
#7 : MIPS Implementation

Computer Architecture 2019/2020

Ricardo RochaRicardo Rocha
Computer Science Department, Faculty of Sciences, University of Porto

Slides based on the book

‘Computer Organization and Design, The Hardware/Software Interface, 5th Edition

David Patterson and John Hennessy, Morgan Kaufmann’

Sections 4.1 – 4.6 and 4.9

Instruction Set Architecture

An instruction set architecture (ISA) is an abstract model of a computer

that defines the interface between software and hardware. It is also

referred to as architecture or computer architecture.

An ISA defines everything a machine language programmer needs to

know in order to program a computer:

1#7 : MIPS ImplementationComputer Architecture 2019/2020

know in order to program a computer:

• Instruction set

• Supported data types

• What state there is, such as the memory hierarchy and registers

• State semantics, such as the memory consistency and addressing modes

• Input/output model

Instruction Set Architecture

An ISA is different from a microarchitecture, which is the set of

processor design techniques used, in a particular processor, to

implement the ISA. A realization of an ISA is called an implementation.

An ISA permits multiple implementations that may vary in performance,

physical size, cost, among other things. Processors with different

2#7 : MIPS ImplementationComputer Architecture 2019/2020

physical size, cost, among other things. Processors with different

microarchitectures can implement a common ISA and software that has

been written for an ISA can run on different implementations of the

same ISA. This has enabled compatibility between different generations

of computers to be easily achieved, and the development of computer

families. For these reasons, the ISA is one of the most important

abstractions in computing today.

Single-Register Architectures

Single-register (or accumulator) architectures have a single register,

called accumulator, for all arithmetic instructions and use a memory-

based operand-addressing mode.

For example, the add instruction would look like this:

add 200

3#7 : MIPS ImplementationComputer Architecture 2019/2020

add 200

meaning add the accumulator to the word in memory at address 200

and place the sum back into the accumulator. No registers are specified

because the accumulator is known to be both the source and the

destination of the operation.

Special-Purpose Register Architectures

Special-purpose register (or dedicated-register or extended

accumulator) architectures have the addition of registers dedicated to

specific operations. Registers might be included to act as indices for

array references in data transfer instructions, to act as separate

accumulators for multiply or divide instructions, and to serve as stack

pointer.

4#7 : MIPS ImplementationComputer Architecture 2019/2020

pointer.

Like the single-register accumulator architectures, one operand may be

in memory for arithmetic instructions. However, there are also

instructions where all the operands are registers.

General-Purpose Register Architectures

General-purpose register architectures allow all the registers to be used

for any purpose. This style of architecture may be further divided into:

• Register-memory architectures allow one operand to be in memory (as found in

accumulator architectures)

• Load-store or register-register architectures demand that operands always be

in registers

5#7 : MIPS ImplementationComputer Architecture 2019/2020

In addition, a style of architecture in which all operands can also be in

memory is called memory-memory architecture.

Architectures Over Years

6#7 : MIPS ImplementationComputer Architecture 2019/2020

MIPS Simplified Implementation

We will consider a simplified implementation of the MIPS instruction set

architecture as a way to illustrate how it determines many aspects of the

implementation, and how the choice of different implementation

strategies affects the clock rate and CPI for the computer.

We will consider an implementation that includes a subset of the core

7#7 : MIPS ImplementationComputer Architecture 2019/2020

We will consider an implementation that includes a subset of the core

MIPS instruction set:

• Memory reference instructions : lw (load word) and sw (store word)

• Arithmetic-logical instructions: add, sub, and, or, and slt

• Control transfer instructions: beq (branch equal) and j (jump unconditionally)

Data Path – Overview

Combinational Elements:
ALU and adders
Sequential Elements: PC,
registers, instruction
memory, and data memory

8#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Path – Instruction Fetch

To execute any instruction, we must start by fetching the instruction

from memory. To prepare for executing the next instruction, we must

also increment the program counter so that it points at the next

instruction, 4 bytes later.

Fetching instructions thus requires:

9#7 : MIPS ImplementationComputer Architecture 2019/2020

Fetching instructions thus requires:

• Memory unit where instructions are stored

• Program counter (PC) to hold the address of the current/next instruction

• Adder to increment the PC to the address of the next instruction

Data Path – Instruction Fetch

10#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Path – Instruction Fetch

11#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Path – Arithmetic-Logical Operations

The R-type instructions (e.g., add $t1, $t2, $t3) perform arithmetic-logical

operations. They all read two registers, perform an ALU operation on

the contents of the registers, and write the result to a register.

R-type instructions thus require:

• Register file where the register’s contents are stored

12#7 : MIPS ImplementationComputer Architecture 2019/2020

• Register file where the register’s contents are stored

• ALU to operate on the values read from the registers

Data Path – Arithmetic-Logical Operations

13#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Path – Loads and Stores

Memory reference instructions (e.g., lw $t1, offset($t2)) perform load

word and store word operations. They compute a memory address by

adding a base register to a 16-bit signed offset field contained in the

instruction. Moreover, if the instruction is a store, the value to be stored

must also be read from a specified register. If the instruction is a load,

the value read from memory must be written into the specified register.

14#7 : MIPS ImplementationComputer Architecture 2019/2020

the value read from memory must be written into the specified register.

Memory reference instructions thus require:

• Register file where the register’s contents are loaded/stored

• ALU to operate on the value read from the base register and the offset

• Memory unit where data is stored

• Sign extension unit to sign-extend the 16-bit offset field to a 32-bit signed value

Data Path – Loads and Stores

15#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Path – Branches

Branch instructions (e.g., beq $t1, $t2, offset) compare two registers and

compute a branch target address by adding the PC+4 (the base for

computing the branch target address) to a 16-bit signed offset field

contained in the instruction. The offset is shifted left 2 bits so that it is a

word offset (this shift increases the offset range by a factor of 4).

16#7 : MIPS ImplementationComputer Architecture 2019/2020

Branch instructions thus require:

• Register file where the register’s contents are stored

• ALU to compare the values read from the registers

• Adder to compute the branch target address

• Sign extension and shift left units to sign-extend and shift left the 16-bit offset

field to a 32-bit signed value

Data Path – Branches

17#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Path – Jumps

Jump instructions (e.g., j label) operate by replacing the lower 28 bits of

the PC with the lower 26 bits of label field contained in the instruction

shifted left by 2 bits (as before, this shift increases the label range by a

factor of 4).

Jump instructions thus require:

18#7 : MIPS ImplementationComputer Architecture 2019/2020

Jump instructions thus require:

• Shift left unit to shift left the 26-bit label field to a 32-bit value

Data Path – Full Picture

The simplest data path will execute all instructions in one clock cycle.

This means that no element can be used more than once per instruction

– any element needed more than once must be duplicated – and that

most elements can be shared by different instruction flows – to share

19#7 : MIPS ImplementationComputer Architecture 2019/2020

most elements can be shared by different instruction flows – to share

an element we may need to allow multiple input connections, using a

multiplexor and control signal to select among the multiple inputs.

Data Path – Full Picture

20#7 : MIPS ImplementationComputer Architecture 2019/2020

Control – Overview

To understand how to connect the fields of an instruction to the data

path and identify all control lines necessary, let’s remember the different

instruction formats (the jump instruction is discussed later).

21#7 : MIPS ImplementationComputer Architecture 2019/2020

Control – Overview

22#7 : MIPS ImplementationComputer Architecture 2019/2020

Single-Bit Control Lines

23#7 : MIPS ImplementationComputer Architecture 2019/2020

ALUOp 2-Bit Control Line

24#7 : MIPS ImplementationComputer Architecture 2019/2020

Control Lines Setting

The setting of the control lines is completely determined by the opcode

fields of the instruction. Each control signal can be 0, 1, or don’t care (X)

for each of the opcode values.

25#7 : MIPS ImplementationComputer Architecture 2019/2020

Control – Full Picture

26#7 : MIPS ImplementationComputer Architecture 2019/2020

Control – R-Type Instructions

We can think of a R-type instruction (e.g., add $t1, $t2, $t3) as operating

in four steps:

• The instruction is fetched and the PC is incremented

• The main control unit computes the setting of the control lines and two registers

($t2 and $t3) are read from the register file

• The ALU operates on the data read from the register file using the function code

27#7 : MIPS ImplementationComputer Architecture 2019/2020

• The ALU operates on the data read from the register file using the function code

(bits 5:0 of the instruction)

• The result from the ALU is written into the register file using bits 15:11 of the

instruction to select the destination register ($t1)

Control – R-Type Instructions

28#7 : MIPS ImplementationComputer Architecture 2019/2020

Control – Load Instructions

We can think of a load instruction (e.g., lw $t1, offset($t2)) as operating

in five steps:

• The instruction is fetched and the PC is incremented

• The main control unit computes the setting of the control lines and a register

($t2) is read from the register file

• The ALU computes the sum of the value read from the register file and the sign-

29#7 : MIPS ImplementationComputer Architecture 2019/2020

• The ALU computes the sum of the value read from the register file and the sign-

extended lower 16 bits of the instruction (offset)

• The result from the ALU is used as the address for the data memory

• The data from the memory unit is written into the register file using bits 20:16 of

the instruction to select the destination register ($t1)

Control – Load Instructions

30#7 : MIPS ImplementationComputer Architecture 2019/2020

Control – Branch Instructions

We can think of a branch instruction (e.g., beq $t1, $t2, offset) as

operating in four steps:

• The instruction is fetched and the PC is incremented

• The main control unit computes the setting of the control lines and two registers

($t1 and $t2) are read from the register file

• The ALU performs a subtract (beq) on the values read from the register file and

31#7 : MIPS ImplementationComputer Architecture 2019/2020

• The ALU performs a subtract (beq) on the values read from the register file and

the adder computes the sum (branch target address) of the PC+4 and the sign-

extended lower 16 bits of the instruction (offset) shifted left by two

• The Zero result from the ALU is used to decide which result (PC+4 or branch

target address) to store into the PC

Control – Branch Instructions

32#7 : MIPS ImplementationComputer Architecture 2019/2020

Control – Jump Instructions

We can think of a jump instruction (e.g., j label) as operating in three

steps:

• The instruction is fetched and the PC is incremented

• The main control unit computes the setting of the control lines and the top 4-

bits of the PC+4 are concatenated with the lower 26 bits of label field shifted left

by 2 bits

•

33#7 : MIPS ImplementationComputer Architecture 2019/2020

• The new control line Jump is used to update the PC accordingly

Control – Jump Instructions

34#7 : MIPS ImplementationComputer Architecture 2019/2020

Single-Cycle Implementation

In a single-cycle implementation, all instructions are executed in one

clock cycle and take the same time to execute. This makes the

implementation easy to understand, but too inefficient to be practical

since the slowest instruction to execute determines the clock cycle.

Early computers, with very simple instruction sets, did use single-cycle

35#7 : MIPS ImplementationComputer Architecture 2019/2020

Early computers, with very simple instruction sets, did use single-cycle

implementations. However, if we support a floating-point unit or an

instruction set with more complex instructions, the single-cycle

implementation would be too slow. Moreover, it is useless to design

techniques that reduce the delay of the common case since they do not

improve the worst-case cycle time.

Single-Cycle Implementation

36#7 : MIPS ImplementationComputer Architecture 2019/2020

Assuming the execution times above, the clock cycle for a single-cycle

implementation is 800ps, which is the execution time of the slowest

instruction (lw). Although all the other instructions (sw, add, sub, and,

or, slt, beq) take less time, they still execute in 800ps.

Multi-Cycle Implementation

In a multi-cycle implementation, an instruction is executed in multiple

clock cycles but only takes the clock cycles it actually needs.

Each instruction is split into a series of steps corresponding to the

functional unit operations it traverses (e.g., instruction fetch, register

read, ALU operation) and uses the clock cycle to move between steps.

37#7 : MIPS ImplementationComputer Architecture 2019/2020

read, ALU operation) and uses the clock cycle to move between steps.

Each step in the execution will take one clock cycle and different

instructions can take a different number of clock cycles to execute.

The slowest functional unit (step) to execute determines the clock

cycle. It is thus fundamental to balance the amount of work done in each

step since we want to minimize the clock time cycle.

Multi-Cycle Implementation

38#7 : MIPS ImplementationComputer Architecture 2019/2020

Assuming the five steps above, the clock cycle for a multi-cycle

implementation is 200ps, which is the execution time of the slowest

steps (instruction fetch, ALU operation, and data access).

The load (lw) and store (sw) instructions execute in 1000ps (1ns), the R-

type instructions in 800ps and the branch (beq) instructions in 600ps.

Multi-Cycle Implementation

The multi-cycle implementation allows a functional unit to be used more

than once per instruction, as long as it is used on different clock cycles.

This sharing can help reduce the amount of hardware required. On the

other hand, extra registers are required since at the end of a clock cycle

the data must be saved.

39#7 : MIPS ImplementationComputer Architecture 2019/2020

The ability to allow instructions to take different numbers of clock cycles

and the ability to share functional units within the execution of a single

instruction are the major advantages of a multi-cycle implementation.

Multi-Cycle Data Path – Overview

40#7 : MIPS ImplementationComputer Architecture 2019/2020

Multi-Cycle Data Path – Overview

41#7 : MIPS ImplementationComputer Architecture 2019/2020

Differences for the single-cycle data path:

• A single memory unit used for both instructions and data

• A single ALU rather than an ALU and two adders

• Extra registers between functional units to save data from previous cycle

Multi-Cycle Data Path – Full Picture

42#7 : MIPS ImplementationComputer Architecture 2019/2020

Multi-Cycle Data Path – Full Picture

43#7 : MIPS ImplementationComputer Architecture 2019/2020

Because several functional units are shared for different purposes, we

need both to add new multiplexors and to expand existing ones:

• A new multiplexor for the memory address

• A new multiplexor for the top ALU input

• Expanding the multiplexor on the bottom ALU input into a four-way selector

Multi-Cycle Control – Overview

44#7 : MIPS ImplementationComputer Architecture 2019/2020

Multi-Cycle Control – Full Picture

45#7 : MIPS ImplementationComputer Architecture 2019/2020

Multi-Cycle Control – Full Picture

46#7 : MIPS ImplementationComputer Architecture 2019/2020

Control for the multi-cycle implementation (including jump support):

• ALUOp, ALUSrcB and PCSource are 2-bit control lines, all other are 1-bit

• A new multiplexor to select the source of a new PC value

• Extra gates and extra signals PCSource, PCWrite and PCWriteCond, to combine

the PC write signals and decide whether a conditional branch should be taken

Multi-Cycle Steps

MIPS instructions classically include five steps:

• IF – instruction fetch

• ID – instruction decode and register fetch

• EX – execute operation , address calculation or branch/jump completion

• MEM – data memory access or R-type completion

• WB – write result back to register

47#7 : MIPS ImplementationComputer Architecture 2019/2020

• WB – write result back to register

Multi-Cycle Steps

Instructions take from three to five execution steps. The first two steps

are independent of the instruction type. After these steps, an instruction

takes from one to three more cycles to complete, depending on the

instruction type.

48#7 : MIPS ImplementationComputer Architecture 2019/2020

Multi-Cycle Steps – IF

49#7 : MIPS ImplementationComputer Architecture 2019/2020

Multi-Cycle Steps – ID

50#7 : MIPS ImplementationComputer Architecture 2019/2020

Multi-Cycle Steps – EX

51#7 : MIPS ImplementationComputer Architecture 2019/2020

Multi-Cycle Steps – MEM

52#7 : MIPS ImplementationComputer Architecture 2019/2020

Multi-Cycle Steps – WB

53#7 : MIPS ImplementationComputer Architecture 2019/2020

Multi-Cycle Control – Finite State Machine

For the multi-cycle data path, the control is more complex because the

instructions are executed in a series of steps. A common technique to

specify the control is to use a finite state machine.

A finite state machine consists of a set of states and directions on how

to change states. The directions are defined by a next-state function,

54#7 : MIPS ImplementationComputer Architecture 2019/2020

to change states. The directions are defined by a next-state function,

which maps the current state and the inputs to a new state. Each state

also specifies a set of output signals that are asserted when the

machine is in that state.

Multi-Cycle Control – Finite State Machine

55#7 : MIPS ImplementationComputer Architecture 2019/2020

Multi-Cycle Control – Finite State Machine

Example: lw $t2, 100($t1) (I-format: op rs rt address --> 35 $t1 $t2 100)

Step IF – machine state 0

• Signals ALUSrcA=0 / ALUSrcB=01 / ALUOp=00 / PCSource=00 / PCWrite

PC <= PC + 4

• Signals IorD=0 / MemRead / IRWrite

56#7 : MIPS ImplementationComputer Architecture 2019/2020

• Signals IorD=0 / MemRead / IRWrite

IR <= Memory[PC] = 35 $t1 $t2 100

Step ID – machine state 1

• Signals ALUSrcA=0 / ALUSrcB=11 / ALUOp=00

Ignored for load instructions

• A <= Reg[IR[25:21]] = Reg[$t1]

B <= Reg[IR[20:16]] = Reg[$t2]

Multi-Cycle Control – Finite State Machine

Example: lw $t2, 100($t1) (I-format: op rs rt address --> 35 $t1 $t2 100)

Step EX – machine state 2

• Signals ALUSrcA=1 / ALUSrcB=10 / ALUOp=00

ALUOut <= A + sign-extend(IR[15:0]) = Reg[$t1] + 100

57#7 : MIPS ImplementationComputer Architecture 2019/2020

Step MEM – machine state 3

• Signals IorD=1 / MemRead

MDR <= Memory[ALUOut] = Memory[Reg[$t1] + 100]

Step WB – machine state 4

• Signals RegDst=0 / RegWrite / MemtoReg=1

Reg[IR[20:16]] = Reg[$t2] <= MDR = Memory[Reg[$t1] + 100]

Pipelining

Pipelining is an implementation technique in which multiple instructions

are overlapped in execution.

As in the case of a multi-cycle implementation:

• Instructions are executed in steps and each step takes one clock cycle

• Different instructions may take a different number of steps to execute

58#7 : MIPS ImplementationComputer Architecture 2019/2020

• Different instructions may take a different number of steps to execute

• The pipelined clock cycle is determined by the worst-case step

As opposed to decreasing the average instruction execution time,

pipelining improves performance by increasing instruction throughput.

Pipelining

Execution time: 8h

59#7 : MIPS ImplementationComputer Architecture 2019/2020

Execution time: 3.5h

Pipelining

Pipelining exploits the potential parallelism among instructions. This

parallelism is often called instruction-level parallelism (ILP).

There are two methods for increasing the potential amount of ILP:

• Increase the number of steps (depth) of the pipeline to overlap more

instructions (and potentially reduce the clock cycle)

60#7 : MIPS ImplementationComputer Architecture 2019/2020

instructions (and potentially reduce the clock cycle)

• Replicate the functional units of the computer so that it can launch multiple

instructions in every pipeline stage

In what follows, we will not consider the case of using several functional

units per stage.

Pipelining

Clock cycle: 800ps

61#7 : MIPS ImplementationComputer Architecture 2019/2020

Clock cycle: 800ps

Clock cycle: 200ps

Pipeline Steps

In MIPS, the same five steps are considered for pipelining:

• IF – instruction fetch

• ID – instruction decode and register fetch

• EX – execute operation , address calculation or branch/jump completion

• MEM – data memory access or R-type completion

• WB – write result back to register

62#7 : MIPS ImplementationComputer Architecture 2019/2020

• WB – write result back to register

These five steps correspond roughly to the way the data path is drawn –

instructions and data move generally from left to right through the five

stages as they complete execution.

Pipelined Data Path

63#7 : MIPS ImplementationComputer Architecture 2019/2020

Pipeline Registers

Pipelined data path allows sharing functional units but that requires

extra registers between stages to save data from the previous cycle.

64#7 : MIPS ImplementationComputer Architecture 2019/2020

Pipeline Registers – Load Instructions

We need to preserve the destination register, which is only used during

the WB step, by passing it from the ID/EX stage to the MEM/WB stage.

65#7 : MIPS ImplementationComputer Architecture 2019/2020

Pipelined Data Path – Multiple Instructions

66#7 : MIPS ImplementationComputer Architecture 2019/2020

Pipelined Data Path – Instruction Throughput

Trying to allow some instructions to take fewer cycles (i.e., use less pipe

stages) does not help, since the instruction throughput is determined

by the clock cycle. The number of pipe stages per instruction affects

latency, not throughput.

67#7 : MIPS ImplementationComputer Architecture 2019/2020

Instead of trying to make instructions take fewer cycles, we should

explore making the pipeline longer, so that instructions take more

cycles, but the cycles are shorter. This could improve performance.

Pipeline Control Lines

Because each control line is associated with an element active in only a

single pipeline stage, we can divide the control lines into three groups

according to the pipeline stage (no control is required for the IF and ID

stages).

68#7 : MIPS ImplementationComputer Architecture 2019/2020

Pipelined Control Lines Setting

Implementing control means setting the nine control lines to these

values in each stage for each instruction. The simplest way to do this is

to extend the pipeline registers to include control information.

Pipeline Control Lines

69#7 : MIPS ImplementationComputer Architecture 2019/2020

Pipelined Control Lines SettingPipelined Data Path and Control – Full Picture

70#7 : MIPS ImplementationComputer Architecture 2019/2020

Pipeline Hazards

In pipelining, there are situations when the next instruction cannot

execute in the following clock cycle:

• Structural hazard occurs when the hardware does not support the combination

of instructions that are set to execute (e.g., sharing of functional units)

• Data hazard occurs when data that is needed to execute the instruction is not

yet available (e.g., dependence of instructions)

•

71#7 : MIPS ImplementationComputer Architecture 2019/2020

• Control hazard occurs when the instruction that was fetched is not the one that

is needed, i.e., the flow of execution is not what the pipeline expected

Without intervention, a pipeline hazard could severely stall the pipeline.

Although the compiler relies upon the hardware to resolve hazards and

ensure correct execution, the compiler must understand the pipeline to

achieve the best performance and avoid unexpected stalls.

Data Hazards – Dependence of Instructions

72#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Hazards – Dependence of Instructions

When an instruction tries to use a register in its EX stage that an earlier

instruction intends to write in its WB stage, we actually need the values

as inputs to the ALU (hazard condition).

The hazard conditions are:

73#7 : MIPS ImplementationComputer Architecture 2019/2020

The hazard conditions are:

1a) EX/MEM.RegisterRd = ID/EX.RegisterRs

1b) EX/MEM.RegisterRd = ID/EX.RegisterRt

2a) MEM/WB.RegisterRd = ID/EX.RegisterRs

2b) MEM/WB.RegisterRd = ID/EX.RegisterRt

Data Hazards – Dependence of Instructions

Consider again the previous sequence:

sub $2, $1, $3 # register $2 set by sub

and $12, $2, $5 # 1st operand ($2) set by sub

or $13, $6, $2 # 2nd operand ($2) set by sub

add $14, $2, $2 # 1st and 2nd operands ($2) set by sub

sw $15, 100($2) # index ($2) set by sub

74#7 : MIPS ImplementationComputer Architecture 2019/2020

sw $15, 100($2) # index ($2) set by sub

The dependences are:

• The sub-and is a type 1a hazard (EX/MEM.RegisterRd = ID/EX.RegisterRs)

• The sub-or is a type 2b hazard (MEM/WB.RegisterRd = ID/EX.RegisterRt)

• The two dependences on sub-add are not hazards (the register file supplies the

proper data during the ID stage of add) and there is no data hazard between

sub-sw (sw reads $2 the clock cycle after sub writes $2)

Data Hazards – Dependence of Instructions

75#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Hazards – Forwarding

Forwarding (or bypassing) is a method of resolving a data hazard by

retrieving the missing data element from extra connections/buffers

rather than waiting for it to arrive from registers or memory.

76#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Hazards – Forwarding Unit

77#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Hazards – Forwarding Control Lines

The control values for the forwarding control lines (multiplexors) are:

78#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Hazards – Stalls

Sometimes we must stall the pipeline for the combination of load

followed by an instruction that reads its result and, in addition to a

forwarding unit, we need a hazard detection unit operating during the

ID stage so that it can insert the stall between the load and its use.

79#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Hazards – Stalls

80#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Hazards – Stalls

81#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Hazards – Detection Unit

The hazard detection unit must check if a load is in execution and if the

destination register of the load in the EX stage matches either source

register of the instruction in the ID stage:

if (ID/EX.MemRead and

82#7 : MIPS ImplementationComputer Architecture 2019/2020

if (ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or (ID/EX.RegisterRt = IF/ID.RegisterRt)))

stall the pipeline one clock cycle

Data Hazards – Detection Unit

83#7 : MIPS ImplementationComputer Architecture 2019/2020

Data Hazards – Code Reordering

Code reordering is a complementary method of resolving data hazards

stalls. Consider the following C code and its corresponding MIPS code:

a[3] = a[0] + a[1];

a[4] = a[0] + a[2];

original code code reordering

84#7 : MIPS ImplementationComputer Architecture 2019/2020

lwlwlwlw $t1, 0($t0)$t1, 0($t0)$t1, 0($t0)$t1, 0($t0)

lwlwlwlw $t2$t2$t2$t2, 4($t0), 4($t0), 4($t0), 4($t0)

addaddaddadd $t3, $t1, $t3, $t1, $t3, $t1, $t3, $t1, $t2$t2$t2$t2

swswswsw $t3, 12($t0)$t3, 12($t0)$t3, 12($t0)$t3, 12($t0)

lwlwlwlw $t4$t4$t4$t4, 8($t0), 8($t0), 8($t0), 8($t0)

addaddaddadd $t5, $t1, $t5, $t1, $t5, $t1, $t5, $t1, $t4$t4$t4$t4

swswswsw $t5, 16($t0)$t5, 16($t0)$t5, 16($t0)$t5, 16($t0)

lwlwlwlw $t1, 0($t0)$t1, 0($t0)$t1, 0($t0)$t1, 0($t0)

lwlwlwlw $t2$t2$t2$t2, 4($t0), 4($t0), 4($t0), 4($t0)

lwlwlwlw $t4$t4$t4$t4, 8($t0), 8($t0), 8($t0), 8($t0)

addaddaddadd $t3, $t1, $t3, $t1, $t3, $t1, $t3, $t1, $t2$t2$t2$t2

swswswsw $t3, 12($t0)$t3, 12($t0)$t3, 12($t0)$t3, 12($t0)

addaddaddadd $t5, $t1, $t5, $t1, $t5, $t1, $t5, $t1, $t4$t4$t4$t4

swswswsw $t5, 16($t0)$t5, 16($t0)$t5, 16($t0)$t5, 16($t0)

original code code reordering

stall

stall

Control Hazards

85#7 : MIPS ImplementationComputer Architecture 2019/2020

Control Hazards – Stall

In the case of a branch instruction, we need to make a decision

regarding the next instruction to fetch on the very next clock cycle.

Nevertheless, the pipeline cannot possibly know what the next

instruction should be. One possible solution is to stall immediately after

we fetch a branch, waiting until the pipeline determines the outcome of

the branch and knows what instruction address to fetch from.

86#7 : MIPS ImplementationComputer Architecture 2019/2020

the branch and knows what instruction address to fetch from.

Control Hazards – Branch Prediction

Branch prediction is a method of resolving a control hazard that

assumes a given outcome for the branch and proceeds from that

assumption rather than waiting to be certain of the actual outcome.

Only stall when prediction is wrong.

If branches are untaken half the time, and if it costs little to discard the

87#7 : MIPS ImplementationComputer Architecture 2019/2020

If branches are untaken half the time, and if it costs little to discard the

instructions, this optimization halves the cost of control hazards.

To stall, we follow a similar approach as we did for a load-use data

hazard. The difference is that here we must discard the three

instructions in the IF, ID and EX stages when the branch reaches the

MEM stage (for load-use, we just discard the instruction in the ID stage).

Control Hazards – Branch Prediction

88#7 : MIPS ImplementationComputer Architecture 2019/2020

Exceptions

An exception is an unscheduled event that changes the normal flow of

instruction execution. They were initially created to handle unexpected

events from within the processor. The same basic mechanism was

extended for I/O devices to communicate with the processor.

An exception that happens synchronously with respect the clock (i.e.,

89#7 : MIPS ImplementationComputer Architecture 2019/2020

An exception that happens synchronously with respect the clock (i.e.,

occurs at the same place every time the program is executed) is called a

trap (e.g., arithmetic overflows, invalid memory access, system calls, …)

An exception that happens asynchronously (i.e., occurs from outside the

CPU and independently of the program) is called an interrupt (e.g., I/O

request, timer, hardware malfunction, …)

Exceptions

The hardware and the operating system must work in conjunction so

that exceptions behave as expected.

The hardware contract is to:

• Stop the offending instruction in midstream

• Set a register to show the cause of the exception

90#7 : MIPS ImplementationComputer Architecture 2019/2020

• Set a register to show the cause of the exception

• Save the address of the offending instruction

• Jump to a prearranged procedure called exception handler

Exceptions

The operating system contract is to look at the cause of the exception

and act appropriately.

For an undefined instruction, hardware failure, or arithmetic overflow

exception, the operating system normally kills the program and returns

an indicator of the reason.

91#7 : MIPS ImplementationComputer Architecture 2019/2020

an indicator of the reason.

For an I/O device request or system call, the operating system saves the

state of the program, performs the desired task, and restores the

program to continue execution. In the case of I/O requests, it may often

choose to run another task in the meantime, since the requesting task

may often not be able to proceed until the I/O is complete.

