
Sabrina Vieira da Silva

Coupling Logic Programming

with Relational Databases

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

2005

Sabrina Vieira da Silva

Coupling Logic Programming

with Relational Databases

Tese submetida à Faculdade de Ciências da

Universidade do Porto para obtenção do grau de Mestre

em Infomática

Departamento de Ciência de Computadores

Faculdade de Ciências da Universidade do Porto

2005

2

Acknowledgements

I would like to thank and express my sincere gratitude towards my supervisors, Michel

Ferreira and Ricardo Rocha, both professionally and personally, for their advise,

motivation, and support. Their suggestions, availability, needed criticism and inspiring

words were always of great help in the development and conclusion of this thesis. I

admire you both.

I am also grateful to ”Projecto Matemática Ensino”, to the coordinators and col-

leagues, for granting the time and support needed to accomplish this task. To Alexan-

dra Bernardo and Ricardo Fernandes for their motivation and support during this

master course.

To my mom and dad, for their unconditional love, support and trust. Thank you

Daniel for being the best brother a girl can have. To my aunt for her time when I

didn’t have any. Thank you Evaristo for all the love, patience and understanding it

took to help me through this. To all my friends who somehow knew, and were more

certain than I was, that I could ”pull this off”.

To the outstanding soul of a native pacific northwest Indian whom I shall never forget.

May your soul always accompany your footsteps on your long lost journeys.

3

4

To my Family

5

6

Abstract

The declarative nature of a logic programming language and the ultra-efficient data

handling capabilities of database systems provides an outstanding reason for coupling

the two systems. However, such a merge can be of a tenuous nature, often having

to deal with certain obstacles. Coupling approaches between these two systems have

seen a great amount of research, mainly on the strategies used to establish connections

between them.

With this research we aim at developing three alternative coupling approaches for

distinct forms of communication between both the systems. We propose an initial

approach where tuples from the relational database are asserted as logic programming

facts. The second approach consists in accessing database tuples through backtracking.

The last approach transfers unification from the logic programming language to the

relational database engine with the use of a Prolog to SQL translator .

The results in this thesis show that it is possible to couple a logic programming system

with a relational database which combines the following three aspects: simplicity,

performance and efficiency. This combination, together with the optimization obtained

from view-level accesses and indexing can prove to be an interesting solution.

7

8

Resumo

A natureza declarativa das linguagens de programação lógica juntamente com as

capacidades de armazenamento e manuseamento de informação das bases de dados

relacionais, fornecem uma boa razão para integrar estes dois sistemas. Contudo, tal

integração pode ser de dif́ıcil implementação. As abordagens para potenciar estes dois

sistemas têm sido alvo de bastante investigação, principalmente no que diz respeito às

posśıveis estratégias para estabelecer a ligação entre eles.

Com este estudo, pretendemos desenvolver três abordagens diferentes para estabelecer

a comunicação entre ambos os sistemas. Propomos uma abordagem inicial, onde os

tuplos da base de dados relacional são assumidos como factos em Prolog. A segunda

abordagem consiste em aceder ao tuplos recorrendo ao mecanismo de retrocesso dos

sistemas lógicos. A última abordagem transfere o processo de unificação das linguagens

de programação lógica para o motor da base de dados relacional, com o aux́ılio de um

tradutor de Prolog para SQL.

Os resultados desta tese comprovam que é posśıvel integrar as linguagens de pro-

gramação lógica com um sistema de base de dados relacional que combine simplicidade,

desempenho e eficiência. Esta combinação acrescida de mecanismos de indexação e de

acessos ao ńıvel de vista provam ser uma solução interessante.

9

10

Contents

Acknowledgements 3

Abstract 7

Resumo 9

List of Tables 15

List of Figures 18

1 Introduction 19

1.1 Thesis Purpose . 21

1.2 Thesis Outline . 22

2 Deductive Databases Systems 25

2.1 Prolog and Relational Databases . 25

2.1.1 The Prolog Language . 25

2.1.2 Relational Databases . 28

2.1.3 Similarities Between Prolog and Relational Databases 29

2.1.3.1 Motivations for Integration 30

2.1.3.2 Obstacles to Integration 31

11

2.1.4 Prolog and Relational Algebra 32

2.2 Deductive Database Systems . 34

2.2.1 Historical Overview . 35

2.2.1.1 ECRC . 36

2.2.1.2 LDL . 36

2.2.1.3 NAIL . 36

2.2.1.4 Aditi . 37

2.2.1.5 Coral . 37

2.2.1.6 XSB . 37

2.2.1.7 Other Systems . 38

2.2.2 Techniques of Integration . 38

2.2.2.1 Loose Coupling Versus Tight Coupling 39

2.2.2.2 Relational-Level Access Versus View-Level Access . . . 39

2.2.3 Deductive Database System Implementations 41

2.3 Chapter Summary . 44

3 Development Tools 45

3.1 The Yap Prolog System . 45

3.2 C Language Interface to Yap . 46

3.2.1 Yap Terms . 47

3.2.2 Writing Predicates in C . 49

3.3 The MySQL Database Management System 52

3.4 C Language Interface to MySQL . 53

3.4.1 Writing Client Programs in C 53

12

3.4.2 Handling Queries that Return No Result 55

3.4.3 Handling Queries that Return a Result Set 56

3.5 Prolog to SQL Translation . 57

3.5.1 Database Schema Information 57

3.5.2 Translation Rules . 59

3.5.3 Translation Process . 61

3.6 Chapter Summary . 62

4 Coupling Approaches 65

4.1 Generic Architecture . 65

4.2 Asserting Database Tuples as Prolog Facts 68

4.3 Accessing Database Tuples by Backtracking 68

4.4 Transferring Unification to the Database 72

4.5 Manipulating the Database from Prolog 75

4.6 Handling Null Values . 77

4.7 Handling Deallocated Result Sets . 78

4.8 Chapter Summary . 80

5 Performance Evaluation 81

5.1 The edge r Benchmark . 81

5.2 The query Benchmark . 85

5.3 Chapter Summary . 89

6 Conclusions 91

6.1 Main Contributions . 91

6.2 Further Work . 93

13

6.3 Final Remark . 94

References 95

14

List of Tables

2.1 A student relation . 32

2.2 Relational algebra operations, SQL expressions and Prolog queries . . . 34

2.3 Summary of prototypes (part I) . 42

2.4 Summary of prototypes (part II) . 43

3.1 Primitives for manipulating Yap terms 48

5.1 Execution times of the different approaches 82

5.2 Index performance for query edge(A,B),edge(B,A) 85

5.3 Execution times of query(L) on the different approaches 88

15

16

List of Figures

2.1 The append/3 example . 26

2.2 The parent/2 and ancestor/2 example 27

2.3 A database relation or table . 28

2.4 SQL expression for creating relation employee 29

2.5 Creating a view in SQL . 29

2.6 The male/1, female/1 and father/2 example 30

3.1 My first Yap external module . 47

3.2 Constructing and unifying compound terms in a Yap external module . 49

3.3 The lessthan/2 backtrackable predicate 51

3.4 Code skeleton for a MySQL client program 54

3.5 The translation steps of the translate/3 predicate 61

4.1 Generic architecture for the coupling approaches 66

4.2 The C implementation of db connect/5 and db disconnect/1 67

4.3 The C implementation of db assert/3 69

4.4 The C implementation of db query/3 71

4.5 The C implementation of db row/2 . 72

5.1 Relations pop and area . 86

17

18

5.2 All solutions for the query goal query(L) 87

Chapter 1

Introduction

Logic programming is a programming paradigm based on Horn Clause Logic, a subset

of First Order Logic. The axiomatic knowledge of a logic program can be represented

extensionally in the form of facts, and intensionally in the form of rules. Program

execution tries to prove theorems (goals) and if a proof succeeds the variable bindings

are returned as a solution. Relational databases can also be considered as a simpler

First Order Logic model [23]. The axiomatic knowledge is now only represented exten-

sionally in the form of database relations and the theorems to be proved correspond

to (SQL) queries.

There are two main differences between a logic programming system and a relational

database model. A first difference is the evaluation mechanism which is employed

in logic systems and in relational database systems. Logic systems, such as Prolog,

are based on a tuple-oriented evaluation that uses unification to bind variables with

atomic values that correspond to an attribute of a single tuple. On the other hand,

the relational model uses a set-oriented evaluation mechanism. The result of applying

a relational algebra operation, such as projection, selection or join, to a relation is

also a relation, which is a set of tuples. A second difference, is the expressive power of

each language. While every relational operator can be represented as a logic clause,

the inverse does not happen. Recursive rules cannot be expressed as a sequence of

relational operators. Thus the expressive power of Horn clause systems is greater than

that of the relational database model.

The main motivation behind a deductive database system, based on the marriage of

19

20 CHAPTER 1. INTRODUCTION

a logic programming language and a relational database management system, is the

combination of the efficiency and safety of database systems in dealing with large

amounts of data with the higher expressive power of logic systems. A logic program-

ming language is a concise and intuitive way of specifying instructions to a database,

and the deductive database aims at representing the extensional knowledge through

database relations and the intensional knowledge through logic rules. Furthermore, a

deductive database represents knowledge in a way closer to the human representation,

using a clausal representation over which a model of deduction is applied to obtain,

as needed, the extensional representation of such knowledge. For complex problems,

this ability to represent knowledge intentionally can be crucial.

Coupling a logic system with a relational database system consists in the definition of

an architecture connecting the two systems, to allow high-level querying and efficient

data manipulation. The implementation of such deductive database systems follows

the following four general methods [6]: (i) coupling of an existing logic system im-

plementation to an existing relational database management system; (ii) extending

an existing logic system with some facilities of a relational database management

system; (iii) extending an existing relational database management system with some

features of a logic language; and (iv) tightly integrating logic programming techniques

with those of relational database management system’s. The selected method for

development in this thesis was the first alternative, since the deductive system can

profit from future and independent developments of the logic system and of the

relational database management system.

The level of integration between a logic system and a database system is described in

the literature as tight or loose [72, 39]. As the complexity of the coupling architecture

increases, the more tightly coupled the systems become. To fully preserve the unique

features of both systems one must understand the motivations and possible achieve-

ments resulting from such a merge. To date, however, no full integration has gained

a significant degree of acceptance, mainly because the usual link is often of a very

tenuous nature, due to very significant differences between the two systems, that we

will address in this thesis.

Quite obviously, the main tools in the construction of a coupling architecture between

a logic system and a relational database system are the application programming

interfaces (API’s) of each system. Both Yap [13] and MySQL [19], the systems coupled

1.1. THESIS PURPOSE 21

in this thesis, have a powerful C API, as C is there main development programming

language. Another fundamental tool is a translator from the logic language, in this

case Prolog, to the database system querying language, SQL. This thesis uses, as a

number of other interfacing architectures, the fundamental work of Christoph Draxler

on Prolog to SQL translation [18].

The existing literature on how to put these tools together in the implementation of a

deductive database system is scarce. There are a number of possible alternatives that

can be implemented. This thesis discusses, implements and evaluates some possible

architectures for coupling logic and database systems.

1.1 Thesis Purpose

Although there is a vast literature regarding the subject of coupling a logic system

with a relational database system, together with a number of existing systems based

on this coupling technology, there are very few references in this vast literature that

approach the implementation issues of such systems. Most of the research effort in

deductive databases has been put on high-level problems, such as query languages,

their semantics and evaluation algorithms for the specified queries. Low-level archi-

tectural problems, which are very relevant because of important differences between a

logic system and a relational database system, are not explored in the literature.

Clearly, this lack of literature on these architectural implementation issues denotes

an immature state of development of the current systems. Established technology

follows a process of prototyping, where functionality is the main concern, a subsequent

process of high-level optimization, and a final process where low-level optimization

and alternative implementation architectures are explored. Deductive databases are

entering this final process.

The main purpose of this thesis is to address different implementation architectures

on the coupling of a logic system with a relational database system. Questions such

as efficient translation of Prolog to SQL, representation of relational tuples in the

logic system environment, exploration of indexing capabilities of database systems,

management of side-effects of Prolog operators, such as the cut operator (!), over

extensional predicates, are addressed in this thesis. The different approaches are

22 CHAPTER 1. INTRODUCTION

compared and their advantages and disadvantages are discussed.

For this discussion and evaluation we implemented different coupling architectures

using the Yap Prolog compiler and the MySQL relational database management

system. Few aspects are, however, strictly dependent on these two systems, and can

be generalized to other logic systems and database management systems. The results

obtained in this thesis clearly show the need for the implementation of some features in

order to obtain efficiency, such as dynamic SQL generation, view-level transformations

or use of indexing in database systems. These features are independent of the systems

that are coupled.

A secondary purpose of this thesis is to contribute for the benchmarked evaluation of

deductive database systems. The lack of such benchmark programs also reveals the

immature state of development of current systems, with the absence of a tool that

measures efficiency. Although the programs we present in Chapter 5 are far from

allowing a relevant comparison of different deductive database systems, they represent

a first step in this direction.

1.2 Thesis Outline

This thesis is structured in six major chapters that reflect the work developed. A brief

description of each chapter is provided to better understand the sequence of ideas and

contents.

Chapter 1: Introduction. The current chapter.

Chapter 2: Deductive Databases Systems. Provides an overview of Prolog and

relational databases, along with the similarities and obstacles to integration.

The motivations and possibilities for coupling the two systems are analysed on an

access and coupling level, as well as various deductive database implementations.

Chapter 3: Development Tools This chapter presents in more detail the two main

systems used in this thesis: the Yap Prolog system and the MySQL database

management system. The main features of each system and their C language

interface to build client programs are introduced and described. The Draxler’s

1.2. THESIS OUTLINE 23

Prolog to SQL compiler as a means to optimize the translation of queries between

YAP Prolog and MySQL is also discussed in detail.

Chapter 4: Coupling Approaches. The three alternative approaches for coupling

logic programming with relational databases are presented. A detailed step-

by-step description of each approach is discussed along with their advantages

an disadvantages. The three distinct approaches are: (i) asserting database

tuples as Prolog facts; (ii) accessing database tuples by backtracking; and (iii)

transferring unification to the database.

Chapter 5: Performance Evaluation. This chapter evaluates and compares the

performance of each coupling approach. To improve performance, view-level

and relational-level accesses, along with optional indexing, are also tested and

studied.

Chapter 6: Concluding Remarks. Discusses the research, summarizes the contri-

butions and suggests directions for further work.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Deductive Databases Systems

This chapter provides an overview of Prolog and relational databases, along with the

similarities and obstacles to the integration of both systems. To better understand the

motivations and possibilities for coupling the two systems, we then discuss different

techniques of integration and analyse several deductive database implementations.

2.1 Prolog and Relational Databases

This section provides some background to Prolog and relational databases while de-

scribing the motivation for their integration.

2.1.1 The Prolog Language

Prolog stands for “PROgramation en LOGic” [12]. It is an attempt to implement

Colmerauer and Kowalski’s idea that computation is controlled inference [36]. The

motivation for Prolog is to separate the specification of what the program should do

from how it should be done. This was summarized by Kowalski’s motto [70]:

algorithm = logic + control

Prolog programs use the logic to express the problem and rely on the Prolog system

to execute the specification.

25

26 CHAPTER 2. DEDUCTIVE DATABASES SYSTEMS

Prolog is a logic programming language which allows users to specify both application

knowledge (which is the program) and queries declaratively. The problem of how to

solve a query using the knowledge is left to the interpreter. Prolog retrieves answers

one by one using a backtracking mechanism. A pure Prolog program consists of facts

and rules.

Prolog implements a subset of first order logic [38] known as Horn clause logic. A

Prolog program is a set of relational rules of the form:

r0(
−→
t0) : −r1(

−→
t1), . . . , rn(

−→
tn).

where the ri’s are relational symbols and the
−→
ti ’s are tuples of first order terms. These

rules are called definite clauses, and the ri(
−→
ti)’s are called atoms. A clause is divided

into two parts: the part to the left of the :- symbol, called the head, and the part to

the right, called body, which is a conjunction of atoms, called goals. The symbol :- is

read as if. The meaning of a rule is: “For all bindings of their variables, the terms
−→
t0

are in relation r0 if the terms
−→
t1 are in relation r1 and ... the terms

−→
tn are in relation

rn.” A rule where the number of goals in the body is 0 is called a fact and is written

without :-, and a rule with one goal is called a chain rule. A rule with more than one

goal is called a deep rule, and a rule with an empty head is called a query.

A predicate (or procedure) is defined by the set of clauses which have the same head

relational symbol r0 and the same arity in the tuple t0 of head atom r0(
−→
t0). A predicate

is usually referred to by r0/n where n is the arity of the tuple t0.

Figure 2.1 illustrates an example of a Prolog program, used for list concatenation. The

program consists of a single predicate, append/3, defined by two clauses, one being a

fact and one being a chain rule. The letters L, H, T and R, represent variables, which

always begin with a capital letter in Prolog.

append([],L,L).
append([H|T],L,[H|R]) :- append(T,L,R).

Figure 2.1: The append/3 example

Given a program P and a query :- r1(
−→
t1), ..., rn(

−→
tn)., a program execution consists in

finding for which assignments of values to variables the conjunction r1(
−→
t1), ..., rn(

−→
tn)

is a logical consequence of the program P .

2.1. PROLOG AND RELATIONAL DATABASES 27

The computation process of Prolog is based on two mechanisms presented by Robin-

son [55]: resolution and unification. Resolution allows for several possible strategies.

One important strategy is linear resolution, where a fixed clause keeps being trans-

formed by resolving it against other clauses in a given set. A further restriction of

linear resolution is SLD-resolution [37], where the fixed clause is a query, and a non-

deterministic selection function is used to select the atom to resolve and to which

clause to resolve against (SLD stands for Select Linear Definite).

Given a query, :- q1(
−→s1), ..., qn(−→sn)., SLD-resolution chooses an atom, qi(

−→si), from the

body of the query and chooses a definite clause from the set of clauses of the program

whose head, r0(
−→
t0), unifies with qi(

−→si) through a valid assignment of values to the

variables of both atoms. The atom qi(
−→si) in the query is then replaced by the body

of the clause selected, using the assignment of values to variables in every atom of the

body, and the process is repeated. This process will end with success if the body of

the query is empty (a fact is reached), or end with failure if there is no rule head that

unifies with the selected atom [12].

For example, the Prolog program in Fig. 2.2 represents the knowledge about parent

and ancestor relationship in a family:

parent(robert,janique).
parent(robert,daniel).
parent(janique,sebastien).

ancestor(X,Y):- parent(X,Y).
ancestor(X,Y):- parent(X,Z), ancestor(Z,Y).

Figure 2.2: The parent/2 and ancestor/2 example

The first three clauses are facts and the last two are rules. The symbols ancestor and

parent are predicates or relations, robert, janique, madeleine and sebastien are

atoms and X and Y are variables. A fact of the form parent(X,Y) states that X is a

parent of Y. The relation ancestor is recursively defined by the last two clauses. The

first rule states that X is an ancestor of Y if X is a parent of Y and the second rules

states that X is an ancestor of Y if X is a parent of some Z and Z is an ancestor

of Y. An example of a query or goal to the above program to find out who are the

descendants of robert is encoded as follows:

?- ancestor(robert,Y).

28 CHAPTER 2. DEDUCTIVE DATABASES SYSTEMS

The Prolog interpreter will instantiate the variable Y to the first answer as follows:

Y = janique

Upon receiving a ’;’ from the user, the interpreter backtracks and the next answer is

retrieved. This process can be continued until no more answers are found. Queries

involving sets of answers are common in a typical database environment. This kind

of set queries can be implemented in Prolog by using its predicates setof/3 or

findall/3 [14]. For example, the following query retrieves all descendants of robert

and returns the answers as a list, in L:

?- findall(Y,ancestor(robert,Y),L).

L = [janique,daniel,sebastien].

2.1.2 Relational Databases

A relational database [11] consists of a collection of relations or tables and their

description, which is called a schema. The rows of the tables are called tuples and

columns are called attributes. Each attribute has an associated domain of values. An

example of an employee relation is shown in Fig. 2.3. The attributes are Id, Name and

Designation and there are four tuples in the table.

+----+--------+-----------------+
| Id | Name | Designation |
+----+--------+-----------------+
| 1 | John | programmer |
+----+--------+-----------------+
| 2 | Susan | software_eng |
+----+--------+-----------------+
| 3 | Tom | programmer |
+----+--------+-----------------+
| 4 | Brenda | project_leader |
+----+--------+-----------------+

Figure 2.3: A database relation or table

Integrity constraints [15] are properties that must be satisfied by the data of a database.

An example of an integrity constraint applied on the employee table could be that

the identification field, Id, is the primary key. Another example of an integrity

2.1. PROLOG AND RELATIONAL DATABASES 29

constraint would be to restrict the values that the designation of an employee can

take to the set of {programmer, software eng, project leader}. The schema for

the employee table together with these constraints can be created in an Oracle or

MySQL environment using its query language SQL as described in Fig. 2.4.

CREATE TABLE employee
(
id INTEGER CONSTRAINT pk_emp PRIMARY KEY,
name CHAR(16),
designation CHAR(16) CONSTRAINT ck_desig
CHECK (desig IN (’programmer’,’software_eng’,’project_leader’))

)

Figure 2.4: SQL expression for creating relation employee

A view [11] can be thought of as a mask overlaying one or more tables such that

the columns in the view are found in one or more underlying tables or constructed

using the columns of underlying tables. An example of a SQL expression to create a

view on the table above, which extracts employees who are programmers is shown in

Figure 2.5.

CREATE VIEW qualified_cc AS SELECT id, name
FROM employee
WHERE designation = ’programmer’;

Figure 2.5: Creating a view in SQL

2.1.3 Similarities Between Prolog and Relational Databases

Much has been written over the similarities between logic based languages, such as

Prolog, and relational databases, and there has been a sizable amount of effort exerted

towards producing a practical combination between the two [26]. Such a combination

combines the inference capabilities of Prolog with the ultra-efficient data handling

capabilities of database systems. To date, however, no full integration has gained a

significant degree of acceptance. The usual link between Prolog and a database, when

it exists, is often of a very tenuous nature, usually being a simple interface between

two independent systems.

Consider the Prolog program in Fig. 2.6. These clauses, added to the program of

Figure 2.2, constitute a knowledge base about ancestor relationships which can be

30 CHAPTER 2. DEDUCTIVE DATABASES SYSTEMS

queried. The structural similarity of the parent/2 facts to tuples of a relational

database should be fairly obvious. A predicate in Prolog (as in the rest of logic) is

normally interpreted to be nothing more than a relation over some domain. What is

perhaps more interesting, however, is that a Prolog rule, such as father/2, may be

viewed as a join of the relations male and parent [61, 76, 26]. The Prolog predicate

father/2, represented by a Prolog rule, would be, in the relational model, a derived

relation, or view, over base relations [26]. Datalog, a language based upon Prolog, has

been proposed and has gained acceptance as a relatively graceful language for defining

and querying databases [69, 41].

male(robert).
male(daniel).
male(sebastian).

female(janique).

father(X,Y) :- male(X), parent(X,Y).

Figure 2.6: The male/1, female/1 and father/2 example

2.1.3.1 Motivations for Integration

There are good reasons for a union between Prolog and a relational database. One

reason is that Prolog language is a concise and intuitive way of specifying instructions

to a database [76, 26]. Compare, for example, the Prolog predicate and query:

p(X,Y):- q(X,Z), r(Z,Y).

?- p(a,Y).

to its SQL counterpart:

CREATE VIEW P AS SELECT Q.X, R.Y FROM Q, R WHERE Q.Z = R.Z;

SELECT Y FROM P WHERE X = a;

Though this example is very simple, many would argue that the Prolog rendition is

easier to follow. The difference becomes more evident as the action to be performed

grows more complex. Another reason for desiring some sort of integration is that

2.1. PROLOG AND RELATIONAL DATABASES 31

Prolog clauses are generally held in primary memory. This places a severe restriction on

the project size to which Prolog can be reasonably applied [61]. Many who appreciate

the general programming abilities of Prolog would prefer to have the large storage

space of disk drives available to them. Furthermore, keeping data in primary memory

limits access to data by multiple agents [30, 72]. Databases, in contrast, can store

huge amounts of information on secondary storage such as disk drives, and almost

universally allow concurrent access by multiple users. Unlike most database systems,

Prolog makes little use of indexing schemes or other optimization techniques, making

information retrieval, and therefore logical inference, relatively slow [61]. Database

systems, in contrast, are extremely good at covering large quantities of information.

Much effort has been exerted in devising clever ways to speed retrieval [41].

2.1.3.2 Obstacles to Integration

There are also differences between Prolog and relational databases, which serve as ob-

stacles to integration and must be pointed out. While the average relational database

manipulation language can be considered almost entirely declarative, Prolog has a

strong procedural bent. This is the most important reason and obligatory result

of Prolog being developed as a general purpose programming language. Database

languages, being special purpose, need not be so encumbered [76, 6]. Furthermore,

Prolog has a fixed built-in search mechanism (depth-first) and is littered with elements

for performing actions irrelevant to logical inference [6].

Lesser points of conflict are as follows. First, the domains for relations in the database

model are explicitly specified in a relational system. If the elements are not enumer-

ated, their respective data types (integer, character, etc.) are at least specified [16].

Prolog, though it can be said to have a typing system of some sort, does not provide

a means of specifying how predicate arguments are to be restricted [6]. Furthermore,

attributes in a relational system are generally referenced by name rather than by

position. In Prolog, no argument has a name. Also, values of attributes in a relational

database are atomic, meaning that the tuples in a database table correspond only

to atomic propositions containing no unbound variables. With very few exceptions,

one cannot store a complex structure in a relation [16]. In contrast, Prolog predicate

arguments can be as complex as one likes [41]. Another significant obstacle is the

set-at-a-time strategy of database management systems that retrieve all the tuples of

32 CHAPTER 2. DEDUCTIVE DATABASES SYSTEMS

a certain query at once in opposition to the tuple-at-a-time backtracking strategy of

Prolog.

2.1.4 Prolog and Relational Algebra

A Prolog procedure consisting of ground unit clauses is considered the same thing as a

database relation. A fact in the procedure is equivalent to a tuple in the relation, which

consists of a set of attributes together with a value for each. A schema is essentially the

relation name together with the attribute names and types. A relation is frequently

represented as a table with the attributes appearing as column headings and a row

representing a tuple. Table 2.1 shows a student relation with three attributes and two

tuples.

Student Number Surname Subject enrolled in

-SNO- -SName- -SubjCode-

324522 Wong cs317

113540 Smith cs383

Table 2.1: A student relation

A single tuple in this representation is simply a sequence of values, with the ith value

being the value of the attribute appearing in the ith column heading. This tuple is

represented as a unit clause by equating the relation name with the principal functor,

and placing the value of the ith attribute in the ith argument position.

student(324522,’Wong’,cs317)
student(113540,’Smith’,cs383)

A relational algebra selection operation is represented as a Prolog query. For example,

the selection operation σSNO=113540(Student) gives rise to the following SQL query:

SELECT * FROM Student WHERE SNO = 113540;

which returns a new relation with the following single tuple:

<113540,Smith,cs383>

2.1. PROLOG AND RELATIONAL DATABASES 33

The corresponding Prolog query would be:

?- student(113540, Surname, Subject).

where the selection criterion from σSNO=113540(Student) is expressed by the first argu-

ment position of the goal being instantiated to the integer 113540. More complex

selection criteria are implemented by using built-ins predicates from Prolog. For

example, if we wanted all students whose number is greater than 200000, we would

have the SQL query:

SELECT * FROM Student WHERE SN0 > 200000;

and the corresponding Prolog goal:

?- student(SNO,SName,SubjCode), SNO > 200000.

The Prolog interpreter would instantiate the variables to

SNO = 324522
SName = ’Wong
SubjCode = ’cs3l7’

If the user ask for further solutions, using the ’;’operator at the top level, Prolog’s

backtracking would try to provide alternative solutions. This example brings up an

important difference between Prolog and the relational algebra: Prolog’s inference

engine operates tuple-at-a-time, computing bindings of the query variables to terms

occurring in a single clause of the procedure; while a database manager, the relational

algebra’s equivalent of an inference engine, identifies the subset of the relation while

operating set-at-a-time to satisfy the selection conditions.

In Table 2.2, we present several examples of the representation of relational algebra

operations, their SQL expression and their Prolog query. Besides the previously

described Student relation, the Subject and Lecturer relations, characterized by

the following predicates, are also used in Table 2.2:

subject(SubjCode,Title).

lecturer(LNO,SName,SubjCode).

34 CHAPTER 2. DEDUCTIVE DATABASES SYSTEMS

Relational Algebra SQL Prolog

ΠSUBJ(Student) SELECT SubjCode FROM Student student(, ,SubjCode).

Student SELECT * FROM student(SN0,SName,SubjCode),

⊲⊳ SubjCode=SubjCode Student, SubjCode WHERE subject(SubjCode,Title).

Subject Student.SubjCode=

Subject.SubjCode

Student SELECT * FROM student(SNO,"Wong",SubjCode),

σName=”Wong”∧ Student, Subject WHERE SNO>1000,

SNO>”1000”∧ Student.SName="Wong" subject(SubjCode, Title).

SubjCode=SubjCode and Student.SNO>1000

Subject and Student.SubjCode=

Subject.SubjCode

Student × Subject SELECT * FROM student(1000,SName,cs317),

Student, Subject WHERE subject(cs317,Title).

Student.SNO=1000

and Subject.SubjCode="cs317"

and Student.SubjCode="cs317"

Intersection SELECT * FROM student(SNO,Sname,SCode),

Student, Lecturer WHERE lecturer(SNO,Sname,SCode).

Student.SNO=Lecturer.LNO

and Student.SName=

Lecturer.SName

and Student.SubjCode=

Lecturer.SubjCode

Union SELECT * FROM student(SNO1,Sname1,SCode1),

Student, Lecturer lecturer(SNO2,Sname2,SCode2).

Subtraction SELECT * FROM student(SNO,Sname,SCode),

Student, Lecturer WHERE not

not(Student.SNO=Lecturer.LNO) lecturer(SNO,Sname,SCode).

and not(Student.SName=

Lecturer.SName)

and not(Student.SubjCode=

Lecturer.SubjCode)

Table 2.2: Relational algebra operations, SQL expressions and Prolog queries

2.2 Deductive Database Systems

We next briefly describe some of the most well-known deductive database systems

along with the different techniques of integration between Prolog and relational databases.

2.2. DEDUCTIVE DATABASE SYSTEMS 35

This section in highly based on [54].

2.2.1 Historical Overview

Work in automated theorem proving and, later, logic programming was at the origins

of deductive databases. Minker suggests that, in the early development of the field,

Green and Raphael [27] were the first to recognize the connection between theorem

proving and deduction in databases [43].

Early systems included MRPPS, DEDUCE-2, and DADM. MRPPS was an inter-

pretive system developed at Maryland by Minker’s group from 1970 through 1978,

that explored several search procedures, indexing , techniques, and semantic query

optimization. One of the first papers on processing recursive queries was [44]; it

contained the first description of bounded recursive queries, which are recursive queries

that can be replaced by non-recursive equivalents.

In 1977, a landmark workshop on logic and deductive databases, in Toulose, was

organized by Gallaire, Minker and Nicolas that resulted in a book from several papers

of the proceedings [23]. The workshop and the book brought together researchers in

the area of logic and databases, and gave an identity to the field. The workshop was

also organized in subsequent years, with proceedings that continued to influence the

field.

Emden and Kowalski [71] showed, in 1976, that the least fixpoint of a Horn-clause logic

program coincided with its least Herbrand model. This provided a firm foundation

for the semantics of logic programs, especially deductive databases, since fixpoint

computation is the operational semantics associated with deductive databases. One of

the earliest efficient techniques for evaluating recursive queries in a database context

was proposed by Henschen and Naqvi [29]. Earlier systems had used either resolution-

based strategies not well-suited to applications with large data sets, or relatively simple

techniques.

In 1984, with the initiation of three major projects, two in the U.S.A. and one in

Europe, the area of deductive databases, and in particular, recursive query processing,

became very active. Significant research contributions and the construction of proto-

type systems let to the Nail! project at Stanford, the LDL project at MCC in Austin,

36 CHAPTER 2. DEDUCTIVE DATABASES SYSTEMS

and the deductive database project at ECRC.

2.2.1.1 ECRC

The research work at ECRC was led by J. M. Nicolas. The initial phase of research

(1984-1987) led to the study of algorithms and the development of early prototypes [74,

73], integrity checking (Soundcheck by H. Decker) and a prototype system that ex-

plored consistency checking (Satchmo by R. Manthey and F. Bry) [7], a combination

of deductive and object-oriented ideas (KB2 by M. Wallace), persistent Prolog (Educe

by J. Bocca), and the BANG file system by M. Freeston [21]. A second phase (1988-

1990) led to more functional prototypes: Megalog (1988-1990 by J. Bocca), DedGin*

(1988-1989 by Vieille), EKS-V1 (1989-1990, also by Vieille).

2.2.1.2 LDL

The LDL project at MCC led to a number of important advances. By 1986, it was

recognized that combining Prolog with a relational database was an unsatisfactory

solution, and a decision was made to develop a deductive database system based on

bottom-up evaluation techniques [68]. During this period, there were a number of

significant research developments including the development of evaluation algorithms

(work on semi-naive evaluation, magic sets and counting [4, 59, 58, 5]).

2.2.1.3 NAIL

The NAIL! (Not Another Implementation of Logic!) project was started at Stanford

in 1985. The initial goal was to study the optimization of logic using the database-

oriented ”all- solutions” model. In collaboration with the MCC group, the first

paper on magic sets [4] came out of this project, as did the first work on regular

recursions [48]. The work on regular recursions was developed further in [49]. Many of

the important contributions to coping with negation and aggregation in logical rules

were also made by the project. Stratified negation [24], well-founded negation [25], and

modularly stratified negation [57] were also developed in connection with this project.

2.2. DEDUCTIVE DATABASE SYSTEMS 37

2.2.1.4 Aditi

The Aditi project was initiated in 1988 at the University of Melbourne. The research

contributions of this project include a formulation of semi-naive evaluation that is now

widely used [3], adaptation of magic sets for stratified programs [2], optimization of

right and left linear programs [34], parallelization, indexing techniques, and optimiza-

tion of programs with constraints [33]. The work of the Aditi group was also driven

by the development of their prototype system, which is notable for its emphasis on

disk-resident relations. All relational operations are performed with relations assumed

to be disk resident, and join techniques such as sort-merge and hash-join are used.

2.2.1.5 Coral

The CORAL project at U. Wisconsin, which was started in 1988, can also be traced

to LDL. The research contributions included work on optimizing special classes of

programs (notably, right and left linear programs) [49] (jointly with the Glue-Nail

group), development of a multiset semantics for logic programs and optimizations

dealing with duplicate checks [40], the first results on space-efficient bottom-up eval-

uation techniques [50], refinements of seminaive evaluation for programs with large

numbers of rules [51], evaluation of programs with aggregate operations [65], arithmetic

constraints [64], modular-stratified negation [52], and non-ground tuples [66].

2.2.1.6 XSB

XSB was developed at the State University of New York in 1992. XSB has a fun-

damental bottom-up extension, introduced through tabling (or memoing) [60], which

makes it appropriate as an underlying query engine for deductive database systems.

Because it eliminates redundant computation, the tabling extension makes XSB able

to compute all modularly stratified datalog programs finitely and with polynomial

data complexity. For non-stratified programs a meta-interpreter that has the same

properties is provided. In addition XSB includes indexing capabilities greatly improved

over those of standard Prolog systems [54].

38 CHAPTER 2. DEDUCTIVE DATABASES SYSTEMS

2.2.1.7 Other Systems

Other Prolog systems like Sicstus [10], Quintus [62] and Ciao [8] have interfaces to

relational databases. A higher level approach is exemplified by ProData [39], a library

used in the LPA, SICStus, and Quintus implementations of Prolog. In [39], Lucas and

Ltd call it a transparent tight coupling. Within ProData, all low-level database access

functions are hidden from the user. It is a relation-level system, users specifying

which database relations to be used as Prolog predicates. After such specification,

database tuples are treated as Prolog facts. ProData is a standard of sorts. Besides

the commercial systems using it, some effort was exerted to make the Ciao and XSB

interfaces mimic it.

2.2.2 Techniques of Integration

According to Brodie and Jarke [6] there are four general methods of combining elements

of Prolog and a relational database system:

1. Coupling of an existing Prolog implementation to an existing relational database

system;

2. Extending Prolog to include some facilities of the relational database system;

3. Extending an existing relational database system to include some features of

Prolog;

4. Tightly integrating logic programming techniques with those of relational database

systems.

While the first three methods add, in some ways, features to pre-existing systems, the

last may be viewed as building a system from scratch. Brodie and Jarke recommend

this fourth alternative, saying that it is no more work than the second or third, and

that the end result will be a more capable system.

2.2. DEDUCTIVE DATABASE SYSTEMS 39

2.2.2.1 Loose Coupling Versus Tight Coupling

Regarding coupled systems, the literature usually refers to systems of two types: tight

and loose. The terms are used in various ways, however. Some authors appear to

use the terms in reference to the underlying architectural connections between Prolog

and the database system. Others appear to refer to the degree of integration from a

programming point of view.

In [72], Venken defines a tight coupling to exist when Prolog and a database system

are compiled together forming a single program. This matches the fourth architecture

described by Brodie and Jarke [6]. It is natural to suppose that in such a system, there

would be only one language involved in its manipulation. Lucas and Ltd [39] argue

that a tight coupling exists where external records are retrieved from the database and

unified with Prolog terms as and when required. With loose coupling, large chunks of

information are fetched from a database into Prolog memory prior to being used by

the program.

Another parameter, transparency, is specified where each database relation appears

to be just another Prolog clause and can be invoked in normal Prolog fashion. This

appears to be a programmatic consideration. In [16], Date defines loose coupling as

providing a call level interface between the logic language and the database system;

users would program both in Prolog and SQL, for instance the user is definitely aware

of the fact that there are two distinct systems involved. This approach thus certainly

does not provide the seamless integration referred to above. With tight coupling, the

query language includes direct support for the logical inferencing operations, thus the

user deals with one language, not two. Such uses of loose and tight coupling go against

the usual meanings of the words in the computer industry, where systems are tightly

coupled if they cannot function separately; they are loosely coupled if they can. Given

this definition, all couplings of Prolog to databases since they connect independent

systems via some software interface are loose couplings.

2.2.2.2 Relational-Level Access Versus View-Level Access

Regarding programmatic considerations, the most natural way of representing (and

accessing) data stored in an external database for use in Prolog is simply to treat

40 CHAPTER 2. DEDUCTIVE DATABASES SYSTEMS

relations in a database as predicates and treat their tuples as one would treat Prolog

facts. Data in the database would be accessed in Prolog’s normal depth-first search

fashion. Importantly, with the exception of the routines needed to implement the

transparent use of these database predicates, this method requires no changes to either

Prolog or the database. Prolog gains the use of secondary storage and concurrent

access and otherwise escapes unscathed. This is sometimes called relational access [18],

or sometimes tuple-at-a-time access [47]. It is relational because only a single relation

is involved in the query. It is tuple-at-a-time because generally only a single tuple is

returned as a solution. The two terms are not quite interchangeable; a query involving

one relation might return an entire set of solutions, and a query involving multiple

relations could return solutions one-at-a-time. Prolog prefers to backtrack for further

solutions rather than having them presented all at once. Relational access requires

few changes to Prolog and the database, because it is easy to implement. However,

it is very inefficient. Relation at a time access does not utilize any of the relational

database’s mechanisms for optimizing data retrieval. Relational databases are designed

to take a complex query, determine an optimal plan for satisfying that query, and

execute that plan. With relation at a time access, since queries are of the simplest

possible variety, no optimization is possible.

The alternative to relation-level access is called view-level access. Here, a complex

query is passed to the database system, and it is the database system which does

all of the work in satisfying the query (importantly, it is not Prolog). Depending

upon how it is implemented, solutions can be returned tuple-at-a-time or set-at-a-

time. The improvement in performance using this method can be staggering. Solving

a given problem might take a single call to the database system and less than a second

for view access. Solving the same problem might take thousands of calls and many

hours for relational access [20]. This is not surprising, for relational access is merely a

variation of a depth-first search, which is a blind search. The drawback to view-level

access is that it generally ruins the transparent use of the database. Queries to the

database, if they are to be efficient, are generally isolated from the rest of the Prolog

program upon being written.

In practice, almost all real world systems linking Prolog and a relational database

system simply tack on a software interface between a pre-existing Prolog implemen-

tation and a pre-existing relational database system. In other words, the Prolog and

2.2. DEDUCTIVE DATABASE SYSTEMS 41

database systems are loosely coupled. An interface allows Prolog to query the database

when needed, either by translating Prolog goals to SQL or by embedding SQL directly

into the Prolog code. The database links allow Prolog varying degrees of control over

databases. Some are very low level, meaning that the user must keep track of things

such as connection handles and cursors. The benefit of this is greater control over

program execution and more subtle access to databases. The drawback is that an

inexpert programmer can easily write dangerous code.

2.2.3 Deductive Database System Implementations

We next summarize, in Tables 2.3 and 2.4, the main differences between some of the

most well-known deductive database systems. These tables were adapted from [54].

Table 2.3 compares the following features:

Recursion. Most systems allow the rules to use general recursion. However, a few

limit recursion to linear recursion or to restricted forms related to graph search-

ing, such as transitive closure.

Negation. Most systems allow negated subgoals in rules. When rules involve nega-

tion, there are normally many minimal fixpoints that could be interpreted as the

meaning of the rules, and the system has to select from among these possibilities

one model that is regarded as the intended model, against which queries will be

answered.

Aggregation. A problem similar to negation comes up when aggregation (sum, av-

erage, etc.) is allowed in rules. More than one minimal model normally exists,

and the system must select the appropriate model.

Table 2.4 compares the following features:

Updates. Logical rules do not, in principle, involve updating of the database. How-

ever, most systems have some approach to specifying updates, either through

special dictions in the rules or update facilities outside the rule system. Systems

that support updates in logical rules have a ”yes” in the table.

42 CHAPTER 2. DEDUCTIVE DATABASES SYSTEMS

Name Developers Refs Recursion Negation Agregation

Aditi U. Melbourne [25] general stratified stratified

COL INRIA [1] stratified stratified superset stratified

ConceptBase U. Aachen [32] general local stratified no

CORAL U. Wisconsin [53] general modularly modularly stratified

stratified

EKS-VI ECRC [28] general stratified superset stratified

LogicBase Simon Fraser U. linear, some stratified no

nonlinear

DECLARE MAD Intelligent [35] general locally superset stratified

Systems stratified

Hy+ U. Toronto [42] path queries stratified stratified

X4 U. Karlsruhe [45] general, no no

but only

binary preds

LDL MCC [67] general stratified stratified

LDL++ restricted restricted

local local

LOGRES Polytechnic [9] linear inflationary stratified

of Milan semantics

LOLA Technical U. [22] general stratified computed

of Munich predicates

Glue-Nail Stanford U. [17] general well-founded glue only

Starburst IBM Almaden [46] general stratified stratified

XSB SUNY Stony Brook [60] general well-founded modularly stratified

Table 2.3: Summary of prototypes (part I)

Integrity Constraints. Some deductive systems allow logical rules that serve as

integrity constraints.

Optimizations. Deductive systems need to provide some optimization of queries.

Common techniques include magic sets or similar techniques for combining the

benefits of both top-down and bottom-up processing, and seminaive evaluation

for avoiding some redundant processing. A variety of other techniques are used

by various systems, and summarized in this table.

Storage. Most systems allow External Database (EDB) relations to be stored on disk,

but some also store Intensional Database (IDB) relations in secondary storage.

Supporting disk-resident data efficiently is a significant task.

2.2. DEDUCTIVE DATABASE SYSTEMS 43

Interfaces. Most systems connect to one or more other languages or systems. Some

of these connections are embeddings of calls to the deductive system in another

language, while other connections allow other languages or systems to be invoked

from the deductive system. Table 2.5 refers to this capability as extensibility; it

is very useful for large applications.

Name Updates Constr Optimizations Storage Interfaces

Aditi no no magic sets, SN, EDB, IDB Prolog

join-order selection

COL no no main memory ML

ConceptBase yes yes magic sets, SN EDB C, Prolog

CORAL yes no magic sets, SN, EDB, IDB C, C++,

context factoring, Extensible

projection pushing

EKS-VI yes yes query-subquery, EDB, IDB Persistent

left/right linear, Prolog

LogicBase no no chain-based evaluation EDB, IDB C, C++, SQL

DECLARE no no magic sets, SN, EDB C, Lisp

projection pushing

Hy+ no no main memory Prolog, CORAL,

LDL, Smalltalk

X4 no yes top-down EDB Lisp

LDL, yes no magic sets, SN EDB C, C++, SQL

LDL++ left/right linear,

projection pushing,

bushy depth-first

LOGRES yes yes algebraic, SN EDB, IDB INFORMIX

LOLA no yes magic sets, SN, EDB TransBase (SQL)

projection pushing,

join-order selection

Glue-Nail glue only no magic sets, SN, EDB

right-linear,

join-order selection

Starburst no no magic sets, SN variant EDB, IDB Extensible

XSB no no memoing, top-down EDB, IDB C, Prolog

Table 2.4: Summary of prototypes (part II)

44 CHAPTER 2. DEDUCTIVE DATABASES SYSTEMS

2.3 Chapter Summary

Throughout this chapter, Prolog and relational database systems were portrayed to

comprehend possible coupling techniques between the two systems. Various concepts

used in deductive database, together with the main alternatives used to couple a

logic system with a relational database system were also introduced for a better

understanding of the next chapters.

Chapter 3

Development Tools

This chapter describes the two main systems used in this thesis: the Yap Prolog system

and the MySQL database management system. First, we briefly describe the main

features of each system and then we focus on how to use their C language interface to

build client programs. At the end, we describe Draxler’s Prolog to SQL compiler as a

means to optimize the translation of queries between Yap Prolog and MySQL.

3.1 The Yap Prolog System

Yap Prolog is a high-performance Prolog compiler that extends the Warren Abstract

Machine (WAM) [75] with several optimizations for better performance. Yap follows

the Edinburgh tradition, and is largely compatible with the ISO-Prolog standard,

Quintus [62] and SICStus [10] Prolog. Yap has been developed since 1985. The original

version was written in assembly, C and Prolog, and achieved high performance on m68k

based machines. The assembly code was used to implement the WAM emulators. Later

emulators supported the VAX, SPARC, and MIPS architectures. Work on the more

recent version of Yap strives at several goals:

Portability: the whole system is now written in C. Yap compiles in popular 32 bit

machines, such as Suns and Linux PCs, and in 64 bit machines, the Alphas

running Unix and Linux.

Performance: the Yap emulator is comparable to or better than well-known Prolog

45

46 CHAPTER 3. DEVELOPMENT TOOLS

systems. The current version of Yap performs better than the original one,

written in assembly language.

Robustness: the system has been tested with a large array of Prolog applications.

Extensibility: Yap was designed internally from the beginning to encapsulate ma-

nipulation of terms. These principles were used, for example, to implement a

simple and powerful C-interface. The new version of Yap extends these principles

to accommodate extensions to the unification algorithm, that we believe will be

useful to implement extensions such as constraint programming.

Completeness: Yap has for a long time provided most built-in implementations

expected from an Edinburgh Prolog. These include I/O functionality, data-

base operations, and modules. Work on Yap aims now at being compatible with

the Prolog standard.

Openness: new developments of Yap will be open to the user community.

Research: Yap has been a vehicle for research within and outside our group. Cur-

rently research is going on parallelisation and tabling, and support for Bayesian

Networks. Yap 4.0 and early versions of Yap 4.1 were distributed under a license

that enables free use in academic environments. From Yap4.1.15 onwards Yap

is distributed under Perls’s Artistic license. The developers follow an open

development model: sources to the system are always made available from the

home page, and contributions from users are always welcome.

3.2 C Language Interface to Yap

As many other Prolog systems, Yap provides an interface for writing predicates in

other programming languages, such as C, as external modules. We will use a small

example to briefly explain how it works. Assume that the user requires a predicate

my random(N) to unify N with a random number. To do so, first a my rand.c module

should be created. Figure 3.1 shows the code for it.

Next the module should be compiled to a shared object and then loaded under Yap

by calling the load foreign files() routine. After that, each call to my random(N)

will unify N with a random number. Despite its small size, the example shows the key

3.2. C LANGUAGE INTERFACE TO YAP 47

#include "Yap/YapInterface.h" // header file for the Yap interface to C

void init_predicates(void) {
Yap_UserCPredicate("my_random", c_my_random, 1);

}

int c_my_random(void) {
Yap_Term number = Yap_MkIntTerm(rand());
return(Yap_Unify(Yap_ARG1,number));

}

Figure 3.1: My first Yap external module

aspects about the Yap interface. The include statement makes available the macros

for interfacing with Yap. The init predicates() procedure tells Yap the predicates

being defined in the module. The function c my random() is the implementation

of the desired predicate. Note that it has no arguments even though the predicate

being defined has one. In fact the arguments of a Prolog predicate written in C are

accessed through the macros Yap ARG1, ..., Yap ARG16 or with Yap A(N) where N is the

argument number. In our example, the function uses just one local variable of type

Yap Term, the type used for holding Yap terms, where the integer returned by the

standard Unix function rand() is stored as an integer term (the conversion is done

by Yap MkIntTerm()). Then it calls Yap Unify(), to attempt the unification with

Yap ARG1, and returns an integer denoting success or failure.

3.2.1 Yap Terms

Terms, from the C point of view, can be classified as:

• uninstantiated variables;

• instantiated variables;

• integers;

• floating-point numbers (floats);

• atoms (symbolic constants);

• pairs;

48 CHAPTER 3. DEVELOPMENT TOOLS

• compound terms.

Integers, floats and atoms are respectively denoted by the following primitives Yap Int,

Yap Float and Yap Atom. For atoms, Yap includes primitives for associating atoms

with their names: Yap
¯
AtomName() returns a pointer to the string for the atom; and

Yap
¯
LookupAtom() looks up if an atom is in the standard hash table, and if not, inserts

it. Table 3.1 lists the complete set of the available primitives to test, construct and

destruct Yap terms.

Term Test Construct Destruct

uninst var Yap IsVarTerm()
Yap MkVarTerm() (none)

inst var Yap NonVarTerm()

integer Yap IsIntTerm() Yap MkIntTerm() Yap IntOfTerm()

float Yap IsFloatTerm() Yap MkFloatTerm() Yap FloatOfTerm()

atom Yap IsAtomTerm()
Yap MkAtomTerm() Yap AtomOfTerm()

Yap LookupAtom() Yap AtomName()

pair Yap IsPairTerm()
Yap MkNewPairTerm() Yap HeadOfTerm()

Yap MkPairTerm() Yap TailOfTerm()

compound

term
Yap IsApplTerm()

Yap MkNewApplTerm() Yap ArgOfTerm()

Yap MkApplTerm() Yap FunctorOfTerm()

Yap MkFunctor()
Yap NameOfFunctor()

Yap ArityOfFunctor()

Table 3.1: Primitives for manipulating Yap terms

A pair is a term which consists of a tuple of two terms, designated as the head and

the tail of the term. Pairs are most often used to build lists. One can construct

a new pair from two terms, Yap MkPairTerm(), or just build a pair whose head

and tail are new unbound variables, Yap MkNewPairTerm(). By using the primitives

Yap HeadOfTerm() and Yap TailOfTerm(), it is possible to fetch the head and the

tail of a pair.

A compound term consists of a functor and a sequence of terms with length equal to

the arity of the functor. A functor, denoted in C by Yap Functor, consists of an atom

(functor name) and an integer (functor arity). As for pairs, we can construct compound

terms from a functor and an array of terms, Yap MkApplTerm(), or just build a com-

pound term whose arguments are unbound variables, Yap MkNewApplTerm(). Yap also

3.2. C LANGUAGE INTERFACE TO YAP 49

includes primitives to construct functors, Yap MkFunctor(), to obtain the name and

arity of a functor, the Yap NameOfFunctor() and Yap ArityOfFunctor() primitives,

and to fetch the functor and terms in a compound term, the Yap FunctorOfTerm()

and Yap ArgOfTerm() primitives.

To unify Prolog terms using the C API, Yap provides the following single primitive

Yap Unify(Yap Term a, Yap Term b). This primitive attempts to unify the terms a

and b returning TRUE if the unification succeeds or FALSE otherwise.

We next show an example that illustrates how these primitives can be used to construct

and unify Prolog terms. Consider, for example, that we want to construct two

compound terms, p(VAR1,1) and p(a,VAR2), and perform its unification, that is,

unify the variable VAR1 with the atom a and the variable VAR2 with the integer 1. A

possible implementation is shown next in Fig. 3.2.

YAP_Term arg[2], p1, p2;
YAP_Functor f;

f = YAP_MkFunctor(YAP_LookupAtom("p"), 2); // construct functor p/2

arg[0] = Yap_MkVarTerm();
arg[1] = Yap_MkIntTerm(1);
p1 = YAP_MkApplTerm(f, 2, args); // construct compound term p(VAR1, 1)

arg[0] = YAP_MkAtomTerm(YAP_LookupAtom("a"));
arg[1] = Yap_MkVarTerm();
p2 = YAP_MkApplTerm(f, 2, args); // construct compound term p(a, VAR2)

YAP_Unify(t1, t2); // unify both terms

Figure 3.2: Constructing and unifying compound terms in a Yap external module

3.2.2 Writing Predicates in C

Building interesting modules cannot be accomplished without two extra functionalities.

One is to call the Prolog interpreter from C. To do so, first we must construct a Prolog

goal G, and then it is sufficient to perform YapCallProlog(G). The result will be

FALSE, if the goal failed, or TRUE otherwise. When this is the case, the variables in G

will store the values they have been unified with. The other interesting functionality

is how we can define predicates. Yap distinguishes two kinds of predicates:

50 CHAPTER 3. DEVELOPMENT TOOLS

Deterministic predicates: which either fail or succeed but are not backtrackable;

Backtrackable predicates: which can succeed more than once.

Deterministic predicates are implemented as C functions with no arguments which

should return zero if the predicate fails and a non-zero value otherwise. They are

declared with a call to Yap UserCPredicate(char *name, int *f(), int arity),

where the first argument is the name of the predicate, the second the name of the C

function implementing the predicate, and the third is the arity of the predicate.

For backtrackable predicates we need two C functions: one to be executed when

the predicate is first called, and other to be executed on backtracking to provide

(possibly) other solutions. Backtrackable predicates are similarly declared, but using

instead Yap UserBackCPredicate(char *name,int *f init(),int *f cont(),int

arity, int sizeof), where name is the name of the predicate, f init and f cont

are the C functions used to start and continue the execution of the predicate, arity

is the predicate arity, and sizeof is the size of the data to be preserved in the stack

(its use is detailed next).

When returning the last solution, we should use Yap cut fail() to denote failure,

and Yap cut succeed() to denote success. The reason for using Yap cut fail()

and Yap cut succeed() instead of just returning a zero or non-zero value, is that

otherwise, when backtracking, our function would be indefinitely called.

Consider, for example, a predicate lessthan(N,M) that returns in M by backtracking

all the positive integers less than N. N should be instantiated with an integer and M

should be an uninstantiated argument. The predicate should succeed and provide by

backtracking all the positive integers less than N for the N-1 first calls and fail for the

Nth call. Figure 3.3 shows the code that implements this predicate.

The c lt init() function starts by testing if the arguments are of the desired type.

When this is not the case, it calls YAP cut fail() and fails by returning FALSE. Re-

member that calling Yap cut fail is necessary because otherwise function c lt cont()

would be indefinitely called when backtracking. On the other hand, if the correct

arguments are given, the function converts the first argument to an integer C data-

type (the conversion is done by YAP IntOfTerm()) and then it tests if it is a positive

value. If not, it also calls YAP cut fail() and fails. Otherwise, it calls YAP Unify()

3.2. C LANGUAGE INTERFACE TO YAP 51

void init_predicates(void) {
YAP_UserBackCPredicate("lessthan", c_lt_init, c_lt_cont, 2, sizeof(int));

}

int c_lt_init(void) { // to be executed when the predicate is first called
int limit, *number;
YAP_Term n = YAP_ARG1;
YAP_Term m = YAP_ARG2;

if (YAP_IsIntTerm(n) && YAP_IsVarTerm(m)) {
limit = YAP_IntOfTerm(n);
if (limit > 0) {
YAP_PRESERVE_DATA(number, int);
*number = 1;
return (YAP_Unify(m, YAP_MkIntTerm(*number)));

}
}
YAP_cut_fail();
return FALSE;

}

int c_lt_cont(void) { // to be executed on backtracking
int limit, *number;
YAP_Term n = YAP_ARG1;
YAP_Term m = YAP_ARG2;

limit = YAP_IntOfTerm(n);
YAP_PRESERVED_DATA(number, int);
*number++;
if (*number < limit) {

return (YAP_Unify(m, YAP_MkIntTerm(*number)));
YAP_cut_fail();
return FALSE;

}

Figure 3.3: The lessthan/2 backtrackable predicate

to attempt the unification of 1 (the conversion is done by YAP MkIntTerm()) with the

second argument.

Note that, to obtain by backtracking the next integer, we need to preserve the last

returned integer in a data structure associated with the current predicate call. This

is done by calling YAP PRESERVE DATA to associate and allocate the memory space

that will hold the information to be preserved across backtracking, and by calling

YAP PRESERVED DATA to get access to it later. The first argument to these macros

is the pointer to the corresponding memory space and the second is its type. The

c lt cont() function uses the YAP PRESERVED DATA macro to obtain the last returned

integer. It then updates the last returned integer and like the first function, it fails,

52 CHAPTER 3. DEVELOPMENT TOOLS

if reached the limit, or unifies the second argument with the new integer. For a more

exhaustive description on how to interface C with Yap please refer to [13].

3.3 The MySQL Database Management System

MySQL was originally developed by Michael Monty Widenious in 1979 as a database

tool for the Swedish company TcX. In 1994, TcX began looking for a SQL server to

develop web applications. Since the existing ones were all very slow for TcX’s large

tables, TcX decided to develop its own server. The programming interface of this

server was explicitly designed to be similar to the one used by mSQL, so many tools

available to mSQL could be easily transferred to MySQL. In 1995, David Axmark

tried to release MySQL on the Internet. David worked on the documentation and got

MySQL to build with GNU. MySQL 3.11.1 was unleashed to the world in 1996 in the

form of binary distributions for Linux and Solaris. Today, MySQL is used on many

more platforms and is available in both binary and source forms.

MySQL is not an open source project because a license is necessary under certain

conditions. Nevertheless, MySQL benefits from widespread popularity in the open

source community, because the licensing terms are not very restrictive. MySQL is

generally free unless it is used to make money by selling it or selling services that

require it. Since its performance rivals any existing database system, MySQL runs on

personal computers, commercial operating systems and enterprise servers. We next

enumerate some of the important characteristics of the MySQL database software:

Connectivity: MySQL is fully networked and databases can be accessed from any-

where on the Internet, thus data can be shared with anyone anywhere using

TCP/IP sockets on any platform.

Security: MySQL has a password system that is very flexible, secure, and allows

host-based verification. Since all password traffic is encrypted when you connect

to a server access control is certified.

Portability: MySQL runs on many varieties of UNIX, as well as on other non-Unix

systems such as Windows and OS/2, from personal PCs to high-end servers.

3.4. C LANGUAGE INTERFACE TO MYSQL 53

Capability: Many clients can connect simultaneously to the server and use multiple

databases. Several interfaces can access MySQL interactively to enter queries

and view results such as: command-line clients, Web browsers or X Window

System clients. In addition, a variety of programming interfaces are available for

languages such as C, Peal, Java, PHP, and Python. Thus, it’s possible to choose

between prepacked client software and writing custom applications.

Speed and ease to use: MySQL developers claim that MySQL is the fasted database

available. In addition, MySQL is a high-performance but relatively simple

database system and is less complex to set up and administer than larger systems.

3.4 C Language Interface to MySQL

MySQL provides a client library written in C for writing client programs that access

MySQL databases. This library defines an application programming interface that

includes the following facilities:

• Connection management procedures;

• Establish and terminate sessions with a server;

• Procedures to construct, send and process the results of queries;

• Error handling procedures.

3.4.1 Writing Client Programs in C

Usually, the main purpose of a client program that uses the MySQL C API is to

establish a connection to a database server in order to process a set of queries.

Figure 3.4 shows the general code skeleton for a MySQL client program.

Initially, a connection handler (represented by the MYSQL data type) is allocated and

initialized by calling the mysql init() procedure. A connection is then established by

calling the mysql real connect() procedure which includes, among others, arguments

to define the name of the host to connect to, the database to use, and the name and

password of the user trying to connect. Next, communication is done with the server

54 CHAPTER 3. DEVELOPMENT TOOLS

#include <mysql.h> // header file for the MySQL C API

int main() {
MYSQL *conn; // connection handler
MYSQL_RES *res_set; // result set
MYSQL_ROW row; // row contents
char *query; // SQL query string

conn = mysql_init(...); // obtain and initialize a connection handler
mysql_real_connect(conn, ...); // establish a connection to a server
while(...) {

query = ...; // construct the query
mysql_query(conn, query); // issue the query for execution
res_set = mysql_store_result(conn); // generate the result set
while ((row = mysql_fetch_row(res_set)) != NULL) { // fetch a row
... // do something with row contents

}
mysql_free_result(res_set); // deallocate result set

}
mysql_close(conn); // terminate the connection

}

Figure 3.4: Code skeleton for a MySQL client program

(possibly many times) in order to process a single or several queries. At last, the

connection is terminated. Processing a query involves the following steps:

• Construct the query;

• Send the query to the server for execution;

• Handle the result set.

The result set (represented by the MYSQL RES data type) includes the data values for

the rows and also meta-data about the rows, such as the column names and types, the

data values lengths, the number of rows and columns, etc.

The mysql query() and mysql real query() are both used to send queries to the

server. Since a query is considered a counted string and may contain anything,

including binary data or null bytes, the mysql real query() is more generally used to

deal with these all-purpose strings, because it is less restrictive than mysql query().

Thus, queries that are passed to mysql query() should be null-terminated strings,

which means they cannot have NULL bytes in the text of the query. The advantage of

3.4. C LANGUAGE INTERFACE TO MYSQL 55

using mysql query() is usually linked to the possibility of using standard C library

string functions such as strcopy() and sprintf().

A query may fail for many reasons. Some common causes are:

• The query contains a syntax error;

• The query is semantically illegal (for example, it refers to a non-existent column

of a table);

• The user attempting to connect does not have sufficient privileges to access the

information.

Queries can be classified into two wide-ranging categories: those that return a result

and those that do not. Queries possessing statements such as INSERT, DELETE, and

UPDATE are in the no result returned category, since they do not return any rows. For

these queries, the only information returned is a simple count of the rows affected by

the query goal. On the other hand, queries retaining statements such as SELECT and

SHOW fall into the result returned category. After all, the whole purpose of issuing

these statements is to retrieve information. The set of rows retrieved by theses queries

is called a result set. Result sets are represented by the MYSQL RES data type. This

data type is a structure able to contain data values for the rows and meta-data about

the values, such as, the column names and data value lengths. Note that, obtaining

an empty result set, that is, one that returns zero rows, is distinct from obtaining no

result.

3.4.2 Handling Queries that Return No Result

When a query that returns no result succeeds, it is possible to find out how many rows

were affected by it by calling the mysql affected rows() procedure. For queries hav-

ing statements such as INSERT, REPLACE, DELETE, or UPDATE, mysql affected rows()

returns the number of rows inserted, replaced, deleted, or modified, respectively. The

following example illustrates how to handle a query of this category.

if (mysql_query(conn, "INSERT INTO my_table SET name=’JOHN’") != 0)
printf("The query failed");

else
printf("The query succeed: %lu rows affected", mysql_affected_rows(conn));

56 CHAPTER 3. DEVELOPMENT TOOLS

3.4.3 Handling Queries that Return a Result Set

Queries that return data do so in the form of a result set. It is important to realize

that in MySQL, SELECT it is not the only query statement that returns rows, SHOW,

DESCRIBE and EXPLAIN do so as well. After issuing a query, additional row-handling

processing is necessary. Handling a result set also involves three steps:

• Generate the result set;

• Fetch each row of the result set to do something with it;

• Deallocate the result set.

A result set is generated by the mysql store result() or mysql use result() pro-

cedures. In the code skeleton of Fig. 3.4, the mysql store result() procedure was

used to generate the result set. An alternative is to use the mysql use result()

procedure. They are similar in that both take a connection handler and return a

result set, but their implementations are quite different. The mysql store result()

fetches the rows from the server and stores them in the client. Subsequent calls to

mysql fetch row() simply return a row from the data structure that already holds

the result set. On the other hand, mysql use result() does not fetch any rows

itself. It simply initiates a row-by-row communication that must be completed by

calling mysql fetch row() for each row. mysql store result() has higher memory

and processing requirements because the entire result set is maintained in the client.

mysql use result() only requires space to a single row at a time, and this can be

faster because no complex data structures need to be setting up or handled. On the

other hand, mysql use result() places a great burden on the server, which must hold

rows of the result until the client fetches them all.

The mysql fetch row() must be called for each row of the result set. It returns NULL

when there are no more rows left in the result set. Note that a row (represented by

the MYSQL ROW data type) is implemented as a pointer to an array of null terminated

strings representing the values for each column in the row. Thus, when treating a value

as, for instance, a numeric type, we need to convert the string beforehand. Moreover,

accessing each value is simply a matter of accessing row[i], with i ranging from 0 to

the number of columns in the row minus one. The number of columns in a row can

be obtained by calling the mysql num fields() procedure.

3.5. PROLOG TO SQL TRANSLATION 57

The mysql free result() is used to deallocate the memory used by the result set

when it is no longer needed. The application will leak memory if this procedure

is neglected. Of course, this situation is particularly troubling for long running

applications, since the system will be slowly taken over by processing queries that

consume increasing amounts of system resources. For a complete description on these

topics and how to take fully advantage of the MySQL C API please refer to [19].

3.5 Prolog to SQL Translation

The interface between Prolog programs and database management systems is normally

done via the SQL language. A particular Prolog predicate is assigned to a given

relation in a database and its facts are made available through the tuples returned

by a SQL query. This Prolog to SQL translation has been well described in the

literature [31]. An important implementation of a generic Prolog to SQL compiler is

the work done by Draxler [18]. It includes the translation of conjunctions, disjunctions

and negation of goals, and also of higher-order constructs, such as grouping and sorting.

Another important aspect of this work is the notion of database set predicates, which

allows embedding the set-oriented evaluation of database systems into the standard

tuple-oriented evaluation of Prolog, using Prolog itself to navigate this set structure.

Draxler’s Prolog to SQL compiler is entirely written in Prolog, and is efficient. It can

thus be easily integrated in the pre-processing phase of Prolog compilers. In what

follows we discuss the Draxler’s compiler in more detail.

3.5.1 Database Schema Information

The implementation of database set predicates requires that a database access re-

quest be translated to the equivalent SQL query, and that the result of the database

evaluation be retrieved and placed in a Prolog list data structure. Translating the

database access request and the result relation retrieved from the database system

can be implemented in standard Prolog. This translation is based on the schema

information of the database to be accessed, and the translation procedure for the

database access request. The database schema information is application dependent.

For each database accessed schema information must be available. The translation

58 CHAPTER 3. DEVELOPMENT TOOLS

procedure is independent of the application program, but dependent of the database

access language in the logic language and the target database query language.

Schema information is about relations and attributes of external relational databases.

This schema information must be accessible to the translation program, so it can

be able to map the predicates in the database goal to their appropriate database

relations. The basic problem to overcome in the translation from Prolog to SQL is

addressing different arguments and attributes. Prolog arguments are identified through

their position in terms, whereas in SQL attributes are identified through their names

and relations. Thus, the mapping of Prolog terms to SQL relations is a mapping of

argument positions to qualified attribute names. In Draxler’s compiler, the database

schema information, is represented through Prolog facts. To illustrate this, consider

an example from the world of flight connections and airplanes.

FLIGHT := FLIGHT_NO X DEPARTURE X DESTINATION X PLANE
PLANE := TYPE X SEATS

FLIGHT and PLANE are two relation tables as defined above. The attributes FLIGHT NO,

DEPARTURE, DESTINATION, PLANE/TYPE and SEATS represent respectively, the set of

flight numbers, the set of possible departure hours, the set of airports, the set of

airplane types, and the set of possible seats in a plane (natural numbers from 0 to

1000). In Prolog, this database schema information is stored as follows:

%% relation(PredicateName,RelationName,Arity)
relation(flight,’FLIGHT’,4).
relation(plane,’PLANE’,2).

%% attribute(AttributeName,RelationName,Position)
attribute(’FLIGHT_NO’,’FLIGHT’,1).
attribute(’DEPARTURE’,’FLIGHT’,2).
attribute(’DESTINATION’,’FLIGHT’,3).
attribute(’TYPE’,’FLIGHT’,4).
attribute(’TYPE’,’PLANE’,1).
attribute(’SEATS’,’PLANE’,2).

Note that type information can be also included in the schema description as an

additional argument of the attribute description:

attribute(’FLIGHT_NO’,’FLIGHT’,1,’CHAR(5)’).

3.5. PROLOG TO SQL TRANSLATION 59

3.5.2 Translation Rules

The database access language is defined to be a restricted sub-language of Prolog

equivalent in expressive power to relational calculus (no recursion is allowed). A

database access request consists of a database goal and a projection term.

A projection term is a term. Each variable in the projection term must also occur

in the database goal. Note that the projection term may be an arbitrarily complex

term. The database goal expresses the query that will be evaluated by the database

system. The operators union, intersection, difference, selection and join, for relational

databases, must be expressed through the database goal.

A database goal is a list of positive or negative literals L1, . . . , Ln (n ≥ 1), connected

through the logical connectives ”,” and ”;” such that:

• Each Li is a database predicate, a comparison operation, or an arithmetic or

aggregate function;

• At least one Li is a positive database predicate;

• All input arguments of functions are bound;

• All arguments of comparison operations are bound.

The functor of a database predicate is mapped to the appropriate relation table name,

and each of the predicate arguments is assigned a relation attribute. The comparison

operations in the database goal must be expressible in SQL. This is true for the

standard comparison operations >, <, =, etc. The allowed functors for aggregate

functions are sum, avg, min, max, and count.

Due to the order of execution imposed by the Prolog control strategy, complex database

goals must contain first the calls to the positive database predicates that return

bindings for the variable arguments. SQL queries consist of at least a SELECT and

a FROM part, with optional WHERE, GROUP BY, and ORDER BY parts. The keyword

DISTINCT, which is used to eliminate duplicate entries in the result relation, is also

optional. The translation of database access requests to SQL queries is done according

to the following informal translation rules.

60 CHAPTER 3. DEVELOPMENT TOOLS

• A conjunction of database goals is translated to a single SQL query.

• Disjunctions of database goals are translated to several SQL queries connected

through the UNION operator.

• Negated database goals are translated to negated existential sub-queries.

• Goal functors other than comparison operators and function symbols are trans-

lated to relation names and assigned a unique identifier (range variable) in the

FROM part of the query.

• Comparison operations and functions are translated to the equivalent SQL com-

parisons and functions over relation attributes or constant values.

• Variables in the projection term are translated to attribute names in the SELECT

part of the query. These attributes are qualified by range variables.

• Variables occurring only once in the database goal are not translated.

• Shared variables, i.e. variables occurring in at least two base calls in the database

goal, are translated to join-conditions in the WHERE part.

• Constant values in the database goal translate to comparison operations of the

appropriate qualified relation attribute and the constant value in the WHERE part.

• Constants in the projection term are not translated. Depending on the database

set predicate additional rules may be used for translation of higher-order con-

structs. For example, db setof/3 returns a result relation for each binding of

the free variables in the database goal, duplicates are eliminated from the result

relation, and the result relation is sorted. This requires the use of a GROUP BY

and an ORDER BY part in the query.

• Free variables, i.e. variables occurring only in the database goal, are translated

to qualified attributes in the GROUP BY part.

• Free variables and the variables occurring in the projection term are translated to

qualified attributes in the ORDER BY part. The order in which the free variables

and the projection term variables occur determines the order according to which

the result relation is sorted.

3.5. PROLOG TO SQL TRANSLATION 61

• The keyword DISTINCT is added to the SELECT part of the query.

With these rules, the translation of higher-order constructs to SQL is achieved. Ag-

gregate functions may only appear in the SELECT part of an SQL query. In database

set predicates this is expressed by a projection term which contains a variable to hold

the result of the aggregate function, and a database goal with the aggregate function

represented through a ternary term, the functor of which is one of sum, avg, min, max,

or count.

3.5.3 Translation Process

At the top level, the compiler consists of a translate/3 predicate, where the first

argument defines the projection term of the database access request, the second

argument defines the database goal which expresses the query, and the third argument

is used to return the correspondent SQL select expression. Figure 3.5 shows the

translation steps of the translate/3 predicate.

translate(ProjectionTerm,DatabaseGoal,Code):-
%% lexical analysis
tokenize_selection(DatabaseGoal,TokenizedGoal),
tokenize_projection(ProjectionTerm,TokenProjection),
%% syntax analysis
push_negation_inside(TokenizedGoal,NegatedGoals),
disjunction(NegatedGoals,Disjunction),
%% code generation
code_generation(Disjunction,TokenProjection,Code),
%% output
printqueries(Code).

Figure 3.5: The translation steps of the translate/3 predicate

The compiler is called with a database access request consisting of a projection term

and a complex database goal. Both terms may contain variable arguments. The lexical

analysis transforms these terms into ground terms to prevent accidental instantiation

of variable arguments during later translation steps. The ground database goal is then

transformed into a logically equivalent disjunction of conjunctions in which negation

appears only immediately before a simple goal. These conjunctions and the ground

representation of the projection term are then passed on to the code generator to

generate an intermediate structure which consists of separate lists of relation table

62 CHAPTER 3. DEVELOPMENT TOOLS

names, qualified attributes and conditions for the SQL query. This intermediate

structure yields a query term from which the final output is created.

For example, consider again the database from the world of flight connections and

planes, and the following database request: “retrieve the flight numbers, departures,

destinations and planes, for all the flights”. Using the translate/3 predicate, this

request can be written as:

?- translate(proj_term(Flight_No,Departure,Destination,Type),
flight(Flight_No,Departure,Destination,Type),
QueryString).

As a result we will obtain:

QueryString = SELECT A.FLIGHT_NO, A.DEPARTURE, A.DESTINATION, A.TYPE
FROM FLIGHT A

Consider now a different request that uses both tables in the database: “retrieve the

flight numbers for the flights with large planes, i.e. planes with more than 150 seats”.

This request can be written as:

?- translate(proj_term(Flight_No),
(flight(Flight_No,_,_,Type), plane(Type,Seats), Seats > 150),
QueryString).

The result will be:

QueryString = SELECT A.FLIGHT_NO
FROM FLIGHT A, PLANE B
WHERE A.TYPE = B.TYPE AND B.SEATS > 150

3.6 Chapter Summary

In this chapter, we introduced the Yap Prolog and the MySQL systems, and described

in detail their client libraries to the C language. These libraries are necessary to

implement the communication interface between both systems. Another important

feature for linking both systems is how translation from Prolog to SQL is done. To

optimize the translation of queries between both systems we introduced the Prolog to

3.6. CHAPTER SUMMARY 63

SQL compiler written by Draxler. The interaction among all these features is essential

to the development of the alternative approaches for coupling logic programming with

relational databases that we propose in the next chapter.

64 CHAPTER 3. DEVELOPMENT TOOLS

Chapter 4

Coupling Approaches

In this chapter, we present and discuss three alternative approaches for coupling logic

programming with relational databases. We consider three main approaches: (i) as-

serting database tuples as Prolog facts; (ii) accessing database tuples by backtracking;

and (iii) transferring unification to the database. We present a detailed step-by-step

description of each approach and discuss their advantages an disadvantages.

4.1 Generic Architecture

We used Yap and MySQL as the base systems to implement our three alternative

approaches for coupling logic programming with relational databases. To develop

running examples of each approach, we took advantage of the existent client libraries

to implement the interface level as discussed in the previous chapter. The three

approaches share a common generic architecture that is illustrated in Fig. 4.1.

The yap2mysql.c is the main module. It defines the low-level communication predi-

cates and uses the Yap and MySQL interfaces to the C language to implement them.

The sqlcompiler.pl is Draxler’s Prolog to SQL compiler. It will be indispensable to

implement successfully the third approach. The yap2mysql.pl is the Prolog module

which the user should interact with. It defines the high-level predicates to be used

and abstracts the existence of the other modules. After consulting the yap2mysql.pl

module, the user starts by calling the db open/5 predicate to define a connection to

a database server. Then, it calls db import/3 to map database relations into Prolog

65

66 CHAPTER 4. COUPLING APPROACHES

Yap Prolog

?- consult(yap2mysql).
?- db_open(...).
?- db_import(...).
?- ...
?- db_close(...).

MySQL Database

edge_r relation

source dest

... ...

yap2mysql.c

db_connect/5
db_disconnect/1
db_assert/3
db_query/3
db_row/2

sqlcompiler.pl

translate/3

yap2mysql.pl

:- load_foreign_files([yap2mysql],[],init_predicates).
:- consult(sqlcompiler).

db_open/5
db_close/1
db_import/3
db_view/3

Figure 4.1: Generic architecture for the coupling approaches

predicates. We also allow, on the third approach, the definition of database views based

on these predicates by the use of db view/3. Next, it uses the mapped predicates to

process query goals and, at last, it calls db close/1 to terminate the session with the

database.

The Prolog definition of the db open/5 and db close/1 predicates is common to all

the approaches.

db_open(Host,User,Passwd,Database,ConnName) :-
db_connect(Host,User,Passwd,Database,ConnHandler),
set_value(ConnName,ConnHandler).

db_close(ConnName) :-
get_value(ConnName,ConnHandler),
db_disconnect(ConnHandler).

The db open/5 and db close/1 predicates allow the user to define multiple con-

nections. The predicates that make the low-level communication with the database

server are db connect/5 and db disconnect/1. Both predicates, db connect/5 and

db disconnect/1, are defined in the yap2mysql.c module as deterministic predicates

in C. Figure 4.2 shows their implementation.

Predicate db connect/5 establishes a connection to the database. The arguments

Host, User, Passwd and Database are necessary to validate the communication with

the database management system, and must be all passed to the predicate. Predicate

db disconnect/1 terminates a connection to the database. The only needed argument

is a reference to the correspondent ConnHandler argument obtained from a previous

4.1. GENERIC ARCHITECTURE 67

void init_predicates(void) {
...
Yap_UserCPredicate("db_connect", c_db_connect, 5);
Yap_UserCPredicate("db_disconnect", c_db_disconnect, 1);

}

int c_db_connect(void) {
char *host = YAP_AtomName(YAP_AtomOfTerm(YAP_ARG1));
char *user = YAP_AtomName(YAP_AtomOfTerm(YAP_ARG2));
char *passwd = YAP_AtomName(YAP_AtomOfTerm(YAP_ARG3));
char *db = YAP_AtomName(YAP_AtomOfTerm(YAP_ARG4));
MYSQL *conn;

// obtain and initialize a connection handler
if ((conn = mysql_init(NULL)) == NULL)

return FALSE;
// establish a connection to a server
if (mysql_real_connect(conn, host, user, passwd, db, 0, NULL, 0) == NULL)

return FALSE;
// unify the connection handler with the fifth argument
if (!YAP_Unify(YAP_ARG5, YAP_MkIntTerm((int) conn)))

return FALSE;
return TRUE;

}

int c_db_disconnect(void) {
// obtain the connection handler
MYSQL *conn = (MYSQL *) YAP_IntOfTerm(YAP_ARG1);
// terminate the connection
mysql_close(conn);
return TRUE;

}

Figure 4.2: The C implementation of db connect/5 and db disconnect/1

call to the db connect/5 predicate.

The coupling approaches are implemented by changing the definition of db import/3

predicate. The implementation of the db import/3 predicate is thus defined by the

coupling approach being used. We next describe and discuss our three approaches, and

for that we will use a MySQL relation, edge r, with two attributes, source and dest,

where each tuple represents an edge of a directed graph. The Prolog predicate associ-

ated with this relation will be referred as edge/2. To map the database relation edge r

into the Prolog predicate edge/2 we should call db import(edge r,edge,my conn),

where my conn is the same argument as the ConnName argument of a previous call to

a db open/5 predicate.

68 CHAPTER 4. COUPLING APPROACHES

4.2 Asserting Database Tuples as Prolog Facts

A first approach for mapping database relations into Prolog predicates is to assert the

complete set of tuples of a relation as Prolog facts. To do so, a single connection to

the database is needed to fetch the complete set of tuples. After that, the asserted

facts are used as usual by the Prolog interpreter. To implement this approach, the

db import/3 predicate is simply an alias to the db assert/3 predicate.

db_import(RelName,PredName,ConnName) :-
get_value(ConnName,ConnHandler),
db_assert(RelName,PredName,ConnHandler).

The Prolog predicate db assert/3 is implemented in C as a determinist predicate. Fig-

ure 4.3 shows its implementation. First, it constructs a ’SELECT * FROM <RelName>’

query in order to fetch and store the complete set of tuples in a result set. Then, for

each row of the result set, it calls the Prolog interpreter to assert the row as a Prolog

fact. To do so, it constructs Prolog terms of the form assert(f pred(t args[0],...,

t args[arity-1])), where f pred is the predicate name for the asserted facts and

t args[] are the data values for each row.

This approach minimizes the number of database communications, and can benefit

from the Prolog indexing mechanism to optimize certain subgoal calls. On the other

hand, memory requirements are higher, because it duplicates the entire set of tuples

in the database as Prolog facts. Moreover, real time modifications to the database

done by others are not visible to the Prolog system. Even Prolog modifications to the

set of asserted tuples can be difficult to synchronize with the database.

4.3 Accessing Database Tuples by Backtracking

The next approach takes advantage of the Prolog backtracking mechanism to access

the database tuples. Thus, when mapping a database relation into a Prolog predicate

it uses the Yap interface functionality that allows defining backtrackable predicates, in

such a way that every time the computation backtracks to such predicates, the tuples

in the database are fetched one-at-a-time. To implement this approach, we changed

the db import/3 definition. This predicate still receives the same arguments, but now

4.3. ACCESSING DATABASE TUPLES BY BACKTRACKING 69

void init_predicates(void) {
...
Yap_UserCPredicate("db_assert", c_db_assert, 3);

}

int c_db_assert(void) {
char *rel = YAP_AtomName(YAP_AtomOfTerm(YAP_ARG1));
char *pred = YAP_AtomName(YAP_AtomOfTerm(YAP_ARG2));
MYSQL *conn = (MYSQL *) YAP_IntOfTerm(YAP_ARG3);
YAP_Term t_args[arity], t_pred, t_assert;
YAP_Functor f_pred, f_assert;
int i, arity;
MYSQL_RES *res_set;
MYSQL_ROW row;
char query[15 + strlen(rel)];

sprintf(query, "SELECT * FROM %s", rel); // construct the query
if (mysql_query(conn, query) != 0) // issue the query for execution

return FALSE;
if ((res_set = mysql_store_result(conn)) == NULL) // generate result set

return FALSE;
arity = mysql_num_fields(result_set);
f_pred = YAP_MkFunctor(YAP_LookupAtom(pred), arity);
f_assert = YAP_MkFunctor(YAP_LookupAtom("assert"), 1);
while ((row = mysql_fetch_row(res_set)) != NULL) {

for (i = 0; i < arity; i++) { // test each column data type to ...
MYSQL_FIELD *field = mysql_fetch_field_direct(res_set, i);
if (field->type == FIELD_TYPE_SHORT)

t_args[i] = YAP_MkIntTerm(atoi(row[i]));
else if (field->type == FIELD_TYPE_FLOAT)

t_args[i] = YAP_MkFloatTerm(atof(row[i]));
else if ...

} // ... construct the appropriate term
t_pred = YAP_MkApplTerm(f_pred, arity, t_args);
t_assert = YAP_MkApplTerm(f_assert, 1, &t_pred);
YAP_CallProlog(t_assert); // asserts the row as a Prolog fact

}
mysql_free_result(res_set); // deallocate result set
return TRUE;

}

Figure 4.3: The C implementation of db assert/3

it dynamically constructs and asserts a clause for the predicate being mapped. In this

approach, the db import/3 predicate is defined as follows.

db_import(RelName,PredName,ConnName):-
get_value(ConnName,ConnHandler),

% generate query "describe <RelName>"
name(’describe’,L1),
name(RelName,L2),
append(L1,L2,L),

70 CHAPTER 4. COUPLING APPROACHES

name(QueryDescribe,L),

% send query to the database and obtain result set
db_query(ConnHandler,QueryDescribe,ResultSetDescribe),

% retrieve the arity of the result set
db_num_fields(ResultSetDescribe,Arity),

% construct the literals of the clause to assert
make_pred_head(PredName,Arity,ArgList,PredTerm),
make_db_query(ConnHandler,RelName,ResultSet,DbQueryTerm),
make_db_row(ResultSet,ArgList,DbRowTerm),

% assert the clause for the predicate being mapped
assert(’:-’(PredTerm,(DbQueryTerm,DbRowTerm))).

To construct the clause for the predicate being mapped, the db import/3 predicate

uses the db query/3 and db row/2 predicates. For example, if we call the goal

db import(edge r,edge,my conn), the following clause will be asserted.

edge(A,B) :-
db_query(conn_handler_id,’SELECT * FROM edge_r’,ResultSet),
db_row(ResultSet,[A,B]).

This clause allows to obtain, by backtracking, all the tuples for the query ’SELECT *

FROM edge r’. For example, if later, we call edge(A,B), the tuples in the database are

fetched one-at-a-time:

?- edge(A,B).

A = 1,
B = 2 ? ;

A = 2,
B = 5 ? ;

A = 7,
B = 5 ? ;

no

The db query/3 predicate, used in the definition of edge/2, generates the result set

for the query given as the second argument (’SELECT * FROM edge r’ in the edge/2

example). The db query/3 predicate is implemented in the yap2mysql.c module as

a deterministic predicate in C (see Fig. 4.4 below).

4.3. ACCESSING DATABASE TUPLES BY BACKTRACKING 71

void init_predicates(void) {
...
YAP_UserCPredicate("db_query", c_db_query, 3);

}

int c_db_query (void) {
MYSQL *conn = (MYSQL *) YAP_IntOfTerm(YAP_ARG1);
char *query = YAP_AtomName(YAP_AtomOfTerm(YAP_ARG2));
MYSQL_RES *res_set

if (mysql_query(conn, query) != 0) // issue the query for execution
return FALSE;

if ((res_set = mysql_store_result(conn)) == NULL) // generate result set
return FALSE;

return YAP_Unify(YAP_ARG3, YAP_MkIntTerm((int)res_set));
}

Figure 4.4: The C implementation of db query/3

Figure 4.5 shows the implementation of the db row/2 predicate. It is implemented as

a backtrackable predicate in C. For backtrackable predicates, we can define a function

for the first time the predicate is called, and another for calls via backtracking. In this

case, the same function is used for both calls.

The c db row() function starts by fetching a tuple from the result set, through

mysql fetch row(), and then it checks if the last tuple has already been reached.

If not, it calls YAP Unify() to attempt the unification of values in each attribute of

the tuple (row[i]) with the respective predicate arguments ([A,B] in the example). If

unification fails it returns FALSE, otherwise it returns TRUE. On the other hand, if the

last tuple has been already reached, it deallocates the result set, calls YAP cut fail()

and returns FALSE.

With this approach, all the data is concentrated in a single repository. This simplifies

its manipulation and allows users to see real time modifications done by others. Fur-

thermore, this minimizes memory requirements. However, if mysql store result()

is used to generate the result set, the entire set of tuples will be duplicated on the

client side. On the other hand, for non generic calls (calls with not all arguments

unbound) some tuples may be unnecessarily fetched from the database. For example,

if edge(A,1) is called, this turns B ground when passed to the p db row() function.

Thus, only the tuples which satisfy this condition will unify. However, all tuples will

be fetched from the database and Prolog unification will select the matching tuples

72 CHAPTER 4. COUPLING APPROACHES

void init_predicates(void) {
...
YAP_UserBackCPredicate("db_row", c_db_row, c_db_row, 2, 0);

}

int c_db_row(void) {
MYSQL_RES *result_set = (MYSQL_RES *) YAP_IntOfTerm(YAP_ARG1);
int i, arity = mysql_num_fields(result_set);
MYSQL_ROW row;
YAP_Term t_field, t_head, t_list = YAP_ARG2;

if ((row = mysql_fetch_row(result_set)) != NULL) {
for (i = 0; i < arity; i++) {
MYSQL_FIELD *field = mysql_fetch_field_direct(res_set, i);
if (field->type == FIELD_TYPE_SHORT)

t_field = YAP_MkIntTerm(atoi(row[i]));
else if (field->type == FIELD_TYPE_FLOAT)

t_field = YAP_MkFloatTerm(atof(row[i]));
else if ...
head = YAP_HeadOfTerm(list);
list = YAP_TailOfTerm(list);
if (!YAP_Unify(head, t_field)) // unify the next argument

return FALSE;
}
return TRUE;

}
mysql_free_result(result_set); // deallocate result set
YAP_cut_fail();
return FALSE;

}

Figure 4.5: The C implementation of db row/2

upon retrieval of each tuple from the result set.

4.4 Transferring Unification to the Database

The last approach uses the translate/3 predicate from Draxler’s compiler to trans-

fer the Prolog unification process to the MySQL engine. Instead of using Prolog

unification to select the matching tuples for a non generic call, specific SQL queries

are dynamically constructed using translate/3 to match the call. By doing this,

the tuples that do not succeed are discarded before performing unification. This

prevents unnecessary tuples from being fetched from the database, thus minimizing

memory requirements and optimizing computation. To implement this last approach

the definition of db import/3 was extended to include the translate/3 predicate. If

4.4. TRANSFERRING UNIFICATION TO THE DATABASE 73

the previous example is considered, the following clauses will now be asserted.

edge(A,B) :-
rename_term_vars(edge(A,B),NewTerm),
translate(NewTerm,NewTerm,QueryString),
queries_atom(QueryString,Query),
db_query(conn_handler_id,Query,ResultSet),
db_row(ResultSet,[A,B]).

relation(edge,edge_r,2).
attribute(source,edge_r,1,integer).
attribute(dest,edge_r,2,integer).

Note that if we use the variables in the head of the predicate being built (variables

A and B in the example above) to construct the projection term for the translate/3

predicate then these variables will became bound. To avoid this, we need an auxiliary

term, identical to the initial one but with different variables. We thus implemented an

auxiliary predicate, rename term vars/2, that builds, in the second argument, a term

similar to the one in the first argument, but with the variables renamed. For example,

if we call rename term vars(edge(A,5),NewTerm), then NewTerm will be instantiated

with edge(A,5).

Another predicate used to construct the clause being asserted is queries atom/2. This

is an auxiliary predicate defined in Draxler’s sqlcompiler.pl that converts a query

string, obtained from the translate/3 predicate, in a Prolog atom.

Consider now that we call edge(A,1). The translate/3 predicate uses the relation/3

and attribute/4 facts to construct a specific query to match the call: ’SELECT source

FROM edge r WHERE dest=1;’. Thus, when the db query/3 sends this query to the

database, it will only retrieve the desired tuples.

Assume now that a new predicate, direct cycle/2, is defined to call twice the edge/2

predicate:

direct_cycle(A,B) :- edge(A,B), edge(B,A).

If we execute the generic call cycle(A,B), translate/3 will generate a ’SELECT *

FROM edge r’ query for the edge(A,B) goal, that will access all tuples sequentially.

For the second goal, edge(B,A), it will get the bindings of the first goal and gen-

erate a query of the form ’SELECT 800, 531 FROM edge r WHERE source=800 AND

74 CHAPTER 4. COUPLING APPROACHES

dest=531’. These queries return 1 or 0 tuples, and are efficiently executed thanks to

the MySQL index associated to the primary key of relation edge r.

However, this approach has a substantial overhead of generating, running and storing

a SQL query for each tuple of the first goal. To avoid this we can use the translate/3

predicate to transfer the joining process to the MySQL engine. To do so, we create

views using the a db view/3 predicate. The db view/3 predicate is defined as follows:

db_view(ViewQuery,ViewTerm,ConnName):-
get_value(ConnName,ConnHandler),

% rename variables in terms
rename_term_vars(ViewQuery,ClauseHead),
rename_term_vars(ViewTerm,NewViewTerm),

% construct the body literals of the clause to assert
make_db_view_pred_body(ConnHandler,ClauseHead,NewViewTerm,ClauseBody),

% assert the clause for the view being mapped
assert(’:-’(ClauseHead,ClauseBody)).

For example, if we call the following Prolog goal: db view((edge(A,B), edge(B,A)),

direct cycle(A,B),my conn), then the following clause will be asserted:

direct_cycle(A,B) :-
rename_term_vars(direct_cycle(A,B),NewViewTerm),
rename_term_vars((edge(A,B),edge(B,A)),NewViewQuery),
translate(NewViewTerm,NewViewQuery,QueryString),
queries_atom(QueryString,Query),
db_query(conn_handler_id,Query,ResultSet),
!,
db_row(ResultSet,[A,B]).

Later when direct cycle(A,B) is called, only a single SQL query will be generated:

’SELECT A.source,A.dest FROM edge r A,edge r B WHERE B.source=A.dest AND

B.dest=A.source’.

These two approaches of executing conjunctions of database predicates are usually

referred in the literature as relation-level (one query for each predicate as in the first

direct cycle/2 definition) and view-level (a unique query with all predicates as in the

asserted direct cycle/2 clause). A step forward will be to automatically detect, when

consulting a Prolog file, the clauses that contain conjunctions of database predicates

and use view level transformations, as in the example above, to generate more efficient

code.

4.5. MANIPULATING THE DATABASE FROM PROLOG 75

4.5 Manipulating the Database from Prolog

Manipulation of the MySQL database from Prolog is made possible throw specific

defined predicates for determined actions. These predicates allow for a quick and easy

way to establish communication to the MySQL database, by generating specific SQL

statements adapted to particular tasks, such as describing a database table, selecting

particular rows, inserting rows, etc.

The db describe/2 is a useful predicate that prints information about existing rela-

tions. This predicate is described next. The first argument defines the name of the

relation, while the second argument defines the connection to be considered.

db_describe(RelName,ConnName):-
get_value(ConnName,ConnHandler),

% generate query ’describe <RelName>’
name(’describe ,L1),
name(RelName,L2),
append(L1,L2,L),

% send query to the database and obtain result set
db_query(ConnHandler,QueryDescribe,ResultSetDescribe),

% retrieve the arity of the result set
db_num_fields(ResultSetDescribe,Arity),

% print head information
write(’---’),nl,
write(’| Name | Type | Null | Key | Default | Extra |’),nl,
write(’---’),nl,

% print attribute info
print_attribute_info(0,Arity,ResultSetDescribe),
write(’---’),nl.

Note that part of this implementation is similar to the db import/3 predicate. Here,

the important predicate is print attribute info/3. This predicate uses the db row/2

predicate to obtain by backtracking the rows that describe the attributes of the relation

being considered.

We next show the result of applying the db describe/2 predicate to the edge r

relation.

?- db_describe(edge_r,my_conn).

76 CHAPTER 4. COUPLING APPROACHES

| Name | Type | Null | Key | Default | Extra |

| source | smallint(6) | | PRI | 0 | |
| dest | smallint(6) | | PRI | 0 | |

Another example of obtaining information from the database is the db sql select/3

predicate. Assuming that relation edge r is mapped to predicate edge/2, then the

db sql select/3 predicate makes it possible to connect to the database using explicit

SELECT queries. Predicate db sql select/3 is defined as:

db_sql_select(Query,ArgList,ConnName):-
get_value(ConnName,ConnHandler),
db_query(ConnHandler,Query,ResultSet),
db_row(ResultSet,ArgList).

For example, if we call db sql select(’select * from edge r where source=1’,

[A,B],my conn), we will obtain:

?- db_sql_select(’select * from edge_r where source=1’,[A,B],my_conn).

A = 1,
B = 2 ? ;

no

Other predicates allow to generate SQL statements to perform specific tuple-at-a-time

actions. For example, the db insert/3 predicate dynamically constructs and asserts

a Prolog clause to perform insertions in a specific database relation. This predicate

is described next. The first argument is the database relation where insertions should

be done, while the second argument is the Prolog predicate being mapped. The first

argument can be declared with some of its arguments bound. The third argument

defines, as usual, the connection to be considered.

db_insert(InsertQuery,InsertTerm,ConnName):-
get_value(ConnName,ConnHandler),

% rename variables in terms
rename_term_vars(InsertQuery,ClauseHead),
rename_term_vars(InsertTerm,NewInsertTerm),

% generate query "INSERT INTO <RelName> VALUES (...)"

4.6. HANDLING NULL VALUES 77

ClauseHead=..ListClauseHead,
arg(1,ListClauseHead,PredName),
relation(PredName,RelName,_),
name(’INSERT INTO ’,L1),
name(RelName,L2),
append(L1,L2,L3),
name(’ VALUES ’,L4),
append(L3,L4,InsertList),

% construct the body literals of the clause to assert
make_db_pred_body(ConnHandler,InsertList,ClauseHead,NewInsertTerm,

ClauseBody),

% assert the clause for the insert query being mapped
assert(’:-’(ClauseHead,ClauseBody)).

For example, the call to db insert(edge r(A,7),insert edge(A),my conn) asserts

the following predicate in Prolog:

insert_edge(A) :-
% construct term with values ’(A,7)’
make_values(edge(A,7),ValuesTerm),

% append values to the ’INSERT INTO edge_r VALUES ’query
append([73,78,83,69,82,84,32,73,78,84,79,32,114,97,109,111,115,32,86,65,

76,85,69,83,32],ValuesTerm,QueryString),

% construct query and send it to the database for execution
name(Query,QueryString),
!,
db_query(conn_handler_id,Query,_),

If then we call, for example, insert edge(5), the db query/3 in the insert edge/1

clause will be called with the SQL statement ’INSERT INTO edge r VALUES (5,7)’,

which will insert the pair of values (5,7) in the edge r relation.

4.6 Handling Null Values

Usually, the tuples in a relation may contain NULL values in some fields. Thus, when

we fetch tuples with NULL values, we need to efficiently represent them in Prolog.

Intuitively, NULL values can be represented in Prolog by atoms. However, in a relational

database, the NULL value in a tuple is interpreted as a non-existing value for that

field. In Prolog, if a NULL value is represented as a unique atom, all NULL values are

78 CHAPTER 4. COUPLING APPROACHES

alike. To avoid unification between NULL values, each NULL value has to be differently

represented.

We next show how the c db row() function was extended to deal with NULL values.

We used the same representation as proposed and implemented in the XSB Prolog

system [60], where different NULL values are represented by terms of the form null(1),

null(2), ..., null(N).

int c_db_row(void) {
int null_id = 0;
YAP_Term null_atom[1];
...
if ((row = mysql_fetch_row(result_set)) != NULL) {

for (i = 0; i < arity; i++) {
if (row[i] == NULL) { // dealing with NULL values

null_atom[0] = YAP_MkIntTerm(null_id++);
t_field = YAP_MkApplTerm(

YAP_MkFunctor(YAP_LookupAtom("null"), 1), 1, null_atom);
}
...

}
...

}
...

}

To insert/delete rows with NULL values, or use NULL values in queries, we use ’NULL’

in the SQL statement passed to the database management system. For example,

insert edge(’NULL’) generates the query ’INSERT INTO edge r VALUES (NULL,7)’.

4.7 Handling Deallocated Result Sets

The last two coupling approaches use backtracking to fetch tuples from the result

sets. During user interaction, various connections can be established to the relational

database management system. Each connection may have several result sets associated

to it. As a result, if the result sets are not deallocated after use, memory requirement

might be drastically consumed. To avoid this situation, result sets must be deallocated

after use.

Result sets are ready for deallocation either when all the tuples are retrieved from

the result set, or when a cut occurs before all the tuples from the result set were

4.7. HANDLING DEALLOCATED RESULT SETS 79

retrieved. The first case is trivially handled because when the last tuple is retrieved,

the result can be deallocated. This is what is done in the c db row() function (see

Fig. 4.5 for details). The second case is more problematic, because when a cut occurs,

we lose access to the result set. We thus need an auxiliary mechanism that allows us

to deallocate pruned result sets.

The deallocation of pruned result sets can be solved using different approaches. One

approach is to implement a predicate that forces the deallocation of pending result sets.

This was the approach followed in this thesis. To implement this approach we defined

two new predicates, deallocate result sets/1 and deallocate all result sets/0.

The deallocate result sets/1 predicate deallocates all the result sets for a partic-

ular connection given as argument. The deallocate all result sets/0 predicate

deallocates all the result sets for all open connections.

To support the implementation of these predicates, we used a two-level list data

structure. An outter-list stores the references to the open connections. Each open

connection points then to an inner-list that stores the references to the open result

sets associated with the connection. These lists were implemented in C as follows:

struct connection_list{
MYSQL *conn;
result_set_list *first;
struct connection_list *next;

};

struct result_set_list{
MYSQL_RES *res_set;
struct result_set_list *next;

};

As an optimization, when we invoke the db close/1 predicate to close a connection,

all open result sets associated with the connection are also automatically deallocated,

so that their references do not get lost.

A more efficient approach is to protect database predicates from cut operations [63].

This approach can be implemented in two distinct ways:

The explicit implementation: where the user is responsible for the protection of

the database predicate from potential cut operations.

80 CHAPTER 4. COUPLING APPROACHES

The implicit implementation: where the system transparently executes a cut pro-

cedure when a cut operation occurs.

In the first approach, the user is responsible for releasing beforehand the result sets

for the predicates that can be pruned. For example, if we have a predicate like:

db goal(A):- db pred(A), !, other pred(A).

When the cut is performed, the result set for db pred(A) can became left pending.

To avoid this, the user must protect the db pred(A) predicate from the cut by adding

mark predicates as follows:

db goal(A):- db mark, db pred(A), db cut, !, other pred(A).

The db mark/0 predicate simply delimits the range of database predicates that the

db cut/0 predicate must deallocate. In this approach, the user has to include explicit

annotations to control the range of predicates to protect.

The second approach is based on an extension of the YAP UserBackCPredicate decla-

ration. An extra argument is used to declare the function that should be called when

a cut operation prunes over the Prolog predicate being declared. This extra function

can thus be used to protect result sets from became left pending, by deallocating

them when it is called. To take advantage of this approach, the user only needs to

declare and implement the extra function. From the user’s point of view, dealing with

standard predicates or relationally defined predicates is then equivalent. For a more

detailed description of these approaches please refer to [63].

4.8 Chapter Summary

In this chapter, we introduced and explained the details of implementation for the

three alternative approaches that we propose for coupling logic programming with

relational databases. Alongside, we discussed how to access, use and update database

information from Prolog; how to handle NULL values; and how to handle deallocated

result sets.

Chapter 5

Performance Evaluation

The three distinct approaches of coupling Yap and MySQL described in the previous

chapter are evaluated to estimate their performance. The execution time of certain

goals by each approach is compared. View-level and relational-level accesses, along

with optional indexing, are used to improve performance. Different indexing schemes

are used both in the database system and in the Prolog system. In order to evaluate

the performance of the three distinct approaches, we used Yap 4.4.4 and MySQL server

4.1.11 installed on the same machine, an AMD Athlon 1400 with 512 Mbytes of RAM.

Two different benchmarks, edge r and query, are used to illustrate the impact of

view-level transformations and indexing over database predicates.

5.1 The edge r Benchmark

The edge r relation was created using the following SQL declaration:

CREATE TABLE edge_r (
source SMALLINT NOT NULL,
dest SMALLINT NOT NULL,
PRIMARY KEY (source,dest));

Two queries over the edge r relation were used. The first query was to find all the

solutions for the edge(A,B) goal, which correspond to all the tuples of relation edge r.

The second query was to find all the solutions of the edge(A,B),edge(B,A) goal, which

correspond to all the direct cycles. Execution time was measured using the walltime

81

82 CHAPTER 5. PERFORMANCE EVALUATION

parameter of the statistics built-in predicate, in order to correctly measure the time

spent in the Yap process and in the MySQL process. In the tables that follow, timing

results are always presented in seconds.

Table 5.1 presents the results for the different coupling approaches, with relation

edge r having 1, 000 vertices and populated with 5, 000, 10, 000 and 50, 000 random

tuples.

Coupling Approach/Query
Tuples

5,000 10,000 50,000

Asserting Approach

assert time 0.05 0.30 2.06

edge(A,B) < 0.01 < 0.01 0.02

edge(A,B),edge(B,A) 7.17 30.10 753.80

Backtracking Approach

edge(A,B) (store result) 0.02 0.04 0.19

edge(A,B) (use result) 0.02 0.04 0.19

edge(A,B),edge(B,A) (store result) 91.23 359.40 9,410.7

edge(A,B),edge(B,A) (use result) n.a. n.a. n.a.

Backtracking + SQL Unify Approach

edge(A,B) (store result) 0.02 0.04 0.19

edge(A,B),edge(B,A) (relation-level) 0.98 2.20 19.70

edge(A,B),edge(B,A) (view-level) 0.02 0.04 0.28

Table 5.1: Execution times of the different approaches

During the asserting approach the two queries and the assert time of the involved

tuples mentioned above were measured. This assert time is relevant because the

other approaches of coupling do not have this overhead time. Despite involving

multiple context switching between Prolog and C, the assert time is fast and can

be used with large relations. Using the method described, asserting 50, 000 tuples

takes about 2 seconds. For comparison, if the relation was dumped into a file in

the form of Prolog facts and consulted, Yap would take about 0.6 seconds, which

is around 3 times faster. The edge(A,B) query involves sequentially accessing all

the facts that have been asserted. This is done almost instantly, taking only 0.02

seconds for 50, 000 facts. This approach shows larger difficulties while using the query

edge(A,B),edge(B,A). Even for 5, 000 facts Yap already takes more than 7 seconds

5.1. THE EDGE R BENCHMARK 83

and the growth is exponential, taking several minutes for 50, 000 facts. This is due to

the fact that Yap does not index dynamic predicates, by default, such as the asserted

edge facts. For each edge(A,B), Prolog execution mechanism has to access all the

facts to see if they unify with edge(B,A), because the absence of indexing cannot

use the first goal variable bindings to limit the search space. Finally, this asserting

approach reduces the overhead of communication with the MySQL server to the initial

assert, and the solution of the queries has no communication with the MySQL server.

To evaluated the second approach mysql store result() and mysql use result()

procedures were both used. No relevant differences were detected, mainly because the

Yap and MySQL server were running on the same machine. The mysql use result()

could not be used with the edge(A,B),edge(B,A) query because this version of

MySQL does not allow multiple results sets on the server side (this should be possible

with the latest version of MySQL, 5.0). Query edge(A,B) takes 0.19 seconds to

return the 50, 000 solutions. The overhead of communicating with the MySQL result

set structure tuple by tuple causes a slowdown of around 10 times as compared to

the previous asserting strategy. This 10 times factor is also reflected on the execution

time of edge(A,B),edge(B,A). For both edge goals, a ’SELECT * FROM edge r’ query

is generated and the join is computed by Yap using the two MySQL result sets. We

should note that, on this approach, there are no indices on Yap that can be used to

speed-up the query, as the edge r tuples only exist in MySQL structures. Also, the

difficulties explained for the asserting approach remain, as the indices existing on the

MySQL server for the edge r relation are of no use since the queries are ’SELECT *

FROM edge r’.

The last approach of coupling, which tries to transfer unification to the SQL en-

gine, gave exactly the same results for query edge(A,B), as the query generated by

translate/3 is exactly the same of the previous approach (’SELECT * FROM edge r’).

Regarding query edge(A,B),edge(B,A) there are very significant differences. For this

query we consider a relation-level access where translate/3 is used for each goal,

and a view-level access where translate/3 is used to generate a SQL query which

computes the join of the two goals.

For the relation-level access the speed-up obtained over the backtracking approach

is of around 100 times for 5, 000 tuples and, more important, allows the increase in

execution time to become linear in the number of tuples. Note that the execution times

84 CHAPTER 5. PERFORMANCE EVALUATION

of this approach are not quicker because there is a large overhead of communication

with MySQL, involving running one query and storing the result on the client for each

tuple of the first goal. For view-level access translate/3 generates a single query and

Yap just sequentially accesses the returned result set. For 50, 000 tuples the execution

time is of 0.28 seconds. This represents a speed-up of more than 2, 500 times over the

asserting approach and of more than 30, 000 times over the backtracking approach.

Index performance is fundamental to interpret the results obtained. Note that the

asserting approach relies on the logic system indexing capabilities, while the other

approaches rely on the database system indexing capabilities. The asserting approach

can be improved if indexing can be performed over the dynamic predicate asserted.

Yap can index on the first argument of dynamic predicates if we declare the up-

date semantics of dynamic predicates to be logical instead of the default immediate

(dynamic predicate(edge/2,logical)). Dynamic predicates with logical update

semantics achieve similar performance when compared with static compiled predicates.

Relational database management systems have extended indexing capabilities as com-

pared to Prolog systems. Every relational database system allows the declaration of

several types of indices on different attributes. To evaluate the impact of changing the

indexing approach on MySQL, the primary key index of relation edge r was dropped:

’ALTER TABLE edge r DROP PRIMARY KEY’. The performance using a secondary index

just on the first attribute of edge r was also evaluated: ’ALTER TABLE edge r ADD

INDEX ind source (source)’ (this is identical to the traditional indexing approach

of Prolog systems). Table 5.2 compares the performance of these different indexing

schemes. It presents the execution times for 50, 000, 100, 000 and 500, 000 tuples (for

500, 000 tuples we used 5, 000 vertices) using asserting and backtracking with SQL

unification in view-level for query edge(A,B),edge(B,A).

By observing the table, the dramatic impact of indexing when compared with no

indexing is clear. An interesting comparison is the time taken with the asserting

approach by Yap without indexing (753.80 and 5270.27 seconds for 50, 000 and 100, 000

tuples), and the time taken by MySQL also without indexing (487.35 and 1997.36

seconds for 50, 000 and 100, 000 tuples). Yap is about 1.5 to 2.5 times slower than

MySQL dealing with no indexed data. Another interesting comparison is the time

that Yap and MySQL using an equivalent index on the same argument take. They

show almost the same performance, with a small overhead for Yap in this particular

5.2. THE QUERY BENCHMARK 85

Coupling Approach/Indexing Scheme
Tuples

50,000 100,000 500,000

Asserting Approach

no index 753.80 5270.27 > 2 hours

index on first argument (source) 0.59 2.40 12.88

Backtracking + SQL Unify Approach

no index 487.35 1997.36 > 2 hours

secondary index on (source) 0.54 1.93 10.25

primary key index on (source,dest) 0.28 0.67 3.81

Table 5.2: Index performance for query edge(A,B),edge(B,A)

query. As expected, best results are obtained for MySQL when using a primary key

index on both attributes (0.28, 0.67 and 3.81 seconds for 50, 000, 100, 000 and 500, 000

tuples).

5.2 The query Benchmark

The queries on the edge/2 predicate presented on the previous section show very signif-

icant differences between relation-level accesses and view-level accesses. In this section

we further study the impact of performing view-level transformations on database

predicates using now the query benchmark program [75].

The query benchmark program, written by D. H. Warren, is a Prolog program which

tries to find countries of approximately equal population density, based on a database

listing populations and areas for several countries. Typically, the population and area

knowledge is represented as Prolog facts, pop/2 and area/2. In the context of a

deductive database system such knowledge can instead be represented by relational

tuples, that can be stored in two relations as shown in Fig. 5.1.

We import the tuples in these relations using the db import/3, associating the pop

relation with predicate pop/2 and the area relation with predicate area/2:

:- db_import(pop,pop,my_conn).
:- db_import(area,area,my_conn).

Besides the pop/2 and area/2 predicates, the query benchmark program has the

86 CHAPTER 5. PERFORMANCE EVALUATION

pop relation
+------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
| country | varchar(20) | | PRI | | |
| population | smallint(6) | YES | | NULL | |
+------------+-------------+------+-----+---------+-------+

area relation
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
| country | varchar(20) | | PRI | | |
| area | smallint(6) | YES | | NULL | |
+---------+-------------+------+-----+---------+-------+

Figure 5.1: Relations pop and area

following two predicates, query/1 and density/2:

query([C1,D1,C2,D2]) :-
density(C1,D1),
density(C2,D2),
D1 > D2,
T1 is 100*D1,
T2 is 101*D2,
T1 < T2.

density(C,D) :-
pop(C,P),
area(C,A),
D is (P*100)//A.

In the original query program, population is given in hundreds of thousand and area

is given in thousands of square miles. The density/2 predicate calculates the number

of inhabitants per square mile. The query/1 predicate selects pairs of countries in the

database where the density varies less than 5%. Facts for 25 different countries were

given. We slightly modified this program, increasing the number of countries to 232,

using square kilometers instead of square miles and choosing countries with a variation

of 1% instead of 5%. Figure 5.2 shows all the solutions for the query goal query(L).

In Table 5.3 we compare the execution time of this query using our different coupling

approaches. As previously, times are given in seconds.

For the asserting approach, we measured the assert time for the tuples in relations

pop and area. As these amount to 464 facts, this assert time is very small, taking less

5.2. THE QUERY BENCHMARK 87

[Albania,125,Thailand,124]
[Armenia,113,Slovakia,112]
[Belgium,340,Japan,337]
[Burundi,222,Trinidad and Tobago,220]
[China,134,Moldova,133]
[Denmark,123,Indonesia,122]
[El Salvador,304,Sri Lanka,303]
[France,109,Uganda,108]
[Kuwait,123,Indonesia,122]
[Nepal,188,Pakistan,187]
[Pakistan,187,Korea (North),186]
[Poland,123,Indonesia,122]
[Portugal,109,Uganda,108]
[Thailand,124,Denmark,123]
[Thailand,124,Kuwait,123]
[Thailand,124,Poland,123]
[Uganda,108,Hungary,107]

Figure 5.2: All solutions for the query goal query(L)

than 0.01 seconds. As mentioned previously, dynamic facts are not indexed by default

in Yap. Thus, finding all solutions for query query(L) takes 1.51 seconds without

indexing. Altering the definition of the dynamic predicates pop/2 and area/2 with:

:- dynamic_predicate(pop/2,logical).
:- dynamic_predicate(area/2,logical).

makes indexing available on the first (country) argument, and largely speeds-up

execution, taking now 0.09 seconds.

Our second approach accesses tuples from the database relations, tuple at a time,

based on totally generic queries. As these queries are generic there is no gain from

using indices. The overhead of communicating with MySQL result set for each tuple

makes the execution time for finding all solutions for query query(L) increase to 170.03

seconds, which represents a slow-down factor of more than 112 times over the asserting

approach also without indexing.

Our third approach uses dynamic SQL queries generation based on the instantiation

of the goal’s arguments. Indexing is useful for these queries and the declaration of

relations pop and area included the creation of a primary index on attribute country.

Using relation-level access, separate queries are generated for goals pop(C,P) and

area(C,A). In this scenario, execution time of the query program is 50.66. Though

this represents an important speed-up over the previous 170.03 value, due to the use of

88 CHAPTER 5. PERFORMANCE EVALUATION

Coupling Approach/Query Execution Time

Asserting Approach

assert time < 0.01

query(L) (no indexing) 1.51

query(L) (indexing on first argument) 0.09

Backtracking Approach

query(L) 170.03

Backtracking + SQL Unify Approach

query(L) (relation-level) 50.66

query(L) (view-level 1) 2.16

query(L) (view-level 2) 1.89

query(L) (view-level 3) 0.19

query(L) (view-level 3) (indexing) 0.11

Table 5.3: Execution times of query(L) on the different approaches

the index on the relation country and the instantiation of variable C for the area(C,A)

goal, there is still a very large gap compared to the asserting approach.

Improving performance requires the use of view-level access, as discussed previously.

This query program offers a number of opportunities for view-level transformations.

The most obvious is joining together queries for pop(C,P) and area(C,A) goals, by

declaring a view as follows:

:- db_view((pop(C,P),area(C,A)),pop_area(C,P,A),my_conn).

We call this view-level transformation view-level 1 in Table 5.3. Execution time is

now reduced to 2.16 seconds, using this simple transformation. This factor of more

than 23 times over the relation-level approach clearly shows the relevance of view-level

transformations.

We can still improve database access by further using view-level transformations. We

can create a view for all the density/2 predicate were the arithmetic calculation of

density is performed by MySQL:

:- db_view((pop(C,P),area(C,A), D is P*100//A),density(C,D),my_conn).

We call this view-level transformation view-level 2 and execution time is now reduced

to 1.89 seconds.

5.3. CHAPTER SUMMARY 89

A final view-level transformation can be done for the query/1 predicate, joining

together both density/2 goals, along with the arithmetic operations and conditions:

:- db_view((pop(C,P),area(C,A), D is P*100//A),density(C,D),my_conn).
:- db_view((density(C1,D1),density(C2,D2),D1>D2,T1 is 100*D1,

T2 is 101*D2,T1<T2),(query([C1,D1,C2,D2]),my_conn).

We call this view-level transformation view-level 3 and execution time is now reduced

to 0.19 seconds! The SQL query generated for this view is the following:

SELECT A.country ,A.population*100 div B.area as D1, C.country,
C.population*100 div D.area as D2 FROM pop A , area B, pop C, area D
WHERE B.country = A.country and D.country=C.country and
A.population*100 div B.area *20<C.population*100 div D.area *21
having D1>D2

Finally, we can use the indexing capabilities of MySQL and create secondary indices on

attributes population and area of relations pop and area, respectively. This further

reduces execution time to 0.11 seconds, which is very similar to the time taken by the

asserting approach using indexing.

This query program shows clearly the importance of performing view-level transforma-

tion to improve database access. An automatic generator of these views, along with

the creation of the relevant indices in MySQL is fundamental for incorporation with

a coupling interface between a logic system and a relational database system, and we

plan to develop it as future work.

5.3 Chapter Summary

The impact of using alternative approaches for coupling Yap Prolog with MySQL

was studied and evaluated. Through experimentation, the possibility to couple logic

systems with relational databases using approaches based on tuple-at-a-time commu-

nication schemes was observed. The results show however that, in order to be efficient,

view-level transformations when accessing the database needs to be explored. Results

also show that indexing is fundamental to achieve scalability. Indexing is important

on the database server for view level access and on the Prolog system when tuples are

asserted as facts.

90 CHAPTER 5. PERFORMANCE EVALUATION

For Yap, further evaluation should experiment with the current development version

of this system, Yap 4.5, where indexing has been improved and can build indices using

more than just the first argument.

Chapter 6

Conclusions

This final chapter summarizes the work developed in this thesis. First, we enumerate

the main contributions of the thesis, next we suggest some relevant topics for further

work, and then we conclude with a final remark.

6.1 Main Contributions

A major guideline for our work was to join the efficiency and safety of databases in

dealing with large amounts of data with the higher expressive power and inference

abilities of logic systems. In this regard, we have studied, implemented and evaluated

the impact of using three distinct approaches for coupling the Yap Prolog system with

the MySQL relational database system. The main contributions of this work are:

Coupling approaches: we have considered three main approaches for coupling the

Yap Prolog system with the MySQL relational database system: asserting database

tuples as Prolog facts; accessing database tuples by backtracking; and transfer-

ring unification to the database. The most relevant features of each approach

are then briefly described.

Asserting database tuples as Prolog facts: this approach maps database

relations into Prolog predicates by asserting the complete set of tuples

of a database relation as Prolog facts. This minimizes the number of

communications with the database because only a single connection is

91

92 CHAPTER 6. CONCLUSIONS

required. On the other hand, the entire set of tuples is duplicated on the

Prolog side, and real time modification done by others to the database are

not visible to the Prolog system.

Accessing database tuples by backtracking: this approach uses the Prolog

backtracking mechanism to access the database tuples one-at-a-time. This

minimizes memory requirements because the tuples are only concentrated

in a single repository, and allows users to see real time modifications done by

others. However, for calls with not all arguments unbound, non-matching

tuples are still fetched from the database, and it is then the Prolog unifica-

tion mechanism that selects the matching tuples.

Transferring unification to the database: specific SQL queries are dynam-

ically constructed to transfer the Prolog unification process to the MySQL

engine. This prevents unnecessary tuples from being fetched from the

database, thus minimizing memory requirements and optimizing compu-

tation. Moreover, conjunctions of database predicates can be further op-

timized if we use view level transformations to define single queries to

compute the conjunctions.

Performance evaluation: we have carried out a detailed study to evaluate the

performance of our proposals. All approaches were tested against different

number of tuples in sets we believe are representative of existing applications.

The most relevant conclusion of our results is that view-level transformations

and indexing are fundamental to achieve scalability.

• Through experimentation, we observed that it is possible to couple logic

systems with relational databases using approaches based on tuple-at-a-

time communication schemes. However, in order to be efficient, we need to

explore view-level transformations when accessing the database. Our results

clearly showed the importance of performing view-level transformations to

improve database access.

• Our results also showed that indexing is fundamental to achieve scalability.

Indexing is important on the database server for view-level access and on

the Prolog system when tuples are asserted as facts.

6.2. FURTHER WORK 93

6.2 Further Work

The coupling of the Yap Prolog system with the MySQL relational database sys-

tem was implemented on three different levels of communication, demonstrating that

together, the two systems, can result in an efficient, powerful and insightful tool.

However, in order to overcome some limitations of the combined system, more work

still remains to be done:

• The current implementation needs to be tested with a wider range of applica-

tions. Many opportunities for refining the system exist, and more will certainly

be found with an intensive experimentation of the system. Further evaluation

should also experiment with the current development version of Yap, version 4.5,

where indexing has been improved and can build indices using more than just

the first argument.

• An important drawback of our system is the support to the transparent use of

the cut operation over database predicates. This operation is extremely used

in Prolog programs, both for efficiency and semantic preservation. However, its

use after a database defined predicate can cause a lack of cursors and, more

important, a lack of memory due to a number of very large non-deallocated data

structures. To overcome these limitation, recently, Soares et al. [63] proposed an

extension to the Prolog engine that allows to define procedures to be executed

when a predicate is pruned by a cut, which for database predicates can thus be

used to deallocate the associated result sets.

• We see that the importance of performing view-level transformations is funda-

mental to improve database access. An interesting feature of the system will be

to extend it to incorporate a mechanism to dynamically detect conjunctions

of database predicate and automatically generate the appropriate view-level

transformations.

• Another interesting area for further research is to take advantage of the advanced

features of the OPTYap system [56], such as tabling and or-parallelism, namely

in the evaluation of recursive and concurrent queries.

94 CHAPTER 6. CONCLUSIONS

6.3 Final Remark

Through this research we aimed at demonstrating the benefits of implementing coupled

systems which combine the simplicity, portability and performance of both the Yap

Prolog programming language with the MySQL database management system. The

results obtained by making use of view-level access and indexing, reinforce the viability

of such strategies. We hope that the work developed in this thesis will serve as an

inspiration to others and be a resource for further improvements and research in this

area.

Much work remains to be accomplished, along with the insight of loosely coupled

systems, where the benefits of each system are preserved and assured in future devel-

opments and improved editions of each separate system.

References

[1] Serge Abiteboul and Stéphane Grumbach. A rule-based language with functions

and sets. ACM Transactions on Database Systems, 16(1):1–30, 1991.

[2] Isaac Balbin, Graeme S. Port, Kotagiri Ramamohanarao, and Krishnamurthy

Meenakshi. Efficient bottom-UP computation of queries on stratified databases.

Journal of Logic Programming, 11(3–4):295–344, 1991.

[3] Isaac Balbin and Kotagiri Ramamohanarao. A generalization of the differential

approach to recursive query evaluation. Journal of Logic Programming, 4(3):259–

262, 1987.

[4] François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic

sets and other strange ways to implement logic programs. In PODS, pages 1–16,

1986.

[5] C. Beeri and R. Ramakrishnan. On the Power of Magic. In ACM SIGACT-

SIGMOD Symposium on Principles of Database Systems, 1987.

[6] M. Brodie and M. Jarke. On Integrating Logic Programming and Databases. In

Expert Database Workshop, pages 191–207. Benjamin Cummings, 1984.

[7] F. Bry, H. Decker, and R. Manthey. A uniform approach to constraint satisfaction

and constraint satisfiability in deductive databases. In Proceedings of the

International Conference on Extending Database Technology (EDBT ’88), volume

303 of LNCS, pages 488–505. Springer, 1988.

[8] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and

G. Puebla. The Ciao Prolog System. Reference Manual. The Ciao System

Documentation Series–TR CLIP3/97.1, School of Computer Science, Technical

University of Madrid (UPM), 1997.

95

96 REFERENCES

[9] Filippo Cacace, Stefano Ceri, Stefano Crespi-Reghizzi, Letizia Tanca, and

Roberto Zicari. Integrating object-oriented data modeling with a rule-based

programming paradigm. In SIGMOD Conference, pages 225–236, 1990.

[10] M. Carlsson. Sicstus Prolog User’s Manual, February 1988.

[11] E. F. Codd. A relational model of data for large shared data banks. Communi-

cations of the ACM, 13(6):377–387, 1970.

[12] A. Colmerauer, H. Kahoui, and M. van Caneghem. Un systéme de communication

homme-machine en français. Technical report, Gruppe Intelligence Artificielle,

Université Aix-Marseille II, 1973.

[13] L. Damas, R. Reis, , R.Azevedo, and V. Costa. YAP user’s manual, 2003.

[14] S. K. Das and J. Dicker. Coupling oracle with eclipse.

[15] Subrata Kumar Das. Deductive Databases and Logic Programming. Addison-

Wesley, 1992.

[16] C. J. Date. An Introduction to Database Systems. Addison-Wesley, 1995.

[17] Marcia A. Derr, Shinichi Morishita, and Geoffrey Phipps. Design and implemen-

tation of the glue-nail database system. In SIGMOD Conference, pages 147–156,

1993.

[18] Christoph Draxler. Accessing Relational and Higher Databases through Database

Set Predicates in Logic Programming Languages. PhD thesis, Zurich University,

Department of Computer Science, 1991.

[19] Paul DuBois. MySQL. New Riders Publishing, Carmel, IN, USA, 1999.

[20] M. Ferreira, R. Rocha, and S. Silva. Comparing Alternative Approaches for

Coupling Logic Programming with Relational Databases. In Proceedings of the

Colloquium on Implementation of Constraint and Logic Programming Systems,

CICLOPS’2004, pages 71–82, 2004.

[21] M. Freeston. The BANG file: A new kind of grid file. In Proceedings of the ACM

SIGMOD Annual Conference, pages 260–269. ACM Press, 1987.

REFERENCES 97

[22] Burkhard Freitag, Heribert Schutz, and Gunther Specht. Lola - a logic

language for deductive databases and its implementation. In In Proceedings 2nd

International Symposium on Database Systems for Advanced Applications, pages

216 – 225, 1991.

[23] H. Gallaire and J. Minker, editors. Logic and Databases. Plenum, 1978.

[24] A. Van Gelder, K. Ross, and J. Schlipf. The Well-Founded Semantics for General

Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

[25] Allen Van Gelder, John S. Schlipf, and Kenneth A. Ross. The well-founded

semantics for general logic programs, 1991.

[26] P. M. D. Gray and R. J. Lucas. Prolog and Databases: Implementations and New

Directions. John Wiley and Sons Publishers, 1988.

[27] C. C. Green and B. Raphael. The use of theorem-proving techniques in question-

answering systems. Proceedings 23rd National Conference ACM, 1968.

[28] Jiawei Han, Ling Liu, and Zhaohui Xie. Logicbase: A deductive database system

prototype. In CIKM, pages 226–233, 1994.

[29] Lawrence J. Henschen and Shamim A. Naqvi. On compiling queries in recursive

first-order databases. Journal of the ACM, 31(1):47–85, 1984.

[30] T. Irving. A generalized interface between PROLOG and relational databases.

In PROLOG and Databases: Implementations and New Directions, Chichister,

West Sussex: Ellis Horwood Limited, 1988.

[31] Matthias Jarke, Jim Clifford, and Yannis Vassiliou. Optimizing Prolog front-end

to a relational query system. SIGMOD Record (ACM Special Interest Group on

Management of Data), 14(2):296–306, 1984.

[32] Manfred Jeusfeld and Martin Staudt. Query Optimization in Deductive Object

Bases. Technical Report AIB-26-1991, RWTH Aachen, 1993.

[33] David B. Kemp, Kotagiri Ramamohanarao, Isaac Balbin, and Krishnamurthy

Meenakshi. Propagating constraints in recusive deduction databases. In NACLP,

pages 981–998, 1989.

98 REFERENCES

[34] David B. Kemp, Kotagiri Ramamohanarao, and Zoltan Somogyi. Right-, left- and

multi-linear rule transformations that maintain context information. In VLDB,

pages 380–391, 1990.

[35] Werner Kießling, Helmut Schmidt, Werner Strauß, and Gerhard Dünzinger. DE-

CLARE and SDS: Early efforts to commercialize deductive database technology.

The VLDB Journal, 3(2):211–243, 1993.

[36] R. Kowalski. Predicate Logic as a Programming Language. In Proc. IFIP

Conference, pages 556–574. North-Holland, 1974.

[37] J. W. Lloyd. Foundations of Logic Programming, Second Extended Edition.

Springer Verlag, 1993.

[38] Donald W. Loveland. Automated Theorem Proving: a Logical Basis. North-

Holland, 1 edition, 1978.

[39] R. J. Lucas and keylink Computers Ltd. Prodata interface manual, 1997.

[40] Michael J. Maher and Raghu Ramakrishnan. Déjà vu in fixpoints of logic

programs. In NACLP, pages 963–980, 1989.

[41] F. Maier, D. Nute, W. Potter, J. Wang, M. J. Twery, H. M. Rauscher, P. Knopp,

S. Thomasma, M. Dass, and H. Uchiyama. PROLOG/RDBMS Integration in the

NED Intelligent Information System. In Confederated International Conferences

DOA, CoopIS and ODBASE, volume 2519 of LNCS, page 528. Springer-Verlag,

2002.

[42] Alberto O. Mendelzon and Mariano P. Consens. Hy+: A hygraph-based query

and visualization system. Technical report, 1993.

[43] J. Minker. Perspectives in deductive databases (Abstract only). In Proceedings

of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 135–136. ACM Press, 1987.

[44] J. Minker and J. M. Nicolas. On recursive axioms in deductive databases.

Information Systems, 8(1):1–13, 1982.

[45] Guido Moerkotte and Peter C. Lockemann. Reactive consistency control in

deductive databases. ACM Trans. Database Syst., 16(4):670–702, 1991.

REFERENCES 99

[46] Inderpal Singh Mumick, Sheldon J. Finkelstein, Hamid Pirahesh, and Raghu

Ramakrishnan. Magic is relevant. In SIGMOD Conference, pages 247–258, 1990.

[47] Ben Napheys and Don Herkimer. A look at loosely-coupled prolog database

systems. In Expert Database Conference, pages 257–271, 1988.

[48] J. F. Naughton. One-sided recursions. In Proceedings of the Sixth ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pages 340–

348. ACM Press, 1987.

[49] J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman. Argument

reduction by factoring. Theoretical Computer Science, 146(1–2):269–310, 1995.

[50] Jeffrey F. Naughton and Raghu Ramakrishnan. How to forget the past without

repeating it. In 16th International Conference on Very Large Data Bases, pages

278–289. Morgan Kaufmann Publishers, 1990.

[51] Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Rule ordering in

bottom-up fixpoint evaluation of logic programs. In VLDB, pages 359–371, 1990.

[52] Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Controlling the

search in bottom-up evaluation. In JICSLP, pages 273–287, 1992.

[53] Raghu Ramakrishnan, Divesh Srivastava, and S. Sudarshan. Coral - control,

relations and logic. In VLDB, pages 238–250, 1992.

[54] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of deductive database

systems. J. Log. Program., 23(2):125–149, 1995.

[55] J. A. Robinson. A machine-oriented logic based on resolution principle. Journal

of the ACM, 12(1):23–49, 1965.

[56] R. Rocha. On Applying Or-Parallelism and Tabling to Logic Programs. PhD

thesis, Department of Computer Science, University of Porto, 2001.

[57] Kenneth A. Ross. Modular stratification and magic sets for datalog programs

with negation. In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, volume 51(1) of Journal of

Computer and Systems Sciences, pages 161–171. ACM Press, 1990.

100 REFERENCES

[58] D. Sacca and C. Zaniolo. Magic counting methods. In Proceedings of the ACM

SIGMOD Annual Conference, pages 49–59. ACM Press, 1987.

[59] Domenico Sacca and Carlo Zaniolo. The generalized counting method for recursive

logic queries. Theoretical Computer Science, 62(1-2):187–220, 1988.

[60] K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database

Engine. In ACM SIGMOD International Conference on the Management of Data,

pages 442–453. ACM Press, 1994.

[61] E. Sciore and D. S. Warren. Towards an integrated database-prolog system. In

L. Kerschberg, editor, Expert Database Systems, page 293. Benjamin/Cummings,

1986.

[62] SICS. Quintus Prolog Release 3.4. Swedish Institute of Computer Science, 1999.

[63] T. Soares, R. Rocha, and M. Ferreira. Pruning Extensional Predicates in

Deductive Databases. In Proceedings of the Colloquium on Implementation of

Constraint and LOgic Programming Systems, CICLOPS’2005, 2005.

[64] Divesh Srivastava and Raghu Ramakrishnan. Pushing constraint selections.

Journal of Logic Programming, 16(3-4):361–414, 1993.

[65] S. Sudarshan and Raghu Ramakrishnan. Aggregation and relevance in deductive

databases. In VLDB, pages 501–511, 1991.

[66] S. Sudarshan and Raghu Ramakrishnan. Optimizations of bottom-up evaluation

with non-ground terms. In ILPS, pages 557–574. The MIT Press, 1993.

[67] S. Tsur and C. Zaniolo. LDL: A Logic-Based Data Language. In International

Conference on Very Large Data Bases, pages 33–41. Morgan Kaufmann, 1986.

[68] Shalom Tsur and Carlo Zaniolo. LDL: A logic-based data language. In Yahiko

Kambayashi, Wesley Chu, Georges Gardarin, and Setsuo Ohsuga, editors, Twelfth

international conference on very large data bases, proceedings (VLDB ’86), pages

33–41. Morgan Kaufmann Publishers, 1986.

[69] Jeffrey D. Ullman. Principles Of Database and Knowledge-Base Systems. Vol. 1.

Rockville. Rockville, MA: Computer Science Press, Inc., 1989.

REFERENCES 101

[70] Mary-Claire van Leunen. A Handbook for Scholars. Knopf, 1979.

[71] M. vanEmden and R. Kowalski. The Semantics of Predicate Logics as a

Programming Language. Journal of the ACM, 23(4):733–742, 1976.

[72] Raf Venken and Anne Mulkers. The interaction between bim-prolog and relational

databases. In Prolog and Databases, pages 95–107. 1988.

[73] L. Vieille. A database-complete proof procedure based on SLD-resolution. In

Proceedings of the Fourth International Conference on Logic Programming, pages

74–103. MIT Press, 1987.

[74] Laurent Vieille. Recursive axioms in deductive databases: The query/subquery

approach. In Expert Database Conf., pages 253–267, 1986.

[75] D. H. D. Warren. Implementing Prolog - Compiling Predicate Logic Programs.

Technical Report 39 and 40, Department of Artificial Intelligence, University of

Edinburgh, 1977.

[76] C. Zaniolo. Prolog: A database query language for all seasons. In L. Kerschberg,

editor, Expert Database Systems, page 219. Benjamin/Cummings, 1986.

