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Abstract

Logic programming languages, such as Prolog, provide a high-level, declarative ap-

proach to programming. Derived from the Horn Clause Logic, this paradigm is based

on a simple theorem prover that given a set of assumptions and rules, searches for

alternative ways to satisfy queries.

Although a powerful, flexible and well performing tool, a major effort has been made

in the past years to increase Prolog’s declarativeness and expressiveness. The potential

of logic programming has been limited since Prolog’s standard evaluation strategy –

SLD resolution – is prone to infinite loops and redundant subcomputations. Of all the

several proposals that have come forth to overcome this situation, one in particular,

known as tabling or memoing, proved to be particularly effective, albeit when are used

for applications that deal with huge answer sets, the risk of memory exhaustion is very

real. In general, in order to recover some space, programmers have no choice but to

arbitrarily select some of the tables for deletion.

With this research, we intend to demonstrate that an alternative approach is pos-

sible. Rather than deleting predicate tables, we propose the storage of tabled data

in an external relational database system, from where answer subsets may be swiftly

recovered whenever subsequent table calls occur, hence avoiding re-computation. To

validate our approach, we propose DBTab, an extension of the YapTab tabling system

providing engine support for data transactions between the YAP logical engine and

the MySQL relational database management system.

The attained results show that DBTab may become an interesting approach when the

cost of recalculating tabling tries exceeds the amount of time required to fetch the

entire answer-set from the database. The results reinforced our belief that tabling can

contribute to expand the range of applications for Logic Programming.
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Resumo

As linguagens de programação em lógica, nomeadamente o Prolog, constituem uma

abordagem declarativa e de alto ńıvel à programação. Este paradigma, baseado na

lógica de cláusulas de Horn, consiste num demonstrador de teoremas que, munido de

um conjunto de assunções e regras lógicas, procura caminho alternativos para resolver

as questões que lhe são propostas.

Apesar do poder, flexibilidade e bom desempenho dos motores de inferência actuais, os

últimos anos têm sido férteis em propostas destinadas a melhorar o seu poder declara-

tivo e expressivo. O real potencial da linguagem tem sido limitado pela susceptibilidade

da resolução SLD a ciclos infinitos e subcomputações redundantes. Das propostas de

resolução avançadas, a mais eficaz - denominada tabulação - é predisposta à exaustão

de memória quando utilizada em aplicações com grandes conjuntos de respostas. A

solução mais comum para este problema é fornecer aos programadores um conjunto

de directivas que permitam eliminar arbitrariamente algumas das tabelas.

Com este trabalho, pretendemos demonstrar a existência de alternativas viáveis. A

nossa proposta consiste em armazenar as tabelas a descartar para uma base de dados

relacional, de onde podem ser fácil e rapidamente recolhidas sempre que uma chamada

subsequente ocorre, evitando assim repetir toda a subcomputação. A proposta é vali-

dada por um extensão ao componente de tabulação sequencial YapTab, denominada

DBTab, que adiciona ao motor de inferência YAP suporte para transacções relacionais

com o sistema de gestão de base de dados MySQL.

Os resultados obtidos demonstram que a extensão DBTab se torna interessante quando

o custo da recomputação excede o custo de recolher as respostas pré-calculadas das

tabelas relacionais. Estes resultados reforçam a nossa convicção de que a tabulação

pode alargar o âmbito de aplicabilidade da programação em lógica.
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Chapter 1

Introduction

Logic programming is known to be a powerful, high-level, declarative approach to

programming. This paradigm is based on the idea that programming languages should

provide a precise, yet simple, formalism to express one’s beliefs, assumptions and

goals. Ultimately, computer programs should be a set of instructions that humans

could easily understand and produce, rather than a set of highly-dependent machine-

oriented operations.

Arguably, Prolog is the most popular and powerful logic programming language.

Throughout the language’s history, its potential has been demonstrated in research

areas such as Artificial Intelligence, Natural Language Processing, Knowledge Based

Systems, Machine Learning, Database Management, or Expert Systems. Prolog’s

popularity greatly increased since the introduction, in 1983, of the Warren Abstract

Machine (WAM ) [War83], a sequential execution model that proved to be highly effi-

cient, increasing Prolog systems’ performance and setting it close to that of equivalent

C programs [Roy90].

Prolog programs are written as sets of Horn clauses, a subset of First-Order Logic

that has an intuitive interpretation as positive facts and rules. Questions, or queries,

are answered by executing a resolution procedure against those facts and rules. The

operational semantics of Prolog is given by SLD resolution [Llo87], a refutation strategy

particularly effective for stack based machines, albeit its limitations impose practical

semantic concerns to programmers throughout software development. For instance,

it is in fact quite possible that logically correct programs result in infinite execution

21
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loops.

Aiming at the improvement of Prolog’s expressive power, several proposals have been

put forth to overcome SLD limitations. A specially popular one, denominated tabling [Mic68]

(or tabulation or memoing), consists of storing intermediate answers for subgoals,

allowing their reutilization whenever a repeated subgoal appears during the resolution

process. Tabling based models are known to reduce the search space, avoid infinite

looping and have better termination properties than standard SLD based models; in

fact, it has been proven that termination can be guaranteed for all programs with the

bounded term-size property [CW96].

Chen’s work on SLG resolution [CW96], as implemented in the XSB logic programming

system [SWS+], proved the viability of tabling technology in research areas like Natural

Language Processing, Knowledge Based Systems and Data Cleaning, Model Checking,

and Program Analysis. SLG resolution also includes several extensions to Prolog,

namely support for negation [AB94], thus introducing novel applications in the areas

of Non-Monotonic Reasoning and Deductive Databases.

Tabling works for both deterministic and non-deterministic applications, but is fre-

quently used to reduce the second’s search space. One of model’s features is the

definition of scheduling strategies that decide which subgoal resolutions to execute

and the best instant in time to perform those evaluations [FSW96]. However, be-

ing embedded in a standard logical programming environment, tabling models must

successfully cope with pruning operations. For this reason, the choice of the correct

scheduling strategies among all the possible existing ones becomes of the greatest

importance, since the wrong choice may lead to situations in which several incomplete

tables are to be pruned and, consequently, their computation results in an undesirable

waste of time and resources [RSC05].

A common concern in tabling systems is the possibility of memory exhaustion whenever

query resolution results in huge or numerous tables. In such cases, the only way to

proceed execution is to remove some of the computed tables from memory. The

common approach, implemented by most tabling systems, is to provide a set of

primitive instructions that allow programmers to arbitrarily select tables for deletion.

Both the described situations result in loss of useful information. Either for incomplete

or complete tables, every subsequent call to the respective subgoals will result in a
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full re-evaluation, with all of its associated costs. These costs are significant if the

calls to subgoals at stake are part of massive computation goal solvers or depend on

input/output operations.

1.1 Thesis Purpose

It is our strong belief that all of the above mentioned problems have a similar solution,

that of storing subgoal tables into secondary memory, namely relational databases.

Such a mechanism could not only preserve information and provide fast access to it,

but also introduce the possibility to expand tabling systems’ memory to the limit in

a safe, effective and scalable way while, at the same time, keeping all the features

provided by tabling systems.

This thesis addresses the design, implementation and evaluation of DBTab [CRF06],

an extension to the YapTab sequential tabling engine [RSS97]. DBTab couples the

YAP engine [SDRA] with the famous MySQL relational database management sys-

tem [WA02], as suggested by Ferreira et al. [FRS04]. DBTab enhances YapTab’s

support tabled evaluation for definite programs by tabling space into MySQL relational

schemes, featuring multi-user concurrency, transactional safety and crash recovery

capabilities.

DBTab’s design is largely based on the work of Rocha et al. [Roc06, Roc07], on efficient

support for incomplete and complete tables in the YapTab tabling system, the work of

Ferreira et al. [FRS04], on coupling logic programming with relational databases, and

the work of Florescu et al. [FK99] on storing and querying XML data using relational

database management systems.

The developed work intends to understand the implications of combining tabling

with relational databases and thereby develop an efficient execution framework to

obtain good performance results. Accordingly, the thesis presents both novel and well-

known data structures, algorithms and implementation techniques that efficiently solve

some difficult problems arising from the integration of both paradigms. Our major

contributions include the table storage and recovery algorithms and the enhancement

of YapTab’s least recently used applicability.

In order to substantiate our claims we have studied the performance of our implementa-
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tion, DBTab. A couple of benchmark predicates was run against a set of graph related

tabled programs and their performance was duely noted, compared and interpreted.

The gathered results show that DBTab indeed becomes an interesting approach when

the cost of recalculating a table trie largely exceeds the amount of time required to

fetch that same answer-set from the mapping relational tuple residing in the database,

typically situations in which heavy side-effected routines are used during program

execution. In our study we gathered detailed statistics on the execution of each

benchmark program to help us understand and explain some of the obtained execution

results.

The final goal for this work is to substantiate our belief that tabling and relational

databases can work together, enhancing the YapTab engine performance and increas-

ing the range of applications for Logic Programming.

1.2 Thesis Outline

The thesis is structured in seven major chapters. A brief description of each chapter

follows.

Chapter 1: Introduction. This chapter.

Chapter 2: Logic Programming, Tabling and Persistence Models. Provides a

brief introduction to the concepts of logic programming and tabling, focusing on

Prolog, SLG resolution, and abstract machines for standard Prolog and tabling,

with particular focus on the WAM.

Chapter 3: YapTab: The Sequential Tabling Engine. Describes the fundamen-

tal aspects of the SLG-WAM abstract machine, discusses the motivation and

major contributions of the YapTab design and presents in some detail YapTab’s

implementation: its main data areas, data structures and the algorithms intro-

duced to extend the Yap Prolog system to support sequential tabling.

Chapter 4: Relational data models for tabling. Discusses the benefits of the as-

sociation of tabling and external memory storage mechanisms such as relational

databases. Introduces two possible relational schemes, as well as the required

transactional algorithms, their advantages and disadvantages.
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Chapter 5: DBTab: Extending the YapTab Design. Introduces the implemen-

tation of DBTab, starting with a brief contextualization of the developed work.

Afterwards, the chosen relational database management system and its major

assets are discussed. Finally, the transformations produced in YapTab to enable

the implementation of relational tabling are introduced, covering topics such as

the developed API, the changes to YapTab’s table space structures and operating

algorithms. An alternative way to inquire for trie answers without fully reloading

the trie into memory is also discussed.

Chapter 6: Performance Analysis. Presents an analysis of DBTab’s performance

over a set of benchmark programs. Discusses the overheads introduced by

the relational storage extension, compares DBTab’s different implementations

performance and draws some preliminary conclusions on the obtained results.

Chapter 7: Concluding Remarks. Discusses the research results, summarizes the

contributions and suggests directions for further work.

Chapters 4 and 5 include pseudo-code for some important procedures. In order to

allow an easier understanding of the algorithms being presented in such procedures,

the code corresponding to potential optimization is not included, unless its inclusion

is essential for the description.
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Chapter 2

Logic Programming, Tabling and

Persistence Models

This chapter introduces the fundamental aspects of the research areas covered by this

thesis. Concepts such as logic programming and tabling are discussed, focusing on

Prolog, SLD resolution and SLG resolution, studying the practical aspects of their

use in the implementation of abstract machines such as the WAM. The final section

discusses persistence models for logic programming and practical approaches between

logical systems and relational databases.

2.1 Logic Programming

Logic is the tool of trade for computer science, providing a concise language to

express knowledge, assumptions and goals. It lays the foundations for deductive

reasoning, establishing the consistency of premises given the truth or falsity of other

statements [SS94]. The use of logic directly as a programming language, called logic

programming [Llo87], improves the interface between humans and computers, allowing

the programmer to focus on what the problem is, rather than on the details of how

to translate it into a sequence of computer instructions. This line of reasoning is

motivated by the belief that programs should reflect one’s knowledge about a problem,

organizing it in a program as a set of beliefs over real world objects (axioms) and

relations between these objects (rules). Problems can thus be formalized as theorems

27
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(goals) to be proved, with computation becoming a deduction of logical consequences

for posed queries.

Logic programming languages fall into a major class denominated declarative lan-

guages, distinguishable from all other classes of languages for their strong mathematical

basis. Members of this class drift away from the mainstream of developing languages

in that they are derived from an abstract model - the Horn Clause Logic, a subset of

First Order Logic - with no direct relation or dependency to the underlying machine

operation set. Technically, the logical programming paradigm is based on a simple

theorem prover that, given a theory (or program) and a query, uses the theory to

search for alternative ways to satisfy the query.

Kalrsson [Kar92] states that logic programming is often mentioned to include the

following major features:

• Variables are logical variables, which remain untyped until instantiated.

• Variables can be instantiated only once.

• Variables are instantiated via unification, a pattern matching operation finding

the most general common instance of two data objects.

• At unification failure the execution backtracks and tries to find another way to

satisfy the original query.

According to Carlsson [Car90], logic programming languages, such as Prolog, present

the following advantages:

Simple declarative semantics. A logic program is simply a collection of predicate

logic clauses.

Simple procedural semantics. A logic program can be read as a collection of re-

cursive procedures. In Prolog, for instance, clauses are tried in the order they

are written and goals within a clause are executed from left to right.

High expressive power. Logic programs can be seen as executable specifications

that despite their simple procedural semantics allow for designing complex and

efficient algorithms.
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Inherent non-determinism. Since in general several clauses can match a goal, prob-

lems involving search are easily programmed in these kind of languages.

These advantages enhance the compactness and elegance of code, making it easier to

understand, program and transform, and bringing programming closer to the mechan-

ics of human reasoning.

2.1.1 Logic Programs

The basic constructs of logic programming are inherited from logic itself. There is a

single data structure - the logical term - and three basic statements - facts, rules and

goals.

Terms in a program represent world objects. In their simplest form, they can appear

as atoms, representing symbolic constants, or as variables, standing for unspecified

terms. They can also be presented as compound terms of the form

f(u1, ..., um)

where f is the functor and the u1, ..., um are themselves terms. The functor is

characterized by its name, which is an atom, and its arity, or number of arguments.

Predicates are used to establish relationships between terms and consist on a compound

term of the form

p (t1, ..., tn)

where p is the predicate name, and the t1, ..., tn are the terms used as arguments.

A program consists basically of a collection of Horn Clauses, logical clauses with, at

most, one positive literal allowed in the body. The simplest kind of Horn Clause is

called a fact, representing an assertion of truth about a specific object. Using Prolog’s

notation, it is simply written as

A.

A more complex type, the rule, can be used to establish new relationships between

known facts and/or previously established rules. It represents a logical clause of the

form

¬ B1 ∨ ... ∨ ¬ Bn ∨ A.
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that can be rewritten equivalently as

A ← B1 ∧ ... ∧ Bn.

which is the most common form of representation in logical programming. In fact,

these statements are written in Prolog as

A : − B1, ..., Bn.

where A is the head of the rule and the B1, ..., Bn are the body subgoals.

It is possible that a clause has no positive literal at all. Such a clause must be written

as

¬ B1 ∨ ... ∨ ¬ Bn.

It can be proved that this statement is logically equivalent to

False ← B1 ∧ ... ∧ Bn.

which is by definition a Horn Clause, in this case denominated as a goal. Prolog’s

goals are written as

: − B1, ..., Bn.

where B1, ..., Bn are the body subgoals.

Goals or queries are means of retrieving information from a logic program. The

execution of a query Q against a logic program P leads to consecutive assignments of

terms to the variables in Q until a substitution θ satisfied by P is found. A substitution

is a (possibly empty) finite set of pairs Xi = ti, where Xi is a variable and ti is a term,

with Xi not occurring in ti and Xi 6= Xj, for any i and j. Answers (or solutions) for

Q are retrieved by reporting for each variable Xi in Q the corresponding assignment

θ(Xi). The assignment of a term ti to a variable Xi is called a binding and the variable

is said to be bound. Variables can be bound to other distinct variables or non-variable

terms.

Execution of a query Q with respect to a program P proceeds by reducing the initial

conjunction of subgoals of Q to subsequent conjunctions of subgoals according to a

refutation procedure. The first use of this approach in practical computing is a sequel

to the resolution principle of Robinson’s [Rob65], introduced by Kowalski [Kow74]

in 1974 under the name of the Selective Linear Definite resolution (SLD resolution).

Given the logical program and a goal to prove, the SLD resolution proceeds as follows:
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1. Starting from the current conjunction of subgoals

: − G1, ..., Gn.

a predefined selectliteral rule arbitrarily selects a subgoal (or literal) Gi. The order

of reductions is irrelevant for answering the query, regarding that all subgoals

are reduced;

2. The program is then searched for a clause whose head goal unifies with Gi. If

there are such clauses then, according to a predefined selectclause rule, one is

selected;

3. If the selected clause, unifying with Gi, is of the form

A : − B1, ..., Bm.

a substitution θ to the variables of A and Gi has been determined such that

Aθ = Giθ. Execution proceeds by replacing Gi with the body subgoals of the

selected clause, followed by the appliance of the substitution θ to the variables

of the resulting conjunction of subgoals, thus leading to:

: − (G1, ..., Gi−1, B1, ..., Bm, Gi+1, ..., Gn)θ.

Notice that if Gi is a fact, it is simply removed from the conjunction of subgoals,

thus resulting in:

: − (G1, ..., Gi−1, Gi+1, ..., Gn)θ.

4. A successful SLD derivation is found whenever the conjunction of subgoals is

reduced to the True subgoal after a finite sequence of reductions. When there

are no clauses unifying with a selected subgoal, then a failed SLD derivation is

found, which can be solved, in Prolog, by applying a backtracking mechanism.

Backtracking exploits alternative execution paths by (i) undoing all the bindings

made since the preceding selected subgoal Gi, and by (ii) reducing Gi with the

next available clause unifying with it. The computation stops either when all

alternatives have been exploited or when an answer is found.

Notice that SLD resolution does not stand for a particular algorithm but for an entire

class of algorithms, which particularly differ in their proof tree traversal methods and
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halting conditions. In [Kow79], Kowalski stated that logic programming is about

expressing problems as logic and using a refutation procedure to obtain answers from

the logic. Therefore, in a computer implementation, the selectliteral and selectclause

rules must be specified. Different specifications lead to different algorithms, whose

execution will result in different search spaces. Although the semantics of proofs is

unaltered, in some cases, a successful derivation may not be attained [AvE82]. The

Prolog implementation specifies that, given a query to solve, the selectliteral rule must

choose the leftmost subgoal, while the selectclause rule must follow the order in which

the clauses appear in the program.

2.1.2 The Prolog Language

In 1965, Robinson published a revolutionary paper [Rob65] describing the unification

algorithm and resolution principle. Based on Robinson’s work, Kowalski [Kow74] ac-

knowledged the procedural semantics of Horn clauses in the early 1970’s. He provided

some theoretical background showing that a logical axiom

A ← B1 , . . . , Bn

can have both a declarative reading - A is true if Bi and . . . and Bn are true - and a

procedural reading - to solve A, solve B1 and B2 and . . . and Bn. Almost simultane-

ously, Colmerauer and his group developed a theorem prover that embodied Kowalski

procedural interpretation [CKPR73]. It was called Prolog, as an abbreviation for

PROgramation en LOGic, and intended to implement a man-machine communication

system in natural language.

In the late years of that decade, David H. D. Warren and his colleagues made Prolog a

viable language by developing the first efficient implementation of a compiler, named

Prolog-10 [War77]. The compiler itself was almost entirely written in Prolog, proving

the power of logic programming to solve standard programming tasks. Its major

contribution, though, was in term of syntax formalism, setting a standard that would

be followed in all subsequent implementations. In 1983, Warren laid another important

landmark with his Warren Abstract Machine [War83] (WAM), an abstract machine for

the execution of Prolog code. The model, consisting of a memory architecture and an

instruction set, proved to be the most efficient way yet discovered to implement Prolog
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compilers, being adopted by most state-of-the-art systems for logic programming

languages.

In 1982, Japan’s Ministry of International Trade and Industry started its Fifth Genera-

tion Computer Systems project. It was intended to create an epoch-making computer

with supercomputer-like performance leveraged by massive parallelism, and usable

artificial intelligence capabilities. This increased the interest in sequential and parallel

models, and many of the proposed models become real implementations. The advances

made in the compilation technology of sequential implementations of Prolog proved

to be highly efficient, which has enabled Prolog compilers to execute programs nearly

as fast as conventional programming languages such as C [Roy90].

Since then, Prolog has reached maturity, with the The Edinburgh Prolog family becom-

ing a standard for all implementations. Still, there were some obstacles to overcome.

First Order Logic, by itself, is not suited to cope with the needs of every day pro-

gramming. Useful languages must include arithmetic and I/O operations, database

management routines, among others. To cope with these demands, some extensions

were introduced:

System predicates. Class of predicates for system-related procedures, such as arith-

metic operation, ground terms comparison and basic structure inspection;

Meta-logical predicates. Introduced to give the programmer a tight control on the

program execution. These predicates are often used to inquire the state of

the computation and perform comparison and inspection of non-ground terms.

The inspection operation plays a significant role: the introduction of system

predicates causes the need to test the type of terms at runtime. As this feature is

not taken into account in formal logic, these predicates have no logical meaning.

Extra-logical predicates. This kind of predicates fall outside the logic programming

model, achieving some useful side-effects in the course of being satisfied as a

logical goal. Three main types are defined: predicates that handle input/output

operations; predicates interfacing the underlying operating system; and predi-

cates used to manipulate the Prolog internal database, handling the assertion

and removal of clauses from the program being executed.

Cut predicate. This predicate adds an explicit form of control over the backtracking
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mechanism, aiming to make programs shorter and more efficient. The use

of cut predicates generally makes programs more difficult to understand and

less logical in nature. Two forms of the predicate are possible: the green and

red cuts [SS86]. The first form of cut notifies the interpreter to stop looking

for alternative answers; in a sense, it discards correct solutions that are not

needed. Omitting green cuts from a program should still give the same answers,

eventually taking a little longer to do so. The second and most dangerous form

alters program execution by effectively pruning the answer tree, thus changing

the logical meaning of the program; depending on the way they are used, wrong

answers may even be introduced.

Other predicates. These include extra control predicates to perform simple control

operations and set predicates that give the complete set of answers for a query.

All of these predicates manifest an order-sensitive behaviour, producing potentially

different outcomes when different selectliteral or selectclause rules are specified. Fur-

thermore, some of these predicates, such as the cut, require a deep knowledge of the

execution model of Prolog to be successfully and safely used. Readers not familiarized

with Prolog should refer to the standard textbooks [CM94, Llo87, SS94], in search for

more details on these subjects.

2.1.3 The Warren Abstract Machine

As mentioned before, the Warren Abstract Machine became the most popular way to

implement efficient Prolog compilers. This subsection presents a rather simplified view

of the WAM implementation. Readers are encouraged to refer to more complete works

on the subject, such as the Aı̈t-Kaci’s tutorial [AK91], or Boizumault’s book [Boi88]

on Prolog’s implementation.

The virtual machine architecture presents a memory layout divided into five distinct

execution stacks and a large set of specialized registers. A robust, yet somewhat large,

low-level instruction set is supplied to perform memory and register manipulation,

control, indexing, choice and unification instructions. The state of a computation

can be obtained observing the contents of the WAM data areas, data structures and

registers at a particular instant in time. Figure 2.1 provides a closer look at the WAM’s
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organization.
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Figure 2.1: WAM memory layout, frames and registers

A brief explanation of its stacks and registers might be in order to better understand

the virtual machine functioning:

PDL: A push down list used by the unification process.

Trail: An array of addresses used to store addresses of (Local or Heap) variables due

to be reset upon backtracking. The TR register points at the top of this stack.

Local: Used to store the environment and choice point frames. This approach is not

universal. In fact, some WAM implementations use separate execution stacks

to store environments and choice points. In the original specification, the E

register points at the current active environment, while the B register points at

the current active choice point, which is always the last one pushed into the

stack.

Heap: An array of data cells used to store variables and compound terms that cannot

be stored in the Local stack. The H register points at the top of this stack, the S
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register is used during unification of compound terms and the HB register is used

to determine if the current binding is a conditional one.

Code Area: Used to keep the compiled instructions of the loaded programs. The P

register points at the currently executing instruction and the CP register points

at the next instruction to execute after successful termination of the currently

invoked call.

The two mentioned data-structures, environments and choice points, play significant

roles during program evaluation. Environments track the flow of control; every time

a clause containing several body subgoals is picked for execution, an environment is

pushed onto the stack, being popped off before the last body subgoal gets executed.

Environment frames store a sequence of cells, one for each permanent variable1 be-

longing to the body of the invoked clause. Two other important pieces of information

are also kept: the stack address of the previous environment and the code address of

the next instruction to execute upon successful return of the currently invoked one.

Choice points, on the other hand, store open alternatives. Whenever there is more

than one candidate clause for the currently executing goal, one of these structures is

pushed onto the stack. The contents of the choice point are used either to restore

the state of the computation back to when the clause was entered or, alternatively,

to supply a reference to the next clause to try upon failure of current executed one.

When all alternatives are exhausted, the structure is popped off the stack.

The five major groups of instructions in the WAM instruction set are briefly explained

next:

Memory and register instructions Divided into put, get and set instructions, they

are used on structures and variables to push or pop their addresses to or from

the Heap and copy those addresses into specialized registers. These three major

classes are further subdivided in specialized versions to differently treat the first

and following occurrences of a variable in a clause, as well as constants, lists,

and other compound terms;

Choice point instructions Divided into try, retry and trust instructions, they are

used to manage the allocation/deallocation of choice points and to recover a

1A permanent variable is a variable which occurs in more than one body subgoal [AK91].
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computation’s state using the data stored within these structures;

Control instructions Destined to manage the allocation/deallocation of environ-

ments and the call/execute/proceed sequence of subgoals;

Unification instructions Implemented as specialized versions of the unification al-

gorithm according to the position and type of the arguments. There are proper

unification instructions to perform bound and unbound variable unification,

global and local values unification and constant unification;

Indexing instructions Used to accelerate the choice of which clauses to unify with a

given subgoal call. The call’s first argument determines the destination address

within the compiled code that can directly index the unifying clauses;

Cut instructions Used to discard alternative choice points up to the one associated

with the current call and eliminate unconditional bindings from the trail up to

that point.

2.2 Tabling for Logic Programs

Prolog’s efficient SLD resolution strategy faces serious limitations when confronted

with redundant subcomputations or infinite loops. Numerous attempts have been

made to cope with these problems, establishing alternative resolution methods. One

in particular, named tabling, tabulation or memoing [Mic68], consists of a resolution

strategy similar to SLD that remembers subcomputations in order to reuse them

on subsequent requests. Tabling has proven its value in several fields of research,

such as Natural Language Processing, Knowledge Based Systems and Data Cleaning,

Model Checking and Program Analyses. Several tabling methods have been proposed,

the most famous being OLDT [TS86], SLD-AL [Vie89], Extension Tables [Die87],

Backchain Iteration [Wal93].

Tabling has out-grown its initial purpose and has been used to other endings than en-

suring termination for Horn clause programs. Its capacity to maintain global elements

of a computation in memory, such as information about whether one subgoal depends

on another and whether the dependency is through negation, proved its usefulness
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for normal logic programs evaluation under the Well-Founded Semantics (WFS), a

natural and robust declarative meaning to all logic programs with negation.

In practice, the WFS framework depends on the implementation of an effective and

efficient evaluation procedure. Among the several implementation proposals, one

in particular, called Linear resolution with Selection function for General logic pro-

grams [CW96] (SLG resolution for short), has become remarkably notorious. This

tabling based resolution method has polynomial time data complexity and is sound and

search space complete for all non-floundering queries under the well-founded semantics.

SLG resolution can thus reduce the search space for logic programs and in fact it has

been proven that it can avoid looping, thus terminating for all programs with the

bounded-term-size property [CW96]. SLG resolution has broadened the application

scope for Prolog, extending its usability in fields such as Non-Monotonic Reasoning

and Deductive Databases.

2.2.1 SLG Resolution for Definite Programs

Logic programs that do not include negation are called definite programs. When

applied to this class, SLG resolution is equivalent to SLD resolution with tabling

support. Sagonas and Swift present a simplified overview of SLG resolution for definite

programs in [SS98], from which this subsection borrows some definitions. A more

formal and further detailed explanation is performed by Chen and Warren in [CW96].

In a nutshell, a SLG system is a forest of SLG trees along with an associated table.

SLG trees are similar to those used by SLD resolution, but their root nodes stand for

calls to subgoals of tabled predicates. Non-root nodes either have the form

: − fail.

or

Answer Template : − Goal List.

where Answer Template is a positive literal and Goal List is a possibly empty se-

quence of subgoals. The table is a set of ordered triples of the form

〈Subgoal, Answer Set, State〉
where the first element is a subgoal, the second a set of positive literals, and the third

one of the complete or incomplete constant values.
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The nodes of an SLG tree are described by its status. They are divided into four main

classes:

Generator nodes Root nodes are labeled with a generator status, as they correspond

to the first calls to tabled subgoals. They use program clause resolution to

produce answers;

Consumer nodes Non-root nodes standing for variant calls to the tabled subgoal.

These consume their answers from the table space;

Interior nodes Non-root nodes standing for non-tabled subgoal calls. These nodes

are evaluated by standard SLD evaluation;

Answer nodes Non-root nodes that have an empty Goal List.

Given a tabled program P , an SLG evaluation θ for a subgoal G of a tabled predicate

is a sequence of systems

S0, S1, ..., Sn

such that:

1. S0 is the forest consisting of a single SLG tree rooted by G and the table

〈G, ∅, incomplete〉

2. for each finite ordinal k, transition to Sk+1 is obtained from Sk by an application

of one of the following tabling operations:

New Tabled Subgoal Call. Given a node N with selected subgoal S, where

S is not present in the table of Sk, create a new SLG tree with root S and

insert into the table the entry

〈S, ∅, incomplete〉.

Program Clause Resolution. Given a node N in Sk, that is either a genera-

tor node or an interior node of the form

Answer Template : − S, Goals.
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and the program clause

Head : − Body

whose Head term has not been used for resolution at node N , and unifies

with S through substitution θ, produce a child for N of the form

(S : − Body)θ.

if N is a generator node, and

(Answer Template : − Body, Goals)θ.

if N is an interior node.

New Answer. Given a node

A : −

in a tree rooted by a subgoal S, such that A is not an answer in the table

entry for S in Sk, add A to the subgoal’s answers set in the table.

Answer Resolution. Given a consumer node N of the form

Answer Template : − S, Goals.

and an answer A for S in Sk, such that A has not been used for resolution

against N , produce a child of N

(Answer Template : − Goals)θ.

where θ is the substitution unifying S and A.

Completion. Given a set of subgoals C for which all its possible substitutions

have been performed, remove all trees whose root is a subgoal in C, and

change the state of all table entries for subgoals in C from incomplete

to complete. Subgoals in C are then said to be completely evaluated. If

mutually dependencies are present, forming a strongly connected component

(or SCC ), start by the oldest subgoal in the SCC [SS98], denominated the

leader subgoal.

If no operation is applicable to Sn, Sn is called a final system of θ.
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2.2.2 Examples of Tabled Evaluation

Standard SLD evaluation is ineffective when asked to deal with positive loops. Fig-

ure 2.2 presents a small example of such a case. The upper box represents a Prolog

system, which has loaded a small program defining the arcs of a small directed graph

(arc/2 predicate) and a relation of connectivity between two nodes of the graph

(path/2 predicate). The system is asked to solve the query goal ?- path(a,Z). The

lower box depicts the infinite SLD tree when the leftmost branch of the corresponding

search tree is explored.

?- path(a,Y), path(Y,Z)

path(X,Z) :- path(X,Y), path(Y,Z).
path(X,Z) :- arc(X,Z).

arc(a,b).
arc(b,c).

           ?- path(a,Z).

?- path(a,Z)

?- arc(a,Z)

?- arc(a,Y), path(Y,Z) Z = b

fail?- path(b,Z)

fail

...

...positive loop...

SLD evaluation

Figure 2.2: An infinite SLD evaluation

If a tabling strategy is applied to solve the same query goal over the same program,

termination is ensured since the search tree is finite. Figure 2.3 depicts the evaluation

sequence for the given query goal. At the top-left box, the program code now conveys

the :- table path/2 directive, an indication that tabling must be applied to solve

predicate path/2 subgoals calls. At the top-right box, the figure illustrates the

appearance of the table space at the end of the evaluation. The bottom block shows

the resulting forest of trees for the three tabled subgoal calls. The numbering of nodes

denotes the evaluation sequence.

Evaluation starts by creating a new tree rooted by path(a,Z) and by inserting a new
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:- table path/2.

path(X,Z) :- path(X,Y), path(Y,Z).
path(X,Z) :- arc(X,Z).

arc(a,b).
arc(b,c).

           ?- path(a,Z).

0. path(a,Z)

1. path(a,Y), path(Y,Z) 2. arc(a,Z)

18. path(c,Z) 3. Z = b 4. fail

10. Z = c 19. fail

5. path(b,Z)

5. path(b,Z)

6. path(b,Y), path(Y,Z) 7. arc(b,Z)

8. fail11. path(c,Z) 9. Z = c

17. fail

11. path(c,Z)

12. path(c,Y), path(Y,Z) 13. arc(c,Z)

14. fail16. fail 15. fail

Tabled evaluation

0. path(a,Z)

5. path(b,Z)

11. path(c,Z)

3. Z = b

9. Z = c

10. Z = c

subgoal answers

Figure 2.3: A finite tabled evaluation

entry in the table space for the subgoal. In node 1, the first clause for path/2 is

selected for evaluation, thus leading on a call to path(a,Y). Since this is a variant

of the initially encountered subgoal, no tree creation is required. Instead, previously

stored answers are searched in the table space and, in their absence, evaluation of

the node is suspended2. Since path/2 is composed of two clauses, node 2 is then

evaluated, resulting on the first solution to path(a,Z) (node 3). After exhausting

2Suspended nodes are depicted by the gray oval boxes surrounding the call.
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all local alternatives, computation resumes at node 1, with the newly found answer

allowing the call to subgoal path(b,Z). As it is the first call to the subgoal, a new

execution tree and a new entry in the table space are required. Evaluation proceeds as

previously stated, giving rise to one answer for path(b,Z) (node 9). This is also a new

solution to path(a,Z), hence this answer is also stored in the table space (node 10).

The call to subgoal path(c,Z) (node 11) fails to produce new answers, so execution

backtracks to the top, path(a,Z) becomes completely evaluated and the top query

succeeds with two different possible answers, as visible in the table. Termination is

ensured by avoiding the recomputation of three found subgoals path(a,Z),path(b,Z)

and path(c,Z) in nodes 1, 5 and 13 respectively.

Tabling may also reduce the complexity of a program, requiring fewer steps to execute

it. The top area of Fig. 2.4 presents a Prolog system that has loaded the well-known

Fibonacci sequence generator program and is asked to solve the ?- fib(5,Z) query

goal. The bottom area illustrates two execution tables, one for standard SLD evalua-

tion and the other for the evaluated counterpart. At the left side, with SLD evaluation,

computing fib(n) for some integer n will search a tree whose size is exponential in n.

On the other hand, when predicate fib/2 is declared as tabled, each different subgoal

call is only computed once, with repeated calls being recovered among the answers

previously stored in the table space. Therefore, the search tree size becomes linear in

n, thus reducing the required execution steps to cover the whole search space.

2.3 Persistence Models for Logic Programming

Most often in logic programming the execution of rules becomes an highly complex

and/or resource consuming task. In such cases, it is desirable that state may be

preserved at a global level, for instance within a module, and despite of backtracking

occurrence. Usually, this is done through the declaration of dynamic predicates, i.e,

predicates whose definition can be modified at runtime. Standard logic systems, like

Prolog, usually provide an internal rule database, where dynamic predicates can be

stored to, updated or removed from through the use of specialized built-in primitives.

In SLG based systems, the programmer can achieve the desired effect in a more trans-

parent manner by declaring a tabled predicate. State is thus kept in the table space

until the end of program execution, or until the programmer chooses to dynamically
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:- table fib/2.

fib(0,1).
fib(1,1).
fib(N,Z) :- P is N - 1,
            Q is N - 2,
            fib(P,X),
            fib(Q,Y),
            Z is X + Y.

      ?- fib(5,Z).    

fib(5)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)

fib(2)

fib(0)fib(1)

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)

fib(4)

fib(2)

fib(5)

fib(3)

SLD evaluation Tabled
evaluation

Figure 2.4: Fibonacci complexity for SLD and tabled evaluation

remove it by invoking tabling primitives used to abolish tables.

Although different in nature, both approaches suffer from common problems. First of

all, since dynamic (or tabled) predicates are kept in memory, undesirable limitations to

execution may rise due to the heavy dependency on the underlying operative system’s

memory space. Secondly, the lifetime of internal state is bound to that of the process

that is running the logic system. Whenever it stops, the achieved results are lost. This

means, of course, that posterior executions must repeat the entire process to reach the

same state before resuming computation.

Several proposals have been developed to cope with these problems. Correas et al.

define persistent predicates [CGC+04] as a special kind of dynamic data predicates that

reside in some persistent external medium, such as sets of files or relational databases.

The authors consider the main advantages of external storage to be:

• State of persistent predicates is preserved across executions of the logic program,

providing that no other process changes it;

• The semantic reading of persistent predicates is kept, in that they may appear

anywhere in the body of clauses just like regular dynamic predicates;
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• Specialized built-ins may be defined or extended to insert, update and retract

persistent predicates. Updating external stored data is considered to be atomic

and transactional, since the external storage is definitely modified at the end of

this operation;

• The concept abstracts the way in which persistency is implemented, enabling the

swapping of the underlying storage technology without major transformations

to the logic program, with the exceptiion of a single directive at the beginning

of the program’s code to redirect data manipulation tools to the desired media.

2.3.1 Prolog and Databases

Logic systems, such as Prolog, are designed to efficiently solve goals against memory-

resident programs using a top-down, tuple-oriented approach. As mentioned before,

some limitations arise from this model, since it is prone to infinite loops and redundant

computation. Furthermore, the manipulation of small data blocks, such as tuples, is

known to cause inefficient disk access, as disk-related operations commonly present

block-searching overheads. When applications manipulate large amounts of data, most

of it is bound to reside in secondary storage, hence high efficiency regarding disk access

and storage capabilities is most desirable. These characteristics are often recognized to

be the trademark of Relational Database Management Systems (RDBMS). If one can

find a way to couple these two distinct worlds together, some leverage can be gained

for logic programs, both functionally and semantically.

Semantically, Relational Algebra may be seen as a non-recursive subset of Horn Clause

Logic [Lie82, vEBvEB86, IvE92]. One can express a logical predicate as a relation,

a logical ground fact as a tuple belonging to that relation and each of the predi-

cate’s arguments as attributes for the relation. Logical goals can be expressed by

means of relational queries, using the well known × (join), ∪ (union), − (difference),

π (projection), σ (selection) and ρ (attribute renaming) operators to obtain the set

of all possible answers, in a similar way to second-order programming techniques. In

relational databases management systems, evaluation is performed in a bottom-up,

set-oriented fashion, thus ensuring completeness and termination of the evaluating

methods.

Even though Relational Algebra is properly included in Horn Clause Logic, the opposite
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is not true; a recursive Horn Clause rule may not be expressed as a single or even as

a conjunction of relational operators. To illustrate this handicap, recall the example

program introduced back in Fig. 2.3. A list of fact predicates arc/2 is declared to

state that a few directed connections between two arbitrary nodes of the graph are

known. In a relational database, one can represent such a predicate by defining the

relation

Arc(StartNode, EndNode)

and inserting tuples into it to establish the known arcs. To verify the presence of a

particular arc in the relation, for instance the arc connecting the node labeled as a

and b, the logical query

?− arc(a, b).

can be emulated using the relational operation

σStartNode=”a”,EndNode=”b”Arc

which returns a single tuple if the relation holds or fails otherwise. The

?− path(a, c).

goal, on the other hand, may not be correctly evaluated, since no single relational

expression, using one or several combined operators, can be devised to generally

express the first clause

path(X,Z) : −path(X,Y ), path(Y, Z).

All a relational system can do is evaluate the second clause as

path(X,Z) : −arc(X,Z).

or, equivalently,
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πFirstNode,LastNodeArc

and verify that no arc exists between the denominated nodes, thus failing.

In spite of these advantages, some adjustments must be made in order to produce

practical implementations. First of all, Prolog’s evaluation model must retain its

goal-oriented approach, but it must also become more set-oriented. Ideally, program

clauses must be fit for concurrent evaluation. Programs may have to change the

execution order for some clauses, grouping predicate known to occur consecutively

in a single transaction, thus minimizing communication overheads. Some precautions

must also be taken with concern to data consistency and visibility. The use of relational

databases introduces the notion of concurrency, enabling the use of the same relational

space by several executing Prolog systems. Therefore, is it imperative that the final

state of the common persistent predicates reflects the changes made by each single

process, while maintaining these changes available for all of the others.

2.3.2 Deductive Databases

Deductive databases are database management systems whose query language and

storage structure are (usually) designed around a logical model of data [RU93].

Research in this field began back in the first stages of logic programming. Green and

Raphael [GR68] recognized, in 1968, the connection between theorem proving and

deduction in databases. They have presented several question-answering systems that

used a version of Robinson’s resolution principle to systematically perform deduction

in a database context. In 1976, Van Emden and Kowalski provided a strong basis

for the semantics of logic programs in [vEK76], where they proved that the minimal

fixpoint for a set of Horn clauses coincides with its minimal Herbrand model. Several

important publications were compiled and published by Gallaire and Minkers, includ-

ing Reiter’s paper on closed world database assumption [Rei78] and Clark’s paper

on negation-as-failure [Cla78]. In 1979, Aho and Ullman published a paper [AU79]

on relational algebra with a fixpoint operator, setting the principles for bottom-up

query evaluation. Kellog and Travis addressed the distinction between extensional

and intensional knowledge [KT79] in 1979. In 1982, Minkers and Nicolas [MN83]
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described bounded recursive queries as recursive queries that may be transformed into

non-recursive equivalents.

Deductive databases establish the bridge between logic programming and database

management systems. They can be thought of as a natural evolution for relational

databases, since both systems share a declarative approach to data querying and

updating, allowing users to focus on what information to manipulate, rather than

on how to process that manipulation. However, to overcome the previously explained

limitation of expressiveness for relational languages (such as SQL), deductive databases

use a new non-procedural query language, called Datalog. This new language, based

on Relational Algebra, is extended to support recursion and defines two different types

of statements:

Data (facts) are represented by predicates with ground arguments consisting of con-

stant atomic terms. Each of these predicates is represented extensionally by

the storing in the database a relation of all of the tuples known to be true for

that predicate. Each relation must have an unique name (functor) and a fixed

number of arguments (arity);

Rules (program) are represented in a Prolog-style notation as

p(X1, . . . , Xn) : − q1(X11, . . . , X1k), . . . , qm(Xm1, . . . , Xml).

Both the rule head p and each of the subgoals qi must be atomic formulas

consisting of a predicate applied to either atom or variable terms. Each qi may

be a fact predicate or the head of another rule. Each of the Xn arguments in

the head p must appear at least once in one of the qi formulas.

Logical rules can be defined to express complex views of database relations and even

integrity constraints. The major advantage of rules over the common implementation

of these database tools lies in the fact that rules can be defined in a recursive fashion,

thus increasing the expressiveness of the query language. Rules may also depend upon

each other. In [RU93], Ramakrishnan states that a predicate p depends upon a (not

necessarily different) predicate q if some rule with p in the head has a subgoal whose

predicate is either q or (recursively) depends on q. If p depends on q and q depends

on p, they are said to be mutually recursive. A program is said to be linear recursive
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if each rule contains at most one subgoal whose predicate is mutually recursive with

the head predicate.

Despite of its apparent similitude to logic programs, Datalog is unique due two im-

portant characteristics:

1. the ability to manage persistent data in an efficient way;

2. guaranteed termination for query evaluation.

Efficient disk-access is a central concern on deductive databases. The existing proto-

types may be categorized in one of two main classes:

Integrated Systems are Prolog systems that support persistent data by themselves.

The most famous systems belonging to this class are LDL [TZ86], Aditi [VRK+93]

and Glue-NAIL [PDR91];

Coupled Systems provide mechanisms that enable the translation of logical queries

into SQL directives, using either built-in primitives or external Prolog-to-SQL

compilers3. Systems like CORAL [RSS92], XSB [SSW94] and YAP [FR04]

implement coupled approaches.

The major advantage of coupled systems is their ability to keep the deductive engine

and the relational database management system separate. However, there is a signif-

icant price to pay, since the communication between these two modules most often

constitutes a tuple-a-time bottleneck. Major efficiency improvements may be achieved

through the development of a rigorous schema for data clustering and buffering,

respectively, on disk and in main memory. The use of set-oriented database operators

is of the most importance when aiming at a minimization of the number of memory

pages sent to/retrieved from secondary storage.

Guaranteed complete evaluation is a consequence of bottom-up evaluation. Starting

from the extensional facts in the database, the bodies of rules are repeatedly evaluated

against both extensional and intensional facts, to infer new facts from the heads. This

approach, denominated näıve evaluation, produces all possible answers for queries,

3A famous Prolog-to-SQL external compiler was produced by Draxler [Dra91].
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even some undesired ones. Despite of this possible waste, bottom-up evaluation avoids

infinite loops and repeated recomputation of subgoals, while enabling the use of set-

oriented relational operators.

To avoid time and memory waste induced by pure bottom-up evaluation, deductive

databases often use magic-sets [BMSU86, BR91], a rule rewriting technique that binds

predicates arguments to constants to generate filters that avoid the generation of facts

unrelated to the desired subgoals. Hence, magic-sets combine the benefits of top-down

goal-orientation ability while using the loop-free and redundancy check bottom-up

features. The magic-sets technique was developed to handle recursive queries, but is

also fit to handle non-recursive queries. A full description of this topic is presented in

[RU93].

Magic-sets are often used in conjunction with redundant subcomputation prevention

techniques. The XSB engine uses tabling as discussed in section 2.2. Other techniques

can be used, though. One in particular, called semi-näıve evaluation [BR87], is

regarded as highly effective. In each round of a bottom-up evaluation, the substitution

factors for a rule’s subgoals are reorganizing so that at least one of the subgoals is

replaced by a fact discovered in the last round. Semi-näıve evaluation is widely spread

among the most important deductive systems, namely Aditi, CORAL, LDL and Glue-

NAIL.

Deductive databases provide other extensions to Horn Clause Logic, such as negation

in rules bodies, set-grouping and aggregation. However, since these topics fall out

of this thesis purpose, they are not presented here. Introductory text and useful

references on these topics are provided in [RU93].

2.4 Chapter Summary

This chapter provided a small introduction on logic programming, tabling and persis-

tence models. It started with brief descriptions of logic programs, the Prolog language

and its implementation based on the Warren Abstract Machine (WAM). It proceeded

by briefly reviewing the underlying features of SLG resolution and illustrated the

advantages of tabling in a logic programming framework by example. The final section

presented persistence models for logic programming, discussed practical approaches
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between logical systems and relational databases.
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Chapter 3

YapTab: The Sequential Tabling

Engine

YapTab [RSS00] is a sequential tabling engine embedded in the YAP Prolog [San99]

system. YapTab is based on the SLG-WAM engine [Sag96, SSW96, SS98] as first

implemented in the XSB Prolog [SWS+] system. YapTab is also the base tabling

engine for the OPTYap [Roc01] system that combines or-parallelism with tabling.

First, the fundamental aspects of YapTab are briefly discussed, comparing their imple-

mentation with the ones in the SLG-WAM abstract machine, and then we detail the

YapTab implementation. This includes presenting the main data areas, data structures

and algorithms to extend the Yap Prolog system to support tabling. Due to its

importance for this thesis development, the table space is presented in a section of

its own. The final section introduces the special set of mechanisms used by YapTab to

efficiently handle incomplete and complete tabling. The least recently used algorithm

is presented and its applications are discussed as a motivation for the present work.

3.1 Extending YAP to Support Tabling

YapTab is a WAM based tabling computational model that can be integrated with

an or-parallel component. The main goal of this project is to achieve parallel high

performance while developing a sequential tabling implementation that runs as fast as

the current available sequential systems, if not faster. The original design of YapTab

53
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evaluates definite programs only.

Inspired by the original SLG-WAM [Sag96] implementation, YapTab inherits most of

its characteristics: it extends the WAM with a new data area, the table space; a new

set of registers, the freeze registers ; a new area on the standard trail, the forward trail ;

and support for the four main tabling operations: tabled subgoal call, new answer,

answer resolution and completion.

A special mechanism to suspend and resume the computation of subgoals is imple-

mented, and several scheduling strategies are provided to support the decision on

which operation to perform upon suspension. In particular, YapTab implements two

tabling scheduling strategies, batched and local [FSW96]. The observations of Freire

and Warren [FW97] about the usefulness of resorting to multiple strategies within

the same evaluation are taken under consideration. A novel approach, supporting

a dynamic alternation between batched and local scheduling, enables the run-time

change of strategy to resolve the subsequent calls to a tabled predicate [RSC05].

3.1.1 Differences with the SLG-WAM

The SLG-WAM abstract machine was first implemented in the XSB system engine.

The data structures, data areas, instructions set and algorithms used by this abstract

machine to evaluate definite programs are described thoroughly in [SW94], while

extensions to handle normal logic programs according to the well-founded semantics

are discussed in [Sag96, SSW96, SS98].

The major differences between SLG-WAM and YapTab designs are related to potential

sources of overheads in a parallel environment, namely the data structures and algo-

rithms used to control the process of leader detection and scheduling of unconsumed

answers.

The SLG-WAM design performs leader detection at the level of the data structures

corresponding to the first calls to tabled subgoals. For that reason, whenever a new

generator node is allocated, a new completion frame is assigned to it [SS98]. This

frame, kept in the completion stack, maintains a unique depth-first number (DFN) and

a reference to the oldest subgoal upon which the newly called subgoal may depend on.

The DFN is updated whenever variant calls or completion checks are made. When
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no dependencies are found, the subgoal is considered to be the leader and completion

may be performed. The completion frames are popped off the completion stack when

completion operation succeeds.

YapTab performs leader detection at the level of data structures corresponding to

variant calls to tabled subgoals. Whenever a new consumer node is allocated, a new

dependency frame [Roc01] is assigned to it. Each frame, kept in the dependency space,

holds a reference to the leader node of the SCC to which the consumer node belongs

to. All dependency frames are linked together to form a dependency list of consumer

nodes. The leader node is computed traversing this list between the new consumer and

its generator. When completion is performed, all dependency frames younger than the

one assigned to the leader node are removed from the dependency space.

Dependency frames introduce some advantages to YapTab. Firstly, they may be

used to efficiently detect completion points and jump between consumer nodes with

unconsumed answers. Secondly, a separate completion stack becomes unnecessary.

Thirdly, they can hold a significant number of extra fields that otherwise would need to

be placed in the tabled choice points. At last, dependency frames allow the integration

of YapTab with the parallel computational model of OPTYap. To benefit from these

advantages, all the algorithms related with suspension, resumption and completion

were redesigned.

3.1.2 Basic SLG Evaluation Structures and Operations

Section 2.2.1 provided a formal definition of the search space for the SLG resolution. In

synthesis, the SLG-trees are built using different types of nodes, allocated accordingly

to the nature of the called subgoal:

Interior nodes correspond to non-tabled predicates. These nodes are evaluated by

standard SLD-evaluation;

Generator nodes correspond to first calls to tabled predicates. Program clause

resolution produces their answers;

Consumer nodes correspond to variant calls to tabled predicates. Their answers

are taken from the table space.
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All nodes, may they be interiors, generators or consumers, are implemented as WAM

choice points at engine level. The first type requires no special modification, since

it handles normal non-tabled subgoal calls. The last two types, however, require the

introduction of extra fields. Figure 3.1 illustrates these structures. Both generator and

consumer nodes include a pointer to a dependency frame. The generator nodes include

an extra pointer to a fundamental building block of predicate tables, the subgoal frame,

an important data structure that is later explained, in subsection 3.2.2, in the context

of table organization.

CP_ALT

Interior CP

CP_CP

CP_TR

CP_H

CP_B

CP_ENV

CP_ALT

Generator CP

CP_CP

CP_TR

CP_H

CP_B

CP_ENV

CP_ALT

Consumer CP

CP_CP

CP_TR

CP_H

CP_B

CP_ENV

CP_SG_FR

CP_DEP_FRCP_DEP_FR

Figure 3.1: Structure of interior, generator, and consumer choice points

For definite programs, four main types of operations may be performed to operate

over the search and table spaces:

Tabled Subgoal Call checks for the presence of a subgoal in the table. For the

first call ever, it allocates a new generator node and inserts the subgoal into the

table. For subsequent calls, it allocates a consumer node and starts consuming

the available answers;

New Answer returns a new answer to a generator node. Each newly generated

answer is looked-up in the table and, if not present, it is inserted into that data

structure. Otherwise, the operation fails, thus avoiding unnecessary computa-

tions and, in some cases, looping;

Answer Resolution returns answers for a consumer node. Whenever such a node

is reached, possible newly found answers are looked-up in the table and, if any
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are available, the next one is consumed. Otherwise, the operation suspends

the current computation and schedules a possible resolution to continue the

execution. Answers are consumed in the same order they are inserted into the

table;

Completion determines whether a tabled subgoal is completely evaluated, i.e., if the

full set of resolutions for the subgoal is already found. In that case, the subgoal’s

table may be closed and the related stack positions reclaimed. Otherwise, a

possible resolution must be scheduled on order for execution to proceed. This

operation occurs when a generator node is reached by backtracking and all of its

clauses have been already tried.

Although a crucial operation for tabling, completion may become a difficult task when

several subgoals are mutually dependent, i.e., when subgoals depend upon each other

for evaluation purposes and therefore must be completed together. In such cases, the

subgoals form what is denominated a strongly connected component (SCC), where the

oldest is called the leader of the SCC.

3.1.3 The Suspension/Resumption Mechanism

Performing tabled evaluation consists of a sequence of sub-computations that sus-

pend and resume. The tabling engine must then be able to preserve the execution

environments of the suspended sub-computations, so that they can be later recovered

whenever evaluation is resumed.

The introduction of a new kind of registers, the freeze registers, enables YapTab to

suspend the computation environments of incomplete tabled subgoals whenever its

consumer nodes exhaust all available answers. A set of these registers is adjusted to

conserve the tops of each one of the WAM stacks (local, heap and trail), preventing

the elimination of all data belonging to suspended branches up to the time of their

completion. A significant improvement can be achieved if freeze registers are updated

whenever a new consumer choice point is allocated, since this guarantees that (i) the

stacks are already protected by the time of the consumer’s suspension and (ii) the

adjustment of the freeze registers happens only once.

Upon completion, the frozen space is released by adjusting the freeze registers to the
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top stack values stored in the youngest consumer choice point that is younger than

the current completion choice point. The reference to the consumer node is kept in

the top dependency frame, pointed by the TOP DF register.

In some situations, the current top stack registers may point to positions older than

the ones pointed by the freeze registers. To guarantee that the frozen segments are

secured, the engine must guarantee that the next stored data is always placed at the

younger position of both registers. By default, this is accomplished by (i) comparing

the two registers and determining the youngest - this is the case for the local stack;

(ii) ensuring that the top stack register is always the youngest of the two - this is the

case for the heap and trail stacks.

An extension of the standard trail, the forward trail, is used to restore the binding

values of the suspended branch before the execution is resumed. Each trail entry

consists of two fields: the first one stores the address of the trailed variable; the second

stores the value that is to be later restored into the variable. The chain between the

frozen segments is maintained through an extension to the YAP trail, enabling it to

store extra information beyond the standard variable trailing, in a similar way to that

used to handle dynamic predicates and multi-assignment variables.

3.1.4 Scheduling Strategies

After suspension, one of several scheduling strategies may be applied to decide which

operation to perform next. In a sequential system, this choice has an important influ-

ence both in the architecture and the performance of the abstract machine [FSW96,

FSW97]. YapTab implements Batched Scheduling and Local Scheduling [FSW96]

strategies.

Batched scheduling organizes clause execution in a WAM-like manner. It does so by

favoring, in decreasing order of importance, forward execution, backtracking, consum-

ing answers and completion. Newly found answers are stored in the tabled space and

execution proceeds. New dependencies with older subgoals may contribute to enlarge

the SCC, in which case the completion point must be delayed to an older generator

node. Upon backtracking, the nature of the next action to be performed is determined

accordingly to the following rules: (i) if a generator or interior node with available

alternatives is reached, the next program clause is taken; (ii) if a consumer node is
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reached, the next unconsumed answer is taken from the table space; (iii) whenever no

available alternatives are found, verify if the reached node is the leader of the SCC. In

this case, a check for completion must be performed. Otherwise, and if no unconsumed

answers are available, simply backtrack to the previous node on the current branch.

Local scheduling tries to evaluate subgoals in the most possible independent way,

processing one SCC at a time. Newly found answers are stored in the tabled space and

execution fails, leading to the complete exploration of the SCC before returning any

computed answers. Thus, the delivery of answers to the environment of the current

SCC is delayed until all program clauses involving the corresponding subgoals are

resolved. Due to the early completion of subgoals, less dependencies between subgoals

are expected.

None of these two strategies may be considered better than the other. Batched

scheduling provides immediate propagation of variable bindings, but is prone to the

appearance to complex SCC dependencies. Conversely, local scheduling avoids de-

pendencies most of the times but, lacks variable binding propagation. This last fact

leads to significant overhead when returning the answers from the table, which in turn

makes local scheduling slower, both in SLG-WAM [FSW96] and YapTab [RSS00].

3.1.5 Completion

Completion is required to recover space, and, in non-definite programs, to support

negation. Before applying this operation on the leader of an SCC, the scheduler must

ensure that all answers have been returned to all consumer subgoals in the SCC. Two

essential algorithms, the fixpoint check procedure and incremental completion, are used

for this purpose. The detailed description of these algorithms’ implementation for the

original SLG-WAM may be found in [Sag96, SS98]. For YapTab, these algorithms are

implemented as follow.

The fix-point check procedure, an iterative process defined at engine level, is executed

whenever execution backtracks to a generator choice point. It begins by verifying

if the reached choice point is the leader of the SCC. In that case, the dependency

frames associated with the younger consumer nodes in the SCC are traversed bottom-

up to look for unconsumed answers. Every frame matching this condition causes the

resumption of execution to the corresponding consumer node. When no more uncon-
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sumed answers are found, a fixpoint is reached and completion may be performed.

This includes marking all subgoals in the SCC as completed and the deallocation of

the younger dependency frames. When the reached choice point is not the leader,

the taken action depends on the selected scheduling strategy. In local mode, the

procedure consumes all available answers for the choice point. In batched mode, it

simply backtracks to the previous node.

The incremental completion mechanism, first appearing in [CSW95], reclaims the stack

space occupied by subgoal sets when their evaluation is considered to be complete,

rather than waiting for all subgoals to complete. By cleaning up the stack in this way,

the mechanism increases the efficiency of the tabling engine in terms of memory space

and consequently it improves its effectiveness on large programs.

It is possible to further improve the performance of incremental completion by intro-

ducing a new design feature, the completed table optimization. This technique avoids

the allocation of a consumer node for repeated calls to a completely evaluated subgoal.

Instead, whenever such calls occur, a modified interior node is allocated to consume

the set of found answers executing compiled code directly from the subgoal’s table

data structures [RRS+95, RRS+99].

3.1.6 Instruction Set for Tabling

The new set of instructions used to support the tabling operations is based on the

WAM instruction set.

The table try me instruction extends the WAM’s try me instruction to support

the tabled subgoal call operation. It is called in three different situations - the

subgoal at hand corresponds to (i) the first call to the subgoal; (ii) a variant call

to the incomplete subgoal; (iii) a variant call to the completed subgoal. In the

first case, the called subgoal is inserted into the table space, a new generator choice

point and a new dependency frame are pushed, respectively, onto the local stack and

onto the dependency space, and execution proceeds by executing the next compiled

instruction. In second case, a consumer choice point is allocated and control proceeds

to the answer resolution instruction, which starts to consume the already available

answers. The third and last case leads to the implementation of the completed table

optimization and consequent execution of compiled code directly from the subgoal’s



3.1. EXTENDING YAP TO SUPPORT TABLING 61

table data structures.

The table retry me and table trust me instructons differ from their WAM’s retry me

and retry me relatives because they always restore a generator choice point, rather

than an interior (WAM-style) choice point. These two tabling instructions termi-

nate differently. While table retry me continues to the next compiled instruction,

table trust me proceeds to the completion instruction.

As in the WAM case, a small optimization may be introduced when tabled predicates

are defined by a single clause. In such cases, clauses are compiled using the

table try me single instruction. Similarly to the table trust me instruction, this

instruction is followed by the completion instruction.

The new answer instruction implements the new answer operation. The instruction is

responsible for the introduction of new answers into the tabled space. Since this is the

final instruction produced by the compiler, by the time it is, all variables occurinng

in the body of the clause have already been instantiated. As a consequence, the

binding substitution that identifies the answer for the subgoal can be obtained by

de-referencing the arguments. If the answer is not yet found in the table space, it

is inserted by allocating the required data structures. Otherwise, the operation fails.

As previously seen, the final result depends on the adopted scheduling strategy: for

batched mode, the instruction succeeds and execution proceeds to the next instruction;

for local mode, the instruction fails.

Another new instruction, answer resolution, is responsible for guaranteeing that all

answers are given to each variant subgoal once and only once. The answer resolution

operation gets executed through backtracking or through direct failure to a consumer

node in the fix-point check procedure. The instruction starts by looking for uncon-

sumed answers. If any are found, the next one is recovered from the table space and

execution proceeds. Otherwise, it schedules a backtracking node.

The completion instruction implements the fix-point check procedure. It takes place

when execution backtracks to a generator leader node that has exhausted all of its

clauses.

Figure 3.2 shows the resulting compiled code for the two clauses of the tabled predicate

path/2, introduced in the example program appearing in Fig. 2.3. Since this predicate

is defined by several clauses, a table try me instruction is placed at the beginning
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of the code, taking as argument the label pointing at the start of the second clause.

This, in turn, is the last clause for path/2, so its code begins with a table trust me

instruction. Both clauses are coded in the usual WAM fashion for the head and body

subgoals, but a new answer instruction closes each block.

path/2_1:
table_try_me path/2_2 // path
get_variable Y1, A2 // (X,Z) :-
put_variable Y2, A2 // arc(X,Y
call arc/2 // ),
put_value Y2, A1 // path(Y,
put_value Y1, A2 // Z
call path/2 // )
new_answer // .

path/2_2:
table_trust_me // path(X,Z) :-
call arc/2 // arc(X,Z)
new_answer // .

Figure 3.2: Compiled code for a tabled predicate

3.2 The Table Space

YapTab includes a proper space for tables. The table space can be accessed in a

number of ways: (i) to lookup a subgoal in the table and if not found insert it; (ii) to

verify whether a newly found answer is already in the table and, if not, insert it; and

(iii) to load answers to variant subgoals. The performance of these operations largely

depends on the implementation of the table itself; being called upon very often, fast

look up and insertion capabilities are mandatory. Millions of different calls can be

made, hence compactness is also required. The YapTab table space is implemented

using tries, as suggested by Ramakrishnan et al. [RRS+95, RRS+99]. The authors

proposed the tabling trie [RRS+95] as a variant of the discrimination net [BCR93]

formalism introduced by Bachmair et al.. Given a set T of terms, tries can be used to

produce a partition accordingly to the terms’ structure, thus enabling the definition of

efficient lookup and insertion routines. A tabling trie is a tree-structured automaton

in which the root represents the start node and the leaves correspond to the terms

in T . Each internal state specifies a symbol to be inspected in the input term when

reaching that state. The outgoing transactions specify the function symbols expected

at that position. A transaction is taken if the symbol in the input term at that position
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matches the symbol on the transition. On reaching a leaf state the input term is said

to match the term associated with the leaf. The root-to-leaf path corresponds to a

pre-order traversal of a term in T .

3.2.1 Tabling Trie Properties

Ramakrishnan et al. enumerates the main advantages of using tries to implement

tabling in [RRS+99], from which we borrow some important topics. Please refer to

that paper for further explanation on the subject.

One of the most important properties of tries is their compactness. Root-to-leaf

paths branch off each other at the first distinguishing symbol, assuring that common

prefixes for represented terms are stored only once, while guaranteeing a complete

discrimination for all terms. Clearly, the number of terms with common prefixes

greatly influences the compactness of a tabling tree.

Let us use Fig. 3.3 to demonstrate this property. Initially, the trie contains only the

root node. Then, as the t(X,a) term is inserted, three nodes are generated: one for

the functor t/2, one for the variable X and one for the constant a (Fig. 3.3(a)). Next,

the u(X,b,Y) term is inserted. Since the inserted terms do not share common prefixes,

four new nodes are inserted into the trie (Fig. 3.3(b)). At last, the t(Y,1) term is

inserted. Now, this term shares two nodes with the first inserted term, namely, the

functor and variable nodes. Hence, only the last sub-term, the constant 1, requires a

new node(Fig. 3.3(c)).

Notice that variables are stored following the formalism proposed by Bachmair et al..

Each variable is represented as a distinct constant [BCR93]. Formally, this corre-

sponds to a bijection numbervar(), defined from the set of variables in a term to the

sequence of constants VAR0,...,VARN, such that numbervar(X) < numbervar(Y) if X is

encountered before Y in the left-to-right traversal of a term. This standardisation is

performed while a term is being inserted in a trie, thus allowing the detection of terms

that are the same up to variable renaming.

A second important property is the efficiency of the access algorithms. For an insert

or check operation, a single traversal of the input term is required. Let us see why

this is so.
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Figure 3.3: Using tries to represent terms

When checking for the presence of a term in a trie, a transition is taken every time the

next element of the input term matches one of the outgoing function symbols of the

current node. If a leaf node is reached, the checking succeeds, otherwise the checking

operation fails at the state where no outgoing transition may be taken.

Inserting a new term requires a check for its presence first, but the mode in which

the trie is structured enables the collapsing of the two steps. Whenever the new input

term shares a common prefix with a previously stored one, the checking routine fails

at the point of differentiation. A new node representing the current input term is then

inserted into the trie and an outgoing transaction to it is added to the node where the

point of failure was reached. The remaining input terms are stored in the same manner,

and when the last input term is reached, its corresponding node becomes a leaf. In

the worst-case scenario, the search fails at the root node and the insertion requires

the allocation of as many nodes as needed to represent the entire path. Conversely,

inserting repeated terms into the table requires no node allocation at all; in fact, this

resumes to a check traversal.

In all the presented cases, the internal nodes of the traversed paths are visited only

once. Furthermore, the two operations may be merged without changing their com-

plexity. Usually, the merger is referred to as the insert/check function.
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3.2.2 Table Organization

In YapTab, tables are implemented using two levels of tries, one for subgoal calls,

other for computed answers. This separation, called substitution factoring, promotes

the data structure compactness and improves the efficiency of the access methods,

therefore introducing minimal impact on the engine performance. In fact, Ramakr-

ishnan states in [RRS+95, RRS+99] that for any given subgoal G and an answer A
for G, the use of substitution factoring guarantees the execution of the insert/check

and answer backtracking routines in time linear to the proportional size of the answer

substitution of A. Figure 3.4 illustrates the concept.

Table Entry

Subgoal
Frame

Subgoal
Frame

Subgoal
Frame

Subgoal Trie Structure

Answer
Trie

Structure

Answer
Trie

Structure

Answer
Trie

Structure

Tabled
Predicate

Compiled Code

Figure 3.4: Using tries to organize the table space

YapTab’s table space is thus organized in the following way. Each tabled predicate has

a table entry data structure assigned and inserted into the table space. This structure

acts as the entry point for the subgoal trie. Each unique path in this trie represents

a different subgoal call, with the argument terms being stored within the subgoal trie

nodes. The path ends when a subgoal frame data structure is reached. This structure,

in turn, acts as an entry point to the answer trie and holds additional information

about the subgoal. Each unique path in this trie represents a different answer, with

the substituting factors for the free variables in the called subgoal being kept inside

the answer trie nodes.

Figure 3.5 exhibits the details of the two main data structures used to control the flow

of a tabled computation: the trie node and the subgoal frame.
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Figure 3.5: Structure of trie nodes and subgoal frames

The subgoal frame structure is divided into six fields: SgFr gen cp is a back pointer to

the corresponding generator choice point; SgFr answer trie points at the top answer

trie node; SgFr first answer points at the leaf answer trie node of the first available

answer; SgFr last answer points at the leaf answer trie node of the last available

answer; SgFr state is a flag that indicates the current state of subgoal; SgFr next

points at the next subgoal frame.

The subgoal state changes throughout evaluation. Its state is said to be ready when no

generator choice point is assigned to the subgoal frame; evaluating when an assigned

generator choice point is being evaluated; and complete when the generator is fully

evaluated and consequently removed from the execution stacks.

The answer trie leaf nodes are chained as a linked list. Leafs are linked in order

of insertion so that recovery may happen the same way; this is done using their

TrNode child field. The subgoal frame SgFr first answer and SgFr last answer

fields are set to point, respectively, at the first and last answers of this list; in particular,

the second pointer is updated at each new answer insertion. This chain guarantees

that, starting from the answer pointed by SgFr first answer and following the leaf

node links, SgFr last answer is reached once and only once. Consumer nodes can

then use the established chain to guarantee that no answer is skipped or consumed

twice. This may be done with the help of a pointer to the next unconsumed answer,

kept inside the associated dependency frame. A variant subgoal call can retrieve the

already computed answers following the chain in a single direction, updating the next

unconsumed answer pointer as it goes along. Each answer may be loaded traversing

the answer trie in a bottom-up order until the subgoal frame is reached.
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When performing completion, YapTab uses the SgFr next pointer to reach the subgoal

frame for the youngest generator older than the current choice point. The TOP SG FR

register may be used to access the subgoal frames chain, since it points at the youngest

subgoal frame.

The trie node consists of four fields: TrNode symbol stores the YAP term assigned to

the node; TrNode parent stores the memory address of the node’s parent; TrNode child

stores the memory address of the node’s first child; TrNode next stores the memory

address of the immediate sibling node.

The presence of all these pointers in the trie node structure enables a powerful trie

navigation method. Given a particular node, the complete list of outgoing transitions

can be determined by a simple iteration: make the child node the current node and

consider its term field the first possible transaction symbol; while the current node’s

sibling pointer is a valid address, make it the current node and consider its term field

the next alternative transaction symbol.

The TrNode symbol field is destined to hold the subgoal’s sub-terms. As previously

observed, in subsection 2.1.1, logical terms may assume a large variety of forms, such

as variables, numeric values of several precision ranges, character strings, or compound

terms like pairs and applications. However different in size and nature, YAP is required

to handle all of these types uniformly.

Internally, YAP terms are 32 or 64-bit structures divided into two main sets, mask and

non-mask bits, used respectively to distinguish among the several types of terms and

to store the actual primitive value for the term. Obviously, the mask bits cannot be

used for data storage purposes, which means that the available space for the non-mask

bits may be smaller than the one required for the usual underlying representation of

primitive values. The rule of thumb is then to place the primitive value into the term’s

non-mask slot if it fits, otherwise keep the primitive value somewhere else in memory

and store that memory address into the non-mask slot of the term. This is the case,

for instance, of atom terms, whose primitive value is kept in the symbols table.

However, the indirection schema is not very useful in the case of long numeric primi-

tives1. In fact, YAP splits these primitive values and places the pieces in consecutive

1Floating-point numbers, for instance, usually require twice the physical space used by integer

numbers.
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stack cells. YapTab’s insert/check function mimics this behaviour in order to simplify

the transference of data between the tries and the stack. Two possible situations are

contemplated: if the numeric term is relatively small, a trie node is allocated to hold

it, otherwise, the term’s primitive value is split into pieces small enough to fit into a

generic YAP term and a sufficient number of trie nodes is allocated to store the pieces;

additional special markers are placed into the trie branch to delimit the data area.

Figure 3.6 illustrates how the presented data structures are used to build and navigate

a tabling trie. At the bottom, the figure displays the state of the predicate table f/2

after the execution of the tabled instructions presented in the top box.

Subgoal frame
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SgFr_first_answer
SgFr_last_answer
SgFr_answer_trie

Table entry for f/2

Subgoal frame
for f(VAR0,a)

a
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DF

Figure 3.6: Table structures for f/2

Initially, when the predicate is compiled, the table entry is inserted in the table space

and a new subgoal trie is created containing only the root node. When subgoal f(X,a)
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is called, two internal nodes are inserted: one for the variable X, and a second last for

the constant a. The subgoal frame is inserted as a leaf, waiting for the answers to

appear. Then, subgoal f(Y,1) is inserted. It shares one common node with f(X,a),

but the second argument is different so another subgoal frame needs to be created.

Next, answers for f(Y,1) are stored in the answer trie as their values are computed.

Notice how the different primitives values are stored in the answer trie, as previously

discussed. The first and third terms, respectively an integer and an atom, easily fit

in a single trie node. On the other hand, the second and fourth terms, respectively a

32-bit integer and a 64-bit double, exceed the available space, hence they are split and

stored in multiple nodes. Recall that these terms must each be surrounded by two

additional special markers to delimit their true value; the marker nodes are tagged

with the long int functor (lif) and the double functor(df).

3.3 Efficient Support for Tabling

The increasing interest and research on tabling execution models has resulted in

exciting proposals for practical improvements. Sagonas and Stuckey proposed the

just enough tabling (JET ) mechanism [SS04], introducing the possibility to arbitrarily

suspend and resume a tabled evaluation without the need for full recomputation.

Saha and Ramakrishnan proposed in [SR05] an incremental evaluation algorithm to

freshen the tables in case of addition or deletion of facts and/or rules that avoids the

recomputation of the full set of answers. Rocha et al. [RSC05] proposed the ability

to support a mixed-strategy evaluation, using both batched and local scheduling, that

may change dynamically in run-time. This last proposal has been implemented in

the YapTab engine, hence this is a relevant topic to be further explored in this thesis

context.

The choice of a scheduling strategy has a direct influence in the efficiency of a tabled

evaluation. In fact, Rocha suggests that the best performance can be achieved when

batched or local scheduling strategies are chosen accordingly to the nature of the sub-

goals to be evaluated [RSC05]. In YapTab, batched scheduling is the default strategy;

program clauses are scheduled in a depth-first manner, favoring forward execution and

automatically propagating new answers as they are found. Local scheduling, on the

other hand, tries to force completion before returning any computed answers. This
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eliminates complex dependencies within the SCC, albeit it may result in an inglorious

effort: the table may be scarcely used or a small initial subset of answers may be

sufficient for a subgoal evaluation to succeed.

For some applications, the previous discussion is of the highest relevance. The deci-

sion process becomes crucial when pruning operations over the tabled predicates are

introduced. This potentiates the appearance of incomplete tables when the full set of

answers is not yet determined by the time the pruning takes place. By removing the

computational state of the pruned subgoals from the execution stacks, the already

found answers become unreliable to subsequent variant calls, since information is

no longer protected and may have been overwritten meanwhile. The use of local

scheduling may sound appealing, since it avoids incomplete tabling. However, as

explain before, this might not be adequate.

Memory exhaustion may occur when applications produce large table spaces, possibly

with many large tables resulting from sub-computations. In such situations, the only

way to continue execution is to arbitrarily remove some tables, hopefully the ones least

used. Most tabling systems allow the programmer to arbitrarily remove tables from

memory through calls to specialized built-in control predicates.

The remainder of this section introduces YapTab’s approach for the presented prob-

lems. Incomplete tabling is addressed first, to introduce important concepts. Memory

recovery is addressed next.

3.3.1 Incomplete Tabling

Most systems handle incomplete tables in the simplest way possible: they are thrown

away and recomputed every time. YapTab implements by default a different approach,

keeping the incomplete tables for pruned subgoals. A later variant call starts by

consuming the incomplete table, with recomputation occurring if and only if the

previously computed answers have already been consumed. If the subgoal is pruned

again, the process repeats itself and, eventually, a complete evaluation is reached.

The purpose of this procedure is to avoid recomputation when the stored answers are

sufficient to evaluate a variant call.

To support incomplete tables, the subgoal frame structure must be altered. A new
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state, incomplete, is made available to signal subgoals whose corresponding gener-

ator choice points were pruned from the stacks. To guarantee that no answer is

ignored or consumed twice when evaluating repeated calls to pruned subgoals, a new

SgFr try answer field is added to hold a reference to the currently loaded answer.

The tabled subgoal call must also be transformed to handle the new state. When

this instruction is called and the subgoal is marked as incomplete, a new generator

node is allocated. However, instead of using the program clauses to evaluate the

subgoal call, the new generator loads the first available answer from the incomplete

table and places a reference to it in the SgFr try answer field. When the generator is

reached again by backtracking, a variant of the answer resolution operation is called.

This variant checks if any unconsumed answers remain in the incomplete table, and if

so, loads the next one and updates the SgFr try answer field. When all answers have

been loaded, the computation of the table is restarted from the beginning.

An important optimization may take place for subgoals with no answers. In such

cases, the subgoal frame is marked as ready instead of incomplete. When variant

calls appear, execution resumes as it was a first call rather than passing through the

described mechanism.

The use of generator points to implement the calls to incomplete tables enables the

reutilization of all data structures and algorithms used by the tabling engine without

major changes safe from the pointed out cases. At the engine level, when these

generators are placed into the execution stacks, they are regarded as first calls to

the subgoal since the previous representation has been pruned.

The described mechanism is similar to the one used in the just enough tabling. The

JET proposal uses auxiliary memory to store a copy of the segments pruned from

the execution stacks; upon latter calls, these copies are restored to resume evaluation.

Compared to JET, the YapTab approach requires no extra data areas nor does it

introduce any overhead to the pruning process.

3.3.2 Memory Recovery

Most tabling engines provide a set of built-in primitives to remove tabled subgoals

from the tabled space, and YapTab is no exception. However, YapTab provides a
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more robust approach with the least recently used algorithm, a memory management

strategy that dynamically recovers the space allocated to the least recently tables when

memory is exhausted. Programmers may thus delegate the choice of which tables to

delete on the memory management system.

Table elimination must be performed guaranteeing that no errors are introduced into

the evaluation and that no relevant information is lost in the process. To avoid

tampering with the SLG-evaluation search space, the algorithm must determine if

the candidate subgoal table is represented in the execution stacks. Such presence

may be in the form of (i) a generator choice point allocated to handle either a first

call to the tabled subgoal or a repeated call after pruning; (ii) any consumer choice

points allocated to handle variant calls to the tabled subgoal; (iii) any interior nodes

allocated to handle a completed table optimisation. In what regards to the search

space, a subgoal then is said to be active if it is represented in the executions stacks.

Otherwise, it is said to be inactive. Inactive subgoals are thus solely represented in

the table space [Roc07].

In the table space, the state of a subgoal may be ready, evaluating, complete or

incomplete. Subgoals in the ready and incomplete states are inactive, while subgoals

in the evaluating state are active. Subgoals in the complete state may be either active

or inactive. A new state, complete-active, is introduced to signal active completed

subgoal calls. The former complete state now indicates that the subgoal is inactive.

This change enables the distinction of the two cases without changing the subgoal

frame implementation.

When the system runs out of memory, the least recently used algorithm is called to

recover some of the space allocated to inactive subgoals. Figure 3.7 illustrates the

process. Subgoal frames corresponding to inactive subgoals are chained in a double

linked list using two subgoal frame fields, SgFr next and SgFr previous. Two new

global registers, Inact most and Inact recover, point respectively to the most and

least recently inactive subgoal frames. The algorithm starts at the last register and

navigates through the linked subgoal frames, using the SgFr next field, until a page of

memory can be recovered. Only the tables that store at least one answer are considered

for space recovery (completed nodes with a yes/no answer are ignored), and for these

only the answer trie space is recovered. Rocha argues that for a large number of

applications, these structures consume more that 99% of the table space [Roc07].
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Figure 3.7: Recovering inactive tries space

During execution, the inactive list is updated whenever subgoals become inactive

by executing completion, being pruned or failing from internal nodes that have just

finished to execute compiled code from the answer table. In the latter case, the space

allocated to the subgoal table can only be recovered when all interior nodes in such

conditions are made inactive. YapTab uses the trail to detect this situation. On the

other hand, every inactive subgoal that is activated by a repeated call must be removed

from the inactive list. The tabled subgoal call is transformed to implement this

state transition.

Despite the improvement introduced to memory management by the least used al-

gorithm, situations may arise when the space required by the set of active subgoals

exceeds the available memory space and the algorithm is incapable of recovering any

space from the set of inactive subgoals. In such cases, Rocha suggests the resource to

an external storage media, such as a relational database, to store the already found

data before removing it from memory. When later required, tables can be loaded from

this external storage avoiding possible recomputation overhead. The same situation

may occur for inactive subgoals and, in particular, the memory management algorithm

may be used to decide what tables to store externally, rather than eliminating them.

Rocha’s suggestion motivates the work developed in this thesis ambit. The remaining

chapters present the proposed relational models, the implementation of DBTab and

the discussion of gathered results.
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3.4 Chapter Summary

This chapter introduced the YapTab engine, an extension to the YAP Prolog system to

support sequential tabling. It started by briefly presenting the YapTab tabling engine

and comparing it to the SLG WAM as first implemented in the XSB system. The focus

was then moved to its key aspects, namely, a novel data structure, the dependency

frame, and the new completion detection algorithm based on it. It was explained how

YapTab innovates by considering that the control of leader detection and scheduling of

unconsumed answers should be done at the level of the data structures corresponding

to variant calls to tabled subgoals.

The table space, the organization of tables and their internal components were pre-

sented next in a separate section, due to their importance to the remainder of this work.

At last, some optimizations to the YapTab original implementation were described.

These optimizations focused on the efficient handling of incomplete and complete

tables. The least recently used algorithm was presented and its possible applications

were discussed, in particular those which became the motivation for the present work.



Chapter 4

Relational Data Models for Tabling

This chapter begins by introducing the reasons why tabling may benefit from external

memory storage mechanisms, such as relational databases. Two possible relational

schemes are discussed, along with the required transactional algorithms, their advan-

tages and disadvantages. Primitive value handling for YAP terms is also discussed, in

both contexts. Finally, the last section discusses meta-data as a mean for databases

schema partitioning.

4.1 Motivation

Although a powerful tool, tabling still has flaws. For some classes of problems, the

table space becomes so big that it exhausts the main memory. This state of memory

exhaustion disables the engine’s ability to solve the proposed queries. Tabling engines

generally address this problem by arbitrarily removing tables from the table space to

recover some memory, thus allowing execution to proceed. However, this is not an

adequate approach since the information kept in those tables may be required almost

immediately after removal.

Arguably, Rocha’s least used algorithm for memory recovery provides a safer and

stronger approach [Roc07]. In YapTab, subgoal calls are classified as active or inactive

according to their presence in the execution stacks. A linked list of the inactive subgoal

frames is kept, ordered by time of inactivation, so that the algorithm may select the

ancient unused answer tries with at least one answer for removal. If the algorithm

75
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fails to find any candidate subgoals, there is no choice other than arbitrary removal.

Rocha suggests that, for such situations, an external data media like a relational

database could be used to dump the older tables before recovering their assigned

memory pages [Roc07]. Later calls to the removed tables could be resolved by loading

their externally stored representations into memory tries, thus enabling the established

machinery to continue as if the tables were never removed.

Our proposal pursues this idea and considers the storage of all tabling tries chosen

by the algorithm for removal. We consider that, for a certain class of problems,

tabling tries should be constructed once and dumped to/recovered from auxiliary

memory whenever required. This is expected to improve execution performance for the

set of subgoals whose transaction and trie reconstruction times exceeds the complete

reevaluation of previously found sets of answers.

4.2 Tries as Relations

Mapping tree-based data structures, such as tries, to relational database tables and

vice-versa is a long known discussion topic in several research fields, from database

systems [CA97, Gen03] and data retrieval languages [AU79, CH80] to a more recent

area of XML storage and analysis [FK99, STZ+99, SKWW01, TVB+02, BFRS02,

AYDF04].

Finding a solution to this problem constitutes an interesting challenge due to the

difference between the two formalisms. The tree-to-table transformation faces its main

difficulty in the fact that the hierarchical nature of tries is not well handled in the

relational world [STZ+99, Gen03]. Conversely, the table-to-tree transformation is hard

because ther is no intrinsic ordering for the tuples belonging to a relation [Cod70],

thus the relation is required to include sufficient information within its attributes to

assure that the correct hierarchy among nodes is preserved when the tree is built.

Florescu et al. developed some interesting and useful solutions [FK99] for a simi-

lar problem1. The authors suggested three methods to store and query tree-based

1The authors suggest that XML documents can be mapped to ordered direct graphs that largely

resemble YapTab tabling tries in that: (i) both graphs start at single root node; (ii) each element is

represented as a node in the graph; (iii) parent-to-child relationships are the edges in the graph;(iv)
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structures using a relational database, two of which (denominated Edge and Universal

table) resemble the ones proposed in the context of this thesis.

Regardless of the used relational representation, storing a tree structure into a re-

lational schema requires a traversal of the entire set of branches. In what concerns

to YapTab tabling tries, the information stored in the nodes enables two possible

directions for branch traversal: bottom-up (from leaf to root) or top-down (from root

to leaf). The best way to choose is to inquire the state of the associated subgoal in

YapTab:

• whenever a subgoal is active and incomplete, new nodes may be inserted anytime

and anywhere in an answer trie due to the asynchronous nature of the answers

insertion and consumption operations. In this scenario, top-down control algo-

rithms require complex implementations hence answer tries are usually traversed

in a bottom-up manner, efficiently guaranteeing that all the nodes are visited;

in particular, the ones in the vicinity of the root (included) more than once.

• when a subgoal becomes inactive, or completed, it is removed from the execu-

tion stacks as a consequence, hence the corresponding trie becomes immutable,

enabling top-down algorithms. In particular, this is the mode in which the trie

is navigated after the completed table optimization takes place. It may be used

to efficiently guarantee that all the nodes are visited only once.

Constructing a tree from a relational table requires a correct ordering of the set of

tuples. In the case of YapTab, this ordering is even more important, since it is expected

that the trie branches are reconstructed and reordered as originally stored. From the

set of tuples belonging to the relation, the reconstruction of the trie may be done

either by creating the nodes and placing them one by one into the trie structure, or by

reconstructing the stored terms and passing them to the insert/check function, letting

it handle the creation and placing of nodes.

4.2.1 Tries as Sets of Subgoals

For any given subgoal, the corresponding table entries are used to collect its already

known answers. The enumeration of all these answers may be regarded as a set of

the outgoing transactions of a node to another are maintained as edges in the graph.
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ground predicate facts that are known to hold in the subgoal execution context. Since

predicates are known to have a functor and a fixed set of subterms, they can be

mapped to a fixed size structure like a database relation. This idea is not entirely

new; in fact, as observed back in subsection 2.3.2, one may consider storing the set of

answers extensionally as Datalog facts. From this point on, we shall denominate this

model as the Datalog model.

The main idea is straightforward: each tabled predicate p of arity n (p/n for short) is

mapped into a relation Pn with n attributes

Pn(arg1 : term, . . . , argn : term)

and each answer for p/n is mapped to a tuple belonging to Pn in which the subterms

of the predicate provide the values for the relation attributes. The uniqueness of each

answer in the subgoal table is enforced by the association of all the argk attributes to

form the relation’s primary key.

This proposal is somewhat loose in what comes to answer ordering itself. There is

no guarantee that the relation tuples are recovered in the same order as they where

created, hence the resulting predicate table may have its answers ordered differently

than the original one. The solution lies in imposing an unique sequential identifier to

the tuples as they are inserted. The Pn relation has its set of attributes enlarged to

Pn( order : answer id, arg1 : term, . . . , argn : term)(I)

where order becomes the primary key of the relation. For the intended purpose, the

answer id may be simply mapped to a relational integer domain. The mapping

between logical terms and relational domains is a big problem in the context of this

relation and will be later addressed. For the time being, assume that all terms,

regardless of their types, may be expressed in an universal representation.

In this mapping schema, storing the table that holds the information regarding the

subgoal into the database relation becomes equivalent to that of enumerating the entire

set of answers for a given subgoal. In the particular case of YapTab, this means that

such an algorithm must browse through the respective answer trie while undoing the

substitution factoring in the process. The pseudo-code for the storing algorithm is
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shown in Fig. 4.1.

store(subgoal frame sg_fr) {
answer id answer_id

{TEMPLATE} = fetch_subgoal_terms(sg_fr) // #{TEMPLATE} = ARITY(sg_fr)

answer = FIRST_ANSWER(sg_fr)
while answer <> nil {

answer_id = create_answer_id()
{TERMS} = bind_answer_terms({TEMPLATE},answer)

INSERT INTO Pn (ORDER,ARG1, ..., ARGn)
VALUES (answer_id, TERM1, ..., TERMn)

answer = CHILD(answer) // Next answer in insertion order
}

}

Figure 4.1: Storing an answer trie flatly

Initially, the function begins to create a new array of terms, called the template, whose

size matches the arity of the subgoal. To initialize this array, the subgoal trie branch is

traversed from leaf to root, checking the value of the term field for each reached node.

Whenever a bound term is found, a copy of its value is placed in the respective position

of the template array; otherwise, the position is left blank, indicating the finding of

a variable term. The attention is then turned to the answer trie, cycling through its

branches in order to parse all known answers2. Again, each branch is traversed leaf

to root and the term values stored inside the nodes term field are used to instantiate

the remaining blank positions in the template array, thus producing the tuple that is

to be stored into the relation.

The presented storing algorithm guarantees that

• a single bottom-up traversal of the subgoal branch is required to construct the

template, a single bottom-up traversal of each answer branch is required to

instantiate the template;

• navigating the answer trie branches in insertion order ensures that each branch

is traversed only once;

2Recall that the subgoal frame includes two special pointers to the first and last known answers

and that insertion order is preserved through the child pointer of the leaf nodes, as mentioned back

in subsection 3.2.2
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• a single insertion operation is performed for each tuple, conveying the entire set

of its subterms;

• subterm order within the answer is maintained intrinsically by the relation’s

order attribute;

• the tuples are correctly ordered, thus preserving the correct ordering of branches

when the trie is reconstructed.

An efficient branch-by-branch answer trie construction may be achieved simply by

retrieving the necessary tuples from the relation in correct order and, while browsing

through them, passing their attribute values to the insert/check function, letting the

function handle the placement of the input terms within the answer trie structure. The

algorithm, depicted in Fig. 4.2, has a straight-forward underlying rationale: minimize

the effort, both in data transaction and trie reconstruction stages.

load(subgoal frame sg_fr) {

<VARIABLES> = enum_variable_terms(sg_fr)
<CONDITION> = enum_ground_terms(sg_fr)

{T} = SELECT <VARIABLES>
FROM Pn
WHERE <CONDITION>
ORDER BY Pn.ORDER

foreach tuple in {T} {
insert/check(CHILD(sg_fr), tuple.ARG1, ..., tuple.ARGn)

}
}

Figure 4.2: Loading an answer trie flatly

Whenever a subgoal answer trie is to be reloaded from the database, a full retrieval

of the mapping relation may not be appropriate. On one hand, the relation holds all

the answers for a given predicate, so it is necessary to impose some sort of restriction

over the relation so that the resulting tuple set is limited to those belonging to the

called subgoal. On the other hand, the values of the attributes related with the ground

terms within the subgoal (if any) are already known; in fact, they may be found in the

subgoal trie branch. Therefore, one needs to fetch only those attributes related with

unbound variables.

Following this line of thinking, the function starts by parsing the subgoal trie branch
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to produce two sql subexpressions3. The first, denoted as <variables>, enumerates

all the Pn.argi, . . . , Pn.argj attributes of the relation associated with variable terms.

The second, denoted as <condition>, enumerates all of the restrictive conditions

over ground terms. In practical terms, it consists of a list of Pn.argk = constant

subexpressions, meaning that the relation’s kth attribute must hold a constant value.

If some variables appear more than once in the subgoal call, the restrictive condi-

tion holds a list of Pn.argm = Pn.argn subexpressions meaning that the mentioned

attributes refer to the same variable terms.

The resulting expressions are incorporated in the query expression used to consult

the database. If neither ground terms nor repeated variable terms appear in subgoal

call, all of the attributes in the relation will be present in the variable list, hence the

restriction makes no sense and may be omitted. Once the query is applied to the

relation, the resulting tuple set is consumed sequentially, passing the attribute values

in each tuple to the insert/check function that will, in turn, reconstruct the respective

trie branch. Notice that the tuples are retrieved in insertion order.

This trie loading algorithm guarantees that

• the entire set of tuples is returned;

• a single tuple selection operation is performed for all answers, thus introducing

minimal transactional overheads to YapTab performance;

• each trie branch is reconstructed in constant and minimal time4;

• the correct ordering of answers has been preserved.

Figure 4.3 presents a practical use of the proposed relation schema and algorithms.

The top right box contains a first set of instructions that is used to create and

populate the presented trie. Again, assume that at some point in execution, the trie

becomes inactive and that the recover space() function is called after that point, as

a consequence of a main-memory exhaustion situation. The storing algorithm is called

to dump the inactive trie to the database. The main cycle of the storing algorithm

3The pseudo-code shows this step divided in two for clarity purposes, in fact this is done by a

single instruction.
4Please refer to subsection 3.2.2
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uses the subgoal frame information to visit the known answers in trie insertion order

and initialize the sql instruction arguments (box a). At some posterior point in time,

a variant subgoal call occurs and the loading algorithm is called to reconstruct the

trie from the tuples in the relation. The issued select instruction (box b) retrieves

only the first subterm since the second one refers to the same variable. Notice that

the resulting R tuple set is retrieved ordered.

SELECT arg1
FROM f2
WHERE arg1=1 AND arg1=arg2
ORDER BY f2.order

1 1 1

2 1 2^30

ORDER ARG1 ARG2

f2INSERT INTO f2 (order,arg1,arg2)
VALUES (1,1,1)
INSERT INTO f2 (order,arg1,arg2)
VALUES (2,1,2^30)
INSERT INTO f2 (order,arg1,arg2)
VALUES (3,1,a)
INSERT INTO f2 (order,arg1,arg2)
VALUES (4,1,1.5)

(a)

(b)

     tabled_subgoal_call: f(Y,1)
     tabled_new_answer:   f(1,1)
     tabled_new_answer:   f(2^30,1)
     tabled_new_answer:   f(a,1)
     tabled_new_answer:   f(1.5,1)
(a)  recover_space()
(b)  tabled_subgoal_call: f(Y,Y)

Subgoal frame
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer
SgFr_answer_trie

a

root
node

DF

Answer trie
for f(VAR0,1)

1

.5

1LIF

2^30

LIF

DF

3 1 a

4 1 1.5

{R} = {(1),2^30,(a),(1.5)}

Figure 4.3: A subgoal branch relational schema

The proposed relational data model presents the following advantages:

1. a single table is required for each predicate. Different subgoal calls may easily

be stored in the same table without loss of generality, since each individual call

answer set may be distinguished by its constant terms;
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2. it allows the use of iterative algorithms both to store and retrieve the answer

tries. For storage purposes, the number of required data transactions amounts

to the number of answers; for retrieval purposes, a single data transaction is

required;

3. the loading algorithm uses the highly effective insert/check function to recon-

struct the original answer trie, thus reducing the complexity of the algorithm.

The following major disadvantages may be pointed out:

1. each node of the answer trie is visited more than once, both at storage and

retrieval. In particular, the nodes near the vicinity of the root are visited quite

often;

2. it is not minimal in terms of information, i.e., each relation holds extensionally

the complete set of answer, thus undoing the benefits of the substitution factoring

for the corresponding subgoal call;

3. it is unable to represent the entire set of terms that can be stored in a answer trie

because, since it is based on Datalog, it restricted to atomic terms. Moreover,

the same tuple structure must accommodate all possible subterms of a subgoal’s

answer. Hence, the devised mapping schema must be tailored to support the

storage of the different YAP primitive types in a common relational domain.

Two distinct approaches, discussed in the next section, may be used to solve

this problem;

4. an index is needed for each argi attribute, in order to speed-up tuple search;

5. for incomplete tries, a full traversal phase is required whenever a storing opera-

tion is requested since it is not possible to determine which answers have already

been stored and which ones where not. While no tuple regeneration is required

and new answers may be added without disrupting the previously existing ones,

a reordering of the tuples is required if the answers are to be kept in insertion

order;

6. the storage algorithm’s simplicity introduces a potential bottleneck due to the

tuple-by-tuple data transaction.
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4.2.2 Tries as Sets of Nodes

The previous model placed its focus on the answer themselves, directly mapping each

predicate answer set into a database relation. Yet, storing the complete answer set

extensionally is a space (and time) consuming task. A more fruitful approach may be

followed if one steps back a little and looks at the problem from a different perspective.

Tabling tries are organized according to the principle of substitution factoring, as

previously observed in section 3.2.2. That same line of reasoning may be applied

when mapping a predicate table into a relational representation, completely separating

the upper and lower parts of table. Moreover, in the particular context of the least

used algorithm, one can focus on the transactions involving the answer tries, since the

subgoal trie is bound to remain in memory.

The major challenge of this approach lies in the choice of a representation model.

In practice, hierarchical structures such as trees (and tries) may be divided in two

categories: those with a fixed number of levels and those without. When a fixed

number of levels is known to exist, the tree can be represented by making each level

a single column of table. Unfortunately, that results in heavy data redundancy and

does not reflect the true essence of the hierarchic structure. The best way to represent

a hierarchy with a fixed number of levels is to turn each level into a single table and,

for each pair of levels, establishing a one-to-many relationship between the lower and

the higher levels [FK99, Gen03]. Many trees, however, present a non fixed number

of levels. In particular, YapTab tries fall under this category, as observed back in

section 3.2. To mimic the very structure of tries, a possible approach is to establish

the relation as a recursive set of tuples representing the tree node [FK99, Gen03]. This

requires a different type of table, one whose attributes include enough information to

allow the correct hierarchical ordering of its records. From this point on, we shall

denominate this approach as the hierarchical model.

In YapTab, the trie hierarchy is maintained by the pointers that link the nodes. The

trie is a collection of nodes, representing the parsing states for input terms, that

are linked by pointers, representing the transitions between states [RRS+95]. Each

tree node consists of four fields, named symbol, parent, next, and child, that holds,

respectively, the expected input symbol when the node is reached, the address of the

parent node, the address of the immediate sibling of the node and the address of the
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last inserted child. If a direct mapping is performed, the Trie relation can then be

defined as

Trie(parent : node, child : node, next : node, symbol : term)

exhibiting an attribute for each field in the trie node structure. The unique positioning

of each node in the trie is determined by the conjunction of the values for its pointer

fields, so the conjunction of corresponding attributes becomes the primary key of the

relation.

Choosing a correct relational domain to map the term and node types requires some

specialized knowledge of the YAP engine. It has been observed, back in section 3.2.2,

that internal representation of terms in YAP may differ in their precision accordingly

to their primitive values. For this reason, insert/check splits larger subterms and

assigns each piece a different node in the trie branch. Since each node holds a generic

YAP term and larger terms are divided in multiple nodes, relational integer domains

may be defined to store the term fields without loss of generality.

Mapping nodes, however, is a totally different problem that can be solved in many

possible ways [MYK95]. The key attributes for the tuple may be easily instantiated

if one directly assigns the value held by the pointer fields (memory addresses) of

the node. However, those values become senseless after the removal of the trie from

memory. Another possibility is to apply the principles of the relational model as

established by Codd [Cod70] and assign a unique identifier field to each tuple. This

increases the attribute set to

Trie(this : node id, parent : node id, child : node id, next : node id, symbol : term)

where this is a unique node identifier, acting as the primary key, and parent, child

and next are identifiers of the same type, acting as foreign keys over the relation.

Several techniques may be applied to obtain the required unique identifier [AYDF04]

but, for reasons later explained, a single sequential integer counter is enough for this

purpose.

At a first glance, this would be sufficient. One could insert and retrieve the different

tuples into and from the relation using a conveniently adapted version of insert/check
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function. However, when the practical aspects are considered, one comes to the

conclusion that establishing a perfect parallelism between the node structure and the

relation tuple is not productive. Let us see why this is so.

First of all, the mapping of all the pointer fields to attributes of the relation is

troublesome. The introduction of foreign keys would enforce the consistency of data,

guaranteeing that no answers were to be lost due either to a missing or non-existing

tuple identifier. However, that would require that those attributes should be correctly

instantiated whenever a new tuple was to be inserted, which in turn would require

the previous insertion of three other tuples, representing the parent, the child and the

closest sibling nodes. Unfortunately, that would be impossible because (i) no simple

traversal algorithm could be used to insert tuples in these conditions and (ii) since the

integrity constraints would be defined over the very including relation, the restrictions

would propagate to all attempts of insertion, turning the complete process impossible.

Secondly, the implementation of an adapted insert/check function is not practical,

because navigating the relation instance to insert a single tuple would require extra

several transactions; in particular, a select for each valid output transaction (the

checking part of the algorithm). This renders the child and next attributes useless,

since no practical gains are obtained from their presence. In fact, their presence would

require some extra relational operations (at least one update instruction to the child

attribute of the preceding tuple) and a slightly more sophisticated storing algorithm.

As a consequence, one can then reduce the relation’s attribute set to

Trie(this : node id, parent : node id, symbol : term)

In order to optimize forward searches over this relation, distinct indexes are defined

over the this and parent attributes.

Last, but not least, the relation must be named in such a way that the answer trie

for which it stands for may be immediately identified. Since several subgoal calls may

originate from the same predicate, the functor and arity concatenation is not a viable

solution here, unless one would append a distinctive context identifier to it. Assuming

that such an identifier is easily computable, the previous relation can then be renamed

as
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Pn Sf(this : node id, parent : node id, symbol : term)(II)

where Sf stands for a specific subgoal context suffix.

The number of required transactions can be minimized if the answer tries are traversed

in a top-down manner (from root to leaf). The tuple storing algorithm, whose pseudo-

code is presented in Fig. 4.4, stored the trie in insertion order, proceeding as follows:

for any given trie node, label it as the current node. Look for its chain of siblings and,

if such a chain exists, follow it until the last (oldest) node is reached and mark it as

the current node. Until the initial node becomes the current one again, repeat three

instructions: (i) insert a new tuple into the relation representing the current node;

(ii) if an outgoing transaction for the current node exists, label it as the current node

and start again; (iii) fall back into the previous sibling and label it as the current one.

When both node and siblings are covered, return to the parent node and resume.

Whenever in step (ii), the algorithm must take extra precautions. Since, as previously

mentioned in section 3.2.2, leaf nodes are connected by their TrNode child fields, a

simple test to check for the presence of outgoing transactions could lead to an erroneous

interpretation of the trie. Hence, in order to assure the correct storage of the trie

nodes, the algorithm must perform a search over the leaf set (L) for the current node,

following any outgoing transaction if and only if that search fails.

store(trie node trie_node, node id parent_id) {
node id sibling_id
trie node sibling_node

{S} = SIBLING_NODES(trie_node) // trie_node included
{L} = get_trie_leaf_nodes() // trie leafs

foreach sibling_node in {S} {
sibling_id = create_node_id()
child_node = CHILD_NODE(sibling_node)

INSERT INTO Pn_Sf (this, parent, symbol)
VALUES (sibling_id, parent_id, SYMBOL(sibling_node))

if child_node and child_node not in {L} {
store(child_node, sibling_id)

}
}

}

Figure 4.4: Storing an answer trie hierarchically
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The choice of such a traversal mode during the storing phase guarantees that

• all nodes are visited only once;

• a single tuple insertion operation is performed5;

• whenever a node is reached the tuple representing its parent is already present

in relation;

• the tuples are correctly ordered, thus preserving the correct hierarchy among

nodes when the trie is reconstructed.

The opposite operation consists on the generation of an ordered list of the complete set

of tuples belonging to the Pn Sf relation. The most natural way to produce this list

is to perform an index-nested-loop as proposed by Blasgen et al. [BE77] and succinctly

described in [SC90, DNB93]. Although no standard relational algebra expression can

be used to correctly describe the attained tuple set due to the recursive nature of this

algorithm, a quite acceptable approximation can be defined as

Pn Sf ? =
n⋃

i=0

σPn Sf ′.this,Pn Sf ′.symbol (Pn Sf ′ ⊗ (σPn Sf.this=iPn Sf))

where Pn Sf ′ is just another view of the Pn Sf relation. The parent attribute

is omitted in the resulting Pn Sf ? relation since its information is required only to

establish the relationship among the tuples of Pn Sf .

The pseudo-code used to compute such a tuple set is shown in Fig. 4.5, Notice that,

in essence, it is rather similar to that defined for storage differing only in swapping of

the roles assigned to the involved data structures: the relation instance becomes the

source of data and the trie becomes the target. The algorithm proceeds as follows:

for any given tuple identifier, select the complete set of descendant tuples. For each

returned tuple, repeat three instructions: (i) create a new trie node and initialize

its parent and symbol fields with the recovered information; (ii) recall the loading

5Recall that a bottom-up traversal of the trie results in frequent visits to the nodes in the vicinity

of the root and, consequently, to repeated and undesirable attempts to insert the corresponding tuple

into the relation. If a key policy has been defined, repeated database transaction errors will occur.

Otherwise, the resulting transactions will introduce redundant information into the relation. Either

way, undesirable overheads are added to the process.
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procedure for the current tuple identifier and initialize the node’s child field with the

returned child node; (iii) initialize the node’s next field with the immediately older

sibling, if any is created; when tuples are covered, return the address of the current

node and resume.

trie_node load(trie node trie_node, node id parent_id) {
trie node new_node
trie node next_node

{T} = SELECT this, symbol
FROM Pn_Sf
WHERE parent = parent_id
ORDER BY this

next_node = nil
foreach tuple in {T} {

new_node = new trie node()

PARENT_NODE(new_node) = trie_node
CHILD_NODE(new_node) = load(new_node, tuple.this)
NEXT_NODE(new_node) = next_node
SYMBOL(new_node) = tuple.symbol

next_node = new_node
}
return new_node

}

Figure 4.5: Loading an answer trie hierarchically

The recursive nature of the proposed retrieval procedure over the entire set of the

tuples guarantees that

• the entire set of tuples is returned;

• all nodes are visited only once (when they are created);

• a single tuple selection operation is performed for each node (the list of outgoing

transactions);

• whenever a node is created, its parent has already been placed in the trie (since

it is reconstructed one level at a time);

• the correct hierarchy among nodes is preserved.

Figure 4.6 presents a practical use of the proposed relation schema and algorithms.

The top right box contains a first set of instructions that are used to create and
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populate the presented trie. Let us assume that at some point in execution, the trie

becomes inactive and that the recover space() function is called after that, as a

consequence of a main-memory exhaustion situation. The storing algorithm is called

to dump the inactive trie to the database: its main cycle visits the nodes producing

the SQL instructions used to map them into the relation tuples (box a). The visiting

order is shown by the numbers in italic placed above the nodes. Later on, when a

variant subgoal call of the tabled predicate occurs, the loading algorithm is called to

reconstruct the trie from the tuples in the relation. The issued select instructions

(box b) retrieve the Ri tuple sets, that are in turn parsed to instantiate the nodes.

Notice that the node creation order is the same as that followed in storage phase.

Two small optimizations may be observed. First, the root node is not stored, because

not only no relevant information is kept in that node but also because it is never

removed from memory during the memory recovery operation. Second, only one of

the special delimiters surrounding long atomic terms 32-bit integers or floating-point

numbers is required to identify the specific primitive type6.

The proposed relational data model presents the following advantages:

1. it is minimal in terms of information, storing no more data than the one available

in the answer trie. In other words, each relation holds the substitution factoring

of the corresponding subgoal call;

2. it is able to represent the entire set of terms that can be stored in an answer

trie, including list and application terms. This is guaranteed by the fact that the

value of each node has its symbol field copied into the corresponding attribute

of each record;

3. each node of the trie is visited only once, both at storage and retrieval;

4. the retrieval and reconstruction of the answer trie is self-contained and direct,

i.e, the loading algorithm inserts the nodes in the correct position without having

to reconstruct the original terms and pass them to the insert/check function.

Unfortunately, it also presents some major disadvantages:

6Please refer to section 4.3 for an insight on this topic.
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THIS PARENT SYMBOL

f2_V0I1

     tabled_subgoal_call: f(Y,1)
     tabled_new_answer:   f(1,1)
     tabled_new_answer:   f(2^30,1)
     tabled_new_answer:   f(a,1)
     tabled_new_answer:   f(1.5,1)
(a)  recover_space()
(b)  tabled_subgoal_call: f(Y,1)

INSERT INTO f2_V0I1 (this,parent,symbol)
VALUES (1, 0, 1)
INSERT INTO f2_V0I1 (this,parent,symbol)
VALUES (2, 0, LIF)
INSERT INTO f2_V0I1 (this,parent,symbol)
VALUES (3, 2, 2^30)
INSERT INTO f2_V0I1 (this,parent,symbol)
VALUES (4, 0, a)
INSERT INTO f2_V0I1 (this,parent,symbol)
VALUES (5, 0, DF)
INSERT INTO f2_V0I1 (this,parent,symbol)
VALUES (6, 5, 1)
INSERT INTO f2_V0I1 (this,parent,symbol)
VALUES (7, 6, .5)

SELECT this,symbol FROM f2_V0I1
WHERE parent = 0 ORDER BY this
SELECT this,symbol FROM f2_V0I1
WHERE parent = 1 ORDER BY this
SELECT this,symbol FROM f2_V0I1
WHERE parent = 2 ORDER BY this
SELECT this,symbol FROM f2_V0I1
WHERE parent = 3 ORDER BY this
SELECT this,symbol FROM f2_V0I1
WHERE parent = 4 ORDER BY this
SELECT this,symbol FROM f2_V0I1
WHERE parent = 5 ORDER BY this
SELECT this,symbol FROM f2_V0I1
WHERE parent = 6 ORDER BY this
SELECT this,symbol FROM f2_V0I1
WHERE parent = 7 ORDER BY this

(a)

(b)

Subgoal frame
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer
SgFr_answer_trie

a

root
node

DF

Answer trie
for f(VAR0,1)

1

.5

1LIF

2^30

LIF

DF

 1 

0

 2 

3

 4 5

6

7

{R0} = {(1,0),(2,LIF),
        (4,a),(5,DF)} 
{R1} = {}
{R2} = {(3,2^30)}
{R3} = {}
{R4} = {}
{R5} = {(6,1)}
{R6} = {(7,.5)}
{R7} = {}

1 0 1

2 0 LIF

3 2 2^30

4 0 a

5 0 DF

6 5 1

7 6 .5

Figure 4.6: A node hierarchy relational schema

1. it requires highly recursive algorithms to both store and retrieve the answer

tries, involving several data transactions. The network round trips required to
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store and retrieve the entire trie structure have a considerable impact on the

performance of YapTab;

2. for incomplete tries, a full traversal and tuple generation phase is required

whenever a storing operation is requested. Since the correct ordering of tuples

relies on a snapshot of the trie, the implementation of an incremental storing

procedure becomes impossible because the addition of new nodes to the trie will

result in a completely different snapshot, and consequently in a new ordering

of tuples. This is why no complex system of key assignment works. In fact, if

such an addiction occurs, the entire set of tuples must be flushed and the storing

operation must be fully repeated.

4.3 Storing Term Primitive Values

As observed back in section 3.2, YapTab tries to accommodate YAP term values

differently according to their type and size. Most often, the insert/check function

splits primitives values into pieces and distributes the tokens by several trie nodes.

Obviously, DBTab must provide some sort of mechanism that assures the correct

reorganization of tries during retrieval operations.

The two possible mapping schemes have distinct capabilities in what comes to primitive

value representation. The hierarchical model reflects the actual trie structure, hence

it is able to store all possible primitive values. The Datalog model, on the other hand,

is limited to constant atomic terms by definition. Relation (I), presented back in

subsection 4.2.1, contemplates the storage of terms in general. However, the decision

on which relational domain should be used for the pretended term representation is

a hard one to make. It is possible that an attribute argi of the relation, mapping a

subterm of the predicate, is required to hold values of distinct types, such as strings

and numbers, or different precision ranges, such as integer and floating-point numbers.

Two possible solutions for this problem are considered as suggested by Florescu et al.

in [FK99].
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4.3.1 Inline Values

A first and simple solution is to extend the generic relation labeled as (I), adding a

new attribute for each of the conceivable data types per predicate subterm; Florescu

et al. refer to this approach as inlining.

Some primitive types, such as integer terms, perfectly fit into the space allocated

for each argi attribute, hence no additional attribute is required for them. Other

primitive types, such as floating-point numbers, large integer numbers7 and atomic

strings clearly exceed the available space. This means that, in practice, each of those

types requires a special extra attribute. A new generic relation

Pn(. . . , argi : integer, atomi : string, linti : integer, fltpi : double, . . .)

may then be defined for each tabled predicate, where each 〈argi, atomi, linti, fltpi〉
attribute subset is considered a single subterm. Since no term can belong to two

distinct primitive types, at most one of the additional attributes will contain a value

other than null. In order to tell which of the placeholder holds the correct value, a

special flag is placed in the argi attribute whenever the ith subterm value is stored in

one of the auxiliary attributes.

However, the additional attribute destined for character strings is not strictly required.

This is due to a particular YAP implementation feature, aimed at the improvement

of performance. Whenever a new atom appears in the context of a logic program,

YAP stores the primitive string value in its symbols table, placing a reference to that

position inside the newly created term. From that point on, YAP uses that reference

for all required operations; the primitive string value is seldom used by input/output

instructions or specific atom manipulation instruction.

Since the symbols’ table is maintained during execution, the storage of the internal

representation of atoms into the argi attributes of a mapping relation residing in the

database is more than enough to keep things running smoothly. Hence, the previous

relation is reduced to

7Large integers are all those integer values that require more space than the one available in the

term non-mask bit set.



94 CHAPTER 4. RELATIONAL DATA MODELS FOR TABLING

Pn(. . . , argi : integer, linti : integer, fltpi : double, . . .)(III)

The storing and loading algorithms require few changes to work with this extended

relation. In fact, the only required adaptation is a simple test to determine the type of

the term to store or retrieve: in the first case, to decide which additional attribute to

initialize; in the second to correctly reconstruct the term before passing it as argument

to the insert/check function in the correct position.

The major advantage of this schema is its simplicity. Each relation concentrates all

the primitive values for the predicate’s subterms and a low number of simple data

transactions is required to manipulate the stored information8.

Obviously, this schema produces highly sparse tables, where a large number of null

values occur. An index-per-attribute policy may not be implemented because (i) the

argi attribute alone contains few information on the term’s actual primitive value;

and (ii) it is possible that the extra attributes contain only null values [FK99].

In particular, this last possibility makes the definition of indices impossible under

MySQL [WA02].

4.3.2 Separate Value Tables

Another possible way to solve this problem is to introduce specialized lookup tables

of the generic form

PrimitiveType(id : term id, value : primitive)(IV)

where PrimitiveType is one of the possible relation names {PrimitiveLongint,

PrimitiveF loat}, id is a term identifier, typically an integer value, and value

is the primitive integer or float value of the 32-bit integer or float term.

The generic relation labeled as (I) is transformed so that all argi attributes are

retyped to the term id type. Since the contents for such attributes may originate

from the id attribute of the two different auxiliary tables, no foreign key policy can

8Including an insert operation for each answer submission and a single select operation for a

complete data set retrieval.
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be implemented. Additionally, some sort of distinguishing mechanism is required

to identify the auxiliary relation from which the term’s primitive value is to be

retrieved. Florescu [FK99] suggests the addition of a new flag attribute for each of the

transformed argi attributes; in the YAP engine context, however, this extra attribute

is dispensable. Since YAP terms already convey built-in tags that enable the engine

to identify the type of the term, one may then take advantage of this characteristic

and mask the sequential term identifiers with these flags.

The storing algorithm must be slightly altered to be used with this approach.

Whenever a term is of one of the specially parted types, two transactions must occur:

firstly, its primitive value must be stored into the respective primitive table and,

secondly, the generated identifier must then be placed in the correct argi attribute of

the answer tuple that is to be stored in the main table. The create primitive id()

function generates sequential identifiers based on a seed value whose origin will be

later explained. The code snippet in Fig. 4.7 illustrates the idea.

store(subgoal frame sg_fr) {
...
{TERMS} = bind_answer_terms({TEMPLATE},answer)
foreach TERM in {TERMS} {

if TERMi is primitive {
prim_id = create_primitive_id()

INSERT INTO PrimitiveType (id,value)
VALUES (prim_id, PRIMITIVE_VALUE(TERMi))

TERMi = prim_id
}

}
INSERT INTO Pn (order,ARG1, ..., ARGn)
VALUES (answer_id, TERM1, ..., TERMn)
...

}

Figure 4.7: Storing primitive term values

To assure that the loading algorithm works independently of the primitive values

representation schema, it must be transformed to accept a tuple set similar to the one

proposed for the inlining variant. In other words, all argi attributes must be followed

by the additional primitive container attributes. The expected tuple set

P∗n =
n⋃

i=0

πargi,ι.value,φ.value((Pn

⊗

argi=ι.id

ι)
⊗

argi=φ.id

φ)
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results from the application of a series of left outer joins (denoted as ⊗) on the main

table, one for each argi attribute admissible primitive type (ι and φ respectively denote

large integer numbers and floating-point numbers).

In practical terms, this data set is obtained executing a sql query like the one

exhibited in Fig. 4.8. The <variables> subexpression now contains additional

Pn.linti, Pn.fltpi items for each Pn.argi item. The <condition> subexpression

may also hold references to these additional attributes if some kind of testing is needed

over the respective constant values.

SELECT <VARIABLES>
FROM Pn

LEFT JOIN PrimitiveInteger AS I ON Pn.ARG1=I.id
LEFT JOIN PrimitiveDouble AS D ON Pn.ARG1=D.id
...
LEFT JOIN PrimitiveInteger AS I ON Pn.ARGn=I.id
LEFT JOIN PrimitiveDouble AS D ON Pn.ARGn=D.id

WHERE <CONDITION>
ORDER BY Pn.ORDER

Figure 4.8: Flat approach resulting tuple set

Keeping primitive values in separate tables presents two major advantages. First, it

provides a straightforward conceptualization by grouping primitive values according

to their respective types. Second, it promotes table compactness by deferring the

large sized primitive values to the auxiliary tables and keeping the smaller identifiers

in the main table. Moreover, compactness is enhanced by the absence of null value

occurrences in the main table. The major drawbacks are the need for multiple insert

operations and the number of left outer joins. These steps are bound to cause execution

overheads, even in a fast database system.

4.4 Meta-data

So far, the relational schema has been presented as a persistent place holder for data.

Although persistency is the primary concern of the developed schema, surely it is not

the only one. Most modern relational database management systems allow multiple

users to operate over the same database, the same table or even the same record.

Because of this, concurrency control is a major concern in such systems.

Although not directly related to DBTab, that issue must also be considered during
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this relational schema design. Despite the possibility for each user to define a different

database for each of its applications, it is also possible that a single predefined schema

should be used for several reasons. For instance, institutional policies may force all

system users affiliated with an institution, department or group to share predefined

database schemes. Another significant example is the simultaneous execution of several

instances of the same logical program that relies on relational tabling.

Regardless of the causes, the developed system is expected to perform correctly when

database schemes are shared among different running instances of YapTab, allowing

the storage of non disjunctive set of answers for the equally named predicate at

the same instant in time. This peaceful coexistence can only be achieved by the

conjugation of the relational templates proposed throughout this chapter with some

kind of special mechanism that allows each YapTab instance to uniquely identify all

of its stored subgoals and respectively computed answers.

This line of reasoning leads to the introduction of the concept of session. The

underlying rationale is quite simple: if each Yaptab instance maps its table space into

a particular partition of the database schema, the dangers of data loss, misplacement

or corruption are no more. All it takes is a way to assure the complete isolation of

each session context.

To help in this purpose, a special set of relations is introduced. Rather than being

directly involved in the maintenance of run-time data, this new set is concerned with

the maintenance of status information, i.e., number of currently open sessions, number

and ownership of tabled predicates, etc. From this point on, this set is referred to as

the system control table set, or control tables for short, in opposition to the data related

relation set, to be known henceforth as session context table set, or session tables for

short.

The first and most basic of DBTab’s control relation is

Sessions(sid : integer)

whose single attribute9 is a placeholder for the numerical identifiers of the active

9This is a simplified implementation. This relation could store other attributes, used for several

ends. For instance, it would be interesting to establish a session timeout policy based on the sessions’

creation date.
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sessions. The second control relation is defined as

Sequences(sid : integer, name : varchar(255), value : integer)

and it is used to hold the seed values for special sequences, such as the session identifiers

or the primitive identifiers mentioned back in section 4.3.2. The sid attribute is

a foreign key to the homonym attribute in the Sessions relation. The other two

attributes have quite obvious meanings: name holds a character string that identifies

the name of each sequence, while value holds the specific seed value. The primary

key of this relation comprises the sid and name attributes.

The third and final control relation has different prototypes each of the mapping

approaches. For the Datalog model, the Predicates relation is defined as

Predicates(sid : integer, functor : varchar(255), arity : integer)

where sid attribute is a foreign key to the homonym attribute in the Sessions relation,

functor is a character string placeholder for the tabled predicates functors and arity

is an integer placeholder the predicates arities. The primary key of the relation is

comprised of all three attributes. In the hierarchical model, the relation is extended

to

Predicates(sid : integer, functor : varchar(255), arity : integer, subgoal : varchar(255))

where all the previously described attributes maintain their meaning, and subgoal

is a character string destined to hold the special subgoal identifying suffix. All four

attributes are used as primary key to the relation.

Supported by these relations, the database schema partition now becomes a quite

easy task to fulfil. A first possible solution would be to extend the relations templates,

adding an extra attribute that would hold a session identifier. Despite of its simplicity,

this approach is not pursued for two main reasons. First of all, that would somewhat

taint the original mapping concept, introducing an attribute into mapping relations

that was not present or required in the original relational data model. Second, and

perhaps more importantly, the concentration of answers originating from different

sessions on the same relation is inadvisable. Despite of InnoDB tables’ capacity
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to grow arbitrarily, MySQL developers recommend the splitting of large tables into

several smaller ones, in order to increase engine performance [WA02]. A second and

more reasonable solution is to embed the session identifier into the names of context

dependent relations. The names of those tables could, for instance, carry a special

prefix ssSi, where Si stands for the session identifier value.

An example may clarify the idea. Figure 4.9 presents two table space samples, one

for each mapping approach. Notice (i) how the control tables are differently defined

and populated, (ii) how the different subgoals of the f/2 predicate are registered into

the Predicates control table and (iii) how the different mapping relations for those

subgoals are named in the two distinct approaches.

Hierarchical Approach

PredicatesSubgoal frame
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer
SgFr_answer_trie

Table entry for f/2

Subgoal frame
for f(VAR0,a)

a

VAR0

root
node

1

Subgoal trie
for f/2

SgFr_first_answer
SgFr_last_answer
SgFr_answer_trie

Session

SID

n

...

SID

n

...

FUNCTOR

f

...

ARITY

2

...

PredicatesSessions

SID

n

...

SID

n

n

FUNCTOR

f

f

ARITY

2

2

... ... ...

SUBGOAL

V0I1

V0Aa

...

Datalog Approach

ssn_f2_V0Aa
... ... ...

ssn_f2_V0I1
... ... ...

ssn_f2
... ... ...

Figure 4.9: Different mapping approaches

4.5 Chapter Summary

This chapter introduced the reasons why tabling may benefit from external memory

storage mechanisms, such as relational databases. Two possible relational schemes

were discussed: one following an approach closely related to Datalog, the other aiming

at a direct mapping of answer tries. The distinct loading and storing algorithms were

presented along with their advantages and disadvantages. Primitive value handling for

YAP terms was then discussed, in both contexts. Finally, the last section discussed
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meta-data as a mean for databases schema partitioning. Control and sessions relation

concepts were introduced and differentiated and naming conventions for the schemes

relations were presented.



Chapter 5

DBTab: the YapTab Relational

Extension

In this chapter, the implementation of DBTab is stressed. A brief contextualization

of the developed work is provided, focusing on its connections with previous work

on the subject. The relational database management system chosen to support

DBTab is introduced and its major assets are discussed next. The transformations

produced in YapTab to enable the implementation of relational tabling are discussed

afterwards, covering topics like the developed API and the changes to Yaptab’s table

space structures and managing algorithms. It concludes with the presentation of an

alternative way to lookup subgoals’ answers without fully reloading tries into memory.

5.1 A Coupled System

The work developed during this thesis draws its inspiration and guidance from

two different sources: on one hand, the work of Rocha on efficient support for

incomplete and complete tables in the YapTab tabling system [Roc07], and on the

other hand, the work of Ferreira et al. on coupling logic programming with relational

databases [FRS04, FR04, FR05, TSR05]. In [FRS04], these authors propose several

alternative ways to couple YAP with the famous MySQL database management

system, using both systems’ built-in C-language interfaces and Draxler’s Prolog-to-

SQL compiler [Dra92]. The presented results are very auspicious, certifying the

101
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effectiveness, efficiency and robustness of such coupling approaches.

This work drifts off from those original proposals by excluding Draxler’s compiler

from the middle tier interface. MYDDAS [TSR05, SFRF06] uses the compiler as a

generic tool due to its ability to translate Prolog queries in their SQL counterparts.

The translation language is equivalent to relational calculus in expressive power,

enabling the transformation of conjunctions, disjunctions and negation of goal and

high-order constructs such as sorting and grouping. Obviously, the use of such a tool

induces significant execution overheads, mostly originating from the query parsing

phase. While standard database application users are willing to endure this as an

acceptable price to pay for greater expressive power, tabling system users expect their

applications to execute with the smallest possible impact on execution performance.

The external compiler then becomes more of a problem than a solution: as observed

back in chapter 4, DBTab requires a much simpler mechanism to send (relatively)

simple SQL queries to the database and retrieve the resulting tuple sets.

5.1.1 Some Advantages of Using MySQL

The MySQL C API for Prepared Statements [WA02] constitutes a more suitable tool

to implement the connection between the RDBMS and the logical engine. Prepared

execution is particularly efficient in situations where the same SQL statements are

executed more than once, mainly because:

1. each SQL statement is parsed only once, whenever it is first sent to the database.

If the parsing is successful, specialised data structures are placed in memory at

server-side, enabling the repeated execution of the statement. Whenever the

statement includes variable input parameters, specially sized and typed buffers

are allocated and kept in memory for later use;

2. since the statement invocation requires only the transmission of the respective

input parameters, rather than the complete SQL statement, network traffic is

substantially reduced;

3. a binary protocol is used to exchange data between the client and the server.

This not only reduces the size of exchanged data blocks but also dismisses the

otherwise required string-to-primitive value conversion.
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As of version 5.0, MySQL supports stored procedures and stored functions. In short,

a stored procedure (or function) is a set of SQL commands that reside at server-

side, most often in user-defined libraries. This feature enhances program modularity,

execution performance and overall security. For instance, client applications may

invoke stored procedures that execute a batch of SQL statements rather than issuing

the individual commands one by one, thus reducing network traffic. Moreover, stored

procedures provide a consistent and self-contained execution environment, avoiding

users and applications direct access to tables while assuring the logging of each

operation at the same time.

DBTab relies on the InnoDB MySQL storage engine, a storage engine designed for

maximum performance when processing large volumes of data. Developers claim that

InnoBD’s CPU efficiency is most likely unpaired by any other disk-based relational

engine. [WA02]. The InnoBD engine features:

• commit, rollback and crash-recovery capabilities;

• row level write locking, while preserving non-locking read capabilities;

• no limitation in terms of table growth, even in file systems where such limits

exist;

• proper table space for tables and indexes;

• support for foreign key constraints with cascade abilities.

5.1.2 The Database Layer

Some of the tasks performed by DBTab may be performed entirely at database

level. Features like session maintenance, predicate tables definition and control tables

manipulation may be hidden from the YapTab system layer, somewhat simplifying

the application programming interface (API). For this purpose, each storage schema

is provided with six stored routines that constitute a first control layer:

session register(sid) searches for the supplied argument within the Sessions

table. In case of success, it returns immediately. Otherwise, it creates a new
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session by inserting a new record into the referred table. Additionally, and

depending on the selected storage schema, it may create the appropriate session

auxiliary tables. The separate values variant of the Datalog model must define

the PrimitiveF loat and PrimitiveInteger relations. In all implementations, the

routine performs internal session variables setting, including the current session

identifier @sid, which is embedded in the prefix all of the session tables. The

procedure is displayed in Fig. 5.1;

predicate register(functor,arity) searches for an existing tuple in the

Predicates relation whose attribute values correspond to the passed argument

values. In case a matching record is found, the routine terminates immediately.

Otherwise, it inserts a new tuple where the first attribute (sid) value is obtained

from the session identifier internal variable, the second and third attributes

are initialized with the supplied functor and arity homonym arguments.

Afterwards, it creates a new relational table to hold the registered subgoal

answers. In a sense, this operation mimics YapTab’s table entry creation for

new subgoals. The details are shown in Fig. 5.2;

start transaction() is used to prepare MySQL for a data transaction. In the

separate value variant, the routine returns the next starting sequential identifier

for the application-masked terms (floating-point and 32-bit integers) stored in

Sequences;

end transaction(success) is used to finish a data transaction. If the supplied

success argument carries the true logical value, the transaction is committed,

otherwise, a rollback operation occurs, restoring the database status to that

previous to the call of start transaction. In the separate value variant, it also

updates the value for the application-masked terms sequential identifier.

predicate unregister(functor,arity) issues a drop instruction for the predicate

mapping relation whose name conveys the passed arguments. The statement

includes a ”if not exists” clause to prevent MySQL to report an error if

no such table exists. Afterwards, the procedure attempts to delete a tuple

belonging to the Predicates relation whose functor and arity attributes match

the homonym procedure’s arguments. Please refer to Fig. 5.2 for details;

session unregister(sid) is used to finish the session identified by the supplied sid
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CREATE PROCEDURE session_register(INOUT sid INTEGER)
BEGIN

-- Search the identified session
SET @SID = 0;
SELECT s.SID INTO @SID FROM Sessions AS s
WHERE s.SID = sid;

IF (@SID=0) THEN
-- Create new session
UPDATE Sequences SET VALUE = LAST_INSERT_ID(VALUE+1)
WHERE NAME LIKE ’SEQ_SESSIONS’;

SET @SID = LAST_INSERT_ID();
INSERT INTO Sessions (SID) VALUES (@SID);

-- In the "separate value" variant,
-- Create auxiliary tables
SELECT CONCAT("CREATE TABLE "ss",@SID,"_Longints (",

"ID INTEGER NOT NULL, ",
"VALUE INTEGER NOT NULL, ",
"PRIMARY KEY (ID)) ENGINE=InnoDB;")

INTO @EXPR;
PREPARE stmt FROM @EXPR; EXECUTE stmt;

SELECT CONCAT("CREATE TABLE "ss",@SID,"_Floats (",
"ID INTEGER NOT NULL, ",
"VALUE DOUBLE NOT NULL, ",
"PRIMARY KEY (ID)) ENGINE=InnoDB;")

INTO @EXPR;
PREPARE stmt FROM @EXPR; EXECUTE stmt;

DEALLOCATE PREPARE stmt;
END IF;

END //

Figure 5.1: Session opening stored procedure

argument and perform clean-up tasks, i.e., the procedure drops all predicate

tables associated with the session identified by the sid argument, including the

existing auxiliary lookup tables. The complete procedure is presented in Fig. 5.4.

The presented predicate register and predicate unregister stored procedures

originate from the Datalog model implementation. In the hierarchical model, these

procedures present two small differences. Firstly, in order to cope with the slightly

different declaration of the Predicates relation, both procedures present a third

argument, subgoal. The value carried by this argument is supplied as an unique

identifier of the subgoal frame for which the registered relation stands for. Secondly,

the table creation code in the predicate register is a lot simpler, since the total

number of fields for the new relation is always constant. The table creation cycles
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CREATE PROCEDURE predicate_register(functor VARCHAR(255),arity INTEGER)
BEGIN

DECLARE n INTEGER DEFAULT 1;

-- Search predicate’s table
SET @TABLE_EXISTS = FALSE;

SELECT TRUE INTO @TABLE_EXISTS FROM Predicates AS p
WHERE p.SID=@SID AND p.FUNCTOR=functor AND p.ARITY=arity;

IF NOT @TABLE_EXISTS THEN
-- Create predicate’s table
INSERT INTO Predicates (SID,FUNCTOR,ARITY)
VALUES (@SID,functor,arity);

SELECT CONCAT("CREATE TABLE ss",@SID,"_",functor,arity," (")
INTO @EXPR;
REPEAT

SELECT CONCAT(@EXPR, "ARG",n," INTEGER NOT NULL, ") INTO @EXPR;
SET n = n+1;

UNTIL n = arity END REPEAT;

SELECT CONCAT(@EXPR,"PRIMARY KEY(ORDER)) ENGINE=InnoDB;") INTO @EXPR;
PREPARE stmt FROM @EXPR;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;

END IF;
END //

Figure 5.2: Predicate registering procedure

CREATE PROCEDURE predicate_unregister(functor VARCHAR(255),arity INTEGER)
BEGIN

-- Drop table
SELECT CONCAT("DROP TABLE IF EXISTS ss",

@SID,"_",functor,arity,";")
INTO @EXPR;
PREPARE stmt FROM @EXPR; EXECUTE stmt;
DEALLOCATE PREPARE stmt;

DELETE p FROM dbtab_predicates AS p
WHERE p.SID = @SID
AND p.FUNCTOR LIKE functor
AND p.ARITY=arity;

END //

Figure 5.3: Predicate unregistering procedure
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CREATE PROCEDURE session_unregister(sid INTEGER)
BEGIN

DECLARE functor VARCHAR(255);
DECLARE arity, done INTEGER DEFAULT 0;
DECLARE CONTINUE HANDLER FOR SQLSTATE ’02000’ SET done=1;

DECLARE cur1 CURSOR FOR
SELECT p.FUNCTOR,p.ARITY FROM Predicates AS p
WHERE p.SID=@SID;

-- Drop session’s tabled predicates
OPEN cur1;
REPEAT

FETCH cur1 INTO functor,arity;
CALL predicate_unregister(functor,arity);

UNTIL done END REPEAT;
CLOSE cur1;

-- If in "separate value" variant,
-- Drop session’s auxiliary tables
SELECT CONCAT("DROP TABLE ss",@SID,"_Longints;") INTO @EXPR;
PREPARE stmt FROM @EXPR; EXECUTE stmt;

SELECT CONCAT("DROP TABLE ss",@SID,"_Floats;") INTO @EXPR;
PREPARE stmt FROM @EXPR; EXECUTE stmt;

DEALLOCATE PREPARE stmt;

-- Remove session id from sessions table
DELETE s FROM dbtab_sessions AS s
WHERE s.SID = @SID;
SET @SID = 0;

END //

Figure 5.4: Session closing stored procedure
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CREATE PROCEDURE predicate_register(
functor VARCHAR(255),arity INTEGER,subgoal VARCHAR(255))

BEGIN
(...)
IF NOT @TABLE_EXISTS THEN

-- Create predicate’s table
(...)
SELECT CONCAT("CREATE TABLE ss",@SID,"_",

functor,arity,"_",subgoal," (",
"THIS INTEGER NOT NULL,",
"PARENT INTEGER NOT NULL,",
"TOKEN VARCHAR(255) NOT NULL,",
"PRIMARY KEY (THIS,PARENT))ENGINE = InnoDB;")

(...)
END IF;

END //

Figure 5.5: Variant predicate registering procedure

appearing in the body of the procedure are thus replaced by a single expression, as

illustrated by Fig 5.5.

5.2 Extending the YapTab Design

In order to supply YapTab with a relational representation of its table space some

new features must be introduced. First of all, the correct implementation of the

mapping strategies presented back in chapter 4 depends on some small alterations to

the table space data structures. Additionally, database communication skills must be

introduced. Arguably, the best way to successfully fulfil this task is to keep changes

restricted to small areas of the primitive code. The first and obvious candidates are

the table space structures, namely the subgoal frame structure due to its central role

in the least used algorithm. Other structures, such as the table entry and the loader

choice point, may also require some small modifications for reasons that will become

obvious as this section unfolds.

The remainder of this section presents some solutions for the enumerated issues. It

begins by addressing the modifications to the original design of Yaptab. Next, prepared

statements are introduced as an easy and swift way to access the database tables. It

follows by presenting the developed middleware API and the way it works. At last, an

alternative way to inquire for trie answers without fully reloading the trie into memory

is presented.
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5.2.1 Modified Data Structures

The implementation of the Datalog model revealed the first obstacle to overcome. As

previously mentioned, the tabling trie is organized in such a manner that, starting

from a given table entry, one can reach all of its subgoal frames simply by descending

through the subgoal trie branches. However, given a particular subgoal frame, there is

no way to reach the respective table entry, because the first structure has no knowledge

of its ancestors in the subgoal trie branch. Since this is an essential step in the storing

procedure of the mentioned model, it then becomes necessary to augment the subgoal

frame with a pointer to its parent node.

Another important decision regarded the database communication channels and its

efficiency. Given the importance of keeping YapTab’s performance pristine, or at least,

reduce impact to the minimum, the deployment of a fast database access mechanism

is highly desirable. For that reason, DBTab’s communication with the RDBMS is

mostly done through the MySQL C API for prepared statements. This library defines

specialized functions that, on successful parsing and/or execution of the submitted

SQL statements, return specialized data structures reflecting the state of the server

buffers. Obviously, these must be stored somewhere for future use. The different

implementation traits of the two mapping models were determinant in the process

choosing the possible locations:

In the Datalog model a predicate table space is kept in a single table. Since the

mapping relation attributes cannot be null, all of the arguments for an insertion

statement must be initialized before its execution. Hence, if all arguments are

assumed to be variable, one can formulate a generic statement that enables the

insertion of any subgoal of the predicate. It then seems obvious that the best

way to store the prepared statement handler is the table entry structure. On

the contrary, a particular subgoal instance is clearly context dependent, since

some of its subterms may be constant values. For that reason, each subgoal

frame is a serious candidate to hold a specific prepared statement handler. The

selection statement can describe specific filtering conditions involving the subgoal

arguments that are bound to non-variable atomic terms, placing all found free

variables in the list of fields to retrieve;

In the hierarchical model each subgoal is associated with a specific relation whose
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name conveys an uniquely identifying suffix, as mentioned back in section 4.2.2,

hence prepared statements cannot be generalized. For that reason, each subgoal

frame must hold a pair of prepared statement handlers: one to insert the answer

trie nodes configuration for the mapping table and one to perform the opposite

operation.

These specifications still face some efficiency problems. As mentioned before in

sections 2.3 and 4.2, coupled systems face potential bottlenecks when data transactions

between the logical and database engines are performed tuple-by-tuple. If a single

select statement is enough to prevent such a problem during data retrieval, a single

insert statement is obviously a potential source for trouble. The ideal solution would

be to place the entire answer set in a buffer and send it to the database as a single

cluster. Fortunately, MySQL provides the exact tool for that. A special trait of the

insert statement allows users to store several tuples into a table in a single call. The

number of inserted rows is arbitrary and is limited only by the size of a specialized

buffer residing at server side. For further details, the reader should consult the MySQL

reference manual [WA02]. Let us see how clustering, allied with the used of prepared

statements, can achieve a good storage performance. MySQL development team states

that, in average, an insert call executes in time T , consisting of the following fraction:

T = 3t︸︷︷︸
connecting

+ 2t︸︷︷︸
sending

query

+ 2t︸︷︷︸
parsing

+ Kt︸︷︷︸
inserting

record

+ It︸︷︷︸
insering

indexes

+ t︸︷︷︸
closing

where K is the size of each record and I is the number of indexes [WA02]. Assume that

a set of 100 tuples is to be inserted into a relation residing at the database, without

the resource to prepared statements. The cost of such a storing transactions is

100T = 100 ( 3t + 2t + 2t + Kt + It + t )

= 300t + 200t + 200t + 100Kt + 100It + 100t

= 400t︸︷︷︸
connection

+ 400t︸︷︷︸
transmission

and parsing

+ 100Kt + 100It︸ ︷︷ ︸
insertion

The introduction of prepared statements enables a time gain of 400t, since the SQL

statement is sent to the database and parsed only once. Let us now assume that
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a cluster of 10 answers is established and that the connecting, sending, parsing and

closing subtotals remain the same. In this scenario, the cost of insertion remains the

same, but the number of connections is now reduced by a factor of ten. Hence, the

total cost of sending the entire tuple-set is now of

T ? = 10 ( 3t + 10Kt + 10It + t )

= 30t + 100Kt + 100It + 10t

= 40t︸︷︷︸
connection

+ 100Kt + 100It︸ ︷︷ ︸
insertion

The adherence to the formerly devised strategy presents a new problem. Sharing a

single insert statement by all subgoals of a particular tabled predicate means that one

must compromise with a particular cluster size; one cannot send all answer tuples at

once, because their number varies according to the size of the handled subgoal’s answer

set. On the other hand, when the number of answers is smaller than the established

cluster size, the statement cannot be used since the unbound parameters will introduce

erroneous tuples into the predicate’s mapping relation. It is then necessary to define

a second prepared statement to perform this specialized insertion. With these two

statements, the answer set may now be split into pieces and sent over to the database

in a faster way. Whenever the number of answers is insufficient to fill the cluster’s

buffer, the originally defined prepared statement can be used to send those answers

one by one to the database. Figure 5.6 summarizes the modifications introduced by

DBTab in the table space structures.

5.2.2 Prepared Statements Wrappers

Despite its power, MySQL prepared statement structures are minimal in terms of state

representation, leaving out some other useful information about the server state that

must be obtained through other mechanisms. For instance, meta-data regarding the

result of the statement’s execution, such as the number of fields in the statement’s

resulting dataset, their names, types, sizes and offsets, is kept in an additional

mysql res result set structure. If the reader is not familiarized with MySQL C

programming API, please refer to the MySQL Reference Manual [WA02] for further

explanations.
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Figure 5.6: Modified YapTab structures

MySQL prepared statements also need client-side defined buffers to collect arguments

and/or store tuple attributes retrieved from the tuple sets resulting from the state-

ment’s execution. However, these buffers are physically kept outside those structures;

in fact, prepared statements simply hold pointers to the buffers memory addresses. For

simplicity reasons, all that is related with statement execution should be kept together.

To cope with this, a new wrapper structure, denominated DBTabPreparedStatement,

is introduced in the DBTab middleware layer. Figure 5.7 presents its member fields.

Upon successful parsing of the SQL statements issued by YapTab, the handle returned

by MySQL is used to initialize the statement field. The affected rows field holds

the expected number of rows affected by the execution of the statement. The sub-

structure params is used to hold information regarding any used input arguments: the

count, buffer addresses, respective sizes and null flags. If a tuple set is to result from

statement’s execution, the fields sub-structure is initialized with the same type of

information, this time regarding the tuple set attributes. Additional information, such

as meta-data, the total number of rows and the actually selected one, is stored in the

records sub-structure. Despite the similarity of the affected rows and num rows

structure fields, the information kept in these fields is in fact different as it results

from the call of two distinct MySQL C API functions. According to the Reference

Manual [WA02], mysql affected rows() is to be used with non-returning statements

such as insert, update and delete. Oppositely, mysql row count() is to be used

with result-set returning statements, such as select.
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typedef struct dbtab_prepared_statement {
MYSQL_STMT *statement;
my_ulonglong affected_rows;
struct {
int count;
MYSQL_BIND *bind;
my_ulong *length;
my_bool *is_null;

} params;
struct {
int count;
MYSQL_BIND *bind;
my_ulong *length;
my_bool *is_null;

} fields;
struct {
MYSQL_RES *metadata;
MYSQL_FIELD *metadata_row;
my_ulonglong num_rows;
my_ulonglong actual_row;

} records;
GenericBuffer stmt_buffer;

} *DBTabPreparedStatement;

Figure 5.7: The prepared statement wrapper

The stmt buffer field is typed as a GenericBuffer pointer. This data struc-

ture, displayed in Fig. 5.8, is introduced to enable the generic use of the

DBTabPreparedStatement structure. In the Datalog model, the stmt buffer is

initialized with an array of GenericBuffer cells whose size is determined as previously

explained. Each array cell guarantees enough buffering space for all of the four

supported primitive types, thus assuring that any possible primitive value1 may be

sent to/retrieved from the database, either as an argument or as a field value. In

the hierarchical model, the size of the mapping relation tuple is fixed and universally

known. Hence, the GenericBuffer structure may be molded to it. For this reason,

the stmt buffer is set to point to a single GenericBuffer cell.

A practical aspect enables a small optimization that reduces the memory requirements

for each DBTabPreparedStatement. Since the statement parameters and fields

buffers are sequentially used in each execution context, the required memory space

may be shared. The maximum between arguments and fields count is used to set the

length of the stmt buffer, bind, length and is null arrays.

1Recall that (i) only atomic terms are handled and (ii) these vary in size, but atoms and standard

integer terms are equally sized.
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typedef struct generic_buffer {
#if DATALOG_APPROACH
int term;
int lint;
double real;

#else /* HIERARCHICAL_APPROACH */
int this;
int parent;
int symbol;

#endif /* HIERARCHICAL_APPROACH */
} *GenericBuffer;

Figure 5.8: The multiple term buffer

As previously mentioned in subsection 5.2.1, some table space structures were extended

with prepared statements handlers. It now becomes clear that those handlers are none

other than DBTabPreparedStatements structures. In the Datalog model both table

entry and subgoal frame data structures are extended with wrappers, while in the

hierarchical model only the subgoal frame is transformed. Figures 5.9 and 5.10 display

the SQL statement templates used in the initialization of the prepared statement

wrappers for the separate tables variant of the Datalog model and for the hierarchical

model. For the time being, the size of the cluster is omitted for simplicity purposes.

insert into ssS Pn (arg1,. . . ,argn) values (?,. . . ,?)

insert into ssS Pn (arg1,. . . ,argn) values (?,. . . ,?), ... ,(?,. . . ,?)

select 〈variables〉 from ssS Pn as pn

left join 〈join table〉 on 〈join condition〉
(. . . )

where 〈constants〉 order by pn.order

Figure 5.9: The Datalog model prepared statements

insert into ssS Pn Sf (this,parent,symbol) values (?,?,?)

insert into ssS Pn Sf (this,parent,symbol) values (?,?,?), ... ,(?,?,?)

select this, symbol from ssS Pn Sf where parent=? order by this

Figure 5.10: The hierarchical model prepared statements

Additionally, DBTab may place prepared statement wrappers at a global level. The
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separate value variant of the Datalog model uses these structures to hold the statements

responsible for the manipulation of the auxiliary primitive relations belonging to the

session context. The statements, known as the session statements, are presented in

Fig. 5.11. A pair of statements is used for each auxiliary table, one for clustered tuple

insertion and one for single tuple insertions. The rationale is the same as before:

sending the primitive values one-by-one to the database may lead to a bottleneck.

insert into ssS Floats (term,value) values (?,?)

insert into ssS Floats (term,value) values (?,?), ... ,(?,?)

insert into ssS Longints (term,value) values (?,?)

insert into ssS Longints (term,value) values (?,?), ... ,(?,?)

Figure 5.11: Session prepared statements

5.2.3 The DBTab API

The developed api functions constitute a second layer of control. These routines,

embedded in the YapTab architecture, establish the interface between top level com-

mands, tabling instructions and database stored procedures. They are responsible

for both the traversal and storage of tabling tries during the memory recovery stage

and the reloading and reconstruction of the same tries during posterior variant calls.

The api functions are briefly presented in this subsection. The full disclosure will be

revealed in the remainder of this chapter, as the storage and loading mechanisms are

fully explained.

The api comprises the following routines:

dbtab init session(MYSQL *handle, int sid) starts by validating the database

connection handle passed in the first argument. In case of success, the handle

is kept for further use in all other functions. The second argument is passed

to the session register stored procedure, which is called to effectively start

a new session. On successful execution, the stored procedure returns a session

identifier that is placed in a global variable. At last, the function initializes the

session prepared statements;
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dbtab init table(...) has two distinct prototypes, one for each of the possible

mapping models. In the Datalog model it receives a table entry structure as

argument. In the hierarchical model it receives a subgoal frame structure. In both

cases, the table entry is accessed (directly or after branch traversal) to obtain

the functor and arity of the tabled predicate. In the second case, during the

traversal, the term entries of the nodes are concatenated and the resulting string

becomes the context suffix. These two (or three) values become the arguments

for the predicate register() stored procedure, that in fact creates the new

mapping relational table. They are also embedded in the body of the insert

statement that initializes the specific prepared statement wrappers inside the

structural argument;

dbtab init view(subgoal frame sg fr) has two distinct prototypes, one for each of

the possible mapping models. In the Datalog model, it traverses the subgoal trie

branch from which the frame hangs. Two data vectors, sized accordingly to the

arity of the predicate, are used to split the node entries. Every bound term has

its value copied its respective position in the first array, while free variable terms

have their internal index2 stored in the second array. By the time the root node

is reached, all of the statement’s arguments consisting of free variables will have

null place-holders in the first array3. The two arrays are then used to customize

the select prepared statement: the first reference to every variable term ends in

the list of fields to be retrieved, while every bound term and subsequent references

to variable terms end up in the conditional expression, used to refine the search.

In the hierarchical model, the functor, arity and context suffix are retrieved from

global buffers4 and used to build the select expression. Since the mapping table

size is well-defined, no extra operations or extra buffers are required to create

the query. Both implementations use the created SQL statements to initialize

the prepared statement wrapper inside the received subgoal frame argument;

dbtab export trie(subgoal frame sg fr) starts by recovering the insert prepared

statement associated with subgoal frame argument. In the Datalog model this

2YapTab maintains an indexed array of variable terms found in each subgoal call.
3For practical reasons, insert prepared statement GenericBuffer is used as first array. Recall

that in the inline variant each field triplet is regarded as a single predicate argument, so the extra

required statement arguments are not considered for variable term identification purposes.
4These buffers were previously initialized in dbtab init table().
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is done via the respective table entry, in the hierarchical model directly from

the argument. In both models, it cycles through the answer trie, traversing each

branch, substituting the statement’s null parameters with the node entries and

executing the prepared statement to create the respective tuples in the mapping

relational table. If in the separated values variant, it additionally executes calls

to the auxiliary session prepared statement that handle the insertion of the

supported primitive type values. The details of this function are presented

further ahead in Fig. 5.15;

dbtab import trie(subgoal frame sg fr) starts the data retrieval transaction, ex-

ecuting the select prepared statement associated with the subgoal frame passed

as argument. It then navigates the resulting tuple set to reconstruct the answer

trie entries5. The details of this function are presented further ahead in Fig. 5.18;

dbtab free table(...) has two distinct prototypes. Just like before, the table entry

structure is consulted to obtain the functor, arity and possible context suffix that

are to be passed as arguments to the predicate unregister() stored procedure,

thus dropping the mapping table. It also frees the prepared statement wrappers

inside the received data structure;

dbtab free view(subgoal frame sg fr) frees the select prepared statement asso-

ciated with the subgoal frame structure passed as argument;

dbtab kill session(void) frees the customized session prepared statements and

kills the currently opened session by calling the session unregister() stored

procedure;

A practical example may help to clarify the scenario. Figure 5.12 presents the state

of the table entry and subgoal frame structures after the dbtab init table() and

dbtab init view() calls on both mapping models. Notice how (i) the prepared

statement wrappers are distributed in the table space and (ii) the context suffix reflects

the node entries in the hierarchical model.

5Later in this chapter, an alternative approach in which this last step does not take place will be

introduced.
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Figure 5.12: Initialized table space structures

5.2.4 The Top-Level Predicates

The top-level built-in predicates constitute the third and final layer of control. Two

new predicates are added and three pre-existing ones are slightly changed to act as

front-ends to the developed api functions.

To start a session, tabling init session/2 must be called. It takes two arguments,

the first being a database connection handler6 and the second being a session identifier.

The identifier can either be a free variable or an integer term. The arguments are then

repassed to dbtab init session(). This will either start a new session, binding

the new identifier to the variable argument, or restart the previously existing session

identified by the given integer.

The tabling kill session/0 terminates the currently open session by calling

6This argument is obtained using yap’s myddas package
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dbtab kill session(). It needs no arguments because the session’s identifier is kept

since the session starts.

YapTab’s directive ’:- table p/n.’ sets predicate p of arity n up for tabling. For

the Datalog model, an expanded version of table/1 passes the newly created table

entry structure to dbtab init table() to set up the process of relational mapping

generation.

The abolish table/1 built-in predicate is expanded to call the dbtab free table()

function before releasing the table entry. Every subgoal frame found under this entry

becomes the entry parameter of dbtab free view(). Both in YapTab and DBTab,

the abolish all tables/0 predicate can be used to dispose of all table entries: the

action takes place as if abolish table/1 was called for every tabled predicate.

5.2.5 Exporting Answers

Recall section 3.3 and the least used algorithm. Whenever memory becomes scarce,

the algorithm starts to look for inactive tables to delete. This search takes place inside

a function called recover space(), whose pseudo-code is illustrated in Fig. 5.13. For

every table in such condition, the dbtab export trie() api function is called to

initiate a new data transaction. Notice how the state of the subgoal frame structure

is changed to signal the table dumping into the relational database.

In order to illustrate the most important aspects of the answer set storage process, the

focus will be set on the Datalog model implementation. Since the underlying rationale

has already been presented in chapter 4, we consider that dissecting the hierarchical

model implementation with the same level of detail would be tedious for the reader

and would not bring any new contributions to the presentation.

Prior to the analysis of the dbtab export trie() itself, it is important to introduce

a special feature that has a major influence in the process. Figure 5.14 will be used

to illustrate the explanation. As previously mentioned, two prepared statements are

used to perform the storage of answer sets into the relational models; one statement

is capable of sending a cluster of tuples, the other one is used to send tuples one by

one. However, the storing algorithm described back in subsection 4.2.1 was designed

to traverse the answers tries handling one answer a time. Obviously, some sort of
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recover_space(STR_PAGES) {
sg_fr_ptr sg_fr = inact_recover;
do {

if(SgFr_first_answer(sg_fr) &&
SgFr_first_answer(sg_fr) != SgFr_answer_trie(sg_fr)) {
if(SgFr_state(sg_fr) == complete) {

dbtab_export_trie(sg_fr);
free_answer_trie_branch(SgFr_answer_trie(sg_fr));
SgFr_state(sg_fr) = stored_complete;

} else {
SgFr_state(sg_fr) = ready;

}
SgFr_first_answer(sg_fr) = NULL;
SgFr_last_answer(sg_fr) = NULL;

}
(...)
if(sg_fr) {

sg_fr = SgFr_next(sg_fr);
}

} while(free_pages(GLOBAL_PAGES_void) == free_pages(STR_PAGES));
inact_revover = sg_fr;

}

Figure 5.13: Pseudo-code for recover space()

adaptation is required in order to allow the use of the clustered insertion statement.

The easiest way to meet this end without disrupting the established work-flow is to

force the two statements to share their internal buffers.

The clustered statement buffers are divided into several frames accordingly to the

arity of the tabled predicate. When cycling through the answer set trie, the algorithm

assigns a buffer frame to each trie branch using simple pointer arithmetic; the frame’s

size is used to calculate the offset of the desired frame, which is added to the initial

address of the clustered buffer. When all frames are occupied, the clustered statement

may be is executed and the process may start all over again, until the entire answer

trie is processed.

The pseudo-code of the dbtab export trie() function in shown in Fig. 5.15. The

storing process begins with a call to the dbtab start transaction(), thus signaling

the start of a new data transaction. Next, the subgoal trie branch contents are placed

inside the template array. Control proceeds cycling through the answer trie branches,

copying the template contents to the branch’s assigned buffer frame and binding the

YAP terms stored within each branch nodes to the buffer’s null parameters.

The next call occurs only in the separate value variant and regards the supported primi-
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Figure 5.14: Prepared Statements sharing internal buffers

tive values storage. The details, obscured by the single call to store primitive terms(),

include the initialization of the session statements’ buffers in a similar way to that

previously explained. The input parameters of the currently active frame buffer are

bound to the next sequential value for application-masked terms7 and to the term

7The first value of this sequence, obtained every time the dbtab start transaction() stored
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primitive value itself. The identifier’s value is bound to the subgoal’s statement

respective argument, thus creating a kind of a foreign key. Notice that repeated

occurrences of a primitive value in the tabling tries result in multiple tuples in the

respective auxiliary table, each one of them presenting a different sequential key. The

alternative would be to introduce an additional statement that would search for a

previously stored occurrence of the primitive and return its key if possible. However,

in order to obtain some probable gain in terms of space, one would undoubtedly

introduce an undesirable performance overhead.

As previously mentioned, the clustered insertion statement is executed only when the

clustered buffer is full. This means that when the answer trie traversal cycle is finished,

some initialized buffers may still have not been sent to the database. The situation

is handled by the final cycle, which executes the single insertion prepared statement,

thus adding the remaining tuples to the mapping relation.

Finally, the state of the transaction is evaluated. A commit occurs if and only if all

insert statements are executed correctly. In this case, the subgoal trie is removed

from memory space. A rollback operation is performed whenever errors occur

during transaction.

Figure 5.16 illustrates the final result of the described process for all proposed stor-

age schemes. The shaded answer trie is removed from memory at the end of the

transaction. Notice how

• in the hierarchical model, the small optimizations discussed back in section 4.2.2

are implemented saving the space of three tuples from the relation;

• in the separate value variant, the arg1 field of the second and third tuples hold

the keys for the auxiliary tables records.

• in the inline value variant, the arg1 field of the second and third tuples refer

to the valid primitive value;

procedure is called, is kept in main memory.
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dbtab_export_trie(SubgoalFrame sg_fr) {
GenericBuffer template, terms;

frame_no = 0;
insert_stmt = TabEnt_insert_stmt(SgFr_tab_ent(sg_fr));
cluster_stmt = TabEnt_cluster_stmt(SgFr_tab_ent(sg_fr));

dbtab_start_transaction();

bind_subgoal_terms(answer, template);
answer = SgFr_first_answer(sg_fr);

while (answer != NULL) {
/* shift frame and prepare record */
terms = PS_BUFF_FRAME(cluster_stmt,frame_no);
copy(template,terms);

bind_answer_terms(answer, terms);
#if SEPARATE_VALUE

store_primitive_terms(terms);
#endif

if(frm_no == CLUSTER_FRAME_COUNT) {
commit &= exec_prep_stmt(insert_stmt,terms);
frame_no = 0;

} else {
frame_no = ++;

}
answer = TrNode_child(answer);

}
for(i=0; i<frame_no; i++) {

terms = PS_BUFF_FRAME(cluster_stmt,i);
#if SEPARATE_VALUE

/* Send last buffered primitive terms */
store_primitive_terms(terms);

#endif
commit &= exec_prep_stmt(insert_stmt,terms);

}

dbtab_finish_transaction(commit);
}

Figure 5.15: Pseudo-code for dbtab export trie()

5.2.6 Importing Answers

After answer trie dumping, the first call to one of YapTab’s table try, table try me

or table try single instructions finds the state of the subgoal frame set to stored.

This immediately triggers a call to dbtab import trie(), the routine responsible for

the execution of the specific select statement that is used to fetch all answers for the

subgoal. Figures 5.17 and 5.18 show respectively the adaptation of those instructions

to DBTab and the pseudo-code for the data import routine dbtab import trie().
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Figure 5.16: Exporting f(X, 1): three relational mappings

The body of routine is implemented differently in the two proposed mapping models.

Once again, the focus will be set on the Datalog model implementation, since the other

implementation underlying rationale has already been presented in chapter 4.

Back in chapter 4 we have discussed how the different loading algorithms pose specific

queries to the database generate and use the different tuple sets to reload the answer

tries. These differences are again illustrated in Fig. 5.19.

The hierarchical model fetches the entire tuple set from the database, using all at-

tributes to reconstruct answer trie nodes and establish their order properly. No
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PBOp(table_try, ld)
sg_fr_ptr sg_fr;
(...)
} else if (SgFr_state(sg_fr) == stored_complete) {

dbtab_import_trie(sg_fr);
}
(...)

ENDPBOp();

PBOp(table_try_me, ld)
sg_fr_ptr sg_fr;
(...)
} else if (SgFr_state(sg_fr) == stored_complete) {

dbtab_import_trie(sg_fr);
}
(...)

ENDPBOp();

PBOp(table_try_single, ld)
sg_fr_ptr sg_fr;
(...)
} else if (SgFr_state(sg_fr) == stored_complete) {

dbtab_import_trie(sg_fr);
}
(...)

ENDPBOp();

Figure 5.17: Modified YapTab instructions

particular attention must be payed to any of the tuple’s attributes, safe from the

case in which 32-bit integer or floating-point terms are to be inserted into the trie: in

that case, an additional delimiter term must be inserted after the last valid tuple in

order to comply with YapTab’s answer branch construction protocol.

The Datalog model may not retrieve the entire tuple set. The refinements placed in

the search condition, within the where clause, shorten the retrieved fields list, thus

reducing the amount of data returned by the server. The returned argk attributes may

be immediately followed by additional columns in case any values from the auxiliary

primitive tables are to be fetched. To determine the type of the retrieved term, the

focus is set on the argk attributes, where no null values can be found. Additional

columns are regarded as possible value-holders for answer terms only when these main

fields convey long atomic masked sequential terms. In such a case, the first additional

non-null attribute placed to the right of argk supplies for the value that is used to

create the specific YAP term.

After the select prepared statement’s execution, the resulting tuple set is available
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dbtab_import_trie(SubgoalFrame sg_fr) {
select_stmt = SgFr_select_stmt(sg_fr);
dbtab_start_transaction();
exec_prep_stmt(select_stmt);

/* switch on the number of rows */
if (PS_NROW(select_stmt) == 0) { // no answers

SgFr_first_answer(sg_fr) = NULL;
SgFr_last_answer(sg_fr) = NULL;
SgFr_answers(sg_fr) = NULL;
return;

}

/* handle the tuple set */
#if REBUILD_TREE

do { // multiple answers
offset = prep_stmt_fetch(select_stmt,NULL);
answer = bind_answer_record(select_stmt); // bind the term array

ans_node = answer_search(sg_fr,answer); // insert/check
TAG_AS_ANSWER_LEAF_NODE(ans_node);

if(SgFr_first_answer(sg_fr) == NULL) {
SgFr_first_answer(sg_fr) = ans_node;

} else {
TrNode_child(SgFr_last_answer(sg_fr)) = ans_node;

}
SgFr_last_answer(sg_fr) = ans_node;

} while(offset)
prep_stmt_free_resultset(select_stmt); // free the tuple set
dbtab_finish_transaction(TRUE);

#else /* BROWSE_TUPLESET */
SgFr_first_answer(sg_fr) = PS_TOP_RECORD(select_stmt);
SgFr_last_answer(sg_fr) = PS_BOTTOM_RECORD(select_stmt);

#endif /* BROWSE_TUPLESET */
dbtab_finish_transaction(TRUE);

}

Figure 5.18: Pseudo-code for dbtab import trie()

for usage. Two possible strategies may be used to supply these answers back to the

YapTab engine.

A first possible strategy is to use the retrieved tuple set to rebuild the answer trie and

discard it afterwards. This corresponds to the first code block in dbtab import trie()

function as shown in Fig. 5.18. The records are traversed sequentially in a top-to-

bottom fashion and the retrieved attribute values (answers) are used to create the

substitution factoring of the respective subgoal call, exactly as when the tabling

new answer operation occurs. By the end of the cycle, the entire answer trie re-

sides in the table space and the record-set can then be released from memory. This
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Figure 5.19: Importing f(X, 1): three relational mappings

strategy requires no alteration to the YapTab’s implemented api, except for the

call to dbtab import trie() in specific points of the table try, table retry and

table try single instructions.

Sometimes, it may not be advisable to reconstruct the complete answer trie to find

out if the answer set is useful or not in the present execution context. For instance, a

small initial subset of the answers may be enough to decide if a subgoal is useful to help

solving a particular goal. In order to prevent undesirable time waste, all subsequent

subgoal calls could fetch their answers directly from the retrieved tuple set simply by

browsing through its contents. The second code block in Fig. 5.18 illustrates how the

ancillary YapTap constructs can be used to implement the idea.

This second strategy enables a memory gain, since (i) the relational representation of

trie nodes dispenses the three pointers and focus on the symbol storage, hence the size

of the memory block required to hold the answer trie can be reduced by a factor of

four; and (ii) longer atomic terms representation narrows its memory requirements at
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least down to one eighth of the usually occupied memory because these type usually

require three or four trie nodes to be stored in memory.

Despite its possible benefits, the browsing strategy presents two significant drawbacks.

First of all, it may only be used with completed subgoal calls, whose respective

answer tries never change. For incomplete answers, this will simply not work, due

to the inability to add new answers to the tuple set. Second, it is only advantageous

when used in conjunction with the Datalog model. DBTab navigates this compacted

structure using tuple-length offsets to swiftly access the next answer and its subterms.

The hierarchical model tuples, conveying mostly trie dependent information, present

more sparsely distributed term values, possibly distributed for more than one tuple

(in case the term is a floating-point one). This makes the task of searching for term

values more difficult, while increasing the complexity of the algorithm.

Figure 5.20 shows how this strategy is used in a particular runtime example. The left

side box presents the state of the subgoal frame after answer collection for f(Y, 1). The

internal pointers are set to the first and last rows of the record-set. Another YapTab

internal structure, the loader choice point is extended with a field destined to hold

the offset from the top of the record-set to the last consumed answer. A loader choice

point is a WAM choice point augmented with the offset for the last consumed record

and a pointer to the subgoal frame data structure.

This strategy requires an extra function, dbtab load next answer(), to browse the

tuple set and bind the answer terms in the subgoal in hand. The process is quite simple,

as illustrated in Fig. 5.21. When loading answers, the first record’s offset, retrieved

from the loader choice point cp last answer field , is added to the record-set address

kept in subgoal frame SgFr first answer. This offset is used to fetch a tuple whose

field values are then used to bind the free variable terms in the subs ptr array. The

new offset is placed inside the choice point that is then sent back to the local stack.

When backtracking occurs, the choice point is reloaded and the last recorded offset is

used to proceed to the next answer. When an invalid offset past the end of the tuple

set is reached, the loader choice point is discarded thus signaling the positioning at the

last answer. The ongoing evaluation is then terminated and the tuple set is discarded.
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Figure 5.20: Importing f(Y, 1): browsing the tuple set directly

5.3 Chapter Summary

In this chapter, the implementation of DBTab was stressed. First, we have briefly

contextualized the developed work, establishing the connections to Rocha’s work

on efficient support for incomplete and complete tables in the YapTab tabling sys-

tem [Roc07] and on the work of Ferreira et al. on coupling logic programming with

relational databases [FRS04]. Next, the MySQL relational database management sys-

tem chosen to support DBTab was introduced and its major assets were discussed. The

transformations produced in YapTab to enable the implementation of relational tabling

was discussed afterwards. Topics like the developed API and the changes to Yaptab’s

table entry, subgoal frame and loader choice point structures, the recover space()

procedure and the table try instruction family of tabling instructions were covered.

At the end, we have presented an alternative way to inquire for subgoal answers

without reconstructing the answer trie.
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void dbtab_load_next_answer(subgoal frame sg_fr,
loader choice point l_cp,CELL subs_ptr) {

int i, n, subs_arity;
Term t;
PreparedStatement select_stmt;
MYSQL_ROW_OFFSET offset;

if((subs_arity = *subs_ptr) == 0)
return;

select_stmt = SgFr_select_stmt(sg_fr);
offset = CP_last_answer(l_cp) + SgFr_first_answer(sg_fr);
offset = prep_stmt_fetch(select_stmt,offset);

for(i=0, n=subs_arity; n>=1; n--) {
CELL subs_var = subs_ptr + n;
t = BIND_BUFF_PNTR(select_stmt,i);
i++;
if (IsAtomOrIntTerm(t)) {

Bind(subs_var, t);
} else if(IsApplTerm(t)) {

Functor f = (Functor)t;
if(f == LongIntFunctor) {
int k;
k = BIND_BUFF_PNTR(select_stmt,i+LINT_FSET);
t = MkLongIntTerm(k);
Bind(subs_var, t);

} else if(f == DoubleFunctor) {
double d;
d = BIND_BUFF_PNTR(select_stmt,i+FLTP_FSET);
t = MkFloatTerm(d);
Bind(subs_var, t);

}
} else {

Yap_Error(INTERNAL_ERROR, TermNil, "unknown type tag (dbtab_load_next_answer)");
}
// Locate next ARGi // Locate next ARGi
for(;(i<PS_FLDS_COUN(select_stmt)) && !VW_FIELD_IS_ARG(i);i++);

}
}

Figure 5.21: The dbtab load next answer() function



Chapter 6

Performance Analysis

In this chapter, an analysis on DBTab’s performance over a set of benchmark programs

is performed. The first part of the chapter presents an overall evaluation of the

overheads introduced by the relational storage extension, comparing DBTab’s different

approaches performance to that of YapTab for a standard evaluation. The second part

discusses and draws some preliminary conclusions on the obtained results.

6.1 Performance on Tabled Programs

To place performance results in perspective, a first batch of tests was performed both

in YapTab and DBTab environments. The detailed analysis of DBTab’s performance

allowed us to assess the efficiency of the relational tabling implementation based on

measured overheads introduced by the data transactions between the logical and the

database engines. The experimental environment was Humpty Dumpty, a white-line

computer featuring a Pentiumr4 XEON 2.6GHz, 2048 Mbytes of main memory and

running a Linux 2.6.18-2869.fc6PAE kernel. DBTab is implemented over the YAP-

5.1.1 engine and uses MySQL 5.0.2 for relational database management system.

In order to obtain a valid and credible comparison between each of the proposed

relational models, they should be tested in similar circumstances. Recall that the

Datalog model is restricted to atomic constants, more specifically to three simple types

of atomic constants. These are atomic strings, floating-point numbers and integer

numbers, even though these last are divided into two sub-classes: standard (those

131



132 CHAPTER 6. PERFORMANCE ANALYSIS

which fit the non-mask part of the term) and longints (those whose size matches the

complete term). Hence, for fairness sake, only the enumerated primitive types were

used for evaluation purposes.

A graph connectivity problem, presented in Fig. 6.1, was used to measure both YapTab

and DBTab performances in terms of answer generation. The program’s main goal is

to determine all existing paths starting from a particular node of the graph. The go/1

predicate is the top query goal. It determines the benchmark predicates performance

by calculating the difference between the main program’s uptime before and after the

benchmark execution.

Benchmark predicates are defined by two clauses: a first one that executes a call

to the tabled goal followed by the automatic failure mechanism and a second one

that ensures the successful completion of the top query goal. Two tabled predicates

were used to determine all existing paths in the loaded graphs. Predicate path/2,

henceforth called benchmark #1, helped us to establish minimum performance stan-

dards, since its answer set is relatively easy to obtain and handle through the use

of standard tabling. However, every day problems often require more sophisticated

algorithms, usually with sub-components that perform heavy calculations or some sort

of input/output operation. With this in mind, predicate write path/2, henceforth

called benchmark #2, was introduced. It basically results from the addition of a call

to an output predicate, writeln/1, at the very end of both clauses of path/2. Our

aim was to determine if DBTab could improve the overall performance of the main

program when such heavy operations were needed during answer set computing.

For a relatively accurate measure of execution times, the test program was executed

twenty-five times for each problem instance and the average of measured times, in

milliseconds, was found. Graph topologies and sizes changed through the test phase,

as an attempt to provide a larger insight on overall performance. Answer sets were

sent to the database in clusters of 25 tuples. Each of the tested graphs had its nodes

labelled by a different value of a single primitive type. Mind that both engines were

running in the same machine, which might have affected performance.

Results of the previously described test batches were summarized in two kinds of

tables. The first kind summarizes the performance of YapTab regarding the execution

of the two available benchmark predicates. The reported topics include the number

vertexes belonging to the graph, the number of possible paths in the graph (answers),
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% Connection handle creation stuff ...
:- consult(’graph.pl’).
:- tabling_init_session(Conn,Sid).

% Utilities
writeln([]) :-nl.
writeln([X|L]):-write(X),writeln(L).

% path(A,Z) succeeds if there is a path between A and Z
:- table path/2.
path(A,Z):- path(A,Y), edge(Y,Z).
path(A,Z):- edge(A,Z).

% write_path(A,Z) succeeds if there is a path between A and Z to be written
:- table write_path/2.
write_path(A,Z):- write_path(A,Y), edge(Y,Z), writeln([’(’,A,’,’,Z,’)’]).
write_path(A,Z):- edge(X,Y), writeln([’(’,A,’,’,Z,’)’]).

benchmark(1):- path(A,Z), fail.
benchmark(1).

benchmark(2):- write_path(A,Z), fail.
benchmark(2).

go(N) :- statistics(walltime, [Start,_]),
benchmark(N),
statistics(walltime, [End,_]),
Time is End-Start,
writeln([’WallTime is ’,Time]).

Figure 6.1: The test program

the primitive types used to label the vertexes, the number of trie nodes used to

represent the computed answers in the table space, the total amount of memory in

Kbytes required to store the answers tries, the amount of time spent in solving the

benchmark predicates and the amount of time required to produce a second answer

to the same queries, after table completion. A second type of tables established a

comparison between all the proposed database storage models. Reported topics include

the primitive type used to label the vertexes, the number of vertexes belonging to the

tested graphs and the primitive type used in their labeling. This size is compared

to the original memory space requirement for the predicated tables. Next comes

the amount of time spent in data transactions between the logical and the database

managing engines, in both directions. Each of these time measurements is compared

with the time spent in solving both the benchmarks. A final block of columns is used

to exhibit the size in Kbytes of the retrieved tuple sets and the execution times for

the tuple set browsing strategy, comparing its performance in terms of time to the
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2n 2n+1 ... ... ... ... ... ...
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Figure 6.2: Binary tree

standard tabling tries. In both sorts of tables, execution times strings have the format

Minutes:Seconds.Milliseconds.

At the end of each case study, a chart is used to visually compare the presented

performance figures. The X axis measures the number of nodes, the Y axis the time in

Milliseconds. Green squares and diamonds reflect YapTab’s times for benchmarks #1

and #2. Circles and triangles reflect the three alternative implementations storage

and retrieval times; Blue corresponds to the hierarchical model, Yellow and Red

corresponds to the separate values and inline variants of the Datalog model. The lines

in between the discrete values illustrate performance trends. Trend equations are made

available to enable a better comparison. At the left side of the charts, the equations

refer to benchmark #1 and data retrieval operations performance; at the right side,

the equations refer to benchmark #2 and data storage operations performance.

6.1.1 Case Study #1: Binary Tree

The first chosen topology is the complete binary tree. This is a binary tree in which

(i) every node has zero or two children, (ii) all leaves are at the same depth and (iii)

each vertex labeled k has its direct children labeled 2k and 2k + 1. A finite complete

binary tree Tn with n vertexes has a depth of log2(n) and a total count of n− 1 edges.

Figure 6.2 illustrates the produced structures.

Table 6.1 summarizes YapTab’s execution times for the benchmark programs when run
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against this type of graphs. It is clear that label types have an important influence

on the execution times. In average, answer sets generation using long integer and

floating-point labels is 1,4 and 1,7 times slower than when integer labels are used. As

expected, the input/output operation has a major impact on performance. Comparing

the time spent in solving benchmarks #1 and #2, it becomes clear that the second

predicate is much slower than the first. In average, the first predicate spends 44 times

the time required by the second to terminate.

Vertexes Answers Type Nodes Memory Bm #1 Bm #2 Traverse

256 1538

Integer 1666 33 00:00.001 00:00.025 00:00.001

Longint 3459 68 00:00.001 00:00.054 00:00.001

Double 5124 100 00:00.002 00:00.071 00:00.002

1024 8194

Integer 8706 170 00:00.005 00:00.217 00:00.005

Longint 17923 350 00:00.007 00:00.357 00:00.007

Double 26628 520 00:00.011 00:00.445 00:00.011

4096 40962

Integer 43010 840 00:00.026 00:01.210 00:00.026

Longint 88067 1720 00:00.046 00:01.845 00:00.046

Double 131076 2560 00:00.067 00:02.220 00:00.067

16384 196610

Integer 204802 4000 00:00.129 00:06.274 00:00.129

Longint 417795 8160 00:00.188 00:10.452 00:00.188

Double 622596 12160 00:00.201 00:11.856 00:00.201

Table 6.1: YapTab’s times for benchmarks #1 and #2 with the Binary Tree

Table 6.2 statistics show that DBTab’s impact on the performance of YapTab reflects

mainly during tuple storage. For the inline variant of the Datalog model, the median

overhead is of 36,1 times the amount of time required to execute benchmark #1, within

an interval roughly ranging from 17,9 to 69 times. For the separate value variant, the

median overhead grows to 57,3 times the execution time of benchmark #1, within

an interval ranging from 34,1 to 127 times. For the hierarchical model, the median

overhead is of 35,8 times the computation time, within an interval ranging from 18,5

to 62 times. When input/output is performed, the discussed ratios drop abruptly.

For the inline variant, the median overhead for storage is 0,7 times the amount of

time required to execute benchmark #2, within an interval ranging from 0,5 to 2,7

times. For the separate value variant, the median overhead grows to 1,2 times, within

an interval ranging from 0,7 to 2,7 times. For the hierarchical model, the median

overhead is of 0,4 times the computation time of benchmark #2, within an interval

ranging from 0,4 to 2,3 times.
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On the contrary, retrieve operations are quite inexpensive compared with the answer

set computing time. For the inline variant of the Datalog model, the median induced

overhead is of 8,3 times the amount of time required by benchmark #1 to terminate,

within an interval of 5,0 to 16,7 times. For the separate value variant, the median

overhead grows to 10,3 times, within an interval ranging from 8,0 to 17,5 times. For

the hierarchical model, the median overhead is of 5,8 times the computation time

of benchmark #2, within an interval ranging from 3,6 to 13,7 times. The discussed

values suffer a significant decrease for benchmark #2. In fact, the ratios reveal an

actual speedup rather than an overhead. For both the variants of the Datalog model,

the median retrieval time is of 0,2 times the amount of time required to execute

benchmark #2, within an interval ranging from 0,1 to 0,3 times, although the inline

variant is slightly faster than its separate value counterpart. The hierarchical model

median time requirement is of 0,1 times the computation time of benchmark #2,

within an interval ranging from (nearly) 0,0 to 0,2 times.

The last two columns help to understand the performance of answer set browsing.

For the Datalog model, the retrieved tuple set size equals in average 0,4 of the

correspondent answer trie size, while for the hierarchical model the ratio grows up

to 0,5. Answer set browsing times increase along with the graph size. For the inline

variant, it takes in average 3,6 times more the time required to traverse the respective

answer trie, while for the separate value variant, it takes in average 3,3 times.

The chart in Fig. 6.3 shows that all implementations have rather distinct behaviours

in both data transaction types. For the storage and transaction, the inline variant of

Datalog model is the fastest implementation, followed by the hierarchical model and in

last, the separate value variant of Datalog model. Conversely, in the retrieval phase,

the hierarchical model is the fastest implementation, followed by the inline variant

and in last, the separate value variant of the Datalog model, whose performance no

doubt decays due to the involved left join operations. One important fact emerges

from this chart: all of DBTab’s measured retrieval times are not only significantly

lower than the execution time of benchmark #2, but also their growth rate is very

much slower.
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Type Answers Strategy Write Read Dataset Browse

Integer

1538

Inline 00:00.067 (67/2,7) 00:00.008 (8/0,3) 14 (0,4) 00:00.001 (1,0)

Separate 00:00.068 (68/2,7) 00:00.008 (8/0,3) 14 (0,4) 00:00.001 (1,0)

Hierarchy 00:00.058 (58/2,3) 00:00.005 (5/0,2) 21 (0,6) N.A.

8194

Inline 00:00.244 (48,8/1,1) 00:00.044 (8,8/0,2) 72 (0,4) 00:00.005 (2,5)

Separate 00:00.208 (41,6/1,0) 00:00.043 (8,6/0,2) 72 (0,4) 00:00.004 (2,0)

Hierarchy 00:00.192 (38,4/0,9) 00:00.035 (17,5/0,2) 111 (0,6) N.A.

40962

Inline 00:01.093 (42/0,9) 00:00.237 (9,1/0,2) 360 (0,4) 00:00.009 (3,0)

Separate 00:00.887 (34,1/0,7) 00:00.226 (8,7/0,2) 360 (0,4) 00:00.009 (2,7)

Hierarchy 00:00.835 (32,1/0,7) 00:00.143 (47,7/0,1) 546 (0,6) N.A.

196610

Inline 00:04.796 (37,2/0,8) 00:01.175 (9,1/0,2) 1728 (0,4) 00:00.057 (4,1)

Separate 00:04.566 (35,4/0,7) 00:01.171 (9,1/0,2) 1728 (0,4) 00:00.057 (3,9)

Hierarchy 00:04.272 (33,1/0,7) 00:00.891 (63,6/0,1) 2600 (0,6) N.A.

Longint

1538

Inline 00:00.069 (69/1,3) 00:00.010 (10/0,2) 23 (0,3) 00:00.001 (1,0)

Separate 00:00.127 (127/2,4) 00:00.016 (16/0,3) 23 (0,3) 00:00.001 (1,0)

Hierarchy 00:00.062 (62/1,1) 00:00.006 (6/0,1) 26 (0,4) N.A.

8194

Inline 00:00.246 (35,1/0,7) 00:00.053 (7,6/0,1) 136 (0,4) 00:00.005 (2,5)

Separate 00:00.481 (68,7/1,3) 00:00.086 (12,3/0,2) 136 (0,4) 00:00.004 (2,0)

Hierarchy 00:00.206 (29,4/0,6) 00:00.036 (18/0,1) 117 (0,3) N.A.

40962

Inline 00:01.121 (24,4/0,6) 00:00.272 (5,9/0,1) 680 (0,4) 00:00.028 (7,0)

Separate 00:02.376 (51,7/1,3) 00:00.444 (9,7/0,2) 680 (0,4) 00:00.026 (2,7)

Hierarchy 00:00.850 (18,5/0,5) 00:00.164 (41/0,1) 572 (0,3) N.A.

196610

Inline 00:05.017 (26,7/0,5) 00:01.626 (8,6/0,2) 3264 (0,4) 00:00.117 (6,5)

Separate 00:11.400 (60,6/1,1) 00:02.815 (15/0,3) 3264 (0,4) 00:00.112 (6,2)

Hierarchy 00:04.454 (23,7/0,4) 00:00.990 (55/0,1) 2626 (0,3) N.A.

Double

1538

Inline 00:00.076 (38/1,1) 00:00.013 (6,5/0,2) 38 (0,4) 00:00.001 (1,0

Separate 00:00.128 (64/1,8) 00:00.022 (11/0,3) 38 (0,4) 00:00.001 (1,0)

Hierarchy 00:00.096 (48/1,4) 00:00.015 (15/0,2) 44 (0,4) N.A.

8194

Inline 00:00.278 (25,3/0,6) 00:00.073 (6,6/0,2) 200 (0,4) 00:00.007 (2,3)

Separate 00:00.540 (54/1,2) 00:00.110 (11/0,2) 200 (0,4) 00:00.006 (2,0)

Hierarchy 00:00.416 (41,6/0,9) 00:00.078 (26/0,2) 228 (0,4) N.A.

40962

Inline 00:01.195 (17,8/0,5) 00:00.337 (5/0,2) 1000 (0,4) 00:00.047 (7,8)

Separate 00:02.601 (38,8/1,2) 00:00.533 (8/0,2) 1000 (0,4) 00:00.044 (7,3)

Hierarchy 00:01.608 (24/0,7) 00:00.330 (55/0,1) 1118 (0,4) N.A.

196610

Inline 00:06.347 (31,6/0,5) 00:03.346 (16,6/0,3) 4800 (0,4) 00:00.121 (4,5)

Separate 00:12.521 (62,3/1,1) 00:03.512 (17,5/0,3) 4800 (0,4) 00:00.116 (4,3)

Hierarchy 00:09.237 (46/0,8) 00:02.752 (101,9/0,2) 5304 (0,4) N.A.

Table 6.2: Transactional overheads for the Binary Tree
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Figure 6.3: Binary Tree - comparing different alternatives performance

6.1.2 Case Study #2: Directed Grid

The second tested topology is the directed grid graph. The grid corresponds to the

square lattice and it is isomorphic to the graph having a vertex corresponding to every

pair of integers (a, b), and an edge connecting (a, b) to (a + 1, b) and (a, b + 1). The

finite grid graph Gn,n, presented in Fig. 6.4, is obtained by restricting the ordered pairs

to the range 0 = a ≤ m, 0 = b ≤ n.

The execution times for the benchmark programs are summarized in Table 6.3. As

in the previous example, the number of nodes and the label types have significant

impact on the execution times. In average, answer set generation using long integer

and floating-point labels is 1,6 and 2,0 times slower than when integer labels are used.

Again, input/output operations introduce a significant increase in performance. In

average, benchmark #2 executes 87 times slower than the benchmark #1.

The execution times for the benchmark predicates are presented in Table 6.4. Once

again, the most expensive operation is the storage of the answer sets. For the inline
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Vertexes Answers Type Nodes Memory Bm #1 Bm #2 Traverse

144 5940

Integer 6084 119 00:00.003 00:00.260 00:00.003

Longint 12311 241 00:00.004 00:00.438 00:00.004

Double 18394 359 00:00.006 00:00.541 00:00.006

256 18240

Integer 18496 361 00:00.009 00:00.817 00:00.009

Longint 37247 728 00:00.017 00:01.431 00:00.017

Double 55742 1089 00:00.019 00:01.697 00:00.019

576 89424

Integer 90000 1758 00:00.055 00:04.432 00:00.055

Longint 180575 3527 00:00.086 00:07.379 00:00.086

Double 270574 5285 00:00.104 00:08.569 00:00.104

1024 277760

Integer 278784 7398 00:00.169 00:13.969 00:00.169

Longint 558591 10910 00:00.275 00:23.379 00:00.275

Double 834490 16299 00:00.335 00:26.954 00:00.335

Table 6.3: YapTab’s times for benchmarks #1 and #2 with the Directed Grid

variant of the Datalog model, the median induced overhead is 26,9 times the amount

of time required for benchmark #1 to execute, within an interval ranging from 22,5

to 50,3 times. For the separate value variant, the median overhead grows to 48,6

times the execution time of benchmark #1, within an interval ranging from 27,5 to

80,5 times. For the hierarchical model, the median overhead is of 39,6 times the

computation time, within an interval ranging from 21,6 to 64,0 times. The discussed

ratios drop drastically when calculated for the execution times of benchmark #2.

For the inline variant, the median storage overhead is 0,3 times the amount of time

required to execute benchmark #2, within an interval ranging from 0,2 to 0,6 times.
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For the separate value variant, the median overhead grows to 0,6 times, within an

interval ranging from 0,3 to 0,7 times. For the hierarchical model, the median induced

overhead is of 0,5 times the computation time of benchmark #2, within an interval

ranging from 0,2 to 0,7 times.

Retrieval operation costs remains relatively low. For the inline variant of the Datalog

model, the median retrieval time takes 9,9 times the amount of time required by

benchmark #1 to terminate, within an interval of 7,2 to 11,3 times. For the separate

value variant, the average overhead grows to 13,5 times, within an interval ranging

from 10,0 to 17,5 times. For the hierarchical model, the average overhead is of 7,7

times the computation time of benchmark #1, within an interval ranging from 3,9 to

14,5 times. The discussed values drop when benchmark #2 is executed, so drastically

that a speedup is observed. For the inline variant of the Datalog model, the minimum,

median and maximum retrieval times are 0,1 times the amount of time required to

execute benchmark #2. The performance of the other variant is similar, although in

the worst-case scenario the median retrieval time may rise to 0,2. For the hierarchical

model, the median retrieval time is 0,1 times the computation time of benchmark #2,

within an interval ranging from (nearly) 0,0 to 0,2 times.

The performance of answer set browsing shows no significant change when compared

with the previous example. The retrieved tuple set size equals in average 0,4 of the

correspondent answer trie size for the Datalog model and up to 0,5 for the hierarchical

model. Browsing times also increase along with the graph size. For the inline variant,

it takes in average 4,6 times the time required to traverse the respective answer trie.

For the separate value, the average is 4,3 times.

The chart in Fig. 6.5 reveals a similar scenario from the previous example in terms

of storage. For the storage transaction, the inline variant of Datalog model is the

fastest implementation, followed by the hierarchical model and in last, the separate

value variant of Datalog model. Conversely, in the retrieval phase, the hierarchical

model is the fastest implementation, followed very closely by the inline variant of the

Datalog model and in last, the separate value variant of the Datalog model, whose

performance no doubt decays due to the involved left join operations. Notice that,

once again, all of DBTab’s measured retrieval times are significantly lower than the

execution time of benchmark #2, as well as the correspondent growth lines slopes.
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Type Answers Strategy Write Read Dataset Browse

Integer

5940

Inline 00:00.151 (50,3/0,6) 00:00.034 (11,3/0,1) 52 (0,4) 00:00.002 (2,0)

Separate 00:00.125 (41,7/0,5) 00:00.033 (11/0,1) 52 (0,4) 00:00.001 (1,0)

Hierarchy 00:00.192 (64/0,7) 00:00.023 (23/0,1) 77 (0,6) N.A.

18240

Inline 00:00.415 (46,1/0,5) 00:00.097 (10,8/0,1) 160 (0,4) 00:00.004 (4,0)

Separate 00:00.350 (38,9/0,4) 00:00.097 (10,8/0,1) 160 (0,4) 00:00.004 (4,0)

Hierarchy 00:00.564 (62,7/0,7) 00:00.070 (70/0,1) 235 (0,6) N.A.

89424

Inline 00:02.040 (37,1/0,5) 00:00.562 (10,2/0,1) 786 (0,4) 00:00.027 (4,5)

Separate 00:01.521 (27,7/0,3) 00:00.552 (10/0,1) 786 (0,4) 00:00.018 (3,0)

Hierarchy 00:01.841 (33,5/0,4) 00:00.337 (56,2/0,1) 1143 (0,6) N.A.

277760

Inline 00:06.452 (38,2/0,5) 00:01.887 (11,2/0,1) 3223 (0,4) 00:00.061 (3,6)

Separate 00:06.094 (36,1/0,4) 00:02.207 (13,1/0,2) 3223 (0,4) 00:00.064 (3,8)

Hierarchy 00:06.363 (37,7/0,5) 00:01.362 (80,1/0,1) 3539 (0,5) N.A.

Longint

5940

Inline 00:00.153 (38,3/0,3) 00:00.041 (10,3/0,1) 99 (0,4) 00:00.004 (4,0)

Separate 00:01.654 (413,5/3,8) 00:00.070 (17,5/0,2) 99 (0,4) 00:00.003 (3,0)

Hierarchy 00:00.240 (60/0,5) 00:00.026 (26/0,1) 79 (0,3) N.A.

18240

Inline 00:00.425 (25/0,3) 00:00.122 (7,2/0,1) 303 (0,4) 00:00.011 (5,5)

Separate 00:04.039 (237,6/2,8) 00:00.195 (11,5/0,1) 303 (0,4) 00:00.011 (5,5)

Hierarchy 00:00.642 (37,8/0,4) 00:00.074 (37/0,1) 238 (0,3) N.A.

89424

Inline 00:02.104 (24,5/0,3) 00:00.823 (9,6/0,1) 1485 (0,4) 00:00.056 (7,0)

Separate 00:25.090 (291,7/3,4) 00:01.339 (15,6/0,2) 1485 (0,4) 00:00.057 (7,1)

Hierarchy 00:01.861 (21,6/0,3) 00:00.338 (42,3/≈0) 1150 (0,3) N.A.

277760

Inline 00:06.666 (24,2/0,3) 00:02.258 (8,2/0,1) 4611 (0,4) 00:00.162 (5,4)

Separate 01:13.874 (268,6/3,2) 00:04.282 (15,6/0,2) 4611 (0,4) 00:00.167 (5,6)

Hierarchy 00:06.438 (23,4/0,3) 00:01.405 (46,8/0,1) 3552 (0,3) N.A.

Double

5940

Inline 00:00.173 (28,8/0,3) 00:00.057 (9,5/0,1) 145 (0,4) 00:00.004 (4,0)

Separate 00:01.582 (270,2/3,0) 00:00.083 (13,8/0,2) 145 (0,4) 00:00.003 (3,0)

Hierarchy 00:00.373 (62,2/0,7) 00:00.057 (57/0,1) 156 (0,4) N.A.

18240

Inline 00:00.464 (24,4/0,3) 00:00.164 (8,6/0,1) 445 (0,4) 00:00.011 (5,5)

Separate 00:04.692 (257,3/2,9) 00:00.245 (12,9/0,1) 445 (0,4) 00:00.011 (5,5)

Hierarchy 00:00.849 (44,7/0,5) 00:00.162 (81/0,1) 473 (0,4) N.A.

89424

Inline 00:02.367 (22,8/0,3) 00:00.871 (8,4/0,1) 2183 (0,4) 00:00.057 (5,2)

Separate 00:26.501 (251,8/3,1) 00:01.456 (14/0,2) 2183 (0,4) 00:00.059 (5,4)

Hierarchy 00:04.317 (41,5/0,5) 00:00.843 (76,6/0,1) 2292 (0,4) N.A.

277760

Inline 00:07.536 (22,5/0,3) 00:03.778 (11,3/0,1) 6781 (0,4) 00:00.171 (4,5)

Separate 01:15.270 (225/2,8) 00:05.184 (15,5/0,2) 6781 (0,4) 00:00.167 (4,4)

Hierarchy 00:12.112 (36,2/0,4) 00:04.867 (128,1/0,2) 7091 (0,4) N.A.

Table 6.4: Transactional overheads for the Directed Grid
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Figure 6.5: Directed Grid - comparing different alternatives performance

6.1.3 Case Study #3: Cyclic Graph

None of the graphs presented so far contained cyclic paths. One could wonder what

would happen if such paths were possible and what would be the impact on perfor-

mance. In order to answer this question, both graphs were transformed to include

cyclic paths.

The third graph topology is the cyclic graph. The new graph consists of an adulterated

binary tree, introducing cyclic paths in the structure basically by making the leaves

disappear. In this new structure, leaves lk and lk+1 sharing the same father p are

connected by two new edges, (lk,lk+1) and (lk+1,lk). Additionally, lk is connected to

node ni, where i = log2(n)/2, and lk+1 is connected to node nj, with j = log2(n)/4.

Figure 6.6 illustrates the new graph.

Table 6.5 summarizes YapTab’s execution times for the benchmark programs. As

expected, the number of nodes and the label types influences the execution times. In

average, answer set generation using long integer and floating-point labels is 1,3 and
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Figure 6.6: Cyclic Graph

1,7 times slower than when integer labels are used. The introduction of input/output

operations has a great impact on performance, slowing benchmark #2 execution in

average 105,6 times the time spent by benchmark #1.

The increase of possible paths between two nodes has proved to have some impact on

the performance of benchmark predicates. The comparison of the acyclic and cyclic

cases for the same number of nodes reveals that the introduction of edges connecting

the leafs in pairs and each leaf to an ancestor increases memory requirement growth

in average by a factor of 3. Execution time increases in average factors of 2,7 and 5,8

for benchmarks #1 and #2 respectively.

Vertexes Answers Type Nodes Memory Bm #1 Bm #2 Traverse

256 2170

Integer 2298 45 00:00.001 00:00.089 00:00.001

Longint 4723 92 00:00.002 00:00.171 00:00.002

Double 7020 137 00:00.003 00:00.229 00:00.003

1024 17394

Integer 17906 350 00:00.010 00:00.807 00:00.010

Longint 36323 710 00:00.014 00:01.447 00:00.014

Double 54228 1059 00:00.018 00:01.880 00:00.018

4096 137186

Integer 139234 2720 00:00.078 00:07.404 00:00.078

Longint 280515 5479 00:00.104 00:12.445 00:00.104

Double 419748 8198 00:00.150 00:15.569 00:00.150

16384 1081282

Integer 1089474 21279 00:00.596 00:58.655 00:00.596

Longint 2187139 42718 00:00.897 01:30.044 00:00.897

Double 3276612 63996 00:01.284 01:52.490 00:00.284

Table 6.5: YapTab’s times for benchmarks #1 and #2 with the Cyclic Graph
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The execution times presented in Table 6.6 reveal a similar pattern to the one found

in the acyclic example, as most of DBTab’s execution time is spent during the storage

phase. For the inline variant of the Datalog model, the median induced overhead is

36,4 times the amount of time required to execute benchmark #1, within an interval

ranging from 23,9 to 85,0 times. For the separate value variant, the median overhead

grows to 58,1 times the execution time of benchmark #1, within an interval ranging

from 31,4 to 144 times. For the hierarchical model, the median overhead is 42,8 times

the computation time, within an interval ranging from 28,2 to 75,0 times. These ratios

drop again drastically when calculated for the execution times of benchmark #2. For

the inline variant, the median induce overhead is 0,3 times the amount of time required

to execute benchmark #2, within an interval ranging from 0,2 to 0,9 times. For the

separate value variant, the median overhead grows to 0,6 times, within an interval

ranging from 0,4 to 0,8 times. For the hierarchical model, the median overhead is 0,4

times the computation time of benchmark #2, within an interval ranging from 0,3 to

0,8 times.

As expected, retrieval cost remains relatively low when compared with computation

time. For the inline variant of the Datalog model, the median induced overhead is 9,2

times the amount of time required by benchmark #2 to terminate, within an interval

of 8,5 to 13 times. For the separate value variant, the median overhead grows to 16,2

times, within an interval ranging from 9,1 to 34,1 times. For the hierarchical model,

the median overhead is 7,4 times the computation time of benchmark #2, within an

interval ranging from 4,9 to 17,4 times. When benchmark #2 is executed, the ratios

drop as previously observed, and overheads become speedups. For the inline variant

of the Datalog model, the minimum, median and maximum retrieval time are 0,1

times the amount of time required to execute benchmark #2. The performance of the

separate value variant is very similar, except for the maximum retrieval time which is

0,3 times. For the hierarchical model, minimum and median times are very close to

0,1 times the amount of time required to execute benchmark #2, and the maximum

retrieval time which is 0,2 times.

The performance of answer set browsing also displays a pattern similar to that of the

previous examples. Despite the absolute increase of the tuple set sizes, the retrieved

tuple set size equals in average 0,4 of the correspondent answer trie size for the Datalog

model and up to 0,5 for the hierarchical model. Again, it is possible to observe that
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answer set browsing times grow with the graph size. For the inline variant, it takes in

average 3,8 times more the time required to traverse the respective answer trie. For

the separate value, it takes only 3,6 times.
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Figure 6.7: Cyclic Graph - comparing different alternatives performance

Figure 6.7 displays the performance chart for the three implementations, in a similar

pattern to the one found in previous cases. For the retrieval transaction, the inline

variant of the Datalog model is the fastest implementation, followed by the hierarchical

model and at last by the separate value variant. Retrieval operations maintain a certain

regularity of performance. Again, the fastest implementation is the hierarchical model,

followed by the inline variant and, at last by the separate value variant. However, one

can observe that (i) the difference between the two first implementations is very small

and (ii) the third implementation’s central tendency line indicates that, for larger

graphs, performance decreases very fast - notice the line’s slope increase near the end.

Notice that once again, all of DBTab’s measured times are still significantly lower than

the execution time of benchmark #2, as well as the growth line slopes.
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Type Answers Strategy Write Read Dataset Browse

Integer

2170

Inline 00:00.077 (77/0,9) 00:00.011 (11/0,1) 19 (0,4) 00:00.001 (1,0)

Separate 00:00.072 (72/2,3) 00:00.010 (10/0,1) 19 (0,4) 00:00.001 (1,0)

Hierarchy 00:00.073 (73/0,8) 00:00.006 (6/0,1) 29 (0,6) N.A.

17394

Inline 00:00.427 (42,7/0,5) 00:00.093 (9,3/0,1) 153 (0,4) 00:00.005 (2,5)

Separate 00:00.341 (34,1/2,1) 00:00.091 (9,1/0,1) 153 (0,4) 00:00.004 (2,0)

Hierarchy 00:00.369 (36,9/0,5) 00:00.066 (33/0,1) 227 (0,6) N.A.

137186

Inline 00:03.231 (41,4/0,4) 00:00.861 (11/0,1) 1206 (0,4) 00:00.034 (3,8)

Separate 00:02.810 (36/1,7) 00:00.800 (10,3/0,1) 1206 (0,4) 00:00.031 (3,4)

Hierarchy 00:03.195 (41/0,4) 00:00.494 (54,9/0,1) 1768 (0,6) N.A.

1081282

Inline 00:25.398 (42,6/0,4) 00:06.549 (11/0,1) 9503 (0,4) 00:00.267 (3,0)

Separate 00:21.332 (35,8/1,9) 00:10.381 (17,4/0,2) 9503 (0,4) 00:00.229 (2,6)

Hierarchy 00:25.923 (43,5/0,4) 00:05.733 (65,1/0,1) 13831 (0,6) N.A.

Longint

2170

Inline 00:00.085 (85/0,5) 00:00.013 (13/0,1) 36 (0,4) 00:00.001 (1,0)

Separate 00:00.144 (144/0,8) 00:00.024 (24/0,1) 36 (0,4) 00:00.001 (1,0)

Hierarchy 00:00.075 (75/0,4) 00:00.008 (8/0) 31 (0,3) N.A.

17394

Inline 00:00.436 (31,1/0,3) 00:00.119 (8,5/0,1) 289 (0,4) 00:00.011 (5,5)

Separate 00:00.887 (63,4/0,6) 00:00.194 (13,9/0,1) 289 (0,4) 00:00.010 (5,0)

Hierarchy 00:00.395 (28,2/0,3) 00:00.070 (35/0) 234 (0,3) N.A.

137186

Inline 00:03.258 (31,3/0,3) 00:00.922 (8,9/0,1) 2278 (0,4) 00:00.085 (7,1)

Separate 00:07.133 (68,6/0,6) 00:01.968 (18,9/0,2) 2278 (0,4) 00:00.084 (7,0)

Hierarchy 00:03.355 (32,3/0,3) 00:00.509 (42,4/0) 1794 (0,3) N.A.

1081282

Inline 00:26.016 (29/0,3) 00:07.883 (8,8/0,1) 17951 (0,4) 00:00.638 (5,7)

Separate 00:57.856 (64,5/0,6) 00:30.662 (34,2/0,3) 17951 (0,4) 00:00.626 (5,6)

Hierarchy 00:26.451 (29,5/0,3) 00:06.174 (55,1/0,1) 13935 (0,3) N.A.

Double

2170

Inline 00:00.088 (44/0,4) 00:00.019 (9,5/0,1) 53 (0,4) 00:00.002 (2,0)

Separate 00:00.151 (75,5/0,7) 00:00.033 (16,5/0,1) 53 (0,4) 00:00.001 (1,0)

Hierarchy 00:00.123 (61,5/0,5) 00:00.021 (21/0,1) 60 (0,4) N.A.

17394

Inline 00:00.473 (26,3/0,3) 00:00.159 (8,8/0,1) 425 (0,4) 00:00.011 (5,5)

Separate 00:00.931 (51,7/0,5) 00:00.241 (13,4/0,1) 425 (0,4) 00:00.010 (5,0)

Hierarchy 00:00.812 (45,1/0,4) 00:00.162 (81/0,1) 461 (0,4) N.A.

137186

Inline 00:03.684 (24,6/0,2) 00:01.319 (8,8/0,1) 3349 (0,4) 00:00.088 (4,6)

Separate 00:07.926 (52,8/0,5) 00:02.389 (15,9/0,2) 3349 (0,4) 00:00.087 (4,6)

Hierarchy 00:06.946 (46,3/0,4) 00:01.550 (81,6/0,1) 3561 (0,4) N.A.

1081282

Inline 00:30.707 (23,9/0,3) 00:11.685 (9,1/0,1) 26398 (0,4) 00:00.721 (4,4)

Separate 01:03.031 (49,1/0,6) 00:39.860 (31/0,4) 26398 (0,4) 00:00.654 (4,0)

Hierarchy 00:54.104 (42,1/0,5) 00:22.399 (136,6/0,2) 27766 (0,4) N.A.

Table 6.6: Transactional overheads for the Cyclic Graph
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6.1.4 Case Study #4: Bidirectional Grid

The last and final topology is the bidirectional grid graph. All edges in the graph

become bidirectional, as illustrated in Fig. 6.8. More accurately, the graph generator

is modified so that each edge connecting two distinct vertexes is complemented with

a new edge establishing a connection in the opposite direction. This enables the

appearance of cyclic paths within the graph, thus largely increasing the costs of the

path finding operation.
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Figure 6.8: Bidirectional Grid

Table 6.7 summarizes YapTab’s execution times for the benchmark programs. Needless

to say, the number of nodes and the label types influences the execution times. In

average, answer set generation using long integer and floating-point labels is 1,6 and

2,3 times slower than when integer labels are used. The introduction of input/output

operations again has a great impact on performance, slowing benchmark #2 execution

in average 112 times relatively to that spent by benchmark #1.

This is the case study in which the increase of possible paths between two nodes has the

most significant impact on the performance of benchmark predicates. In average, for

the same number of nodes, the existence of an edge in the opposite direction increased

memory space requirements by a factor of 3,6. Execution time increases in average

factors of 6,1 and 7,8 for benchmark #1 and #2 respectively.

As with the acyclic example, the execution times presented in Table 6.8 reveal a

familiar pattern. Let us again start to observe the storage operation. For the inline
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Vertexes Answers Type Nodes Memory Bm #1 Bm #2 Traverse

144 20736

Integer 20881 408 00:00.015 00:01.850 00:00.015

Longint 41906 819 00:00.028 00:03.345 00:00.028

Double 62786 1226 00:00.042 00:04.150 00:00.042

256 65536

Integer 65793 1285 00:00.057 00:06.521 00:00.057

Longint 131842 2575 00:00.088 00:10.414 00:00.088

Double 197634 3860 00:00.116 00:13.467 00:00.116

576 331776

Integer 332353 6491 00:00.338 00:34.514 00:00.338

Longint 665282 12994 00:00.480 00:57.107 00:00.480

Double 997634 19485 00:00.658 01:09.790 00:00.658

1024 1048576

Integer 1049601 28313 00:00.954 01:52.920 00:00.954

Longint 2100226 41020 00:01.600 02:52.936 00:00.600

Double 3149826 61520 00:02.235 03:41.624 00:00.235

Table 6.7: YapTab’s times for benchmarks #1 and #2 with the Bidirectional Grid

variant of the Datalog model, the median induced overhead is 16,5 times the amount of

time required to execute benchmark #1, within an interval ranging from 13,0 to 30,0

times. For the separate value variant, the median overhead grows to 28,4 times the

execution time of benchmark #1, within an interval ranging from 18,7 to 37,6 times.

For the hierarchical model, the median overhead is 21,1 times the computation time,

within an interval ranging from 14,1 to 29,1 times. As usual, the mentioned ratios

drop immensely when calculated for the execution times of benchmark #2. For the

inline variant, the median induced overhead is 0,1 times the amount of time required

to execute benchmark #2, within an interval ranging from 0,1 to 0,2 times. For the

separate value variant, the median overhead grows to 0,3 times, within an interval

ranging from 0,2 to 0,4 times. For the hierarchical model, the median overhead is 0,2

times the computation time of benchmark 2, within an interval ranging from 0,1 to

0,2 times.

Retrieval cost are also low when compared with computation time. For the inline

variant of the Datalog model, the average induced overhead is 11 times the amount of

time required by benchmark #2 to terminate, within an interval of 5 to 27 times. For

the separate value variant, the average overhead grows to 13 times, within an interval

ranging from 7 to 32 times. The hierarchical model is faster, taking round half the time

of any of the Datalog variant. The average overhead is 5 times the computation time of

benchmark #2, within an interval ranging from 3 to 9 times. When benchmark #2 is

executed, the ratios drop as previously observed, with overheads becoming speedups.
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For both variants of the Datalog model, the median retrieval time is 0,1 times the

amount of time required to execute benchmark #2, within an interval ranging from

(nearly) 0,0 to 0,3, although the inline variant is faster than the separate value. For the

hierarchical model, the minimum, median and maximum times may be never exceed

0,1 times the amount of time required to execute benchmark #2.

In both models, the retrieved tuple set size equals in average 0,4 of the correspondent

answer trie size. Answer set browsing times also grow along with the graph size. For

the inline variant, it takes in average 4,8 times more the time required to traverse the

respective answer trie. For the separate value, it takes in average 4,7.

� � � � � �� � � �� 	 
 � � 
� � � �� � � � �� � �� � � � � � �� 	 � � 
 
� � � �� � � � �� � � �� � � � � �� 	 � � � 
� � � �� � � � � � � � � �� � � � �� 	 	 
 
� � � �� � � � �� � � �� � � � � �� 
 � � 
 
� � � �� � � � �� � � �� � � � � �� 
 � � � 
� � � �� � � � � � � � � �� � � � �� 	 � � � 
� � � �� � � � �� � � � �� � � � �� 	 � � � 
� � � �� � � � �
�� � � � � ��� � � � � �� � � � � � �� � � � � � ��� � � � � ��� � � � � ��� � � � � �

� � � �  !  " � # #� $ � # # % $ " &  &  � !�  " $ # & ! & &� & % & # # %� �� " " $ # & !  � ! " # �  �  � �� � # &  ! " �� #' ( ) * +
,-..- /0123 4/

� � 5 6 7 8 9: ; < = � 7 8 9� � 5 6 7 > 9: ; < = � 7 > 9� � 5 6 7 ? 9: ; < = � 7 ? 9> @ A B � C D �> @ A B � C D �
Figure 6.9: Bidirectional Grid - comparing different alternatives performance

The performance chart in Fig. 6.5 reveals a partially new scenario. Up to a cer-

tain point, it confirms the performance pattern found in the all previous examples.

Regarding the storage operation, the fastest implementation is once again the inline

variant of the Datalog model, followed by the hierarchical model and the separate value

variant. Retrieval operations also maintained their regularity in performance. The

fastest implementation is still the hierarchical model, followed by the inline variant

and, at last, by the separate value variant. However, for the last quarter onwards,
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Type Answers Strategy Write Read Dataset Browse

Integer

20736

Inline 00:00.450 (30/0,2) 00:00.116 (7,7/0,1) 182 (0,4) 00:00.005 (5,0)

Separate 00:00.389 (25,9/0,2) 00:00.110 (7,3/0,1) 182 (0,4) 00:00.005 (5,0)

Hierarchy 00:00.437 (29,1/0,2) 00:00.076 (76/≈0) 265 (0,6) N.A.

65536

Inline 00:01.363 (23,9/0,2) 00:00.445 (7,8/0,1) 576 (0,4) 00:00.014 (3,8)

Separate 00:01.255 (22/0,2) 00:00.385 (6,8/0,1) 576 (0,4) 00:00.015 (3,5)

Hierarchy 00:01.211 (21,2/0,2) 00:00.253 (63,3/≈0) 835 (0,6) N.A.

331776

Inline 00:07.532 (22,3/0,2) 00:02.788 (8,2/0,1) 2916 (0,4) 00:00.080 (3,3)

Separate 00:06.339 (18,8/0,2) 00:02.196 (6,5/0,1) 2916 (0,4) 00:00.075 (3,1)

Hierarchy 00:07.047 (20,8/0,2) 00:01.486 (61,9/≈0) 4219 (0,6) N.A.

1048576

Inline 00:23.402 (24,5/0,2) 00:21.907 (23/0,2) 10779 (0,4) 00:00.287 (4,6)

Separate 00:20.184 (21,2/0,2) 00:26.022 (27,3/0,2) 10779 (0,4) 00:00.326 (4,0)

Hierarchy 00:22.744 (23,8/0,2) 00:05.381 (75,8/≈0) 13325 (0,5) N.A.

Longint

20736

Inline 00:00.461 (16,5/0,1) 00:00.143 (5,1/≈0) 344 (0,4) 00:00.013 (4,3)

Separate 00:01.009 (36/0,3) 00:00.233 (8,3/0,1) 344 (0,4) 00:00.012 (4,0)

Hierarchy 00:00.494 (17,6/0,1) 00:00.085 (28,3/≈0) 267 (0,3) N.A.

65536

Inline 00:01.542 (17,5/0,1) 00:00.574 (6,5/0,1) 1088 (0,4) 00:00.042 (7,0)

Separate 00:03.266 (37,1/0,3) 00:00.832 (9,5/0,1) 1088 (0,4) 00:00.041 (6,8)

Hierarchy 00:01.275 (14,5/0,1) 00:00.238 (39,7/≈0) 839 (0,3) N.A.

331776

Inline 00:07.961 (16,6/0,1) 00:03.446 (7,2/0,1) 5508 (0,4) 00:00.198 (6,8)

Separate 00:17.571 (36,6/0,3) 00:05.589 (11,6/0,1) 5508 (0,4) 00:00.195 (5,4)

Hierarchy 00:07.109 (14,8/0,1) 00:01.263 (35,1/≈0) 4227 (0,3) N.A.

1048576

Inline 00:24.687 (15,4/0,1) 00:31.411 (19,6/0,2) 17408 (0,4) 00:00.640 (6,4)

Separate 01:00.147 (37,6/0,3) 00:51.788 (32,4/0,3) 17408 (0,4) 00:00.628 (6,3)

Hierarchy 00:22.623 (14,1/0,1) 00:05.230 (52,3/≈0) 13338 (0,3) N.A.

Double

20736

Inline 00:00.546 (13/0,1) 00:00.194 (4,6/≈0) 506 (0,4) 00:00.013 (4,3)

Separate 00:01.450 (25,1/0,3) 00:00.290 (6,9/0,1) 506 (0,4) 00:00.013 (4,3)

Hierarchy 00:00.878 (20,9/0,2) 00:00.181 (60,3/≈0) 532 (0,4) N.A.

65536

Inline 00:01.641 (14,1/0,1) 00:00.719 (6,2/0,1) 1600 (0,4) 00:00.045 (5,0)

Separate 00:03.363 (32/0,3) 00:01.054 (9,1/0,1) 1600 (0,4) 00:00.043 (4,8)

Hierarchy 00:02.858 (24,6/0,2) 00:00.556 (61,8/≈0) 1674 (0,4) N.A.

331776

Inline 00:08.854 (13,5/0,1) 00:04.089 (6,2/0,1) 8100 (0,4) 00:00.206 (4,2)

Separate 00:19.532 (29,5/0,3) 00:06.538 (9,9/0,1) 8100 (0,4) 00:00.201 (4,3)

Hierarchy 00:14.435 (21,9/0,2) 00:03.150 (65,6/≈0) 8446 (0,4) N.A.

1048576

Inline 00:29.035 (13/0,1) 00:59.163 (26,5/0,3) 25600 (0,4) 00:00.890 (6,5)

Separate 01:01.402 (27,6/0,3) 00:55.914 (25/0,3) 25600 (0,4) 00:00.680 (5,0)

Hierarchy 00:47.659 (21,3/0,2) 00:20.420 (149,1/0,1) 26663 (0,4) N.A.

Table 6.8: Transactional overheads for the Bidirectional Graph
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the lines show a tendency not yet observed. Basically, they show that the retrieval

operation times for both variants of the Datalog model tend to outrun their storage

times - in fact, this is actually a fact for the inline variant. All retrieval times are now

significantly lower than the execution time of benchmark #2 and this discrepancy is

evident from the start.

6.2 Discussion

In all performed tests, the data transaction performances revealed a similar pattern.

Storage revealed to be an expensive operation. In all cases, this operation’s cost

largely exceeded the cost of recomputing the same answer set; the exception to this

rule was observed in the last example, when the answer set got too big. Concerning

this operation, the inline variant of the Datalog model was always the fastest, the

hierarchical model the second fastest and the separate value was always the slowest.

However, when the computation involved side-effected operations, this scenario has

radically changed and the cost of storing the answer set became quite acceptable.

Things were somewhat different with the retrieval operation. Of all implementations,

the hierarchical model was always the fastest and the separate value variant the

slowest. This last implementation significant performance decay was no doubt induced

by the use of left join clauses in the retrieval select statement (as seen in Fig. 4.8).

In average, this variant of the Datalog model took at least twice the time to retrieve

the tuple sets than its inline counterpart. When the answer set evaluation involved

no costy operations, reloading answers from the database was obviously slower. On

the other hand, when the side-effected operations were introduced, reloading became

a quite attractive possibility.

In what regards to term types, integer terms where obviously the simplest and fastest

to handle. The other two primitive types (long integers and floating-point numbers),

requiring special handling, induced significant overheads to both storage and retrieval

operations. Atom terms, not considered in the tests, are expected to behave as

standard integers if one sticks to their YAP’s internal representation. If a external

symbols table policy is implemented, the expected storage behaviour should resemble

that of the longints or doubles, since the established mechanism is similar. At the limit,

storage performance would be slower than that of doubles when the atoms’ string sizes
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exceed 64 bits.

Clustering answers for insertion revealed to be a wise policy, as the practical example

presented in Table 6.9 illustrates. The table exhibits two columns comparing the stor-

age execution times, without and with clustering, for the largest answer set generated

for case study #4. The obtained speedup is displayed within parentheses.

Answers Type Strategy Non-clustered Clustered

1048576

Integer

Inline 01:43.271 00:23.402 (4,4)

Separate 02:22.568 00:20.184 (7,1)

Hierarchy 01:32.711 00:22.774 (4,1)

Longint

Inline 01:49.654 00:24.687 (4,4)

Separate 06:42.155 01:00.147 (6,7)

Hierarchy 01:33.262 00:22.623 (4,1)

Double

Inline 01:59.155 00:29.035 (4,1)

Separate 07:05.271 01:01.402 (6,9)

Hierarchy 03:14.141 00:47.659 (4,1)

Table 6.9: Clustered and non-clustered storage for the Bidirectional Graph

As previously mentioned, a 25 tuple cluster was used to obtain such execution times. It

should be noticed that a bigger cluster size would produce better times. For instance,

experimental results shown that the storage time of the same 1048576 answers, with

floating-point numbers labels, using the separate value approach and a cluster size of

250 was 00:51.227, i.e., increasing the buffer to 250 would result in a speedup of 0,1(66)

in the largest measured execution time. However, the choice of a cluster size was based

on the size of the character buffer required to create the necessary SQL statement. In

short, for a predicate of arity a, a cluster of k tuples would require a character buffer

s whose size |s| could be determined by

|s| = k ( 2︸︷︷︸
parentheses

+ a− 1︸ ︷︷ ︸
commas

+ a︸︷︷︸
question marks

) + k − 1︸ ︷︷ ︸
commas

For a predicate of arity 5, a cluster size of 250 would produce a query with at least 3499

characters, i.e, approximately 3,5 Kbytes, which is dangerously close to the 4kbytes,

the size of each DBTab’s buffer cell. Obviously, one could increase this cell size to

8Kytes for instance, but since this buffer is composed of four equally sized cells, that

would result in a total memory requirement 32Kbytes of memory space sitting inside
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YAP’ memory space with no other use than the construction of SQL statements.

Arguably, this is too much of a waste, specially if one considers that MySQL’s net

buffer size is 16Kbytes long by default1.

For small tuple sets, tuple set browsing might be enough to locate a small initial

subset of answers and decide wether that subset is the adequate one or if it should

be ignored; in either case, this allows saving both the time and memory resources

required for the complete trie reconstruction. However, as tuple sets size increase,

this traversal approach performance decays, reaching up to three times the amount

of time required to reconstruct the table. In this last case, the only advantage of

tuple set browsing is the introduced saving in terms of memory requirements, as

discussed back in section 5.2.6. Figures 6.10, 6.11, 6.12 and 6.13 compare the size of the

memory blocks required to hold the same answers sets in both formats. Alternatively,

a partial retrieval policy could be implemented taking advantage of a special MySQL

feature that enables the tuple set partitioning through a special limit sub-clause in

the select clause. This partial retrieval could save a lot of time if the answer set

was found to be inappropriate just by checking its first answers. In the worst-case

scenario, the entire data set would be retrieved slower due to the overheads induced

connection, parsing, execution, transmission and closing phases of the query handling.
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Figure 6.10: Binary Tree - table space and tuples sets memory requirements

The obtained results corroborate those of Florescu [FK99]. In that paper, the authors

1For further details, please refer to MySQL Reference Manual [WA02]
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Figure 6.12: Cyclic graph - table space and tuples sets memory requirements

claim that the hierarchical model is always better than the Datalog model2, except

when inlining is applied. The obtained execution times are inline to those provided

by Michel et al. in [FRS04]. In that paper, the authors claim the storage of 50000

tuples in relation path/2 in 2 seconds, approximately the time required to store the

same amount of tuples using the separate value variant of the Datalog model using

integer labels.

Our final consideration is that our main hypothesis was valid in all performed tests.

2In Florescus’paper, these implementations are respectively denominated Edge and Universal
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Figure 6.13: Bidirectional Grid - table space and tuples sets memory requirements

As always in science, it is possible that other testings may undo this result. It is our

strong conviction that further testing should be performed to provide a deeper insight

of the problem and to strengthen the obtained results.

6.3 Chapter Summary

In this chapter we have presented a detailed analysis of DBTab’s performance. We

have started by presenting an overall view of DBTab’s performance for execution of

tabled programs, measuring the sequential tabling behavior of DBTab and comparing

it with Yaptab. At the end we have discussed the obtained results and we have drawn

some conclusions from them. The initial results shown that DBTab may became

an interesting approach when the cost of recalculating a table trie largely exceeded

the amount of time required to fetch the entire answer tuple set from the mapping

relational tuple residing in the database. These situations have risen when heavy

side-effected routines were used during program execution.
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Chapter 7

Concluding Remarks

In this final chapter, we begin by summarizing the main contributions of this thesis

to logic programming and we suggest several directions for further travel. At the end,

a final remark completes the chapter and the thesis.

7.1 Conclusion

In this thesis, we have introduced the design, implementation and evaluation of the

DBTab system, a relational storage mechanisms for tabled logic programs. To the best

of our knowledge, this is the first approach to the mapping of tabling tries to database

relations in the context of Prolog engines.

DBTab was designed to be used as an alternative solution to the problem of recov-

ering space when the tabling engine runs out of memory. The common approach,

implemented in most tabling systems, is to provide a set of tabling primitives that

programmers may use to dynamically delete some of the tables. By storing tables

externally, rather than deleting them, DBTab provides YapTab with a powerful tool

to avoid standard tabled re-computation when subsequent calls to dropped tables

occur.

A major concern during development was to make the best use of the excellent

technology already deployed in YAP’s sequential Prolog engine [San99, SDRA], as

its basic framework, and in YapTab [Roc01] sequential tabling engine, as the basis

157
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for its tabling components. DBTab has been implemented from scratch and it was

developed to be fully integrated with YapTab’s tabling component. Our proposed

extension provides efficient engine support for large data transactions between the

logical engine and the database management system.

Another important aspect of DBTab is the memory gain introduced by the tuple set

browsing technique. By keeping the tuple sets resulting from database consultations

as blocks of binary data, DBTab introduces significative savings regarding memory

space requirements when the retrieved answers convey respectively large integer and

floating-point terms.

In terms of relational models, three different database schemes have been adopted

to represent YapTab’s table space externally in a relational environment. Relevant

implementation aspects, such as the problem of how to generally represent atomic

terms of different natures and sizes, have been disclosed.

A detailed study took place to assess the performance of DBTab. During evaluation,

the system was examined against a selected set of benchmark programs that we believe

are representative of possible applications. Our preliminaries results show that DBTab

may become an interesting approach when the cost of recalculating tabling tries largely

exceeds the amount of time required to fetch the entire answer tuple-set from the

database. The results reinforced our belief that tabling can contribute to expand the

range of applications for Logic Programming.

7.2 Further Work

As further work we plan to investigate the impact of applying DBTab to a more

representative set of programs. We also plan to introduce some other enhancements

to improve the quality of the developed model.

The expansion of the actual DBTab Datalog based models to cover all term represen-

tation possibilities presented by YapTab is the first goal to achieve in a near future.

Again, two distinct approaches may be followed. A first solution is to store pairs, lists

and general non-tabled application terms as binary large objects (BLOB) attributes of

auxiliary tables, in a similar way to that applied for large atomic terms. This, of course,

requires the implementation of specialized api procedures that enable the term-to-
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BLOB and BLOB-to-term translation. Alternatively, the hierarchical approach may

be adopted, forming a mixed solution. Complex term may then be represented as

record trees stored within auxiliary tables. As expected, the root record term field

shall hold an unique sequential identifier, used as a ”foreign” key in the predicate’s

relational table.

During execution, YapTab processes may have to stop due to several reasons: hosts

may crash or have to be turned off, the users may want to interrupt process evaluation,

etc. If such a situation arises, table space residing in memory is lost, leading to re-

calculation of both the subgoal tries and its associated completed answer tries in

later program executions. A possible solution to this problem is to search for some

sort of meta-information of terms before starting the process of tabling. This meta-

information could be stored in additional tables, similar to the data tables. Such

information could include, for each tabled subgoal, constant atomic terms values,

variable terms’ internal indexes and total count. If such meta-data tuples could be

found, its information could be used to not only to rebuild the corresponding branch

in the subgoal trie but also to reconstruct the prepared statements required to both

store new found answers and retrieve previously computed ones.

The current implementation needs to be tested more intensively with a wider range of

applications. Many opportunities for refining the system exist, and more will almost

certainly be uncovered with profound experimentation of the system. The system still

has some limitations that may reduce its use elsewhere and its contribution in the

support of realistic applications.

7.3 Final Remark

The research we have developed in this thesis context was built on the vigorous research

effort produced by the preceding researchers. Their ideas enlightened us, guiding our

steps during the entire design and development processes. With our work, we hope to

have somewhat contributed to logic programming dissemination. Hopefully, we might

have also started a path that others may follow.
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