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Instruction Set Architecture

An instruction set architecture (ISA) is an abstract model of a computer
that defines the interface between software and hardware. It is also
referred to as architecture or computer architecture.

An ISA defines everything a machine language programmer needs to
know in order to program a computer:

Instruction set

Supported data types

What state there is, such as the memory hierarchy and registers

State semantics, such as the memory consistency and addressing modes

Input/output model
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Instruction Set Architecture

An ISA is different from a microarchitecture, which is the set of
processor design techniques used, in a particular processor, to
implement the ISA. A realization of an ISA is called an implementation.

An ISA permits multiple implementations that may vary in performance,
physical size, cost, among other things. Processors with different
microarchitectures can implement a common ISA and software that has
been written for an ISA can run on different implementations of the
same ISA. This has enabled compatibility between different generations
of computers to be easily achieved, and the development of computer
families. For these reasons, the ISA is one of the most important
abstractions in computing today.
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Single-Register Architectures

Single-register (or accumulator) architectures have a single register,
called accumulator, for all arithmetic instructions and use a memory-
based operand-addressing mode.

For example, the add instruction would look like this:
add 200

meaning add the accumulator to the word in memory at address 200
and place the sum back into the accumulator. No registers are specified
because the accumulator is known to be both the source and the
destination of the operation.
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Special-Purpose Register Architectures

Special-purpose register (or dedicated-register or extended
accumulator) architectures have the addition of registers dedicated to
specific operations. Registers might be included to act as indices for
array references in data transfer instructions, to act as separate
accumulators for multiply or divide instructions, and to serve as stack
pointer.

Like the single-register accumulator architectures, one operand may be
in memory for arithmetic instructions. However, there are also
instructions where all the operands are registers.
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General-Purpose Register Architectures

General-purpose register architectures allow all the registers to be used
for any purpose. This style of architecture may be further divided into:

* Register-memory architectures allow one operand to be in memory (as found in
accumulator architectures)

® Load-store or register-register architectures demand that operands always be
in registers

In addition, a style of architecture in which all operands can also be in
memory is called memory-memory architecture.
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Architectures Over Years

Number of

general-purpose registers

Architectural style

EDSAC 1 Accumulator 1949
IBM 701 1 Accumulator 1953
CDC 6600 8 Load-store 1963
IBM 360 16 Register-memory 1964
DEC PDP-8 1 Accumulator 1965
DEC PDP-11 8 Register-memory 1970
Intel 8008 1 Accumulator 1972
Motorola 6800 2 Accumulator 1974
DEC VAX 16 Register-memory, memory-memory 1977
Intel 8086 1 Extended accumulator 1978
Motorola 68000 16 Register-memory 1980
Intel 80386 8 Register-memory 1985
ARM 16 Load-store 1985
HP PA-RISC 32 Load-store 1986
SPARC 32 Load-store 1987
PowerPC 32 Load-store 1992
DEC Alpha 32 Load-store 1992
HP/Intel |A-64 128 Load-store 2001
AMDG4 (EMT64) 16 Register-memory 2003

Computer Architecture 2019/2020

#7 : MIPS Implementation




MIPS Simplified Implementation

We will consider a simplified implementation of the MIPS instruction set
architecture as a way to illustrate how it determines many aspects of the
implementation, and how the choice of different implementation
strategies affects the clock rate and CPI for the computer.

We will consider an implementation that includes a subset of the core
MIPS instruction set:

®* Memory reference instructions : Iw (load word) and sw (store word)

® Arithmetic-logical instructions: add, sub, and, or, and slt

® Control transfer instructions: beq (branch equal) and j (jump unconditionally)
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Data Path — Overview
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Data Path - Instruction Fetch

To execute any instruction, we must start by fetching the instruction
from memory. To prepare for executing the next instruction, we must

also increment the program counter so that it points at the next
instruction, 4 bytes later.

Fetching instructions thus requires:
®* Memory unit where instructions are stored

® Program counter (PC) to hold the address of the current/next instruction

® Adder toincrement the PC to the address of the next instruction
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Data Path - Instruction Fetch

Instruction
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FIGURE 4.5 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that is written at the
end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired to always
add its two 32-bit inputs and place the sum on its output.
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Data Path - Instruction Fetch
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FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath.
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Data Path - Arithmetic-Logical Operations

The R-type instructions (e.g., add $t1, $t2, $t3) perform arithmetic-logical
operations. They all read two registers, perform an ALU operation on
the contents of the registers, and write the result to a register.

R-type instructions thus require:

® Register file where the register’s contents are stored

® ALU to operate on the values read from the registers
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Data Path - Arithmetic-Logical Operations
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FIGURE 4.7 The two elements needed to implement R-format ALU operations are the
register file and the ALU. The register file contains all the registers and has two read ports and one write
port. The design of multiported register files is discussed in Section B.8 of [ Appendix B. The register file
always outputs the contents of the registers corresponding to the Read register inputs on the outputs; no
other control inputs are needed. In contrast, a register write must be explicitly indicated by asserting the
write control signal. Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to
be written, the register number, and the write control signal) must be valid at the clock edge. Since writes
to the register file are edge-triggered, our design can legally read and write the same register within a clock
cycle: the read will get the value written in an earlier clock cycle, while the value written will be available
to a read in a subsequent clock cycle. The inputs carrying the register number to the register file are all 5
bits wide, whereas the lines carrying data values are 32 bits wide. The operation to be performed by the
ALU is controlled with the ALU operation signal, which will be 4 bits wide, using the ALU designed in
Appendix B. We will use the Zero detection output of the ALU shortly to implement branches. The
overflow output will not be needed until Section 4.9, when we discuss exceptions; we omit it until then.
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Data Path - Loads and Stores

Memory reference instructions (e.g., lw $t1, offset(st2)) perform load
word and store word operations. They compute a memory address by
adding a base register to a 16-bit signed offset field contained in the
instruction. Moreover, if the instruction is a store, the value to be stored
must also be read from a specified register. If the instruction is a load,
the value read from memory must be written into the specified register.

Memory reference instructions thus require:
* Register file where the register’s contents are loaded/stored
® ALU to operate on the value read from the base register and the offset
® Memory unit where data is stored
* Sign extension unit to sign-extend the 16-bit offset field to a 32-bit signed value
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Data Path - Loads and Stores
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FIGURE 4.8 The two units needed to implement loads and stores, in addition to the
register file and ALU of Figure 4.7, are the data memory unit and the sign extension unit.
The memory unit is a state element with inputs for the address and the write data, and a single output for
the read result. There are separate read and write controls, although only one of these may be asserted on
any given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of
an invalid address can cause problems, as we will see in Chapter 5. The sign extension unit has a 16-bit
input that is sign-extended into a 32-bit result appearing on the output (see Chapter 2). We assume the
data memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is
used for writes. Although the write enable is not edge-triggered, our edge-triggered design could easily be
adapted to work with real memory chips. See Section B.8 of [&] Appendix B for further discussion of how
real memory chips work.
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Data Path - Branches

Branch instructions (e.g., beq $t1, $t2, offset) compare two registers and
compute a branch target address by adding the PC+4 (the base for
computing the branch target address) to a 16-bit signed offset field
contained in the instruction. The offset is shifted left 2 bits so that it is a
word offset (this shift increases the offset range by a factor of 4).

Branch instructions thus require:
® Register file where the register’s contents are stored
® ALU to compare the values read from the registers

® Adder to compute the branch target address

* Sign extension and shift left units to sign-extend and shift left the 16-bit offset
field to a 32-bit signed value
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Data Path - Branches
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FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition and
a separate adder to compute the branch target as the sum of the incremented PC and the
sign-extended, lower 16 bits of the instruction (the branch displacement), shifted left 2
bits. The unit labeled Shift left 2 is simply a routing of the signals between input and output that adds 00
to the low-order end of the sign-extended offset field; no actual shift hardware is needed, since the amount of
the “shift” is constant. Since we know that the offset was sign-extended from 16 bits, the shift will throw away
only “sign bits.” Control logic is used to decide whether the incremented PC or branch target should replace
the PC, based on the Zero output of the ALU.
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Data Path - Jumps

Jump instructions (e.g., j label) operate by replacing the lower 28 bits of
the PC with the lower 26 bits of label field contained in the instruction
shifted left by 2 bits (as before, this shift increases the label range by a
factor of 4).

Jump instructions thus require:
e Shift left unit to shift left the 26-bit label field to a 32-bit value
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Data Path - Full Picture

The simplest data path will execute all instructions in one clock cycle.

This means that no element can be used more than once per instruction
— any element needed more than once must be duplicated — and that
most elements can be shared by different instruction flows - to share
an element we may need to allow multiple input connections, using a
multiplexor and control signal to select among the multiple inputs.
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Data Path - Full Picture
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FIGURE 4.11 The simple datapath for the core MIPS architecture combines the elements required by different
instruction classes. The components come from Figures 4.6, 4.9, and 4.10. This datapath can execute the basic instructions (load-store
word, ALU operations, and branches) in a single clock cycle. Just one additional multiplexor is needed to integrate branches. The support for
jumps will be added later.
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Control - Overview

To understand how to connect the fields of an instruction to the data
path and identify all control lines necessary, let’s remember the different
instruction formats (the jump instruction is discussed later).

Field 0 rs rt rd shamt funct
Bit positions 31:26 25:21 20:16 15:11 10:6 5:0

a. R-type instruction

Field 35 or 43 s rt address
Bit positions 31:26 25:21 20:16 15:0
b. Load or store instruction

Field 4 rs rt address
Bit positions 31:26 2521 20:16 15:0
c. Branch instruction
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Control - Overview

PCSrc
> (0
>Add 1 R M
ALU X
4= >Addresult 1
RegWrite >
Instruction [25:21] Read ‘
Read > : MemWrite
PC &> address Instruction [20:16] rReg|sdter1 dR?a? -
nstruction [20: ata
, > rezaiaster 2 ALUSrc MemtoReg
Instruction _I | 0
[31:0] M| [ Write Read | | 0 AdclressFade(,j‘g,:f,;I (1
Instruction | | instruction [15:11]| x [ | "e9ister data 2 M M
memory | ¢ > 1 | g ;.I(
. \C.;Vrlte Regict 1 0
RegDst ata Registers N vrite Data
> memory
data
Instruction [15:0] 1 Sign- 32
~ " |extend —
MemRead
Instruction [5:0]
ALUOp

Computer Architecture 2019/2020

#7 : MIPS Implementation




Single-Bit Control Lines

Signal
name Effect when deasserted Effect when asserted

RegDst The register destination number for the The register destination number for the Write
Write register comes from the rt field register comes from the rd field (bits 15:11).
(bits 20:16).

RegWrite None. The register on the Write register input is

written with the value on the Write data input.

ALUSrc The second ALU operand comes from the | The second ALU operand is the sign-
second register file output (Read data 2). | extended, lower 16 bits of the instruction.

PCSrc The PC is replaced by the output of the The PC is replaced by the output of the adder
adder that computes the value of PC + 4. | that computes the branch target.

MemRead | None. Data memory contents designated by the
address input are put on the Read data output.

MemWrite | None. Data memory contents designated by the
address input are replaced by the value on
the Write data input.

MemtoReg | The value fed to the register Write data The value fed to the register Write data input
input comes from the ALU. comes from the data memory.
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ALUOp 2-Bit Control Line

Instruction Instruction Desired ALU control
opcode ALUOp operation ALU action input

load word XXXXXX 0010
SW 00 store word XXXXXX add 0010
Branch equal 01 branch equal XXXXXX subtract 0110
R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
R-type 10 AND 100100 AND 0000
R-type 10 OR 100101 OR 0001
R-type 10 set on less than 101010 set on less than 0111
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Control Lines Setting

The setting of the control lines is completely determined by the opcode
fields of the instruction. Each control signal can be 0, 1, or don’t care (X)

for each of the opcode values.
Memto- Reg- Mem-
RegDst Reg Write Read Branch ALUOPO
o) 1 1 0

R-format 0 0 0 1 0
Tw 1 1 0 0 0
SW X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1
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Control - Full Picture
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Control — R-Type Instructions

We can think of a R-type instruction (e.g., add st1, $t2, $t3) as operating
in four steps:
® Theinstructionis fetched and the PCis incremented

® The main control unit computes the setting of the control lines and two registers
($t2 and $t3) are read from the register file

®* The ALU operates on the data read from the register file using the function code
(bits 5:0 of the instruction)

® The result from the ALU is written into the register file using bits 15:11 of the
instruction to select the destination register (5t1)
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Control — R-Type Instructions
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Control - Load Instructions

We can think of a load instruction (e.g., Iw $t1, offset($t2)) as operating
in five steps:
® Theinstructionis fetched and the PCis incremented

® The main control unit computes the setting of the control lines and a register
(st2) is read from the register file

®* The ALU computes the sum of the value read from the register file and the sign-
extended lower 16 bits of the instruction (offset)

® The result from the ALU is used as the address for the data memory

® The data from the memory unit is written into the register file using bits 20:16 of
the instruction to select the destination register ($t1)

Computer Architecture 2019/2020 #7 : MIPS Implementation



Control - Load Instructions
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Control — Branch Instructions

We can think of a branch instruction (e.g., beq s$t1, $t2, offset) as
operating in four steps:
®* Theinstructionis fetched and the PCis incremented

® The main control unit computes the setting of the control lines and two registers
(st1and $t2) are read from the register file

® The ALU performs a subtract (beq) on the values read from the register file and
the adder computes the sum (branch target address) of the PC+4 and the sign-
extended lower 16 bits of the instruction (offset) shifted left by two

® The Zero result from the ALU is used to decide which result (PC+4 or branch
target address) to store into the PC
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Control — Branch Instructions
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Control — Jump Instructions

We can think of a jump instruction (e.g., j label) as operating in three
steps:

® Theinstruction is fetched and the PCis incremented

® The main control unit computes the setting of the control lines and the top 4-

bits of the PC+4 are concatenated with the lower 26 bits of label field shifted left
by 2 bits

® The new control line Jump is used to update the PC accordingly
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Control — Jump Instructions
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Single-Cycle Implementation

In a single-cycle implementation, all instructions are executed in one
clock cycle and take the same time to execute. This makes the
implementation easy to understand, but too inefficient to be practical
since the slowest instruction to execute determines the clock cycle.

Early computers, with very simple instruction sets, did use single-cycle
implementations. However, if we support a floating-point unit or an
instruction set with more complex instructions, the single-cycle
implementation would be too slow. Moreover, it is useless to design
techniques that reduce the delay of the common case since they do not
improve the worst-case cycle time.
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Single-Cycle Implementation

Instruction | Register Register | Total
Instruction class fetch read operatlon access write time

Load word ( 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps
Store word ( ) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, AND, 200 ps 100 ps 200 ps 100 ps 600 ps
OR, s1t)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

Assuming the execution times above, the clock cycle for a single-cycle
implementation is 800ps, which is the execution time of the slowest
instruction (Iw). Although all the other instructions (sw, add, sub, and,
or, slt, beq) take less time, they still execute in 800ps.
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Multi-Cycle Implementation

In @ multi-cycle implementation, an instruction is executed in multiple
clock cycles but only takes the clock cycles it actually needs.

Each instruction is split into a series of steps corresponding to the
functional unit operations it traverses (e.g., instruction fetch, register
read, ALU operation) and uses the clock cycle to move between steps.
Each step in the execution will take one clock cycle and different
instructions can take a different number of clock cycles to execute.

The slowest functional unit (step) to execute determines the clock
cycle. It is thus fundamental to balance the amount of work done in each
step since we want to minimize the clock time cycle.
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Multi-Cycle Implementation

Instruction | Register Register | Total
Instruction class fetch read operatlon access write time

Load word ( 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps
Store word ( ) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (add, sub, AND, 200 ps 100 ps 200 ps 100 ps 600 ps
OR, s1t)

Branch (beq) 200 ps 100 ps 200 ps 500 ps

Assuming the five steps above, the clock cycle for a multi-cycle
implementation is 200ps, which is the execution time of the slowest
steps (instruction fetch, ALU operation, and data access).

The load (Iw) and store (sw) instructions execute in 1000ps (1ns), the R-
type instructions in 800ps and the branch (beq) instructions in 600ps.
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Multi-Cycle Implementation

The multi-cycle implementation allows a functional unit to be used more
than once per instruction, as long as it is used on different clock cycles.
This sharing can help reduce the amount of hardware required. On the
other hand, extra registers are required since at the end of a clock cycle
the data must be saved.

The ability to allow instructions to take different numbers of clock cycles
and the ability to share functional units within the execution of a single
instruction are the major advantages of a multi-cycle implementation.
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Multi-Cycle Data Path - Overview

Address,

Instruction

Memory

Data

or data

Instruction
register |
@
o>
Memory
data 9é»
register

Data
— A
Register #
Registers
Register #
— B
Register #

ALUOut

Computer Architecture 2019/2020

#7 : MIPS Implementation




Multi-Cycle Data Path - Overview

Data

Register #
Registers
Register #

ALU

Register #

Differences for the single-cycle data path:
* Asingle memory unit used for both instructions and data
® Asingle ALU rather than an ALU and two adders

® Extraregisters between functional units to save data from previous cycle

Computer Architecture 2019/2020 #7 : MIPS Implementation



Multi-Cycle Data Path - Full Picture
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Multi-Cycle Data Path - Full Picture
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Because several functional units are shared for different purposes, we
need both to add new multiplexors and to expand existing ones:
* A new multiplexor for the memory address

* A new multiplexor for the top ALU input
® Expanding the multiplexor on the bottom ALU input into a four-way selector
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Multi-Cycle Control — Overview
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Multi-Cycle Control - Full Picture
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y i data 1 +EL g >
Instruction
! Memory »| Read U Zero H-
[20-16] | A register 2
MemData : 0 . ALU 4|
Instruction | § M _ Registers ALUOUL |
[15-0] | [Instruction| u Write Read resuy
Write ) [15-11] X register data 2 +E »{ 0 N
data Instruction 1 . a1 M
register Write |, u
0 data "2 x
Instruction M 3
[15-0] ” -
1 re \
Memory r . \
data 1 | sign |32 | ALU )]
register extend \ control )
\
Instruction [5-0]
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Multi-Cycle Control - Full Picture

b o
PCWriteCond \ PCSource
PCWrite ‘ Outputs ‘\.‘ ALUOp
1063 § | ALUSIcB
MemRead | Control ‘
Src
MemWrite ‘\ | ALUSICA,
MemtoReg [é)_%] | RegWrite
IRWrite  \ /| RegDst
NI u
: addre
- > o6 [ Shift | og
| Instruction [25-0] left 2
Instruction T
[31-26] PC
0 [31-28]
- Pe M Instruction bf_l (0
u | Address [25-21] register ca I\LIII
X
—{ 1 M Instruction ea ata X eroll]
MemT:)ry [20-16] register
embata Instruction | | egisters
[15-0] i
| Writ i
data Instruction | ¢
register
Instruction
[15-0]
Memory
data
register

Control for the multi-cycle implementation (including jump support):
®* ALUOp, ALUSrcB and PCSource are 2-bit control lines, all other are 1-bit
* A new multiplexor to select the source of a new PC value

® Extra gates and extra signals PCSource, PCWrite and PCWriteCond, to combine
the PC write signals and decide whether a conditional branch should be taken
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Multi-Cycle Steps

MIPS instructions classically include five steps:
® |F - instruction fetch
® ID -instruction decode and register fetch
®* EX-execute operation, address calculation or branch/jump completion
® MEM - data memory access or R-type completion

® WAB - write result back to register
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Multi-Cycle Steps

Instructions take from three to five execution steps. The first two steps
are independent of the instruction type. After these steps, an instruction
takes from one to three more cycles to complete, depending on the
instruction type.

Action for R-type Action for memory- Action for Action for
Step name instructions reference instructions branches jumps

Instruction fetch IR <= Memory[PC]
PC<=PC+4
Instruction decode/register fetch A <= Reg [IR[25:21]]

B <= Reg [IR[20:16]]
ALUOut <= PC + (sign-extend (IR[15:0]) << 2)

Execution, address computation, ALUOut <=Aop B ALUOut <= A + sign-extend if (A ==B) PC <= {PC [31:28],
branch/jump completion (IR[15:0]) PC <= ALUOut (IR[25:0]],2'b00)}
Memory access or R-type Reg [IR[15:11]] <= Load: MDR <= Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] <= B
Memory read completion Load: Reg[IR[20:16]] <= MDR
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Multi-Cycle Steps - IF

PCWriteCond

PCWrite

lorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSIrcA

RegWrite

RegDst

nalniclon
o

struction

[ 5—0]

Memory
data

ALUOut

register

Read

register 1 Read
Read data 1

" | register 2
_ Registers

Write Read
register data 2
Write

data

1\6 | sign 32

extend

Instruction [5-0]
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Multi-Cycle Steps - ID

PCWriteCond

PCWrite

lorD

MemRead

MemWrite

MemtoReg

IRWrite

PCSource

ALUOp

ALUSrcB

ALUSIrcA

RegWrite

RegDst

—

“xe=°

.| Write

Address

Memory

Instruction [25-0]
B & 4

Instruction
[31-26]

Instruction

[25—-21]

Instruction

[20-186]

MemData

data

Instruction
[15-0]

Py

]
Instruction
[15—11]

I—»

"xch\

Instruction
register

.| Memory r

Instruction
[15-0]

data

“xe=°

16

register

26 @28
»\ left 2

o\

Jump
address
[31-0]

—
xec=
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Multi-Cycle Steps - EX

' PCWriteCond PCSource
— & Nl PCWrite ALUOR
et ALUSICB
MemRead
MemWrite ALUSroh
MemtoReg RegWrite
IRWrite RegDst
Instruction [25-0]
B & 4
Instruction
5 [31-26]
M Instruction Read
: Address [25—-21] register 1. o 4
1 Instruction Read data 1
Memory [20-16] [ A register 2
MemData . 0 .
Instruction | § M _ Registers
[15-0] [ [Instruction| u f{ Write Read
| Write _ [15-11] | X | |register 4 o»n
data Instruction 1 .
register 5 Write
data
Instruction M
[15-0] ”
1
Memory r 1
data
register
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Multi-Cycle Steps - MEM

4 PCWriteCond

—_ | ) PCWrite
lorD
MemRead
MemWrite
MemtoReg
IRWrite

PCSource

ALUOp

ALUSrcB

ALUSIrcA

RegWrite

o\
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B 4 +-

eft 2 >
Instruction U

[1-28] PC [31-28]
Instruction
Address [25—-21]

—
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Instruction
Memory [20-16]

Mol

Zero

ALU ALy ALUOU ¢
resuy

+/

> |
C_‘_xcgé\f

Instruction
[15-0]

i

Wiiie .
daia Instruction
register

Instruction

/7 O\

\

{
[ ALU |
\ control |

N

extend

Instruction [5-0]
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Multi-Cycle Steps - WB

( PCWriteCond PCSource
- S \ .
%\. ( PCWrite ALUOp
e ALUSrcB
MemRead
MemWrite ALUSER
MemtoReg RegWrite
IRWrite RegDst 0
Jump M
; ddress[*] 1 U
; Shift e X
Instruction [25-0] 26 28 [31-0] 5
B »\ left 2 .
Instruction U
| pc [&-(0 [31-26] PC [31-28]
M Instruction
u Address [25-21]
X >
—1 1 Instruction
Memory [20-16] Zero H-
MemData ™! | cruction » ALU aLU ALUOUt
[15-0] resuy
. Write . |
data Instruction | {
register
Instruction
[15-0] B
M ,/ N\
| Memory / \
data ALU -
register extend \ control /
Instruction [5-0]
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Multi-Cycle Control - Finite State Machine

For the multi-cycle data path, the control is more complex because the
instructions are executed in a series of steps. A common technique to
specify the control is to use a finite state machine.

A finite state machine consists of a set of states and directions on how
to change states. The directions are defined by a next-state function,
which maps the current state and the inputs to a new state. Each state
also specifies a set of output signals that are asserted when the
machine is in that state.
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Multi-Cycle Control - Finite State Machine

2 / 8/,- — 1
/ ALUSrcA=1
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s NG \ /
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Multi-Cycle Control - Finite State Machine

Example: lw $t2, 100(5t1) (I-format: op rs rt address --> 35 $t1 $t2 100)

Step IF — machine state o

® Signals ALUSrcA=0 [ ALUSrcB=01/ ALUOp=00 [ PCSource=00 [ PCWrite
PC<=PC+4

® Signals lorD=0/ MemRead [ IRWrite
IR <= Memory[PC] = 35 $t1 $t2 100

Step ID — machine state 1

® Signals ALUSrcA=0 [ ALUSrcB=11 [ ALUOp=00
lgnored for load instructions

* A<=Reg[IR[25:21]] = Reg[st1]
B <= Reg[IR[20:16]] = Reg[$t2]

Computer Architecture 2019/2020 #7 : MIPS Implementation



Multi-Cycle Control - Finite State Machine

Example: lw $t2, 100(5t1) (I-format: op rs rt address --> 35 $t1 $t2 100)

Step EX — machine state 2

* Signals ALUSrcA=1/ALUSrcB=10 [ ALUOp=00
ALUOut <= A + sign-extend(IR[15:0]) = Reg[$t1] + 100

Step MEM - machine state 3

* Signals lorD=1/ MemRead
MDR <= Memory[ALUOut] = Memory[Reg[$t1] + 100]

Step WB — machine state 4

® Signals RegDst=0 [ RegWrite | MemtoReg=1
Reg[IR[20:16]] = Reg[$t2] <= MDR = Memory[Reg[st1] + 100]
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Pipelining is an implementation technique in which multiple instructions
are overlapped in execution.

As in the case of a multi-cycle implementation:
® |nstructions are executed in steps and each step takes one clock cycle
® Different instructions may take a different number of steps to execute

®* The pipelined clock cycle is determined by the worst-case step

As opposed to decreasing the average instruction execution time,
pipelining improves performance by increasing instruction throughput.
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Pipelining exploits the potential parallelism among instructions. This
parallelism is often called instruction-level parallelism (ILP).

There are two methods for increasing the potential amount of ILP:

® [ncrease the number of steps (depth) of the pipeline to overlap more
instructions (and potentially reduce the clock cycle)

® Replicate the functional units of the computer so that it can launch multiple
instructions in every pipeline stage

In what follows, we will not consider the case of using several functional
units per stage.
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Program
execution
order

(in instructions)

Time

lw $1, 100($0)
lw $2, 200(30)

lw $3, 300($0)

Instruction | Register Register | Total
Instruction class fetch read operatlon access write time

Load word ( 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps
200 400 600 800 1000 1200 1400 1600 1800
Instructi Dat
nsf;ltfhlon Reg| ALU accaezs Reg
Instructi Dat ,
800 ps e |Re| AW | e |Reo Clock cycle: 800ps
800 DS Insftg?;t]ion
800 ps
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Pipeline Steps

In MIPS, the same five steps are considered for pipelining:

IF — instruction fetch

ID — instruction decode and register fetch

EX — execute operation, address calculation or branch/jump completion
MEM - data memory access or R-type completion

WB - write result back to register

These five steps correspond roughly to the way the data path is drawn -
instructions and data move generally from left to right through the five
stages as they complete execution.
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Pipelined Data Path

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access

I | | |
| | | |
| | | |
I | | |
| | | |
| | | |
I | | |
| | | |
| | | |
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| | | |
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-
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: data : ! . ertite
| | | ata
I | |
| | |
I 16 | |
: \\ > extend :
| I
| I
I I
| |
I I
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Pipeline Registers

Pipelined data path allows sharing functional units but that requires
extra registers between stages to save data from the previous cycle.

IF/ID ID/IEX EX/MEM MEM/WB

Add > > \‘
Add Add -

4 —
Shift result
left 2

d
Read
register 1 Read > =
data 1

Y

Y

u PC [—@=—p|Address

=
kel
k3]
X =
- 1 ®
= Read Zerop— ==
Instruction register2 ALU
= Registers ALU _ Read
memory . 9 Read | >0 result —§—| Address data T —-{ 1
Write data 2 M M
register u / Data u
Write memory X
data 1)( 0
_ | Write
data
1% Sign- 32 £
v | extend
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Pipeline Registers - Load Instructions

We need to preserve the destination register, which is only used during
the WB step, by passing it from the ID/EX stage to the MEM/WB stage.

IF/ID ID/EX EX/IMEM MEM/WB
—
4 —-- dAdd Adﬂ >
Shift resu
left 2
—= 0
M c
u PC |=@=»|Address % . |Read
X 2 " | register 1 Read > >
S 2 data 1
= Read >

ea
Instruction reglster.'é <t fr=b>
memaory > _I egisters Reaq _ g > Addross

ad
| _——
. Wri_te data ? - M resu ata
register u Data
Write X memory
data 1

N
>
r
==
z b
=C d

Computer Architecture 2019/2020 #7 : MIPS Implementation



Pipelined Data Path - Multiple Instructions

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

Program
execution
order

(in instructions) — — _

w $10,2051) | IM Eeglz oV —EeE;i

1= — 1
sub $11, $2, $3 IM — -E:Fieg| | CALU -[DI\/I — Reg!

— — =
|1 ALU - FR
add $12, $3, $4 I Reg| | _> oM Reo

g = -1
lw $13, 24(51) I |- —E|Reg| [ oALUH o} —Eegl
| — -1

add $14, $5, $6 N —Eiﬁeg| DM Ee_gi
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Pipelined Data Path - Instruction Throughput

Trying to allow some instructions to take fewer cycles (i.e., use less pipe
stages) does not help, since the instruction throughput is determined
by the clock cycle. The number of pipe stages per instruction affects
latency, not throughput.

Instead of trying to make instructions take fewer cycles, we should
explore making the pipeline longer, so that instructions take more
cycles, but the cycles are shorter. This could improve performance.
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Pipeline Control Lines

Because each control line is associated with an element active in only a
single pipeline stage, we can divide the control lines into three groups

according to the pipeline stage (no control is required for the IF and ID
stages).

Execution/address calculation stage Memory access stage Write-back stage
control lines control lines control lines
Mem- Reg- Memto-
RegDst ALUOpl1 | ALUOPO ALUSrc Branch Read Write Reg
1 0 0 0 1 0

0 1 1
SwW X 0 X
X 0 X

R|O|O|O
OlRr|O|O

1 0 1
1 0 0
0] 1 0

ol Nol NoN N
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Pipeline Control Lines

Implementing control means setting the nine control lines to these
values in each stage for each instruction. The simplest way to do this is
to extend the pipeline registers to include control information.

WB
Instructlc_)g M "|we

EX [ - M lwe|
IF/ID ID/EX EX/MEM MEM/WB
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Pipelined Data Path and Control - Full Picture

ID/IEX

o

LEx,fM EM

EX M WB [—
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Instruction u
[15-11] 1’(
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Pipeline Hazards

In pipelining, there are situations when the next instruction cannot
execute in the following clock cycle:

® Structural hazard occurs when the hardware does not support the combination
of instructions that are set to execute (e.g., sharing of functional units)

® Data hazard occurs when data that is needed to execute the instruction is not
yet available (e.g., dependence of instructions)

® Control hazard occurs when the instruction that was fetched is not the one that
is needed, i.e., the flow of execution is not what the pipeline expected

Without intervention, a pipeline hazard could severely stall the pipeline.
Although the compiler relies upon the hardware to resolve hazards and

ensure correct execution, the compiler must understand the pipeline to

achieve the best performance and avoid unexpected stalls.
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Data Hazards - Dependence of Instructions

Time (in clock cycles) >
Value of CC1 CC2 CC3 CC4 CC5 CCo CC7 CC38 CC9
register $2: 10 10 10 10 10/-20 -20 -20 —20 -20

Program
execution
order

(in instructions) o o =

sub$2,$1,$3  |IM 'LFEeg ——[DM ﬁe_:

and $12, 52, $5 M -dgei :>é oM —@

[~ 1
or $13, $6, $2 M Re j‘ TR —Egjl

add $14, 52,52 N} -dLR:eEIZ B M= —Be_gj

sw $15, 100(52) M —dLReq_ B DM Re_g]l

FIGURE 4.52 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the
dependences. All the dependent actions are shown in color, and “CC 17 at the top of the figure means clock cycle 1. The first instruction
writes into $ 2, and all the following instructions read $ 2. This register is written in clock cycle 5, so the proper value is unavailable before clock
cycle 5. (A read of a register during a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The
colored lines from the top datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data hazards.
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Data Hazards - Dependence of Instructions

When an instruction tries to use a register in its EX stage that an earlier
instruction intends to write in its WB stage, we actually need the values
as inputs to the ALU (hazard condition).

The hazard conditions are:

1a) EX/MEM.RegisterRd = ID/EX.RegisterRs
1b) EX/MEM.RegisterRd = ID/EX.RegisterRt
2a) MEM/WB.RegisterRd = ID/EX.RegisterRs
2b) MEM/WB.RegisterRd = ID/EX.RegisterRt

Computer Architecture 2019/2020 #7 : MIPS Implementation



Data Hazards - Dependence of Instructions

Consider again the previous sequence:

sub $2, $1, $3 # register $2 set by sub

and $12, $2, $5 # 15t operand ($2) set by sub

or $13, $6, $2 # 2"d operand ($2) set by sub

add $14, $2, $2 # 15t and 2" operands ($2) set by sub
sw $15, 100($2) #index ($2) set by sub

The dependences are:
® The sub-and is a type 1a hazard (EX/MEM.RegisterRd = ID/EX.RegisterRs)
® The sub-oris a type 2b hazard (MEM/WB.RegisterRd = ID/EX.RegisterRt)

® The two dependences on sub-add are not hazards (the register file supplies the
proper data during the ID stage of add) and there is no data hazard between
sub-sw (sw reads $2 the clock cycle after sub writes $2)
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Data Hazards - Dependence of Instructions

Time (in clock cycles) >
CC1 CC2 CC3 cC4 CC5 CC6 CCT7 CcCs8 CC9

Value of register $2: 10 10 10 10 10/-20 -20 -20 -20 -20
Value of EX/MEM: X X X -20 X X X X X
Value of MEM/WB: X X X X -20 X X X X

Program
execution
order

(in instructions)

sub 52, $1, $3 I

and $12, %2, $5

or $13, $6, $2

add $14,%2, $2

sw $15, 100(52)

N -'::LRTeg v Re_gjl

FIGURE 4.53 The dependences between the pipeline registers move forward in time, so it is possible to supply the
inputs to the ALU needed by the AND instruction and OR instruction by forwarding the results found in the pipeline
registers. The values in the pipeline registers show that the desired value is available before it is written into the register file. We assume that
the register file forwards values that are read and written during the same clock cycle, so the add does not stall, but the values come from the
register file instead of a pipeline register. Register file “forwarding”™—that is, the read gets the value of the write in that clock cycle—is why clock
cycle 5 shows register $2 having the value 10 at the beginning and —20 at the end of the clock cycle. As in the rest of this section, we handle all
forwarding except for the value to be stored by a store instruction.
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Data Hazards - Forwarding

Forwarding (or bypassing) is a method of resolving a data hazard by
retrieving the missing data element from extra connections/buffers

rather than waiting for it to arrive from registers or memory.

Program

execution _ 200 400 600 800 1000
order Time . j . . j
(in instructions)

add $s0, $t0, $t1 IF

MEM WB

sub $t2, $s0, $t3 >EX MEM WB |

FIGURE 4.29 Graphical representation of forwarding. The connection shows the forwarding path
from the output of the EX stage of add to the input of the EX stage for SubD, replacing the value from register

$ 50 read in the second stage of sub.

Computer Architecture 2019/2020 #7 : MIPS Implementation



Data Hazards - Forwarding Unit

ID/EX EX/MEM MEM/WB
| M _
— > u -
X
—|
i ForwardA
Registers > ALU
Data . s

>
‘ memory

L

Y

Y

ForwardB
Rs ]
R () EX/MEM.RegisterRd
Rt »| M g
Rd | u >
X
\_/ i
Forwarding MEM/WB.RegisterRd
> unit <
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Data Hazards - Forwarding Control Lines

The control values for the forwarding control lines (multiplexors) are:

Muxcontrol | Sowce |  Explamation

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.

FIGURE 4.55 The control values for the forwarding multiplexors in Figure 4.54. The signed
immediate that is another input to the ALU is described in the Elaboration at the end of this section.
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Data Hazards - Stalls

Sometimes we must stall the pipeline for the combination of load
followed by an instruction that reads its result and, in addition to a
forwarding unit, we need a hazard detection unit operating during the
ID stage so that it can insert the stall between the load and its use.

Program
execution _ 200 400 600 800 1000 1200 1400
order Time . . . . . T .
(in instructions) .

lw $s0, 20($t1) IF —'?- ID >EX MEM WBE

bubble bubble bubble bubble bubble
O ) @ @ @
sub $t2, $s0, $t3 IF —': ID >EX MEM \WB
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Data Hazards - Stalls

Time (in clock cycles)
CC1 CC2 CC3 CC4 CC5 CCeso CcC7 CC8 CC9

Program
execution
order

(in instructions) _ _ _

—
lw $2, 20($1) IM Reg DM

(-
and %4, $2, $5 IM — FReg

(-
or $8, $2, $6 IM — FHReg

—1
s

add $9, $4, $2 IM

NI

r— -1
| slt$1, 36, $7 IM — —E}Reg DM Reg!

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and)
goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.
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Data Hazards - Stalls

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5 CC6 CC7 ccs CC9 CCc 10

Program
execution
order

(in instructions) _ _ _

w $2, 20($1) N
= bubble
—~
SR
and becomes nop . Reng
k_/vJ\j/a

and %4, $2, $5

-[DM Regjl

or $8, 52, $6

N

| add $9, 54, 52 M FRég oM |-Reg

FIGURE 4.59 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing the
and instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed until
clock cycle 5 (versus the unstalled position in clock cycle 4). Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is delayed
until clock cycle 5 (versus the unstalled clock cycle 4 position). After insertion of the bubble, all the dependences go forward in time and no
further hazards occur.
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Data Hazards - Detection Unit

The hazard detection unit must check if a load is in execution and if the
destination register of the load in the EX stage matches either source
register of the instruction in the ID stage:

if (ID/JEX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or (ID/EX.RegisterRt = IF/ID.RegisterRt)))

stall the pipeline one clock cycle
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Data Hazards — Detection Unit

\ .
e ] ID/EX.MemRead
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Data Hazards — Code Reordering

Code reordering is a complementary method of resolving data hazards
stalls. Consider the following C code and its corresponding MIPS code:

a[3]=a[o] +a[1];
al4] =alo] +a[2];

original code code reordering

Tw $t1, 0($t0) Tw  $t1, 0($t0)

Tw  $t2, 4($t0) Tw  $t2, 4($t0)

stall — add $t3, $tl1, $t2 Tw  $t4, 8(%$t0)
sw $t3, 12($t0) add $t3, $t1, $t2

Tw  $t4, 8($t0) sw $t3, 12($t0)
stall — add $t5, $t1, $t4 add $t5, $t1, $t4

sw $t5, 16($t0) sw $t5, 16($t0)
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Control Hazards

Time (in clock cycles)
CC1 CC2 CC3 CC4 CC5 CC®6 CC7 ccs8 CC9

Program
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FIGURE 4.61 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 44, ...)
are the addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq
instruction above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those
three following instructions will begin execution before beq branches to 1w at location 72. (Figure 4.31 assumed extra hardware to reduce the
control hazard to one clock cycle; this figure uses the nonoptimized datapath.)
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Control Hazards - Stall

In the case of a branch instruction, we need to make a decision
regarding the next instruction to fetch on the very next clock cycle.
Nevertheless, the pipeline cannot possibly know what the next
instruction should be. One possible solution is to stall immediately after
we fetch a branch, waiting until the pipeline determines the outcome of
the branch and knows what instruction address to fetch from.
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Control Hazards - Branch Prediction

Branch prediction is a method of resolving a control hazard that
assumes a given outcome for the branch and proceeds from that
assumption rather than waiting to be certain of the actual outcome.
Only stall when prediction is wrong.

If branches are untaken half the time, and if it costs little to discard the
instructions, this optimization halves the cost of control hazards.

To stall, we follow a similar approach as we did for a load-use data
hazard. The difference is that here we must discard the three
instructions in the IF, ID and EX stages when the branch reaches the
MEM stage (for load-use, we just discard the instruction in the ID stage).
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Control Hazards - Branch Prediction
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FIGURE 4.32 Predicting that branches are not taken as a solution to control hazard. The
top drawing shows the pipeline when the branch is not taken. The bottom drawing shows the pipeline when
the branch is taken. As we noted in Figure 4.31, the insertion of a bubble in this fashion simplifies what
actually happens, at least during the first clock cycle immediately following the branch. Section 4.8 will reveal
the details.

Computer Architecture 2019/2020 #7 : MIPS Implementation




An exception is an unscheduled event that changes the normal flow of
instruction execution. They were initially created to handle unexpected
events from within the processor. The same basic mechanism was
extended for 1/O devices to communicate with the processor.

An exception that happens synchronously with respect the clock (i.e.,
occurs at the same place every time the program is executed) is called a
trap (e.g., arithmetic overflows, invalid memory access, system calls, ...)

An exception that happens asynchronously (i.e., occurs from outside the
CPU and independently of the program) is called an interrupt (e.g., 1/O
request, timer, hardware malfunction, ...)
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Exceptions

The hardware and the operating system must work in conjunction so
that exceptions behave as expected.

The hardware contractis to:
® Stop the offending instruction in midstream
® Set aregister to show the cause of the exception
® Save the address of the offending instruction

® Jump to a prearranged procedure called exception handler
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The operating system contract is to look at the cause of the exception
and act appropriately.

For an undefined instruction, hardware failure, or arithmetic overflow
exception, the operating system normally kills the program and returns
an indicator of the reason.

For an 1/O device request or system call, the operating system saves the
state of the program, performs the desired task, and restores the
program to continue execution. In the case of I/O requests, it may often
choose to run another task in the meantime, since the requesting task
may often not be able to proceed until the I/O is complete.
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