#5 : Basic Components

Computer Architecture 2019/2020

Ricardo Rocha

Computer Science Department, Faculty of Sciences, University of Porto

Slides based on the book
‘Computer Organization and Design, The Hardware/Software Interface, 5th Edition
David Patterson and John Hennessy, Morgan Kaufmann’

Sections B.1 - B.9

Digital Electronics

The electronics inside a modern computer are digital. Digital electronics
operate with only two voltage levels of interest: a high voltage and a low
voltage. All other voltage values are temporary and occur while
transitioning between the values.

To simplify, rather than refer to voltage levels, we will talk about signals
that are (logically) true (or 1), or signals that are (logically) false (or 0).

The fact that computers are digital is also a key reason they use binary
numbers, since a binary system matches the underlying abstraction
inherent in the electronics.

Computer Architecture 2019/2020 #5 : Basic Components

Combinational and Sequential Logics

Logic blocks are categorized as one of two types:

® Blocks without memory are called combinational - the output depends only on
the current input

® Blocks with memory are called sequential - the output can depend on both the
inputs and the value stored in memory, which is called the state of the block

Because a combinational logic block contains no memory, it can be
completely specified by defining the output values for each possible set
of input values. Such a description is normally given as a truth table.

® Foralogic block with N inputs, there are 2Nentries in the truth table, since each
entry specifies the value of all the outputs for that particular input combination

Computer Architecture 2019/2020 #5 : Basic Components

Basic Logic Gates

Logic blocks are built from gates that implement basic logic functions.
Any logical function can be constructed using AND gates, OR gates, and
inverters.

T T

FIGURE B.2.1 Standard drawing for an AND gate, OR gate, and an inverter, shown from
left to right. The signals to the left of each symbol are the inputs, while the output appears on the right. The
AND and OR gates both have two inputs. Inverters have a single input.

Computer Architecture 2019/2020 #5 : Basic Components

Basic Logic Gates

In fact, all logic functions can be constructed with only a single gate
type, if that gate is inverting. Rather than draw inverters explicitly, a
common practice is to add bubbles to the inputs or outputs of a gate to
cause the logic value on that input line or output line to be inverted.

The two common inverting gates are called NOR and NAND and
correspond to inverted OR and AND gates, respectively. NOR and NAND
gates are called universal since any logic function can be built using this

one gate type.
) DD i)

FIGURE B.2.2 Logic gate implementation of A + B using explicit inverts on_the left and
bubbled inputs and outputs on the right. This logic function can be simplified to A -B

Computer Architecture 2019/2020 #5 : Basic Components

Decoder

A decoder is a logic block that has an N-bit input and 2™ outputs, where
only one output is asserted for each input combination.

—> Out0
BN 12 | 11 [10 |Owt7]outs | Outs | Outs | Outa [owtz | outs | outo
0 0 0 0 0 0 0 0 0 0 1
— Out2 0 0 1 0 0 0 0 0 0 1 0
3 > Out3 0 1 0 0 0 0 0 0 1 0 0
—\— Decoder | Outd 0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
—> Out5 1 0 1 0 0 1 0 0 0 0 0
— Out6 1 1 0 0 1 0 0 0 0 0 0
> Out7 1 1 1 1 0 0 0 0 0 0 0
a. A 3-bit decoder b. The truth table for a 3-bit decoder

FIGURE B.3.1 A 3-bit decoder has 3 inputs, called 12, 11, and 10, and 2° = 8 outputs, called Out0 to Out7. Only the
output corresponding to the binary value of the input is true, as shown in the truth table. The label 3 on the input to the decoder says that the
input signal is 3 bits wide.

Computer Architecture 2019/2020 #5 : Basic Components

Multiplexor

A multiplexoris a logic block that has an N-bit input and 1 output, where
the output is one of the inputs that is selected accordingly to a control

value.
Om 3
M
U |—C C
X
1
kf B
S
FIGURE B.3.2 A two-input multiplexor on the left and its implementation with gates on
the right. The multiplexor has two data inputs (A and B), which are labeled 0 and 1, and one selector input

(S), as well as an output C. Implementing multiplexors in Verilog requires a little more work, especially when
they are wider than two inputs. We show how to do this beginning on page B-23.

B—»

S

Computer Architecture 2019/2020 #5 : Basic Components

One-Bit Adder

An adder must have two inputs for the operands and a single-bit output
for the sum. There must be a second output to pass on the carry, called
CarryOut. Since the CarryOut from the neighbor adder must be included

as an input, we need a third input called Carryln.

Carryln

Y

\

Y

)
B
B

Y

CarryOut

FIGURE B.5.5 Adder hardware for the CarryOut signal. The rest of the adder hardware is the logic
for the Sum output given in the equation on this page.

Computer Architecture 2019/2020 #5 : Basic Components

One-Bit ALU

The device that performs the

arithmetic operations like addition, —_—
peration

subtraction or logical operations is the Carryln

arithmetic logic unit (ALU). NN /(;_\

1
The 1-bit ALU for AND, OR and addition ||
is implemented with a multiplexor that 1 - Resull
selects ‘aAND b’, ‘aOR b’ or‘a + b’,]
depending on whether the value of I 2
Operationis 0, 1 or 2.

Y

CarryOut

FIGURE B.5.6 A 1-bit ALU that performs AND, OR, and addition

Computer Architecture 2019/2020 #5 : Basic Components

32-Bit ALU

Operation

Carryln

\J

Carryln

A 32-bit ALU is created by © T o - Resuo
CarryOut

connecting 32 1-bit ALUs y

together and by propagating

Y Y

al —., Carryln

. ALU1 > Result1
the CarryOut from 1-bit adder "= canyout
to the Carryln of the next more |
significant 1-bit adder. T A - Resulz
— CarryOut

a31—., Carryln
b31 ALU31 > Result31

FIGURE B.5.7 A 32-bit ALU constructed from 32 1-bit ALUs. CarryOut of the less significant bit is
connected to the Carryln of the more significant bit. This organization is called ripple carry.

Computer Architecture 2019/2020 #5 : Basic Components

Edge-Triggered Clocking

Clocks are needed in sequential logic to decide when an element that
contains state should be updated.

A clock is simply a free-running signal with a fixed cycle time (or clock
period) divided into two portions: when the clock is high and when the
clock is low. Here, we use only edge-triggered clocking, which means

that all state changes occur on a clock edge.
Falling edge

A
Y

Clock period Rising edge

FIGURE B.7.1 A clock signal oscillates between high and low values. The clock period is the
time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is active and
causes state to be changed.

Computer Architecture 2019/2020 #5 : Basic Components

Edge-Triggered Clocking

In an edge-triggered clocking, either the rising or the falling edge of the
clock is active and causes the state elements to only change on the

active clock edge. The choice of which edge is active is influenced by the
implementation technology and does not affect the concepts involved in

designing the logic.

State /_\ State
- Combinational logic =

element

*| element
1 w 2

Clock cycle

FIGURE B.7.2 The inputs to a combinational logic block come from a state element, and
the outputs are written into a state element. The clock edge determines when the contents of the
state elements are updated.

Computer Architecture 2019/2020 #5 : Basic Components

Edge-Triggered Clocking

To ensure that the values written into the state elements on the active
clock edge are valid, the clock must have a long enough period so that
all the signals in the combinational logic block stabilize, and then the
clock edge samples those values for storage in the state elements. This
constraint sets a lower bound on the length of the clock period, which
must be long enough for all state element inputs to be valid.

State > Combinational logic
element

FIGURE B.7.3 An edge-triggered methodology allows a state element to be read and
written in the same clock cycle without creating a race that could lead to undetermined
data values. Of course, the clock cycle must still be long enough so that the input values are stable when
the active clock edge occurs.

Y

Computer Architecture 2019/2020 #5 : Basic Components

S-R Latch - Unclocked Memory Cell

The S-R (set-reset) latch is the simplest type of memory cell as it does
not have any clock input. It is built from a pair of NOR gates where the
outputs represent the value of the stored state (Q) and its complement.
State changes when S or R are turned on and remains unaltered when

both S and R are off. State may be undefined if both S and R are turned

on simultaneously. .

Q
S

FIGURE B.8.1 A pair of cross-coupled NOR gates can store an internal value. The value

stored on the output Q is recycled by inverting it to obtain Q and then inverting Q to obtain Q. If either R or
Q is asserted, Q will be deasserted and vice versa.

Computer Architecture 2019/2020 #5 : Basic Components

D Latch - Transparent Clocked Memory Cell

In a D latch, the internal memory state is changed whenever the
appropriate inputs change and the clock is asserted. The inputs are the
data value to be stored (D) and a clock signal (C) that indicates when the
latch should read the value on D and store it. The outputs are simply the

value of the internal state (Q) and its complement.

C 19—
C - Q
- Q

D e

FIGURE B.8.2 A D latch implemented with NOR gates. A NOR gate acts as an inverter if the other
input is 0. Thus, the cross-coupled pair of NOR gates acts to store the state value unless the clock input, C, is
asserted, in which case the value of input D replaces the value of Q and is stored. The value of input D must
be stable when the clock signal C changes from asserted to deasserted.

Computer Architecture 2019/2020 #5 : Basic Components

D Flip-Flop - Edge-Triggered Clocked Memory Cell

The D flip-flop is the basic building block for memory cells since its
output only changes on the clock edge. A D flip-flop is constructed from
a pair of D latches and can be built so that it triggers on either the rising
or falling clock edge. The output is stored when the clock edge occurs.

latch latch

FIGURE B.8.4 A D flip-flop with a falling-edge trigger. The first latch, called the master, is open
and follows the input D when the clock input, C, is asserted. When the clock input, C, falls, the first latch is
closed, but the second latch, called the slave, is open and gets its input from the output of the master latch.

Computer Architecture 2019/2020 #5 : Basic Components

D Latch and D Flip-Flop Operations

Q

FIGURE B.8.3 Operation of a D latch, assuming the output is initially deasserted. When
the clock, C, is asserted, the latch is open and the Q output immediately assumes the value of the D input.

Q

FIGURE B.8.5 Operation of a D flip-flop with a falling-edge trigger, assuming the output is
initially deasserted. When the clock input (C) changes from asserted to deasserted, the Q output stores
the value of the D input. Compare this behavior to that of the clocked D latch shown in Figure B.8.3. In a
clocked latch, the stored value and the output, Q, both change whenever C is high, as opposed to only when

C transitions.

Computer Architecture 2019/2020 #5 : Basic Components

We can use an array of D flip-flops to build a register that can hold a
multibit datum, such as a byte or word.

A set of registers (or register file) can be then implemented with an
array of registers, each built from an array of D flip-flops, and several
logic read/write ports, one for each read/write operation.

Because reading a register does not change any state, we need only a
register number as input and the output will be the data contained in
that register. For writing a register we need a register number, the data
to write, and a clock that controls the writing into the register.

Computer Architecture 2019/2020 #5 : Basic Components

Reading Registers

Read register
number 1 l

Register 0 —.—-—/_\

Register 1 ™ m
> U » Read data 1
Register n—2 o X

Register n—1}o

Read register
number 2
|

Y
=

Y
[

» Read data 2

Y

Y

FIGURE B.8.8 The implementation of two read ports for a register file with n registers
can be done with a pair of n-to-1 multiplexors, each 32 bits wide. The register read number
signal is used as the multiplexor selector signal. Figure B.8.9 shows how the write port is implemented.

Computer Architecture 2019/2020 #5 : Basic Components

Writing Registers

Write
C
0 :
1 Register 0
1D
-ta-2n
Register number dgctc?dzer o
'7 C
n_o Register 1
n—1 ! gl
L
C
Register n—2
L4 1D
)7 C
Register n—1
Register data »|D

FIGURE B.8.9 The write port for a register file is implemented with a decoder that is
used with the write signal to generate the C input to the registers. All three inputs (the register
number, the data, and the write signal) will have setup and hold-time constraints that ensure that the correct
data is written into the register file.

Computer Architecture 2019/2020 #5 : Basic Components

Register File

Read register
number 1 Read
-

_| Read register data 1

number 2

_ Register file

Write Read
=) >

register data 2
N Write

data Write

)\

FIGURE B.8.7 A register file with two read ports and one write port has five inputs and
two outputs. The control input Write is shown in color.

Computer Architecture 2019/2020 #5 : Basic Components

SRAM - Static Random Access Memory

SRAMs are simply memory arrays integrated circuits. An SRAM chip has
a specific configuration in terms of the number of addressable locations,
as well as the width of each addressable location.

* A2M X 16 SRAM provides 2M entries, each of which is 16bits wide - it thus
requires 21 address lines (2M = 22"), a 16-bit data input line and a 16-bit output line

21
AdAress =t
Chip select ——
16
Output enable ——— 2?/IF1§\F\1/I6 +~ Dout[15-0]

Write enable ——

Din[15—-0] L

Computer Architecture 2019/2020 #5 : Basic Components

SRAM - Static Random Access Memory

Large SRAMs cannot be built in the same way as a register file because
the usage of a giant multiplexor/decoder is totally impractical. Instead,
large memories are implemented with shared output lines, which
multiple memory cells in the memory array can assert.

For example, in a 4M X 8 SRAM, we would need a 22-to-4M decoder and
4M word lines (required to enable the individual flip-flops). To
circumvent this problem, large memories are organized as rectangular

arrays and use a two-step decoding process.

Computer Architecture 2019/2020 #5 : Basic Components

SRAM - Static Random Access Memory

4K = 4K = 4K = 4K = 4K = 4K = K = 4K =
1024 1024 1024 1024 1024 1024 1024 1024
SRAM SRAM SRAM SRAM SRAM SRAM SRAM SRAM
12 4096
Address to
[21-10] 4096
decoder
—
Address ‘1[}24
[9-0]
Y Y | L L ¥ r L

Mux Mux) Mux) Mux) Mux) Muix) Mux) Muix
Dout? Doutg Douts Doutd Dout3 Dout? Doutl DoutO

FIGURE B.9.4 Typical organization of a 4M x 8 SRAM as an array of 4K X 1024 arrays. The first decoder generates the
addresses for eight 4K > 1024 arrays; then a set of multiplexors is used to select 1 bit from each 1024-bit-wide array. This is a much easier
design than a single-level decode that would need either an enormous decoder or a gigantic multiplexor. In practice, a modern SRAM of this

size would probably use an even larger number of blocks, each somewhat smaller.

Computer Architecture 2019/2020

#5 : Basic Components

DRAM - Dynamic Random Access Memory

In SRAM, the cell values can be kept indefinitely as long as power is
applied. In DRAM, a cell value is stored as a charge in a capacitor.

Because DRAMs store the charge on a capacitor, it cannot be kept
indefinitely and must periodically be refreshed (that is why this memory

is called dynamic).

The charge can be kept for several milliseconds, which might correspond
to close to a million clock cycles. Today, single-chip memory controllers
often handle the refresh function independently of the processor.

Computer Architecture 2019/2020 #5 : Basic Components

DRAM - Dynamic Random Access Memory

A single transistor is then used to access the stored charge, either to
read its value or to overwrite the charge stored there.

Because DRAMs use only a single transistor per bit of storage (SRAMs
require four to six transistors per bit), they are much denser and
cheaper per bit. On the other hand, the two-level addressing scheme,
combined with the internal circuit, makes DRAM access times much
longer (by a factor of 5-10) than SRAM access times.

The much lower cost per bit makes DRAM the choice for main memory,
while the faster access time makes SRAM the choice for caches.

Computer Architecture 2019/2020 #5 : Basic Components

SSRAMs, SDRAMs and DDRRAMs - Synchronous RAMs

The key capability provided by synchronous RAMs is the ability to
transfer a burst of data from a series of sequential addresses within an
array or row. The burst is defined by a starting address, supplied in the
usual fashion, and a burst length.

The speed advantage of synchronous RAMs comes from the ability to
transfer the bits in the burst without having to specify additional
address bits. Instead, a clock is used to transfer the successive bits in the
burst, which significantly improves the overall data transfer rate. A
refined form of SDRAMS are the DDRRAMSs (Double Data Rate RAMs),
which transfer data on both the rising and falling edge of an externally
supplied clock.

Computer Architecture 2019/2020 #5 : Basic Components

