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Memory Hierarchy

“Ideally one would desire an indefinitely large memory capacity such that 

any particular […] word would be immediately available. […] We are […] 

forced to recognize the possibility of constructing a hierarchy of memories, 

each of which has greater capacity than the preceding but which is less 

quickly accessible.”
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quickly accessible.”

A. W. Burks, H. H. Goldstine, and J. von Neumann. Preliminary Discussion 

of the Logical Design of an Electronic Computing Instrument, 1946.



Memory Hierarchy

Memory hierarchy is a multi-level structure that as the distance from the 

processor increases, the size of the memories and the access time both 

increase. Performance is the key reason for having a memory hierarchy.

The faster memories are more expensive per bit and thus tend to be 

smaller. The goal is to present the user with as much memory as is 

2#8 : Memory HierarchyComputer Architecture 2019/2020

smaller. The goal is to present the user with as much memory as is 

available in the cheapest technology, while providing access at the 

speed offered by the fastest memory.

The data is similarly hierarchical – a level closer to the processor is 

generally a subset of any level further away, and all the data is stored at 

the lowest memory level.



Memory Hierarchy
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Principle of Locality

The principle of locality states that programs access a relatively small 

portion of their address space at any instant of time. There are two 

different types of locality:

• Temporal locality – principle stating that items referenced recently are likely to 

be referenced again soon (e.g., instructions in a loop, local variables) – memory 

hierarchies take advantage of temporal locality by keeping more recently 

accessed data items closer to the processor
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accessed data items closer to the processor

• Spatial locality – principle stating that items near those referenced recently are 

likely to be referenced soon (e.g., sequential instruction access, data array) –

memory hierarchies take advantage of spatial locality by moving data items  

consisting of contiguous words in memory to upper memory levels



Data is copied between only two adjacent levels at a time. Within each 

level, the minimal unit of data is called a block (or line).

Hits and Misses
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Hits and Misses

If the data requested by the processor appears in some block in the 

upper memory level, this is called a hit. Otherwise, the request is called a 

miss and the next memory level is then accessed to retrieve the block 

containing the requested data. 
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The hit rate is the fraction of memory accesses found in the upper 

memory level – often used as a measure of the performance of the 

memory hierarchy. The miss rate (1−hit rate) is the fraction of memory 

accesses not found in the upper memory level.



Hits and Misses

Hit time is the time to access the upper memory level, which includes 

the time needed to determine whether the access is a hit or a miss.

Miss penalty is the time to replace a block in the upper memory level 

with the corresponding block from the next memory level, plus the time 

to deliver this block to the processor. The time to access the next 
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to deliver this block to the processor. The time to access the next 

memory level is the major component of the miss penalty.

If the hit rate is high enough, the memory hierarchy has an effective 

access time close to that of the upper memory level and therefore be 

able to virtually represent a size equal to that of the lowest memory 

level.



Memory Technologies
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Cache Memory

Cache: a safe place for hiding or storing things.

Webster’s New World Dictionary of the American Language, 1988.

Cache memory is the level of the memory hierarchy closest to the CPU. 
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Caches first appeared in research computers in the early 1960s and in 

production computers later in that same decade. Every general purpose 

computer built today, from servers to low-power embedded processors, 

includes caches.



Cache Memory

Caching is perhaps the 

most important 

example of the big 

idea of prediction.
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The hit rates of the 

cache prediction on 

modern computers are 

often higher than 95%.



Cache Memory

Questions to answer:

• How do we know if a data item is in cache?

• How do we find a data item in cache?
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Direct-Mapped Cache

In a direct-mapped cache, each block address is mapped to exactly one 

location in the cache. Almost all direct-mapped caches use the mapping: 

(block address) modulo (#blocks in cache)
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Direct-Mapped Cache

How do we compute the cache location for a given block address?

• Since the number of cache blocks is often a power of 2, use the low-order bits of 

a block address to compute its cache location

How do we know which particular block is in a cache location?

• Add a set of tags to each cache location identifying the block address in cache 
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• Add a set of tags to each cache location identifying the block address in cache 

(actually, the tag only needs to contain the complementary higher-order bits) 

How do we know there is valid data in a cache location?

• Add a valid bit to each cache location indicating whether a location contains 

valid data (valid bit: 1 = valid data; 0 = invalid data; initially = 0)



8 x 1 Byte Blocks Direct-Mapped Cache
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Miss
Hit



1024 x 4 Byte Blocks Direct-Mapped Cache
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Bits in a Cache

How many bits are required to implement the previous cache structure?

The cache size is 1024 entries (210 blocks). Each block has 32 bits (4 bytes 

or 1 word) of data plus a tag with 20 bits and a valid bit. Thus, the actual 

size in bits is:

210
×(32 + 20 + 1) = 210

×53 = 53 Kib (= 1.656×32 Kib )
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210
×(32 + 20 + 1) = 210

×53 = 53 Kib (= 1.656×32 Kib )

The total number of bits in the cache is 1.656 times as many as needed 

just for the storage of the data. Regardless of the actual size in bits, the 

naming convention is to exclude the size of the tag and valid field and to 

count only the size of the data. Thus, this cache is called a 4 KiB cache.



256 x 64 Byte Blocks Direct-Mapped Cache
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Block Size Considerations

In a fixed-size cache, are larger blocks better?

• Larger blocks should reduce miss rate as they exploit spatial locality

• But larger blocks will reduce the total number of blocks, which increases the 

competition for those blocks and eventually the miss rate

• In particular, the miss rate may go up if the block size becomes a significant 

fraction of the cache size

•
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• A collateral problem is that the transfer time required to fetch a block from the 

next memory level (miss penalty) will likely increase as the block size increases



Block Size Considerations
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Associative Caches

Fully associative cache

• Blocks can be placed in any entry in the cache

• To find a given block, requires searching all entries in parallel

• To make search practical, each entry has a comparator (significantly increases 

the hardware cost)
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N-way set associative cache

• Blocks can be placed in a fixed number of N entries (at least two), called a set

• Each block address is mapped to exactly one set in the cache

• Each set contains N entries  and a block can be placed in any entry of the set

• To find a given block, requires searching the N entries in a set

• To make search practical, each entry has N comparators (less expensive)



Associative Caches

In a direct-mapped cache, the entry for a memory block is given by:

(block address) modulo (#blocks in cache)
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In a set-associative cache, the set for a memory block is given by:  

(block address) modulo (#sets in cache)



Associative Caches
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Spectrum of Associativity
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Spectrum of Associativity
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Replacement Policy

In an associative cache, we have a choice of where to place the  

requested block, and hence a choice of which block to replace.

• In a fully associative cache, all blocks are candidates for replacement

• In a set-associative cache, we must choose among the blocks in the selected set

The most commonly used scheme is least recently used (LRU) – the 
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The most commonly used scheme is least recently used (LRU) – the 

block replaced is the one that has been unused for the longest time.

• Simple for two-way, manageable for four-way, too hard beyond that

• For a two-way can be implemented by keeping a single bit in each set and 

setting the bit to indicate an element whenever that element is referenced

For high associativity caches, a random scheme gives approximately the 

same performance as LRU.



Example

Consider a small cache with four one-word blocks. Find the number of 

misses given the following sequence of block addresses: 0, 8, 0, 6, and 8.

Direct-mapped cache
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Example

Consider a small cache with four one-word blocks. Find the number of 

misses given the following sequence of block addresses: 0, 8, 0, 6, and 8.

Two-way set associative cache (with LRU replacement)
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Example

Consider a small cache with four one-word blocks. Find the number of 

misses given the following sequence of block addresses: 0, 8, 0, 6, and 8.

Fully associative cache
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Four-Way Set-Associative Cache
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Handling Cache Misses

Handling cache misses is done in collaboration with the processor 

control unit. The processing of a cache miss stalls the entire processor, 

essentially freezing the contents of all registers while waiting for 

memory. The steps taken in a cache miss are:

• Instruct the next memory level to read the missing value

• Wait for the memory to respond (it can take multiple clock cycles)
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• Wait for the memory to respond (it can take multiple clock cycles)

• Update the corresponding cache line with the data received from memory 

• Refetch and restart the instruction execution, this time finding it in the cache

More sophisticated processors can allow out-of-order execution of other 

instructions while waiting for a cache miss.



Handling Writes

How to handle write hits – consider a store instruction where a data-

write hit is only wrote into the cache, without changing main memory. 

Then, cache and memory would have different values. In such a case, 

the cache and memory are said to be inconsistent.
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How to handle write misses – should we fetch the corresponding block 

from memory to cache and then overwrite with the word that caused 

the miss (called write allocate) or should we simply write the word to 

main memory (called no write allocate)?



Caches Write-Through and Write-Back

Write-through is a scheme in which write hits always update both the 

cache and the next memory level, thus ensuring that data is always 

consistent between the two.

Write-back is a scheme that handles write hits by updating only the 
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Write-back is a scheme that handles write hits by updating only the 

cache, then the modified block is written to the next memory level 

when it is replaced (need to keep track of modified blocks).



Write-Through Considerations

Despite its simplicity, this scheme does not provide good performance:

• Suppose that writes take 100 clock cycles longer and that 10% of the instructions 

are stores – if the base CPI (without cache misses) was 1.0, the 100 extra cycles 

on every write would lead to a CPI of 1.0 + 100×10% = 11.0, thus reducing 

performance by more than a factor of 10
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One solution is to use a write buffer to hold the data waiting to be 

written to memory. Execution can continue immediately after writing 

the data into the cache and into the write buffer.

• The processor only stalls if the write buffer is full when reaching a write

• When a write to main memory completes, the entry in the write buffer is freed

• If the rate at which the memory can complete writes is less than the rate at 

which the processor is generating writes, no amount of buffering can help



Write-Back Considerations

Write-back can improve performance especially when processors can 

generate writes as fast or faster than the writes can be handled by main 

memory.

However, write-back is more complex to implement than write-through.

• If we simply overwrite a modified block on a store instruction before knew 
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• If we simply overwrite a modified block on a store instruction before knew 

whether there is a write miss, we would destroy the contents of the block in 

cache, which is not backed up in the next memory level

• Stores either require two cycles (a cycle to check for a hit followed by a cycle to 

actually perform the write) or require a write buffer to hold the data to be 

written while the block is checked for a hit – thus allowing the store to take only 

one cycle by pipelining it



Cache Performance

Remember the performance equation:

ClockCycle

Seconds

nInstructio

sClockCycle

ogram

nsInstructio

dClockPerioCPInCountInstructioCPUTime

××=

××=

Pr
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CPU time can be divided into the clock cycles that the CPU spends 

executing the instructions with no misses (CPIPerfect) and the clock 

cycles that the CPU spends waiting for the memory system (CPIStall).

CPIStallCPIPerfectCPI +=



Cache Performance

Memory-stall clock cycles can be defined as the sum of the stall cycles 

coming from reads plus those coming from writes. For simplicity, let’s 

assume that the read/write miss rates and miss penalties are the same:

yMissPenaltMissRate
nsInstructio

ssesMemoryAcce
CPIStall ××=
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If we consider separate caches/memories for instructions and data then:

nsInstructio

yMissPenalttaAccessMissRateDa
nsInstructio

LoadStores

yMissPenaltccessstructionAMissRateIn

taAcessCPIStallDaccessstructionACPIStallInCPIStall

××+

××=

+=

1



Example

Assume a miss rate of 2% for the instruction cache and of 4% for the data 

cache, a miss penalty of 100 cycles for all misses, and a frequency of 36% 

of loads and stores. If the CPI is 2 without memory stalls, determine how 

much faster the processor runs with a perfect cache that never misses.

CPI memory stall for instructions and data access:
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CPI memory stall for instructions and data access:

• CPIStallInstructionAccess = 1 × 0.02 × 100 = 2.00

• CPIStallDataAccess = 0.36 × 0.04 × 100 = 1.44

• CPIStall = 2.00 + 1.44 = 3.44

Accordingly, the total CPI including memory stalls is:

• CPI = 2 + 3.44 = 5.44

Performance with perfect cache is better by 2.72 = 5.44 / 2



Clock Rate Improvement

What happens if the processor is made faster but memory access is not? 

Suppose we speed-up the clock rate by a factor of 2:

• The previous miss penalty of 100 cycles is now 200 cycles

• CPIStallInstructionAccess = 1 × 0.02 × 200 = 4.00

• CPIStallDataAccess = 0.36 × 0.04 × 200 = 2.88
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• CPIStallDataAccess = 0.36 × 0.04 × 200 = 2.88

• CPIStall = 4.00 + 2.88 = 6.88

• CPI = 2 + 6.88 = 8.88

• The fraction of time spent on memory stalls would have risen from 63% to 77%

(3.44 / 5.44 = 63% and 6.88 / 8.88 = 77%) 

• The total execution time of a program is better by 1.23 = 5.44 / (8.88 / 2)



CPI Improvement

What happens if the processor is made faster but memory access is not? 

Suppose that an improved pipeline reduces the CPI from 2 to 1 without 

changing the clock rate:

• CPI = 1 + 3.44 = 4.44

• The fraction of time spent on memory stalls would have risen from 63% to 77%
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• The fraction of time spent on memory stalls would have risen from 63% to 77%

(3.44 / 5.44 = 63% and 3.44 / 4.44 = 77%)

• The total execution time of a program is better by 1.23 = 5.44 / 4.44 

In both situations, the time spent on memory stalls takes an increasing 

fraction of the total execution time, which turns the expected impact on 

performance very low (x1.23) compared to the speed-up factor (x2).



Multilevel Caches

To close the gap between the fast clock rates of modern processors and 

the increasingly long time required to access DRAMs, all modern 

computers support additional levels of caching.

The second-level (L2) cache is accessed whenever a miss occurs in the 

first-level (L1) cache. If the L2 cache contains the desired data, the miss 
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first-level (L1) cache. If the L2 cache contains the desired data, the miss 

penalty for the L1 cache will be essentially the access time of the L2 

cache, which will be much less than the access time of main memory. 

The same happens for a third-level (L3) cache, if it exists.

If neither the L1, L2 nor L3 cache contains the data, a main memory 

access is required, and a larger miss penalty is incurred.



Multilevel Caches

With multilevel caches, memory-stall clock cycles can be defined as the 

sum of the stall cycles coming from the several cache levels. For 

simplicity, let’s assume single instruction/data caches:

11×=

×=

yLMissPenaltMissRateL

yMissPenaltMissRateCPIStall
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The global miss rate for a level L represents the miss rate for the set of 

levels up to L:

...22

11

+×+ yLMissPenaltRateLGlobalMiss

yLMissPenaltMissRateL

3213

212

MissRateLMissRateLMissRateLRateLGlobalMiss

MissRateLMissRateLRateLGlobalMiss

××=

×=



Multilevel Caches Considerations

A two-level cache structure allows the L1 cache to focus on minimizing 

hit time, to yield a shorter clock cycle or fewer pipeline stages, while 

allowing the L2 cache to focus on miss rate, to reduce the penalty of 

main memory access.

In comparison to a single level cache, the L1 cache is often smaller and 
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In comparison to a single level cache, the L1 cache is often smaller and 

the L2 cache is often larger. Given the focus of reducing miss rates, L2  

often uses higher associativity than L1 and L2 may use a larger block size 

than L1.



Example

Assume a clock rate of 4GHz, a miss rate per instruction of 2% at the L1 

cache and a memory access time of 100ns. If the base CPI is 1 without 

memory stalls, determine how much faster will the processor be if we 

add a L2 cache that has a 5ns access time and is large enough to reduce 

the global miss rate to main memory to 0.5%?
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CPI with just L1 cache

• Clock duration = 1 / 4GHz = 0.25ns

• Miss penalty to main memory = 100ns / 0.25ns = 400 cycles

• CPIStall = 0.02×400 = 8

• CPI = 1 + 8 = 9



Example

Assume a clock rate of 4GHz, a miss rate per instruction of 2% at the L1 

cache and a memory access time of 100ns. If the base CPI is 1 without 

memory stalls, determine how much faster will the processor be if we 

add a L2 cache that has a 5ns access time and is large enough to reduce 

the global miss rate to main memory to 0.5%?
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CPI with L2 cache added

• Miss penalty to L2 = 5ns / 0.25ns = 20 cycles

• Miss penalty to main memory = 400 cycles

• CPIStall = 0.02×20 + 0.005×400 = 0.4 + 2.0 = 2.4

• CPI = 1 + 2.4 = 3.4

Performance with L2 cache is faster by 2.6 = 9.0 / 3.4



Virtual Memory

Virtual memory is a technique that uses main memory as a cache for 

secondary storage.

• Allows the execution of processes that are not entirely in memory

• Abstracts main memory into an extremely large uniform array of storage

• Frees programmers from the concerns of memory storage limitations
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Code needs to be in memory to execute, but entire program rarely used:

• Code to handle unusual situations is almost never executed 

• Large data structures often allocate more memory than they actually need

• Even if the entire program is used, it is not all needed at same time



Virtual Memory

Executing a process that is not entirely in memory benefits not only the 

users but also the operating system:

• Allows for less memory usage

• Allows for more efficient process creation

• Less I/O needed to load or swap processes into memory
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• Less I/O needed to load or swap processes into memory

• More programs could run concurrently

• Virtual address space can be much larger than physical address space



Virtual Memory

Although the concepts at work in virtual memory and in caches are the 

same, they use different terminology:

• A virtual memory block is called a page

• A physical memory block is called a frame

• A virtual memory miss is called a page fault
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With virtual memory, the processor produces a virtual address, which is 

translated by a combination of hardware and software to a physical 

address, which in turn can be used to access main memory. This process 

is called address mapping or address translation.



Virtual to Physical Address Translation
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Address
Translation



Virtual to Physical Address Translation

Address
Translation
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Translation



Page Table

The page table contains the virtual to physical address translations in a 

virtual memory system. The page table is typically indexed by the virtual 

page number – each entry in the page table contains the physical page 

number for that virtual page, if the page is currently in memory.
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Each process has its own page table register that points to the 

corresponding page table. Page tables are stored in memory and thus 

can also incur in page faults.



Page Table

51#8 : Memory HierarchyComputer Architecture 2019/2020



Handling Page Faults

On a page fault, the page must be fetched from the next memory level 

(usually flash memory or magnetic disks), which can take millions of 

clock cycles to process.

The procedure for handling a page fault is straightforward:

• Find a free frame in memory and bring in the missing page from backing store
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• Find a free frame in memory and bring in the missing page from backing store

• Reset page table to indicate that page is now in memory

• Restart the instruction that caused the page fault

To reduce page fault rate, fully associative placement of pages in 

memory and smart replacement algorithms are used together with 

large enough page sizes. Sizes from 4 KiB to 16 KiB are typical today.



Handling Page Faults
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Page Replacement

When a page fault occurs, if all pages in main memory are in use, the 

operating system must choose a page to replace. Because we want to 

minimize the number of page faults, most operating systems try to 

choose a page that will not be needed in the near future. 

Two page transfers are required – one to write the replaced page back 
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Two page transfers are required – one to write the replaced page back 

to secondary storage and another to bring the faulty page in. This 

overhead can be reduced by using a modify (or dirty) bit per page.

• The dirty bit is set whenever a page in memory is modified

• When a page is selected for replacement, if its dirty bit is unset, the page has not

been modified since it was loaded and we can avoid writing it back to secondary 

storage since it is already there



Page Replacement Algorithms

Several page replacement algorithms exist:

• FIFO – First-In First-Out

• LRU – Least Recently Used

• Second chance

• Clock
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• Clock

• NRU – Not Recently Used

• LFU – Least Frequently Used

• Aging



Translation-Lookaside Buffer

Address translation appears to require extra memory references:

• One to access the page table

• Another to access the actual data

But access to page tables has good locality. Accordingly, modern 
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But access to page tables has good locality. Accordingly, modern 

processors include a fast cache, called translation-lookaside buffer (TLB), 

that keeps track of recently used address translations to try to avoid 

access the page table.



Translation-Lookaside Buffer

Some typical values for a TLB are:

• Size: 16 – 512 entries

• Block size: 1 – 2 page table entries (typically 4–8 bytes each)

• Hit time: 0.5 – 1 clock cycle

• Miss penalty: 10 – 100 clock cycles
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• Miss penalty: 10 – 100 clock cycles

• Miss rate: 0.01% – 1%



Translation-Lookaside Buffer
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TLB and Cache Interaction
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TLB and Cache Interaction

TLB
fully associative

32-bit addresses
4KiB pages
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Cache
direct-mapped


