $s3, $s4 # $s0 = $s3 - $s4
_end:
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Simple While Statement

i = 0; // $t0 =0
while (i < 16) { // while ($t0 < 16)
r=r + X *y; // $s0 = $s0 + $s1 * $s2
i=1 + 1; // $t0 = $t0 + 1
}
T4 $t0, O # $t0 =0
11 $t1, 16 # $tl = 16
_loop:

bge $t0, $tl, _end # $t0 >= $t1 > _end
mu’l $t2, $s1, $s2 # $t2 = §s1 * §$s2
add $s0, $s0, $t2 # $s0 = $s0 + $t2
addiu $t0, $t0, 1 # $t0 = $t0 + 1

j _loop # > _loop

_end:
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Simple Do-While Statement

i = 0; // $t0 =0
do {
r=r + X *y; // $s0 = $s0 + $s1 * $s2
i=1 + 1; // $t0 = $t0 + 1
} while (i < 16); // while ($t0 < 16)
T4 $t0, O # $t0 =0
11 $t1, 16 # $tl = 16
_loop:
mu’l $t2, $sl1, $s2 # $t2 = $s1 * $s2
add $s0, $s0, $t2 # $s0 = $s0 + $t2
addiu $t0, $t0, 1 # $t0 = $t0 + 1
bge $t0, $tl, _end # $t0 >= $t1 > _end
j _loop # > _loop

_end:
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Simple For Statement

for (i =0; i < 16; i++) { // for ($t0 = 0; $t0 < 16; $tO0++)
r=r+Xx *y; // $s0 = $s0 + $s1 * $s2
X = r; // $s1 = $s0
}
11 $t0, O # $t0 =0
11 $tl, 16 # $tl = 16
_loop:

bge $t0, $tl, _end # $t0 >= $tl1 > _end
mu’l $t2, $sl1, $s2 # $t2 = $s1 * $s2
add $s0, $s0, $t2 # $s0 = $s0 + $t2
move $sl1, $s0O # $s1 = $s0

addiu $t0, $t0, 1 # $t0 = $t0 + 1

j _loop # > _loop

_end:
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Simple Switch-Case Statement

switch (x) { // switch ($s1)
case 0: y = z; break; // _10: $s2 = $s3
case 1: y = w; break; // _11: $s2 = $s4
case 2: y = z + w; break; // _12: $s2 = $s3 + $s4
case 3: y = z - w; break; // _13: $s2 = $s3 - $s4
} // $s0 = jumpTable[_10, _11, _12, _13]

sTti $t0, $s1, O

bne $t0, $zero, _end
slti $t0, $s1, 4

beq $t0, $zero, _end
s11 $tl, $s1, 2

add $tl, $s0, $tl

Tw $t0, 0(C$tD)

jr $t0

$t0 = ($s1 < 0)

$t0 !'= 0 > _end

$t0 = ($s1 < 4)

$t0 == 0 > _end

$tl = $s1 * 4

$tl = $s0 + $tl

$t0 = $t1[0] = jumpTable[$s1]
-> [_10, _11, _12, _13]

H OH OH OH W K W W

Computer Architecture 2019/2020 #4 : MIPS Programming



Simple Switch-Case Statement

switch (x) { // switch ($sl1)
case 0: y = z; break; // _10: $s2 = $s3
case 1: y = w; break; // _11: $s2 = $s4
case 2: y = z + w; break; // _12: $s2 = $s3 + $s4
case 3: y = z - w; break; // _13: $s2 = $s3 - $s4
} // $s0 = jumpTable[_10, _11, _12, _13]

_10: move $s2, $s3

j _end

_11: move $s2, $s4
j _end

_12: add $s2, $s3, $s4
j _end

_13: sub $s2, $s3, $s4

_end:
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Address Space

The MIPS address space is divided in four segments:
® Text, which contains the program code
® Data, which contains constants and global variables

® Heap, which contains memory dynamically allocated during runtime

® Stack, which contains temporary data for handling procedure calls

The heap and stack segments grow toward each other, thereby allowing
the efficient use of memory as the two segments expand and shrink.

Computer Architecture 2019/2020
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Address Space

$sp— /fff fffcy o Stack

T

Dynamic data

$gp— 1000 80004, Static data
1000 0000y,
Text
pc— 0040 0000,
Reserved

0

FIGURE 2.13 The MIPS memory allocation for program and data. These addresses are only
a software convention, and not part of the MIPS architecture. The stack pointer is initialized to /7 fff
fffc, and grows down toward the data segment. At the other end, the program code (“text”) starts at
0040 0000, _. The static data starts at 1000 0000, . Dynamic data, allocated by malloc in C and by
new in Java, is next. It grows up toward the stack in an area called the heap. The global pointer, $gp, is set to
an address to make it easy to access data. It is initialized to 1000 8000, _ so that it can access from 1000
0000, to 1000 ffff, nusingthe positive and negative 16-bit offsets from $gp. This information is also
found in Column 4 of the MIPS Reference Data Card at the front of this book.
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Procedure Calls

The execution of a procedure call happens when one procedure (the
caller) invokes another procedure (the callee).

In general, the execution of a procedure call follows six steps:
® Putarguments in a place where the callee can access them
® Transfer control to the callee
® Acquire storage resources needed for callee execution
® Perform callee’s operations
® Putresultsin a place where the caller can access them

® Return control to the caller’s next instruction
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Procedure Calls

How to ensure that a procedure call does not change data that is outside
its scope?

Programmers who write code in a high-level language never see the
details of how one procedure calls another because the compiler takes
care of the low-level details.

Programmers who write code in assembly must explicitly implement
every procedure call and return.
® The caller may have to save data before calling the callee

® The callee may have to save data before running its operations
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Procedure Calls

The bookkeeping associated with procedure High address
calls is done in the stack segment around blocks $fp —
of memory called procedure frames. Ssp—
* Register $fp (frame pointer) points to the base of
the current procedure frame and offers a stable
base register as it does not change in a procedure
® Register $sp (stack pointer) points to the top of
the current procedure frame and since it can
change within a procedure, different references to
the same (local) variable might have different
offsets in the procedure Low address
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Stack Pointer

By historical precedent, the stack grows from higher addresses to lower
addresses. This convention means that you push values onto the stack
by subtracting from the stack pointer. Adding to the stack pointer

shrinks the stack, thereby popping values off the stack.

High address

$sp—

$sp—

Contents of register $t1

Contents of register $t0

$sp— | Contents of register $s0

Low address

(a) (b) (c)

FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c)
after the procedure call. The stack pointer always points to the “top” of the stack, or the last word in the

stack in this drawing.
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Procedure Call Support

MIPS conventions for procedure calling:

$a0 — $a3 registers are used to pass the first 4 arguments to the callee
$vO0 - svi1registers are used to return values to the caller

$to - $tg registers are used to hold temporary values that can be overwritten by
the callee

$s0 - $s7 registers are used to hold long-lived values that should be preserved
across calls

$sp register is the pointer to the current top location in the stack
sra register is the return address to the caller’s next instruction

jump-and-link instruction (jal) jumps to an address and simultaneously saves the
address of the following instruction (PC + 4) in register $ra

jump register instruction (jr) jumps to the address stored in register $ra
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Preserved or Not Preserved

What is preserved across a procedure call?

® 4$spis preserved by the callee by adding exactly the same amount that was
subtracted from it

® Stack above $sp is preserved by making sure the callee does not write above
s$sp, i.e., the caller will get the same data back on a load from the stack as it was
stored there

® Other registers can be preserved by saving them on the stack (if they are used)
and restoring them from there, specially registers $s0-$s7 and register sra

o reserved

Saved registers: $s0-$s7/ Temporary registers: $t0-$t9
Stack pointer register: $sp Argument registers: $a0-%$a3
Return address register: $ra Return value registers: $v0-$v1
Stack above the stack pointer Stack below the stack pointer
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Caller Side

Save not preserved registers

* |f the caller expects to use not preserved registers ($to — $t9, $a0 — $a3 and $vo -
$v1) after the call, save its values before the call in the current procedure frame

Pass arguments
® The first 4 arguments are put in registers $ao — sa3

® Additional arguments are pushed on the stack and appear at the beginning of
the procedure frame (register $fp points to the base of the procedure frame)

Transfer control to the callee

® Execute ajalinstruction to jump to the callee’s first instruction and save the
return address in s$ra
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Callee Side

Allocate memory (and update stack pointer)

® Add anew procedure frame by subtracting the required size from $sp

Save preserved registers (and update frame pointer)

* |[f the callee expects to alter preserved registers ($fp, sra and $s0 — $s7), save its
values in the new procedure frame before altering them ($fp only needs to be
saved if the frame’s size is not zero; $ra only needs to be saved if the callee itself

makes a call)
® Update sfp by adding the new frame’s size minus 4 to $sp

Put results and return control to the caller
* |[f the callee returns something, put the result(s) in $vo — $v1
® Restore all callee-saved registers ($fp, $ra and $s0 — $s7)
® Pop the procedure frame by adding its size to $sp

® Executeajrinstruction to return by jumping to the address in sra
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Procedure Frame

High address

$fp — $fp —

$sp— $sp—

3= |  saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and

$sp— structures (if any)

Low address

(@) (b) (c)

FIGURE 2.12 Illlustration of the stack allocation (a) before, (b) during, and (c) after the
procedure call. The frame pointer ($fp) points to the first word of the frame, often a saved argument
register, and the stack pointer ($sp) points to the top of the stack. The stack is adjusted to make room for
all the saved registers and any memory-resident local variables. Since the stack pointer may change during
program execution, it’s easier for programmers to reference variables via the stable frame pointer, although it
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the
stack within a procedure, the compiler will save time by rnof setting and restoring the frame pointer. When a
frame pointer is used, it is initialized using the address in $Sp on a call, and $sp is restored using $ f p. This
information is also found in Column 4 of the MIPS Reference Data Card at the front of this book.
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Simple Procedure Call

int mult (int x, int y) { // arguments in $a0 and $al
intr=x%*y; // r in $s0, need to save $s0 on stack
return r;
} // result in $vO
_main:
T4 $a0, 10 # put argument $a0
T4 $al, 20 # put argument $al
jal _mult # jump and Tink
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Simple Procedure Call

int mult (int x, int y) { // arguments in $a0 and $al
intr=x%*y; // r in $s0, need to save $s0 on stack
return r;
} // result in $vO
_mult
addiu $sp, $sp, -4 # adjust stack pointer
sw $s0, 0($sp) # save $s0
mu’l $s0, $a0, $al # $s0 = $a0 * $al
move $v0, $sO # return value
Tw $s0, 0($sp) # restore $s0
addiu $sp, $sp, 4 # restore stack pointer
jr $ra # return
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Simple Procedure Call (Optimized Version)

int mult (int x, int y) { // arguments in $a0 and $al
intr=x%*y; // r in $t0, avoid saving $sO0 on stack
return r;
} // result in $vO
_mult
mu’l $v0, $a0, $al # return value
jr $ra # return
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Recursive Procedure Call

int mult (int x, int y) { // arguments in $a0 and $al
if (y == 0) return O;
return x + mult (x, y - 1); // need to save $ra and $a0 on stack
} // result in $vO
_mult
addiu $sp, $sp, -8 # adjust stack pointer
Sw $ra, 4($sp) # save $ra
sw $a0, 0($sp) # save $%$a0

bne $al, $zero, _else # $al != 0 -> _else

11 $v0, O # return value
addiu $sp, $sp, 8 # restore stack pointer
jr $ra # return
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Recursive Procedure Call

int mult (int x, int y) { // arguments in $a0 and $al
if (y == 0) return O;
return x + mult (x, y - 1); // need to save $ra and $a0 on stack
} // result in $vO
_else
addiu $al, %$al, -1 # $al = %$al - 1
jal _mult # recursive call
Tw $a0, 0($sp) # restore $a0
add $t0, $a0, $vO # $t0 = $a0 + $vO
move $v0, $tO # return value

23

Tw $ra, 4($sp) restore $ra
addiu $sp, $sp, 8 restore stack pointer
jr $ra # return

T+

Computer Architecture 2019/2020 #4 : MIPS Programming



Recursive Procedure Call (Optimized Version)

_mult:
bne $al, $zero, _else
14 $v0, O
jr $ra

_else:

addiu $sp, $sp, -4
sw $ra, 0($sp)
addiu $al, $al1, -1
jal _mult

add $v0, $a0, $vO
Tw $ra, 0($sp)
addiu $sp, $sp, 4
jr $ra
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$al !'= 0 > _else
return value
return

adjust stack pointer
save $ra

$al = $al - 1
recursive call

return value

restore $ra

restore stack pointer
return
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Program Structure

.data # data segment (constants and global variables)
_bl: .byte 1 # byte (8 bits) with value 1
_hl: .half 10 # half word (16 bits) with value 10
_wl: .word 100 # word (32 bits) with value 100
_al: .byte 1, 2, 3, 4 # array of 4 bytes with values 1, 2, 3 and 4
_az2: .word 0:100 # array of 100 words with values 0
_sl: .ascii “abc\n” # string not null terminated
_S2: .asciiz “123” # string null terminated”
_el: .space 100 # leave 100 bytes of space
.text # text segment (program instructions)
_main: # main procedure
1i $vO, 10 # load code 10 for system call exit()
syscall # exit()
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System Calls

To request a service, load the system call code into register $vo and
arguments into registers $ao-$a3 or $f12 (floating point values). Return
values are put in register $vo or $fo (floating-point results).

" servoe | syntem oa code

print_int 1 $al = integer

print_float 2 $f12 = float

print_double 3 $f12 = double

print_string 4 $a0 = string

read_int 5 integer (in $v0)

read_float 6 float (in $f0)

read_double 7 double (in $f0)

read_string 8 $a0 = buffer, $al = length

sbrk 9 $a0 = amount address (in $v0)

exit 10

print_char 11 $a0 = char

read_char 12 char (in $v0)

open $a0 = filename (string), file descriptor (in $a0)
13 $al = flags, $a2 = mode

read 14 $a0 = file descriptor, num chars read (in

$al = buffer, $a2 = length $a0)

write $a0 = file descriptor, num chars written (in
15 $al = buffer, $a2 = length $a0)

close 16 $a0 = file descriptor

exit? 17 $a0 =result
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Endianness (Little-Endian)

.data
mem: .word OXABCDEO80 # memory contents: 80 EO CD AB
. text
_main: 1w $t0, mem # $t0 = OxABCDEOS8O
Th $t1, mem # $tl1 = OxFFFFEO80
1b $t2, mem # $t2 = OXFFFFFF80
Thu $t3, mem # $t3 = 0x0000E080
Tbu $t4, mem # $t4 = 0x00000080
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RISC Design Principles in MIPS

Design Principle 1: Simplicity favors regularity
®* Few addressing modes

® Three register operands in arithmetic instructions, keeping the register fields in
the same place in each instruction format

Design Principle 2: Smaller is faster
® Usejust 32 registers

Design Principle 3: Good design demands good compromises
® Same instruction length

Design Principle 4: Make common case faster
® Specific instructions (e.g., addiu)

®* Most procedures are satisfied with 4 arguments, 2 registers for a return value, 8
saved registers, and 10 temporary registers without ever going to memory
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