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To David Pereira, Tania Magalhães, Tiago Soares and David Vaz for the excellent

environment provided in the office and for all the help during this thesis, you were

always available for any doubt.

To my mom and dad for their unconditional love and support. To my brothers and my

sisters-in-law for all the affection and understanding. To my aunt for all the affection

during these years. To my friends Gilberto and Cunha for the long conversations and

great help. To all my friends who somehow I knew.

I would like to express a final acknowledgment to all of those that throughout my life,

at different levels and by different means, had contributed to shape my personality

and help me to be the person I am. Thank you all!
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Abstract

Tabling is a technique of resolution that overcomes some limitations of traditional

Prolog systems in dealing with recursion and redundant sub-computations. Tabling

consists of storing intermediate answers for subgoals so that they can be reused when a

repeated subgoal appears during the resolution process. We can distinguish two main

categories of tabling mechanisms: delaying-based tabling and linear tabling. Delaying-

based tabling mechanisms need to preserve the state of suspended tabled subgoals in

order to ensure that all answers are correctly computed. Linear tabling mechanisms

maintain a single execution tree where tabled subgoals always extend the current

computation without requiring suspension and resumption of sub-computations.

In this thesis we present the design, implementation and evaluation of three different

delaying-based and linear tabling mechanisms to support tabled evaluation in Prolog,

and for that we apply source level transformations to a tabled program. The trans-

formed program then uses external tabling primitives that provide direct control over

the search strategy. To implement the tabling primitives we took advantage of the C

language interface of the Yap Prolog system.

Performance results, on a set of common benchmarks for tabled execution, allows us

to make a first and fair comparison between these different tabling mechanisms and,

therefore, better understand the advantages and weaknesses of each. Our results show

that delaying-based tabling obtains better results than linear tabling and, in particular,

for programs with complex dependencies, delaying-based tabling clearly outperforms

linear tabling. Our results also show that our delaying-based mechanism is comparable

to the state-of-the-art YapTab system, that implements tabling support at the low-

level engine. We thus argue that our approach is a good choice to incorporate tabling

into any Prolog system. It requires neither advanced knowledge of the implementation

details of tabling nor time consuming or complex modifications to the low-level engine.
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Resumo

A tabulação é uma das mais bem sucedidas técnicas de implementação que resolve

a incapacidade dos sistemas tradicionais de Prolog em lidarem com computações

redundantes e ciclos infinitos. A ideia básica da tabulação é guardar as soluções

das computações intermédias de modo a que estas possam ser re-utilizadas quando

aparecem chamadas repetidas a subgolos tabelados. As estratégias de tabulação

dividem-se em duas categorias principais: a tabulação com espera e a tabulação linear.

Para assegurar que todas as soluções são correctamente encontradas, a tabulação

com espera utiliza um mecanismo de suspensão no qual preserva o estado das sub-

computações correspondentes a subgolos tabelados. A tabulação linear usa a simples

execução em árvore onde os subgolos tabelados são re-executados sucessivamente até

a computação atingir o seu ponto-fixo.

Nesta tese descreve-se o desenho, implementação e avaliação de três das mais co-

nhecidas estratégias de tabulação com espera e tabulação linear. A implementação de

cada uma destas estratégias é conseguida por re-escrita dos programas originais onde se

incluem primitivas externas de suporte à execução com tabulação, e para implementar

essas primitivas utiliza-se o interface à linguagem C dispońıvel nos sistemas de Prolog.

O estudo realizado permitiu-nos fazer uma primeira e justa comparação entre as três

estratégias implementadas de modo a melhor compreender as vantagens e limitações

de cada uma. Os resultados mostram que a tabulação com espera obtém uma melhor

performance do que a tabulação linear e que, em particular, para programas com

dependências complexas, a tabulação com espera é claramente superior. Os resultados

obtidos também mostram que a nossa estratégia baseada em espera é comparável com

o sistema de tabulação YapTab que implementa suporte para tabulação ao ńıvel da

máquina de execução de Prolog. Este resultado é bastante interessante porque per-

mite considerar a nossa aproximação de utilizar re-escrita juntamente com primitivas

externas como uma alternativa viável, rápida e simples de incorporar tabulação em

sistemas Prolog.
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Chapter 1

Introduction

Logic programming languages provide a high-level, declarative approach to program-

ming. Arguably, Prolog is the most popular and powerful logic programming language.

The interest in Prolog has increased considerably when in 1983, David H. D. Warren

proposed a new abstract machine for executing compiled Prolog code that has come

to be known as the Warren Abstract Machine, or simply WAM [War83]. The WAM

became the most popular way of implementing Prolog and almost all current Prolog

systems are based on WAM’s technology. The advances made in the compilation

technology of sequential implementations of Prolog proved to be highly efficient which

has enabled Prolog compilers to execute programs nearly as fast as the conventional

programming languages like C [Roy90].

The operational semantics of Prolog is given by SLD resolution [Llo87], a resolution

strategy particularly simple that matches current stack based machines particularly

well, but that suffers from fundamental limitations, such as in dealing with recursion

and redundant sub-computations. For example, for a recursive definition of the tran-

sitive closure of a relation, a subgoal may never terminate if the program contains left-

recursion or if the graph represented by the program contains cycles even if no clause

is left-recursive. For a natural definition of the Fibonacci function, the evaluation of

a subgoal under SLD resolution spawns an exponential number of subgoals, many of

which are redundant. This lack of completeness and efficiency in evaluating recursive

programs mean that Prolog programmers must be concerned with SLD semantics

throughout program development. Ideally, one would want Prolog programs to be

written as logical statements first, and for control to be tackled as a separate issue.

Tabling [TS86, CW96] is a technique of resolution that overcomes some limitations of

21



22 CHAPTER 1. INTRODUCTION

traditional Prolog in dealing with recursion and redundant sub-computations. Tabling

consists of storing intermediate answers for subgoals so that they can be reused when

a repeated subgoal appears during the resolution process. Tabling based models are

able to reduce the search space, avoid looping, and have better termination properties

than SLD based models [CW96]. The added power of tabling has proved its viability in

application areas such as Deductive Databases [SSW94], Program Analysis [RRS+00],

Knowledge Based Systems [YK00], and Inductive Logic Programming [RFS05]. This

process of remembering and reusing previously computed answers, also known as mem-

oization or tabulation, was first used to speed up the evaluation of functions [Mic68].

The tabling concept also forms the basis of a transformation used with bottom-up

evaluation to compute answers for deductive database queries, that is known by the

generic name of magic [BR91].

The idea of tabling for logic programming has been proposed from a number of different

starting points and given a number of different names: OLDT [TS86], Extension

Tables [Die87] and SLD-AL [Vie89] are the better known. Tabling has become a

popular and successful technique thanks to the ground-breaking work in the XSB

Prolog system [SSW94, RSS+97], the most well-known tabling Prolog system, and in

particular in the SLG-WAM [SS98], the most successful engine of XSB. The success

of SLG-WAM led to several alternative implementations that differ in the execution

rule, in the data-structures used to implement tabling, and in the changes to the

underlying Prolog engine. Tabling mechanisms are now widely available in systems like

XSB [SS98, DS98, DS00], YapTab [RSS00], B-Prolog [ZSYY00], ALS-Prolog [GG01],

and Mercury [SS06]. In these implementations, we can distinguish two main cate-

gories of tabling mechanisms: delaying-based tabling mechanisms and linear tabling

mechanisms.

Delaying-based tabling mechanisms need to preserve the state of suspended tabled

subgoals in order to ensure that all answers are correctly computed. A tabled evalu-

ation can be seen as a sequence of sub-computations that suspend and later resume.

The SLG-WAM [SS98] and the YapTab model [RSS00] preserve the environment of a

suspended computation by freezing the stacks. The Mercury implementation [SS06]

and two alternative XSB-based models, the CAT [DS98] and CHAT [DS00] models,

copy the execution stacks to separate storage. The CHAT model improves the CAT

design by combining ideas from the SLG-WAM with those from the CAT: it avoids

copying all the execution stacks that represent the state of a suspended computation

by introducing a technique for freezing stacks without using freeze registers.

On the other hand, linear tabling mechanisms use iterative computations of tabled
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subgoals to compute fix-points. The main idea of linear tabling is to maintain a

single execution tree where tabled subgoals always extend the current computation

without requiring suspension and resumption of sub-computations. The DRA tech-

nique [GG01], as implemented in ALS-Prolog, is based on dynamic reordering of

alternatives with repeated calls. This technique tables not only the answers to tabled

subgoals, but also the alternatives leading to repeated calls, the looping alternatives.

It then uses the looping alternatives to repeatedly recompute them until a fix-point is

reached. The key idea of the SLDT strategy [ZSYY00], as implemented in B-Prolog,

is to let a tabled subgoal execute from the backtracking point of a former repeated

call. When no answers are available, the repeated call takes the remaining clauses

from the former call and tries to produce new answers by using them. The call is

then repeatedly re-executed, until a fix-point is reached. The weakness of the linear

mechanisms is the necessity of re-computation for computing fix-points.

The common approach used in all these proposals to include tabling support into

existing Prolog systems is to modify and extend the low-level engine. Although this

approach is ideal for run time efficiency, it is not easily portable to other Prolog

systems as engine level modifications are rather complex and time consuming and

require changing important components of the system such as the compiler, the code

generator, and the data structures that support Prolog execution.

A different approach to incorporate tabled evaluation into existing Prolog systems is to

apply source level transformations to a tabled program. The transformed program then

uses external tabling primitives that provide direct control over the search strategy

to implement tabled evaluation. The idea of program transformation coupled with

tabling primitives was first explored by Fan and Dietrich [FD92] that implemented a

form of linear tabling using source level program transformation and tabling primitives

implemented as Prolog built-ins. Ramesh and Chen [RC97] implemented a form of

delaying-based tabling supporting SLG resolution [CW96], but they used the C lan-

guage interface, available in most Prolog systems, to implement the tabling primitives.

These approaches may compromise efficiency, if compared to systems that implement

tabling support at the low-level engine, but allow tabling to be easily incorporated

into other Prolog systems.
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1.1 Thesis Purpose

This thesis addresses the design, implementation and evaluation of three different

mechanisms to support tabled evaluation in Prolog. We have followed the approach

that couples program transformation with tabling primitives. To implement the

program transformation step, we have extended the original program transformation

module of Ramesh and Chen [RC97] to include the tabling primitives for our mech-

anisms. According to the tabling mechanism to be used, a tabled logic program is

first transformed to include tabling primitives through source level transformations

and only then, the resulting program is compiled. No transformation is applied to

non-tabled predicates and the performance of Prolog programs without tabling is

unaffected. The program transformation module is fully written in Prolog.

To implement the tabling primitives we took advantage of the C language interface

of the Yap Prolog system [SDRA] to build external Prolog modules implementing the

support for each mechanism. We can distinguish two main components in each module:

the component that implements the table space data structures and the component

that implements the specific control primitives of each mechanism. To implement

the table space we used tries as proposed by Ramakrishnan et al. [RRS+99]. Tries

have proved to be one of the main assets of the XSB system, because they are quite

compact for most applications, while having fast look-up and insertion. The table

space component is commonly used by all mechanisms.

Our tabling primitives include support for the most successful delaying-based and

linear tabling mechanisms. We have implemented support for a delayed-based tabling

mechanism based on SLG resolution [CW96], that we named tabled evaluation with

continuation calls, and for the DRA [GG01] and SLDT [ZSYY00] linear tabling mech-

anisms. All mechanisms are based on a local scheduling strategy [FSW96] and support

tabled evaluation for definite programs, that is, for programs without negation. The

implementation is independent from the Yap Prolog’s engine and both source level

transformations and tabling primitives can be easily ported to other Prolog systems

with a C language interface.

Performance results, on a set of common benchmarks for tabled execution, allows

us to make a first and fair comparison between these different tabling mechanisms

and, therefore, better understand the advantages and weaknesses of each. Our results

show that globally delaying-based tabling obtains better results than any of the linear

tabling mechanisms. In particular, for programs with complex dependencies, delaying-

based tabling clearly outperforms linear tabling. For these kind of programs, linear
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tabling clearly pays the cost of performing re-computation to compute fix-points.

Our results also show that our delaying-based mechanism is comparable to the state-of-

the-art YapTab system, that implements tabling support at the low-level engine. This

is an interesting result because YapTab also implements a delaying-based mechanism

based on SLG resolution, uses tries to implement the table space and is implemented

on top of the Yap Prolog system. This is thus a first and fair comparison between the

approach of supporting tabling at the low-level engine and the approach of supporting

tabling by applying source level transformations coupled with tabling primitives. We

thus argue that our approach is a good choice to incorporate tabling into any Prolog

system. It requires neither advanced knowledge of the implementation details of

tabling nor time consuming or complex modifications to the low-level engine.

1.2 Thesis Outline

We next provide a brief overview of the eight chapters of this thesis.

Chapter 1: Introduction. The current chapter.

Chapter 2: Logic Programming and Tabling. Provides a brief introduction to

the main topics enclosed by this thesis. We discuss logic programming and

tabling for logic programs.

Chapter 3: External Prolog Modules in Yap. Presents the key tool of our work:

the C language interface to the Yap Prolog system. We start by presenting the

main features of the Yap Prolog system and then we focus on how to use its C

language interface to build external Prolog modules. We then discuss how we

use the trie data structure to organize the table space and we describe in detail

the module that supports its implementation.

Chapter 4: Tabled Evaluation with Continuation Calls. Describes the design

and implementation of the tabled evaluation with continuation calls mechanism.

First, we introduce the basic execution model and show how a tabled program

is transformed for this mechanism. Next, we present an example that shows

the interaction between Prolog execution and the tabling primitives for this

mechanism. We then provide the details for implementing this mechanism as an

external Prolog module written in C and discuss how completion is detected.
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Chapter 5: Dynamic Reordering of Alternatives. Describes the design and im-

plementation of the DRA linear tabling mechanism as proposed by Guo et

al. [GG01]. Initially, we describe the basic execution model for the DRA tech-

nique and then we show how a tabled program is transformed to include specific

tabling primitives for this mechanism. Next, we present an example showing

the interaction between Prolog execution and the tabling primitives for DRA

evaluation. We then provide the details for implementing this mechanism as an

external Prolog module in Yap.

Chapter 6: SLDT Linear Tabling. Describes the design and implementation of

the SLDT linear tabling mechanism as proposed by Zhou et al. [ZSYY00]. We

describe the basic execution model for SLDT and present an example showing

how a tabled program is transformed to include specific tabling primitives for

this mechanism. We then present an evaluation example and provide the details

for implementing SLDT evaluation as an external Prolog module in Yap.

Chapter 7: Experimental Results. Presents a detailed performance study of the

three tabling mechanisms implemented. We describe the set of tabled benchmark

programs used and we present the performance results of our three tabling

mechanisms on those programs. We then discuss several statistics gathered

during execution so that the performance results, advantages and weaknesses

of each tabling mechanism can be better understood.

Chapter 8: Conclusions. Summarizes the work, enumerates the contributions and

suggests directions for further work.



Chapter 2

Logic Programming and Tabling

This chapter presents a brief overview of the main topics enclosed by this thesis. We

discuss logic programming with a focus on the Prolog language and tabling for logic

programs.

2.1 Logic Programming

Logic Programming [Llo87] is a programming paradigm based on a subset of a First

Order Logic named Horn Clause Logic. Logic programming is a simple theorem prover

that, given a theory (or program) and a query, uses the theory to search for alternative

ways to satisfy the query. Logic programming is often mentioned to include the

following advantages [Car90]:

Simple declarative semantics: a logic program is simply a collection of predicate

logic clauses.

Simple procedural semantics: a logic program can be read as a collection of re-

cursive procedures. In Prolog, for instance, clauses are tried in the order they

are written and goals within a clause are executed from left to right.

High expressive power: logic programs can be seen as executable specifications

that despite their simple procedural semantics allow for designing complex and

efficient algorithms.

Inherent non-determinism: since in general several clauses can match a goal, prob-

lems involving search are easily programmed in these kind of languages.

27
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2.1.1 Logic Programs

A logic program consists of a collection of Horn clauses. A Horn clause is a clause

where at most one of the literals is positive:

A∨ ∼ B1∨ ∼ B2 ∨ . . .∨ ∼ Bn or ∼ B1∨ ∼ B2 ∨ . . .∨ ∼ Bn

which is equivalent to the logical implication of a conjunction of literals:

A ⇐ B1 ∧B2 ∧ . . . ∧ Bn or ⇐ B1 ∧B2 ∧ . . . ∧ Bn

A more usual form of writing Horn clauses is:

A ← B1, B2, . . . , Bn or ← B1, B2, . . . , Bn

The literal A is defined as the head of the clause, while the conjunction B1, . . . , Bn

represents the body of the clause. Each Bi is called a subgoal. If the head of a clause

is empty, then the clause is called a query. On the other hand, if the body is empty,

then the clause is called a fact. If the head and the body are both non-empty, then

the clause is called a rule. A sequence of clauses with the same functor in the head

form a predicate or procedure. Predicates can be formed with facts and/or rules.

Each literal in a Horn clause has the form p(t1, . . . , tm), where p is a predicate symbol

and all ti’s are terms. A term is either a constant (also called atom), a compound term

or a variable. Compound terms are structured data objects of the form p(t1, . . . , tn),

where p is a functor with arity n and each ti is also a term. Variables are assumed to

be universally quantified. Their main characteristics are:

• Variables are logical variables which can be instantiated only once;

• Variables are untyped until instantiated;

• Variables are instantiated via unification, a pattern matching operation that

finds the most general common instance of two data objects.

The computation process is mainly based on two mechanisms: resolution and unifi-

cation [Rob65]. There are several strategies for the resolution mechanism. Prolog,
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for example, uses a top-down resolution mechanism known as SLD resolution [Llo87].

In this form of resolution, the first subgoal in a query is matched against a clause

generating a new query called the resolvent. The resolvent is formed by the body of

the matching subgoal and by the remainder subgoals in the initial query. This process

is recursively applied until either a subgoal fails at finding a matching clause, or until

an empty query is generated. At unification failure, the execution backtracks and tries

to find another form to satisfy the original query.

2.1.2 The Prolog Language

Arguably, Prolog is the most popular logic programming language. Prolog was made

a viable language when in 1977 David Warren developed the first compiler for Pro-

log [War77]. This system showed good performance, comparable to the best Lisp

implementations of that time [WPP77]. Later, Warren proposed a new abstract

machine for executing compiled Prolog code known as the Warren Abstract Machine,

or simply WAM [War83]. The WAM became the most popular way of implementing

Prolog and almost all current Prolog systems are based on WAM’s technology. The

advances made in the technology of sequential compilation of implementations of

Prolog in the last two decades, allow state-of-the-art Prolog systems to be highly

efficient with comparative performance to imperative languages such as C [Roy90].

Prolog systems use SLD resolution with a fixed selection function: the leftmost subgoal

is always selected first. If several alternatives for the subgoal are available, Prolog

systems use the order of the clauses in the program. When the computation fails, the

execution backtracks to the previous state where it had left unexplored alternatives.

The search tree is thus explored from top to bottom and in a left to right manner. To

better illustrate how Prolog works, we next present in Fig. 2.1 a small Prolog program

that implements the well-known Fibonacci function.

fib(1,1).
fib(2,1).
fib(N,R):- N>2,

N1 is N-1,
N2 is N-2,
fib(N1,R1),
fib(N2,R2),
R is R1+R2.

Figure 2.1: The Fibonacci function



30 CHAPTER 2. LOGIC PROGRAMMING AND TABLING

The program includes 3 clauses that form the fib/2 predicate. The first argument

of fib/2 is the input argument for the Fibonacci function, while the second is the

output argument that computes the result. The first and second clauses simply state

that the Fibonacci of 1 and 2 (input arguments) is 1 (output argument). The third

clause is the recursive rule that computes the Fibonacci function. Initially, it checks if

the input argument N is greater than 2 and, when this is the case, it calls recursively

itself twice with the first argument set to N-1 and N-2. The final result is the sum of

the results obtained in these two calls.

Note that the head and the body of a rule are separated by the symbol ’:-’ (read

as if ) and the subgoals in the body of a rule are separated by the symbol ’,’ (read

as and). Variable names start with capital letters and names for constants start with

lower case letters. We next show in Fig. 2.2 the execution sequence for the query goal

fib(4,R).

?- fib(4,R).

1. fail 2. fail 3. fib(3,R1), fib(2,R2), R is R1+R2.

4. fail 5. fail 6. fib(2,R11), fib(1,R12), R1 is R11+R12, fib(2,R2), R is R1+R2.

7. fail 8. fib(1,R12), R1 is 1+R12, fib(2,R2), R is R1+R2.

9. R1 is 1+1, fib(2,R2), R is R1+R2.

10. fib(2,R2), R is 2+R2.

11. fail 12. R is 2+1.

13. R=3

Figure 2.2: The execution tree for the query goal fib(4,R)

In order to make Prolog a practical language capable of solving real-world problems,

Prolog systems have several control operators and built-in predicates that are not in
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the first-class logic. The most relevant built-in predicates are:

Meta-logical predicates: inquire the state of the computation and manipulate terms.

The most well-known are the var/1 and atom/1 family of built-in predicates that

test the state of the arguments.

Control predicates: perform control operations. Cut is the most popular control

operator in Prolog programs. When executed, cut discards all alternatives

created since the start of the current procedure.

Extra-logical predicates: manipulate the Prolog database by adding or removing

clauses from the program being executed and perform input/output operations.

The most important are assert/1, that adds a clause to the Prolog database,

retract/1, that deletes a clause from the Prolog database, and read/1 and

write/1 that implement the basic input and output operations.

Other predicates: these include built-ins to perform arithmetic operations, to com-

pare terms, to obtain the complete set of answers for a query, to support debug-

ging and to interact with the program’s environment.

For a more detailed presentation of the Prolog language please refer to some of the

standard textbooks on Prolog, such as [CM94, Llo87, SS94].

2.2 Tabling for Logic Programs

Despite the power, flexibility and good performance that Prolog has achieved, the past

years have seen wide effort at increasing Prolog’s declarativeness and expressiveness.

A major problem with Prolog is that SLD resolution presents some fundamental

limitations when dealing with recursion and redundant sub-computations. The limita-

tions of SLD resolution mean that Prolog programmers must be concerned with SLD

semantics throughout program development. For instance, it is in fact quite possible

that logically correct programs will enter infinite loops. Consider, for example, the

Prolog program of Fig. 2.3 that defines a small directed graph, represented by the

edge/2 predicate, with a relation of reachability given by the path/2 predicate, and

the query goal path(1,Z). By using SLD resolution to solve the given query leads us

to an infinite loop because the first clause of path/2 recursively calls path(1,Z).
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path(X,Z) :- edge(X,Y), path(Y,Z).
path(X,Z) :- edge(X,Z).

edge(1,2).
edge(2,1).

infinite loop

?- path(1,Z).

1. edge(1,Y), path(Y,Z).

2. path(2,Z).

3. edge(2,Y), path(Y,Z).

5. path(1,Z).4. fail

Figure 2.3: An infinite SLD evaluation

A proposal that overcomes some of the limitations of SLD resolution and therefore

improves the declarativeness and expressiveness of Prolog is the use of tabling [TS86,

CW96]. In a nutshell, tabling consists of storing intermediate answers for subgoals so

that they can be reused when a repeated call appears during the resolution process.

Resolution strategies based on tabling are able to reduce the search space, avoid

looping, and have better termination properties than traditional Prolog models based

on SLD resolution [CW96].

2.2.1 Tabled Evaluation

The basic idea behind tabling evaluation is straightforward: whenever a tabled subgoal

is first called, a new entry is allocated in an appropriated data space called the table
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space. Table entries are used to verify whether calls to subgoals are repeated1 and to

collect the answers found for their corresponding subgoals. Repeated calls to tabled

subgoals are not re-evaluated against the program clauses, instead they are resolved

by consuming the answers already stored in their table entries. During this process,

as further new answers are found, they are stored in their tables and later returned to

all repeated calls. Within this model, the nodes in the search space are classified as

either: generator nodes, corresponding to first calls to tabled subgoals; consumer nodes,

corresponding to repeated calls to tabled subgoals; or interior nodes, corresponding to

non-tabled subgoals.

Figure 2.4 uses the same program and the same query goal of Fig. 2.3 to illustrate

the main principles of tabled evaluation. At the top, the figure shows the program

code (the left box) and the final state of the table space (the right box). Declaration

‘:-table path/2.’ in the program code indicates that calls to predicate path/2

should be tabled. The sub-figure below shows the evaluation sequence for the query

goal path(1,Z). Generator nodes are depicted by black oval boxes, and consumer

nodes by white oval boxes. Remember that SLD resolution enters an infinite loop

because the first clause of path/2 leads to a repeated call to path(1,Z). In contrast,

as we will see, with tabled evaluation termination is ensured.

The evaluation starts by adding a new entry to the table space and by allocating a

generator node to represent path(1,Z). Next, path(1,Z) is resolved against the first

clause for path/2, calling edge(1,Y) (step 2). The edge/2 predicate is then resolved

as usual because it is not tabled. The first clause for edge(1,Y) succeeds with Y=2, and

in the continuation we call path(2,Z) (step 3). As this is the first call to path(2,Z),

we add a new entry to the table, and proceed by allocating a new generator node as

shown in the bottommost tree. Again, path(2,Z) is resolved against the first clause

for path/2, calling edge(2,Z) (step 4). The first clause for edge(2,Z) fails, but the

second succeeds creating consumer node 6. Since path(1,Z) is a repeated call to the

initial subgoal, no new tree is created, and instead, we try to consume answers from

the table. At this point, the table does not have answers for path(1,Z), and thus, the

current evaluation is suspended. Consumers must suspend because new answers may

still be found to the corresponding call.

The only possible move after suspending is to backtrack to node 3. We then try the

second clause for path(2,Z), thus calling edge(2,Z) (step 7). The first clause for

edge(2,Z) fails, but the second succeeds obtaining a first answer for path(2,Z) (step

1We say that a subgoal repeats a previous subgoal if they are the same up to variable renaming.
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17. fail15. Z=2

14. edge(1,Z).

10. Z=1 19. fail
(Z=2)

:- table path/2.

path(X,Z):- edge(X,Y), path(Y,Z).
path(X,Z):- edge(X,Z).

edge(1,2).
edge(2,1).

1. path(1,Z).

2. edge(1,Y), path(Y,Z).

13. fail3. path(2,Z).

1. path(1,Z)

3. path(2,Z)

10. Z=1
15. Z=2
20. complete

 9. Z=1
18. Z=2
20. complete

Subgoal Answers

20. complete

16. Z=211. Z=1

?- path(1,Z).

12. fail
(Z=1)

18. Z=2

4. edge(2,Y), path(Y,Z).

5. fail 6. path(1,Z).

3. path(2,Z).

9. Z=18. fail

20. complete

7. edge(2,Z).

21. no

Figure 2.4: A finite tabled evaluation

9). We then follow a Prolog-like strategy and continue forward execution. We thus

return to the context of path(1,Z) and the binding Z=1 is propagated to it, also

obtaining a first answer for path(1,Z) (step 10) and a first solution for the query goal

(step 11).

We then return to node 3, but now it has no more clauses left to try. So, we check

whether consumer node 6 can be resumed. It can, as now it has unconsumed answers.

We thus resume the computation at node 6 and forwarded the answer Z=1 to it.

The subgoal succeeds trivially with a new answer for path(2,Z) (step 12). However,

this answer repeats what we have found in step 9. Tabled resolution does not store
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duplicate answers in the table. Instead, repeated answers fail. This is how we avoid

unnecessary computations, and even looping in some cases.

At this point, all answers have been consumed and, thus, the current evaluation

is suspended again. Execution thus backtracks to node 3 and we check whether

path(2,Z) can be completed. It can not, because it depends on subgoal path(1,Z)

(node 6). Completing path(2,Z) earlier is not safe because, at this point, new answers

can still be found for subgoal path(1,Z). If new answers are found, node 6 should be

resumed with the newly found answers, which in turn can lead to further answers for

subgoal path(2,Z). If we complete sooner, we can lose such answers.

Execution thus backtracks to node 2, fails in step 13 and returns to node 1. We then

try the second clause for path(1,Z), thus calling edge(1,Z) (step 14). The first clause

for edge(1,Z) succeeds with Z=2 obtaining a new answer for path(1,Z) (step 15) and

a new solution for the query goal (step 16). In the continuation, the second clause

for edge(1,Z) fails (step 17) and backtracking sends us back to node 1. Node 1 has

no more clauses left to try, so we check whether consumer node 6 can be resumed. It

can, as it has new unconsumed answers. We thus forwarded the new answer Z=2 to it.

This gives new answers to path(1,Z) (step 18) and to path(1,Z) (step 19). However,

this last answer repeats what we have found in step 10, so we fail and backtrack again

to node 1. The trees for subgoals path(1,Z) and path(2,Z) are now fully exploited.

As these subgoals do not depend on any other subgoal, we are sure no more answers

are forthcoming. So, at last, we declare the two subgoals to be completed (step 20)

and return no to the query goal (step 21).

One of the major characteristics of this execution model is that it can ensure termina-

tion for a wider class of programs. This can be useful when dealing with applications

with recursive predicates, such as the path/2 predicate, that can lead to infinite loops.

Moreover, as tabling based models are able to avoid re-computation of tabled subgoals,

they can reduce the search space and the complexity of a program. This latter property

can be explored as a mean to speedup the execution. Consider again the Fibonacci

program defined in Fig. 2.1. If predicate fib/2 is declared as tabled, each different

subgoal call is only computed once, as for repeated calls the corresponding answer

is already stored in the table space. To compute fib(n,R) for some integer n, SLD

resolution will search a tree whose size is exponential in n. Because tabling remembers

sub-computations, the number of resolution steps for this example is linear in n.
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2.2.2 Tabling Operations

The example of Fig. 2.4 show us the four main types of operations required to support

tabled evaluation:

1. The tabled subgoal call operation is a call to a tabled subgoal. It checks if a

subgoal is in the table, and if not, adds a new entry for it and allocates a new

generator node (nodes 1 and 3 in Fig. 2.4). Otherwise, it allocates a consumer

node and starts consuming the available answers (node 6 in Fig. 2.4).

2. The new answer operation verifies whether a newly found answer is already in

the table, and if not, inserts the answer (steps 9, 10, 15 and 18 in Fig. 2.4).

Otherwise, the operation fails (steps 12 and 19 in Fig. 2.4).

3. The answer resolution operation forwards answers from the table to a consumer

node. It verifies whether newly found answers are available for a particular

consumer node and, if any, consumes the next one. Answers are consumed in

the same order they are inserted in the table. If no unconsumed answers are

available, it suspends the current computation and schedules a backtracking

node to continue the execution.

4. The completion operation determines whether a tabled subgoal is completely

evaluated. A table is said to be complete when its set of stored answers represent

all the conclusions that can be inferred from the set of facts and rules in the

program for the subgoal call associated with the table. Otherwise, it is said to

be incomplete. A table for a tabled subgoal is thus marked as complete when,

during evaluation, it is determined that all possible resolutions have been made

and, therefore, no more answers can be found (step 20 in Fig. 2.4).

Completion is hard because a number of subgoals may be mutually dependent, thus

forming a Strongly Connected Component (or SCC ) [Tar72]. Clearly, we can only

complete the subgoals in a SCC together. We will usually represent a SCC through

the leader node. More precisely, the youngest generator node which does not depend

on older generators is called the leader node. For example, in Fig. 2.4, the leader node

for the SCC that includes the subgoals path(1,Z) and path(2,Z) is node 1. A leader

node is also the oldest generator node for its SCC, and defines the next completion

point.

In order to perform completion, we must ensure that all answers have been returned

to all consumers in the SCC. The process of resuming a consumer node, consuming
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the available set of answers, suspending and then resuming another consumer node

can be seen as an iterative process which repeats until a fix-point is reached. This

fix-point is reached when the SCC is completely evaluated.

2.2.3 Scheduling Strategies

It should be clear that at several points we can choose between continuing forward

execution, backtracking to interior nodes, returning answers to consumer nodes, or

performing completion. The decision on which operation to perform is crucial to

system performance and is determined by the scheduling strategy. Different strategies

may have a significant impact on performance, and may lead to a different ordering

of solutions to the query goal. Arguably, the two most successful tabling scheduling

strategies are batched scheduling and local scheduling [FSW96].

Batched scheduling is the strategy we followed in Fig. 2.4: it favors forward execution

first, backtracking next, and consuming answers or completion last. It schedules the

program clauses in a depth-first manner as does the WAM. It thus tries to delay the

need to move around the search tree by batching the return of answers. When new

answers are found for a particular tabled subgoal, they are added to the table space and

the evaluation continues. For some situations, this results in creating dependencies to

older subgoals, therefore enlarging the current SCC and delaying the completion point

to an older generator node. When backtracking we may encounter three situations:

(i) if backtracking to a generator or interior node, we try the next clause; (ii) if

backtracking to a consumer node, we try the next unconsumed answer; (iii) if there

are no more clauses left to try or no more unconsumed answers, we simply backtrack

to the previous node on the current branch. However, if the node without clauses is a

leader node, then we first check for completion.

Local scheduling is an alternative tabling scheduling strategy that tries to evaluate

subgoals as independently as possible. In this strategy, evaluation is done one SCC

at a time. The key idea is that whenever new answers are found, they are added to

the table space as usual but execution fails. Thus, execution explores the whole SCC

before returning answers outside the SCC. Hence, answers are only returned when

all program clauses for the subgoal in hand were resolved. Because local scheduling

completes subgoals sooner, we can expect less dependencies between subgoals.
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Chapter 3

External Prolog Modules in Yap

This chapter presents the main tool of our work - the C language interface to the Yap

Prolog system [SDRA]. We start by presenting the main features of the Yap Prolog

system and then we focus on how to use its C language interface to build external

Prolog modules. Finally, we discuss how we use the trie data structure to organize the

table space and we describe in detail the module that supports its implementation.

3.1 The Yap Prolog System

Yap Prolog is a high-performance Prolog compiler that extends the WAM with several

optimizations for better performance. Yap has been developed since 1985, and its

current version is largely compatible with the ISO-Prolog standard. The original

version was written in assembly, C and Prolog. Work on the current version of Yap

strives at several goals:

Portability: the whole system is now written in C. Yap compiles in popular 32 and

64 bit machines, such as PCs, Suns, Alphas and PowerPCs.

Performance: the Yap emulator is comparable to or better than well-known Prolog

systems. The current version of Yap performs better than the original one written

in assembly.

Extensibility: Yap was designed internally from the beginning to encapsulate ma-

nipulation of terms. These principles were used, for example, to implement a

simple and powerful C interface. The new version of Yap extends these principles

39
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to accommodate extensions to the unification algorithm, that are useful to

implement extensions such as constraint programming.

Completeness: Yap has for a long time provided built-in implementations such as

I/O functionality, data-base operations, and modules. Work on Yap aims now

at being fully compatible with the Prolog standard.

Robustness: Yap has been tested with a large number of different Prolog applica-

tions.

Openness: Yap has been a vehicle for further research and all new developments of

Yap are open to the user community. The recent version of Yap is distributed

under two licenses: the Free Software Foundation LGPL or the Perl Artistic

license 2. The sources to the system are always available from the home page,

and contributions from users are always welcome.

3.2 The C Language Interface to Yap

As many other Prolog systems, Yap has an interface for writing predicates in other

languages, such as C, as external modules. Figure 3.1 presents a small example for a

module written in C, my rand.c, that illustrates how external modules work in Yap.

The module defines a new predicate, my random/1, that allows to generate random

numbers, that is, a call to my random(N) will unify N with a random number.

#include "Yap/YapInterface.h" // header file for the Yap interface to C

void init_predicates(void) {
Yap_UserCPredicate("my_random", c_my_random, 1);

}

int c_my_random(void) {
Yap_Term number = Yap_MkIntTerm(rand());
return(Yap_Unify(Yap_ARG1,number));

}

Figure 3.1: The my rand.c module

External modules should be compiled to a shared object and then loaded under Yap by

calling the load foreign files() predicate. After loading a module, Yap initializes it

by calling the init predicates() procedure. The Yap UserCPredicate() function

is then used to tell Yap what predicates are being defined in the module. In our
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example, the my random/1 predicate is implemented by the c my random() function.

The third argument of Yap UserCPredicate() defines the arity for the predicate.

The c my random() function uses one local variable of the type YAP Term, the type

used to hold Yap terms, to store the integer returned by the standard Unix function

rand(). The conversion is done by YAP MkIntTerm(). Next, it calls YAP Unify(),

to attempt the unification with YAP ARG1, and returns an integer denoting success or

failure. The arguments of a Prolog predicate written in C are accessed through the

macros YAP ARG1, ..., YAP ARG16 or with Yap A(N) where N is the argument number.

3.2.1 Yap Terms

Terms in Yap can be classified as [SDRA]:

• variables;

• integers;

• floating-point numbers (or floats);

• symbolic constants (or atoms);

• pairs;

• compound terms.

Integers, floats and atoms are respectively denoted by the following primitives: Yap Int,

Yap Float and Yap Atom. For atoms, Yap includes primitives for associating atoms

with their names: Yap AtomName() returns a pointer to the string for the atom; and

Yap LookupAtom() looks up if an atom is in the standard hash table, and if not, inserts

it. A pair consists of two terms, the head and the tail of the term. Pairs are used to

represent lists. One pair can be created using YAP MkPairTerm() where it is necessary

to identify the head and the tail of the term. Another alternative to create one pair is

to use YAP MkNewPairTerm() where the head and tail are new unbound variables. By

using the YAP HeadOfTerm() and YAP TailOfTerm() primitives, it is possible to fetch

the head and the tail of a pair.

A compound term is represented by a functor and a sequence of terms with length

equal to the arity of the functor. A functor, identified in C by YAP Functor, con-

sists of an atom (functor name) and an integer (functor arity). As for pairs, com-

pound terms can be constructed from a functor and an array of terms using the
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YAP MkApplTerm() primitive. If the array of the terms are unbound variables then

one may use the YAP MkNewApplTerm() primitive. Yap also includes the follow-

ing primitives: YAP MkFunctor() to create functors; YAP NameOfFunctor() to ob-

tain the name of a functor; YAP ArityOfFunctor() to get the arity of a functor;

YAP FunctorOfTerm() to fetch the functor of a compound term; and YAP ArgOfTerm()

to fetch the term corresponding to a given argument of a compound term. Table 3.1

presents the complete set of the available primitives to test, construct and destruct

Yap terms.

Term Test Construct Destruct

variable
Yap IsVarTerm()

Yap MkVarTerm() (none)
Yap NonVarTerm()

integer Yap IsIntTerm() Yap MkIntTerm() Yap IntOfTerm()

float Yap IsFloatTerm() Yap MkFloatTerm() Yap FloatOfTerm()

atom Yap IsAtomTerm()
Yap MkAtomTerm() Yap AtomOfTerm()

Yap LookupAtom() Yap AtomName()

pair Yap IsPairTerm()
Yap MkNewPairTerm() Yap HeadOfTerm()

Yap MkPairTerm() Yap TailOfTerm()

compound

term
Yap IsApplTerm()

Yap MkNewApplTerm() Yap ArgOfTerm()

Yap MkApplTerm() Yap FunctorOfTerm()

Yap MkFunctor()
Yap NameOfFunctor()

Yap ArityOfFunctor()

Table 3.1: Primitives for manipulating Yap terms

We next present in Fig. 3.2 an example that illustrates how these primitives can be

used to construct and unify Prolog terms. Consider that we want to construct two

compound terms, p(VAR1,1) and p(a,VAR2), and that we want to unify variable VAR1

with atom a and variable VAR2 with integer 1. To unify two terms, Yap provides the

Yap Unify(Yap Term a,Yap Term b) primitive. This primitive returns TRUE if the

unification succeeds, or FALSE otherwise.

3.2.2 Writing Predicates in C

External modules may be used to accomplished two different functionalities. One is to

call the Prolog interpreter from C. To do so, one needs to construct a goal G and then

execute YAP CallProlog(G). The result will be TRUE, if the goal succeeds, or FALSE

otherwise. When it succeeds, the variables in G will store the values they have been

unified with. The other interesting functionality is to define predicates. Yap allows

two kinds of predicates:
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YAP_Term arg[2], p1, p2;
YAP_Functor f;
f = YAP_MkFunctor(YAP_LookupAtom("p"),2); // construct functor p/2
arg[0] = Yap_MkVarTerm();
arg[1] = Yap_MkIntTerm(1);
p1 = YAP_MkApplTerm(f,2,args); // construct compound term p(VAR1,1)
arg[0] = YAP_MkAtomTerm(YAP_LookupAtom("a"));
arg[1] = Yap_MkVarTerm();
p2 = YAP_MkApplTerm(f,2,args); // construct compound term p(a,VAR2)
YAP_Unify(t1,t2); // unify both terms

Figure 3.2: Constructing and unifying compound terms

Deterministic predicates: which either fail or succeed but are not backtrackable;

Backtrackable predicates: which can succeed more than once.

Deterministic predicates are implemented as C functions with no arguments which

should return zero when the predicate fails or a non-zero value otherwise. They

are declared with a call to Yap UserCPredicate(char *name,int *f(),int arity),

where the first argument is the name of the predicate, the second the name of the C

function implementing the predicate, and the third is the arity of the predicate. The

my random/1 predicate defined in Fig. 3.1 is an example of a deterministic predicate.

Backtrackable predicates are declared similarly, but using instead two C functions:

one to be executed when the predicate is first called, and other to be executed on

backtracking to provide (possibly) other solutions. They are declared with a call to

Yap UserBackCPredicate(char *name,int *f init(),int *f cont(),int arity,

int sizeof), where name is the name of the predicate, f init() and f cont() are

the C functions used to start and continue the execution of the predicate, arity is

the arity of the predicate, and sizeof is the size of the data to be preserved in the

stack when backtracking (its use is detailed next). When returning the last solution

from a backtrackable predicate, one should use YAP cut succeed() to denote success

or YAP cut fail() to denote failure. The reason for using these functions is to avoid

f cont() to be called indefinitely when backtracking occurs.

Figure 3.3 shows an example that illustrates how backtrackable predicates can be used.

The example defines a new predicate, less than/2, that returns by backtracking in

the second argument all the positive integers less than the first argument. For instance,

if we call less than(10,N), the predicate should succeed and provide by backtracking

all the positive integers less than 10 for the first 9 calls and fail for the 10th call.
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void init_predicates(void) {
YAP_UserBackCPredicate("less_than",c_lt_init,c_lt_cont,2,sizeof(int));

}

int c_lt_init(void) { // to be executed when the predicate is first called
int limit, *number;
YAP_Term n = YAP_ARG1;
YAP_Term m = YAP_ARG2;

if (YAP_IsIntTerm(n) && YAP_IsVarTerm(m)) {
limit = YAP_IntOfTerm(n);
if (limit > 0) {
YAP_PRESERVE_DATA(number,int);
*number = 1;
return (YAP_Unify(m,YAP_MkIntTerm(*number)));

}
}
YAP_cut_fail();
return FALSE;

}

int c_lt_cont(void) { // to be executed on backtracking
int limit, *number;
YAP_Term n = YAP_ARG1;
YAP_Term m = YAP_ARG2;

limit = YAP_IntOfTerm(n);
YAP_PRESERVED_DATA(number,int);
*number++;
if (*number < limit) {

return (YAP_Unify(m,YAP_MkIntTerm(*number)));
YAP_cut_fail();
return FALSE;

}

Figure 3.3: The less than/2 predicate

According to definition of the less than/2 predicate, the c lt init() function is

executed first. Initially, it checks if the given arguments are of the desired type, and

if they are not, it calls YAP cut fail() and fails by returning FALSE. Otherwise, it

converts the first argument to an integer using YAP IntOfTerm() and tests if it is a

positive number. If not, it also calls YAP cut fail() and fails. Otherwise, the argu-

ment is unified with 1 using YAP Unify(). The conversion of integer 1 to a Yap term is

made by YAP MkIntTerm(). To later obtain by backtracking the next integer, we need

to preserve the last returned integer. This is done by calling YAP PRESERVE DATA() to

associate and allocate the memory space that will hold the information to be preserved

across backtracking, and by calling YAP PRESERVED DATA() to get access to it later.
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The c lt cont() function is thus executed when backtracking occurs. Initially, it

uses the YAP PRESERVED DATA() to access the last returned integer, its value is then

incremented and when the limit is reached, the function fails as in c lt init().

For a more exhaustive description on how to use the C language interface of Yap please

refer to its manual [SDRA].

3.3 The Table Space Module

Next we describe the key module of our work, the module that implements the table

space. This module is very important since the correct design of the algorithms to

access and manipulate the table data is critical to achieve an efficient implementation.

Our implementation uses tries as proposed by Ramakrishnan et al. [RRS+99]. In what

follows, we first briefly discuss how tries work and then we present the implementation

details for the module. The table space module is commonly used by all the different

tabling mechanisms described towards this thesis.

3.3.1 The Trie Data Structure

Tries were first proposed by Fredkin [Fre62], the name coming from the central letters

of the word retrieval. Tries were originally invented to index dictionaries, and has

since been generalised to index recursive data structures such as terms. Please refer

to [Ohl90, McC92, BCR93, Gra96, RRS+99] for the use of tries in automated theorem

proving, term rewriting and tabled logic programs. An essential property of the

trie structure is that common prefixes are represented only once. The efficiency and

memory consumption of a particular trie largely depends on the percentage of terms

that have common prefixes. For tabled logic programs, we often can take advantage

of this property.

A trie is a tree structure where each different path through the trie data units, the trie

nodes, corresponds to a term. At the entry point we have the root node. Internal nodes

represent symbols in terms and leaf nodes specify the end of terms. Each root-to-leaf

path represents a term described by the symbols labeling the nodes traversed. Two

terms with common prefixes will branch off from each other at the first distinguishing

symbol. When inserting a new term, we start traversing the trie starting at the root

node. Each child node specifies the next symbol to be inspected in the input term.



46 CHAPTER 3. EXTERNAL PROLOG MODULES IN YAP

A transition is taken if the symbol in the input term at a given position matches a

symbol on a child node. Otherwise, a new child node representing the current symbol

is added and an outgoing transition from the current node is made to point to the

new child node. On reaching the last symbol in the input term, we reach a leaf node

in the trie.

Figure 3.4 presents an example for a trie with three terms. Initially, the trie contains

the root node only. Next, we insert f(X, a). As a result, we create three nodes: one for

the functor f/2, next for the variable X, and last for the constant a (Figure 3.4(a)).

The second step is to insert g(X, b, Y ). The two terms differ on the main functor, so

tries bring no benefit here (Figure 3.4(b)). In the last step, we insert f(Y, 1) and we

save the two nodes common with term f(X, a) (Figure 3.4(c)).
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Figure 3.4: Using tries to represent terms

An important point when using tries to represent terms is the treatment of variables.

We follow the formalism proposed by Bachmair et al. [BCR93], where each variable

in a term is represent as a distinct constant. Formally, this corresponds to a function,

numbervar(), from the set of variables in a term t to the sequence of constants

V AR0, ..., V ARN , such that numbervar(X) < numbervar(Y ) if X is encountered

before Y in the left-to-right traversal of t. For example, in the term g(X, b, Y ),

numbervar(X) and numbervar(Y ) are respectively V AR0 and V AR1. On the other

hand, in terms f(X, a) and f(Y, 1), numbervar(X) and numbervar(Y ) are both

V AR0. This is why the child node V AR0 of f/2 from Figure 3.4(c) is common

to both terms.



3.3. THE TABLE SPACE MODULE 47

3.3.2 Using Tries to Organize the Table Space

We next describe how tries are used to implement the table space. Figure 3.5 shows

an example for a tabled predicate f/2 after the execution of the following tabling

operations:

tabled_subgoal_call: f(X,a)
tabled_subgoal_call: f(Y,1)
tabled_new_answer: f(0,a)
tabled_new_answer: f(a,1)
tabled_new_answer: f(b,1)

We use two levels of tries: one stores the subgoal calls, the other the answers. Each

different call to a tabled predicate corresponds to a unique path through the subgoal

trie structure. Such a path always starts from the root node in this trie, the SG TRIE

Subgoal
Trie

Structure

Answer Trie
Structure

a

f/2

VAR0

1

root
node

Subgoal frame
for call
f(VAR0,1)

Subgoal frame
for call
f(VAR0,a)
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root
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a

f/2

b

Answer Trie
Structure

a

root
node

f/2

0

SG_TRIE

Figure 3.5: Using tries to organize the table space
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variable, follows a sequence of the subgoal trie nodes, and terminates at a leaf data

structure, the subgoal frame. Each subgoal frame stores information about the subgoal,

namely an entry point to its answer trie structure. Each unique path through the

answer trie nodes corresponds to a different answer to the entry subgoal.

3.3.3 Implementation Details

Tries are implemented by representing each trie node by a data structure with four

fields each. The first field (TrNode symbol) stores the symbol for the node. The

second (TrNode child) and third (TrNode parent) fields store pointers respectively

to the first child node and to the parent node. The fourth field (TrNode sibling)

stores a pointer to the sibling node, in such a way that the outgoing transitions from

a node can be collected by following its first child pointer and then the list of sibling

pointers. Figure 3.6 illustrates the actual implementation for the trie presented in

Fig. 3.4(c). Observe that we can collect all children of a node, and that we can always

reach the root from a leaf node.

VAR1

b

g/3

VAR0

a

f/2

VAR0

1

root
node

Figure 3.6: The implementation of the trie in Fig. 3.4(c)

Traversing a trie to check/insert for new calls or for new answers is implemented by

repeatedly invoking a trie check insert() procedure for each symbol that represents

the term being checked. Given a node PARENT and a symbol S, the procedure returns

the child node of PARENT that represents the given symbol S. Figure 3.7 shows the

pseudo-code. Initially it traverses the chain of sibling nodes that represent alternative

paths from the given parent node and checks for one representing the given symbol.

If such a node is found then execution is stopped and the node returned. Otherwise,
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a new trie node is allocated and inserted in the beginning of the chain. To allocate

new trie nodes, we use a new trie node() procedure with four arguments, each one

corresponding to the initial values to be stored respectively in the TrNode symbol,

TrNode child, TrNode parent and TrNode sibling fields of the new allocated node.

trie_check_insert(TrNode PARENT, YAP_Term S) {
child = TrNode_child(PARENT);
while (child) { // check if a node for S was already inserted

if (TrNode_symbol(child) == S)
return child; // node found

child = TrNode_sibling(child);
}
child = new_trie_node(S, NULL, PARENT, TrNode_child(PARENT));
TrNode_child(PARENT) = child; // insert the new node for S
return child;

}

Figure 3.7: Pseudo-code for trie check insert()

Searching through a chain of sibling nodes that represent alternative paths is initially

done sequentially. This could be too expensive if we have hundreds of siblings. A

threshold value (8 in our implementation) controls whether to dynamically index the

nodes through a hash table, hence providing direct node access and optimising search.

Further hash collisions are reduced by dynamically expanding the hash tables. For

simplicity of presentation, Fig. 3.7 omits the hashing mechanism.

To manipulate tries we have defined three interface procedures. The open trie()

procedure initializes a new trie structure and returns the reference to the root node

of the new trie. New terms are stored using the put trie entry(TrNode root,

YAP Term term) procedure, where root is the root node of the trie to be used and

term is the term to be inserted. It returns the reference to the leaf node of the inserted

term. Note that inserting a term requires in the worst case allocating as many nodes

as necessary to represent its complete path. On the other hand, inserting repeated

terms requires traversing the trie structure until reaching the corresponding leaf node,

without allocating any new node. To load a term from a trie we have defined the

get trie entry(TrNode leaf) procedure, where leaf is the reference to the leaf

node of the term to be returned. When loading a term, the trie nodes for the term in

hand are traversed in bottom-up order. The trie structure is not traversed in a top-

down manner because the insertion and retrieval of terms is an asynchronous process,

new trie nodes may be inserted at anytime and anywhere in the trie structure. This

induces complex dependencies that limit the efficiency of alternative top-down loading

schemes.
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When inserting terms in the table space we need to distinguish to situations: (i)

inserting tabled calls in the subgoal trie structure; and (ii) inserting answers in a par-

ticular answer trie structure. The first situation is handled by the put tabled call()

procedure as shown in Fig. 3.8.

put_tabled_call(YAP_Term SUBGOAL_CALL) {
leaf = put_trie_entry(SG_TRIE, SUBGOAL_CALL);
sf = TrNode_child(leaf);
if (sf == NULL) { // new subgoal call

sf = new_subgoal_frame();
TrNode_child(leaf) = sf;

}
return sf; // sf is the subgoal frame for the tabled call

}

Figure 3.8: Pseudo-code for put tabled call()

The procedure starts by inserting the call in the subgoal trie structure (remember

from Fig. 3.5 that SG TRIE holds the root node for the subgoal trie structure) and

then it checks if the TrNode child field of the returned leaf node is NULL. When this

is not the case, then the call is a repeated call and a subgoal frame is already stored.

Otherwise, the TrNode child field of the leaf node is made to point to a new subgoal

frame data structure.

Inserting answers in an answer trie structure is handled by the put answer() procedure

as shown next in Fig. 3.9. The procedure starts by inserting the answer in the answer

trie structure for the subgoal frame in hand (the SgFr answers field holds the root

node for the answer trie) and then it checks if the returned leaf node corresponds to a

new answer. When new answers are inserted, the TrNode child field of the leaf nodes

is used to chain the answers in insertion time order, so that we can recover them in the

same order they were inserted. The subgoal frame points to the first and last answer

in this chain (the SgFr first answer and SgFr last answer fields). Thus, when a

repeated call appears, a consumer node only needs to point at the leaf node for its

last consumed answer, and consumes more answers just by following the chain. The

get trie entry() procedure is then used to consume each answer.



3.3. THE TABLE SPACE MODULE 51

put_answer(SgFr SUBGOAL_FRAME, YAP_Term ANSWER) {
leaf = put_trie_entry(SgFr_answers(SUBGOAL_FRAME), ANSWER)
if (TrNode_child(leaf) == NULL &&

leaf != SgFr_last_answer(SUBGOAL_FRAME)) { // new answer
if (SgFr_first_answer(SUBGOAL_FRAME) == NULL) { // first answer
SgFr_first_answer(SUBGOAL_FRAME) = leaf;

} else {
TrNode_child(SgFr_last_answer(SUBGOAL_FRAME)) = leaf;

}
SgFr_last_answer(SUBGOAL_FRAME) = leaf;
return TRUE;

}
return FALSE; // repeated answer

}

Figure 3.9: Pseudo-code for put answer()
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Chapter 4

Tabled Evaluation with

Continuation Calls

This chapter describes the design and implementation of the first tabling mechanism

that we have implemented, we name it tabled evaluation with continuation calls. This

mechanism is based on SLG resolution [CW96], as described in subsection 2.2.1, and

follows a scheduling strategy based on the local scheduling strategy as introduced in

subsection 2.2.3.

First, we briefly describe the basic execution model for this tabling mechanism. Next,

we show how a tabled program is transformed to include specific tabling primitives

that provide direct control over the search strategy and, we present an example that

shows the interaction between Prolog execution and the tabling primitives for this

mechanism. We then provide the details for implementing this mechanism as an

external Prolog module written in C and discuss how completion is detected.

4.1 Basic Execution Model

The tabled evaluation with continuation calls is a delaying-based tabling mechanism: in

order to ensure that all answers are correctly returned to all consumers and therefore

detect completion, it needs to preserve the computation state of suspended tabled

subgoal calls. The basic idea is as follow. Whenever a tabled subgoal is first called, a

new entry is allocated in the table space and the evaluation begins with a generator

node exploring the first clause for the corresponding tabled predicate. On the other

hand, repeated calls to tabled subgoals are not re-evaluated against the program

53
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clauses, instead they are resolved by consuming the answers already stored in their

table entries. When no more unconsumed answers are available, the computation state

for the repeated call is suspended. In this model, suspension is implemented by leaving

a continuation call for the current computation in the table entry corresponding to

the repeated call being suspended.

During this process and as further new answers are found, they are stored in their

tables and returned to all repeated calls by calling the previously stored continuation

calls. We then follow a local scheduling approach and execution fails for the new

answer operation. New answers are only returned to the calling environment when all

program clauses for the subgoal at hand are resolved.

Therefore, when the execution backtracks to a generator node, we first exhaust the re-

maining clauses and only then, when no more clauses are available, we start consuming

the available answers for the subgoal. After consuming all answers, if the generator

depends on older subgoals, we then proceed as for consumers and we fail by leaving

the continuation call for the current computation in the table entry corresponding to

the current generator node. It is only when a tabled subgoal is marked as complete

that the corresponding continuation calls are deleted.

4.2 Program Transformation

To deal with tabled predicates and their answers, we use specific tabling primitives

that provide direct control over the search strategy. A tabled logic program is first

transformed to include the tabling primitives through source level transformations and

only then, the resulting program is compiled.

Program transformation only applies to clauses of predicates previously declared as

tabled predicates. Given a clause of a tabled predicate, each call to a tabled predicate

in its body is replaced by a tabled call/5 primitive. This primitive implements

the tabled subgoal call operation as described above. In addition, a new answer/2

primitive is added to the end of each clause body. The new answer/2 primitive is

responsible to check for redundant answers and to return new answers to the stored

continuation calls.

A major issue with this tabling mechanism is how to deal with continuation calls.

Intuitively, the continuation call for a generator or consumer node is the code to be

executed when an answer is returned to the node. With respect to a clause and an



4.2. PROGRAM TRANSFORMATION 55

occurrence of a tabled predicate in the clause body, the continuation call is the portion

of the clause body after the tabled predicate literal. The problem here is that later,

when calling a continuation call, we cannot execute a clause starting from the literal

after the corresponding tabled predicate. Our program transformation captures the

continuation of a tabled predicate in a clause body by introducing a new predicate

symbol, which has a single clause and whose body is the continuation to be executed

when an answer is returned.

Figure 4.1 shows how the right recursive path/2 program from Fig. 2.3 is transformed

and augmented with tabling primitives to implement tabled evaluation with continu-

ation calls.

path(X,Z):- tabled_call(path(X,Z),Sid,_,path0,true),
consume_answer(path(X,Z),Sid).

path0(path(X,Z),Sid):-
edge(X,Y),
tabled_call(path(Y,Z),Sid,[X,Z,Y],path0,path1).

path1(path(Y,Z),Sid,[X,Z,Y]):-
new_answer(path(X,Z),Sid).

path0(path(X,Z),Sid):-
edge(X,Z),
new_answer(path(X,Z),Sid).

Figure 4.1: Program transformation for the right recursive path/2 program

A path/2 clause is maintained so that tabled predicate path/2 can be called from

other predicates without any change. The tabling primitive tabled call/5 in the

body of path/2 starts the tabled evaluation process and ensures that the subgoal

will be completely evaluated. The consume answer/2 primitive then returns each

computed answer one at a time.

Each clause in the original definition of path/2 becomes a clause for a new distinct

predicate, path0/2 in the example, with 2 arguments. The first argument is the

previous head clause; the second is the subgoal id. The id for a subgoal call is generated

by the tabled call/5 primitive and is used to guarantee that the answers found for a

call are properly saved within that call. When the tabled call/5 primitive is called

for a new subgoal (the first argument), a new entry is allocated in the table space and

an unique id is returned (Sid). This id is then used by the tabled call/5 primitive

to start the evaluation process by calling the predicate of arity 2 represented in the

forth argument, path0 in this case, with the appropriate arguments.

Each continuation of a tabled predicate in a clause body also becomes a clause for a
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new distinct predicate. In the example of Fig. 4.1, we only have one such predicate,

path1/3. The first two arguments of path1/3 are the same as the arguments of

path0/2. The third argument is a list of variables used to pass variable bindings

across continuation calls.

Continuations calls are added by the tabled call/5 primitive when a computation is

being suspended. A continuation call is a triplet formed by the second, third and fifth

arguments passed to the tabled call/5. The second argument stores the id of the call

that is calling the tabled call/5 in the body of a clause. The third argument stores

the bindings for the variables appearing in the head and in the body of the clause. The

fifth argument stores the predicate of arity 3 to be called in the continuation. When

a new answer is found, each continuation triplet is then used in conjunction with the

new answer to construct the calls that continue the suspended computations.

Next we present two more examples that better illustrate how a program is transformed

to include specific tabling primitives for the tabled evaluation with continuation calls

mechanism. Figure 4.3 shows the transformed program for the left recursive path/2

definition in Fig. 4.2, and Fig. 4.5 shows the transformed program for the doubly

recursive path/2 definition in Fig. 4.4.

:- table path/2

path(X,Z):- path(X,Y), edge(Y,Z).
path(X,Z):- edge(X,Z).

Figure 4.2: The left recursive path/2 program

path(X,Z):- tabled_call(path(X,Z),Sid,_,path0,true),
consume_answer(path(X,Z),Sid).

path0(path(X,Z),Sid):-
tabled_call(path(X,Y),Sid,[X,Z,Y],path0,path1).

path1(path(X,Y),Sid,[X,Z,Y]):-
edge(Y,Z),
new_answer(path(X,Z),Sid).

path0(path(X,Z),Sid):-
edge(X,Z),
new_answer(path(X,Z),Sid).

Figure 4.3: Program transformation for the left recursive path/2 program
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:- table path/2

path(X,Z):- path(X,Y), path(Y,Z).
path(X,Z):- edge(X,Z).

Figure 4.4: The doubly recursive path/2 program

path(X,Z):- tabled_call(path(X,Z),Sid,_,path0,true),
consume_answer(path(X,Z),Sid).

path0(path(X,Z),Sid):-
tabled_call(path(X,Y),Sid,[X,Z,Y],path0,path1).

path1(path(X,Y),Sid,[X,Z,Y]) :-
tabled_call(path(Y,Z),Sid,[X,Z,Y],path0,path2).

path2(path(Y,Z),Sid,[X,Z,Y]):-
new_answer(path(X,Z),Sid).

path0(path(X,Z),Sid):-
edge(X,Z),
new_answer(path(X,Z),Sid).

Figure 4.5: Program transformation for the doubly recursive path/2 program

4.3 An Evaluation Example

Consider again the program transformation in Fig. 4.1 for the right recursive path/2

definition of Fig. 2.3. Figure 4.6 shows the evaluation sequence for the query goal

p(1,Z) if applying tabled evaluation with continuation calls.

At the top, the figure illustrates the program code and the final state of the table

space at the end of the evaluation. The bottom sub-figure shows the resulting forest

of trees with the numbering of nodes denoting the evaluation sequence. For illustration

purposes the program code was simplified, predicates path/2, path0/2, path1/3 and

edge/2 are denoted as p/2, p0/2, p1/3 and e/2, respectively.

Let us examine the evaluation in more detail. The evaluation begins by calling the

tabled call/5 primitive for the p(1,Z) subgoal. The p(1,Z) subgoal is a new tabled

subgoal call and thus, a new entry is allocated in the table space for it, with id sid1,

and a new generator node is created (node 1). Generator nodes are represented by

black oval boxes. Next, p0(p(1,Z),sid1) is called, creating node 2. The execution

then proceeds with the first alternative of p0/2, calling e(1,Y) that binds Y with 2

and with primitive tabled call/5 being called for the p(2,Z) subgoal (step 4). As

this is the first call to p(2,Z), we add a new entry for it, with id sid2, and proceed

by allocating a new generator node as shown in the bottommost tree.
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20. fail
(continuation call)

?- p(1,Z).

2. p0(p(1,Z),sid1).

3. e(1,Y), tabled_call(p(Y,Z),sid1,[1,Z,Y],p0,p1).

4. tabled_call(p(2,Z),sid1,[1,Z,2],p0,p1).

5. p0(p(2,Z),sid2).

6. e(2,Y), tabled_call(p(Y,Z),sid2,[2,Z,Y],p0,p1).

7. fail 8. tabled_call(p(1,Z),sid2,[2,Z,1],p0,p1).

9. fail
(continuation call)

11. fail

14. p1(p(2,1),sid1,[1,Z,2]).

15. new_answer(p(1,1),sid1).

16. p1(p(1,1),sid2,[2,Z,1]).

17. new_answer(p(2,1),sid2).

18. fail

21. fail

22. e(1,Y), new_answer(p(1,Z),sid1).

23. new_answer(p(1,2),sid1).

24. p1(p(1,2),sid2,[2,Z,1]).

25. new_answer(p(2,2),sid2).

26. p1(p(2,2),sid1,[1,Z,2]).

28. fail

32. complete
(Sid=sid1)

10. e(2,Y), new_answer(p(2,Z),sid2).

27. new_answer(p(1,2),sid1).

1. tabled_call(p(1,Z),Sid,_,p0,true), consume_answer(p(1,Z),Sid).

19. fail

13. fail

29. fail

30. fail

31. fail

33. consume_answer(p(1,Z),sid1).

4. tabled_call(p(2,Z),sid1,[1,Z,2],p0,p1).

1. tabled_call(p(1,Z),Sid,_,p0,true).

p(X,Z):- tabled_call(p(X,Z),Sid,_,p0,true), consume_answer(p(X,Z),Sid).

p0(p(X,Z),Sid):- e(X,Y), tabled_call(p(Y,Z),Sid,[X,Z,Y],p0,p1).
p1(p(Y,Z),Sid,[X,Z,Y]):- new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid):- e(X,Z), new_answer(p(X,Z),Sid).

e(1,2). 
e(2,1).

1. p(1,Z)

4. p(2,Z)

15. p(1,1)
23. p(1,2)
32. complete

12. p(2,1)
25. p(2,2)
32. complete 

sid1

sid2 20. p1(?ANS?,sid1,[1,Z,2])

9. p1(?ANS?,sid2,[2,Z,1])

SubgoalSid Answers Continuation Calls

12. new_answer(p(2,1),sid2).

34. Z=1 35. Z=2 36. no

Figure 4.6: Tabled evaluation with continuation calls for the right recursive path/2

program
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Again, p(2,Z) is resolved against the first clause for p0/2 (step 5). Then, the first

clause for e(2,Y) fails (step 7), but the second succeeds by binding Y with 1 (step

8). The tabled call/5 primitive is then called again for p(1,Z). Since p(1,Z) is a

repeated subgoal call and no answers are still available for it, the current evaluation

is suspended. A triplet formed by the id sid2, the list [2,Z,1], and by the predicate

symbol p1 is then stored in the table entry for p(1,Z) as a continuation call (step 9).

We then return to node 5 and try the second clause for p0/2, obtaining a first answer

for p(2,Z) (step 12). The answer is inserted in the table and, because there are no

continuation calls for p(2,Z), the execution fails. Remember that the new answer

operation always fails when using a local scheduling approach. The execution then

backtracks to node 4 and we check whether p(2,Z) can be completed. It can not,

because it depends on the continuation call left by subgoal p(1,Z) at step 9. If that

continuation call gets executed, further answers for p(2,Z) can be found.

At that point, the answers in the table entry for p(2,Z) should be consumed. Remem-

ber that answers are only returned to a generator node when all program clauses for it

were resolved. Consuming an answer corresponds to the execution of the continuation

call for the tabled call/5 at hand. The continuation call for the tabled call/5

primitive at node 4 is thus executed for the answer p(2,1) (step 14). Continuation

calls are represented by white oval boxes.

A first answer, p(1,1), is then found for p(1,Z) (step 15) and, because there is a

continuation call for p(1,Z), the execution continues by calling it with the newly

found answer (step 16). A redundant answer is then found for p(2,Z) (step 17), so

we fail and backtrack again to node 4. We then proceed as for consumers and we

fail by leaving the continuation call for the current computation in the table entry for

p(2,Z) (step 20). The evaluation then explores the second clause at node 2, obtaining

a second answer for p(1,Z) (step 23) and a second answer for p(2,Z) (step 25). When

backtracking to node 1, the subgoals p(1,Z) and p(2,Z) are now fully exploited. So,

we declare the two subgoals to be completed (step 32).

Again, at that point, the answers in the table entry should be consumed. However, the

continuation call in the tabled call/5 primitive at node 1 is the predicate symbol

true. This means that the tabled call/5 primitive was executed from the clause

representing the original p/2 predicate. Therefore, instead of consuming answers, we

simply succeed by binding Sid with the subgoal id for p(1,Z), sid1 in this case. The

consume answer/2 primitive then returns by backtracking the computed answers for

the sid1 tabled subgoal call.
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4.4 Implementation Details

Next we describe in more detail all the implementation issues required to fully suport

tabled evaluation with continuation calls.

4.4.1 Subgoal Frames

A key data structure in the table space organization is the subgoal frame. Remember

from subsection 3.3.2 that subgoal frames are used to store information about the

tabled subgoals and to act like entry points to the trie structures where answers are

stored. Whenever the put tabled call() is executed for a new tabled subgoal (please

see Fig. 3.8 for more details), the new subgoal frame() procedure is called in order

to allocate and initialize a new subgoal frame. Figure 4.7 shows its implementation

for the current tabling mechanism.

new_subgoal_frame() {
sf = allocate_subgoal_frame();
SgFr_state(sf) = READY;
SgFr_answers(sf) = open_trie();
SgFr_first_answer(sf) = NULL;
SgFr_last_answer(sf) = NULL;
SgFr_cont_calls(sf) = NULL;
SgFr_previous(sf) = SF_TOP;
if (SF_TOP == NULL)

SgFr_dfn(sf) = 1;
else

SgFr_dfn(sf) = SgFr_dfn(SF_TOP) + 1;
SgFr_dep(sf) = SgFr_dfn(sf);
SF_TOP = sf;
return sf;

}

Figure 4.7: Pseudo-code for new subgoal frame()

A subgoal frame is a eight field data structure. These fields have the following meaning:

• SgFr state: indicates the state of the subgoal. During evaluation, a subgoal

can be in one of the following states: ready, evaluating or complete.

• SgFr answers: is the entry point to the answer trie structure.

• SgFr first answer: is the pointer to the first inserted answer in the answer

trie or NULL if no answers are available.



4.4. IMPLEMENTATION DETAILS 61

• SgFr last answer: is the pointer to the last inserted answer in the answer trie

or NULL if no answers are available.

• SgFr cont calls: is the pointer to continuation calls associated with the sub-

goal or NULL if no continuation calls are available.

• SgFr previous: is the pointer to the previously allocated subgoal frame that

is still not completed. A global variable, SF TOP, always points to the youngest

subgoal frame being evaluated.

• SgFr dfn: is the depth-first number of the call. New subgoal frames are num-

bered incrementally and according to the order in which they appear in the

evaluation.

• SgFr dep: is the depth-first number of the older call in which the current

call depends. It is initialized with the same number as its depth-first number,

meaning that no dependencies exist. It is critical to the fix-point check procedure

that we discuss later.

Figure 4.8 uses the example from Fig. 4.6 to illustrate how these fields are used and

updated during a tabled evaluation.

Figure 4.8(a) shows the state of the table space after calling the tabled call/5

primitive for the p(1,Z) subgoal (step 1 in Fig. 4.6). The p(1,Z) subgoal is a new

tabled subgoal and thus, a new subgoal frame is allocated and initialized in the table

space for it. Next, tabled call/5 is called for p(2,Z) and a new subgoal frame is also

allocated and initialized (step 4 in Fig. 4.6). The SF TOP variable is made to point to

this new frame. The tabled call/5 primitive is then called again for p(1,Z) and the

evaluation is suspended (step 9 in Fig. 4.6). The SgFr dep field of the subgoal frame

for p(2,Z) is updated to 1, the depth-first number of p(1,Z), and the continuation call

for the current computation is stored in the subgoal frame for p(1,Z). Figure 4.8(b)

shows the resulting state of both subgoal frames at that point.

The execution then continues and first answers for p(2,Z) and p(1,Z) are found and

inserted in the answer tries starting from the corresponding subgoal frames (steps 12

and 15 in Fig. 4.6). The SgFr first answer and SgFr last answer fields of each

frame are both made to point to the leaf node of the corresponding first answer. In

the continuation, we fail by leaving the continuation call for the current computation

in the subgoal frame for p(2,Z) (step 20 in Fig. 4.6). Figure 4.8(c) shows the resulting

state of the subgoal frame for p(2,Z) at that point.
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Figure 4.8: Subgoal frames at different points of the evaluation of the right recursive

path/2 program of Fig. 4.6
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The evaluation then obtains second answers for p(1,Z) and p(2,Z) (steps 23 and 25

in Fig. 4.6) and, at the end, both subgoals are declared to be completed (step 32 in

Fig. 4.6). This includes marking the corresponding subgoal frames as complete in their

SgFr state fields, deleting the pending continuation calls, and updating the SF TOP

variable to NULL as no more subgoals are being evaluated. Figure 4.8(d) shows the

final state of both subgoal frames.

4.4.2 Tabling Primitives

Next we show the implementation details for the tabling primitives that support the

tabled evaluation with continuation calls mechanism. We start with Fig. 4.9 showing

the pseudo-code for the tabled call/5 primitive.

The tabled call/5 primitive starts by calling the put tabled call() procedure to

insert the given SUBGOAL CALL in the subgoal trie structure. Then, it checks if the

resulting subgoal frame is new, that is, if the SgFr state is READY. Being this the

case, it changes the subgoal’s state to EVALUATING, constructs the call that starts the

evaluation process and calls the Prolog engine to execute it. When returning, it checks

for completion. If the SgFr dfn and SgFr dep fields are equal then we know that we

are in a leader node position because no dependencies exist and, therefore, all younger

subgoals can be completed.

Otherwise, if the subgoal is not new or if the SgFr dfn and SgFr dep fields are different,

we propagate the dependency in the SgFr dep field of the current subgoal frame to

the SgFr dep field of the CONT SF subgoal frame that continues the execution (please

see subsection 4.4.3 for more details).

In both situations, we then consume the available answers, leave a continuation call

if the subgoal is not completed, and fail. The only situation where this primitive

does not fails is when it is executed from the clause representing the original tabled

predicate, that is, where the CONT PRED is true. In such situations, the CONT SF

argument is unified with the current subgoal frame pointer and the procedure succeeds.

The consume answer/2 primitive then uses the given pointer to return the computed

answers to the environment of the clause representing the original tabled predicate.

Figure 4.10 shows the pseudo-code for the consume answer/2 primitive.

The consume answer/2 primitive was implemented in Yap as a backtrackable pred-

icate. The consume answer init() procedure is executed when the primitive is

first called, and the consume answer cont() procedure is executed when backtrack-
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tabled_call(YAP_Term SUBGOAL_CALL, SgFr CONT_SF, YAP_Term CONT_VARS,
YAP_Atom INITIAL_PRED, YAP_Atom CONT_PRED) {

sf = put_tabled_call(SUBGOAL_CALL);

if (SgFr_state(sf) == READY) { // new subgoal call
SgFr_state(sf) = EVALUATING;
initial_call = construct_call(INITIAL_PRED, SUBGOAL_CALL, sf);
YAP_CallProlog(initial_call);
if (SgFr_dfn(sf) == SgFr_dep(sf)) { // check for completion
do {

SgFr_state(SF_TOP) = COMPLETE;
delete_continuation_calls(SF_TOP);
SF_TOP = SgFr_previous(SF_TOP);

} while (SF_TOP != SgFr_previous(sf)) // complete all frames up to sf
}

}

if (SgFr_state(sf) != COMPLETE) // propagate dependencies to CONT_SF
SgFr_dep(CONT_SF) = minimum(SgFr_dep(CONT_SF), SgFr_dep(sf));

else if (SgFr_state(sf) == COMPLETE && CONT_PRED == true) { // succeed
YAP_Unify(CONT_SF, sf);
return TRUE;

}

leaf = SgFr_first_answer(sf); // get first answer leaf node
while (leaf != NULL) {

answer = get_trie_entry(leaf); // load answer from the trie
cont_call = construct_call(CONT_PRED, answer, CONT_SF, CONT_VARS);
YAP_CallProlog(cont_call);
leaf = TrNode_child(leaf); // get next answer leaf node

}

if (SgFr_state(sf) != COMPLETE) // leave a continuation call
add_continuation_call(sf, CONT_PRED, CONT_SF, CONT_VARS);

return FALSE; // always fail at the end
}

Figure 4.9: Pseudo-code for the tabled call/5 primitive

ing occurs. To obtain by backtracking the full set of answers, we need to pre-

serve the last returned answer. This is done by using the YAP PRESERVE DATA() and

YAP PRESERVED DATA() macros as previously described in subsection 3.2.2.

We end with Fig. 4.11 that shows the pseudo-code for the new answer/2 primitive.

The new answer/2 primitive starts by calling the put answer() procedure to insert

the given ANSWER in the answer trie structure for the SF subgoal frame. If the answer is

redundant, we simply fail. Otherwise, the answer is new and each continuation triplet

stored in SF is then used in conjunction with the new answer to construct the calls
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consume_answer_init(YAP_Term SUBGOAL_CALL, SgFr SF) {
leaf = SgFr_first_answer(SF); // get first answer leaf node
if (leaf == NULL) { // no answers

YAP_cut_fail();
return FALSE;

}
YAP_PRESERVE_DATA(mem_space, TrNode);
*mem_space = leaf; // preserve the current leaf node for backtracking
answer = get_trie_entry(leaf); // load answer from the trie
YAP_Unify(SUBGOAL_CALL, answer);
return TRUE;

}

consume_answer_cont(YAP_Term SUBGOAL_CALL, SgFr SF) {
YAP_PRESERVED_DATA(mem_space, TrNode);
leaf = *mem_space;
leaf = TrNode_child(leaf); // get next answer leaf node
if (leaf == NULL) { // no more answers

YAP_cut_fail();
return FALSE;

}
*mem_space = leaf; // update the current leaf node for backtracking
answer = get_trie_entry(leaf); // load answer from the trie
YAP_Unify(SUBGOAL_CALL, answer);
return TRUE;

}

Figure 4.10: Pseudo-code for the consume answer/2 primitive

new_answer(YAP_Term ANSWER, SgFr SF) {
if (put_answer(SF, ANSWER) == TRUE) {

for each (cont_pred, cont_sf, cont_vars) in SgFr_cont_calls(SF) do {
cont_call = construct_call(cont_pred, ANSWER, cont_sf, cont_vars);
YAP_CallProlog(cont_call);

}
}
return FALSE; // always fail at the end

}

Figure 4.11: Pseudo-code for the new answer/2 primitive

that continue the suspended computations.

4.4.3 Detecting Completion

We check for completion when the computation returns to the tabled call/5 primi-

tive after exhausting all alternative for the subgoal call at hand. We use the SgFr dfn

and the SgFr dep fields of the subgoal frames to quickly determine whether a subgoal is
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a leader node. The SgFr dfn field marks the order in which the subgoals in evaluation

were called. New subgoal frames are numbered incrementally and the global variable

SF TOP always points to the youngest subgoal frame in evaluation. The SgFr dep field

holds the number of the older call in which it depends. It is initialized with the same

number as the SgFr dfn field, meaning that initially no dependencies exist.

When checking for completion and using this information from the subgoal frames,

a subgoal can quickly determine whether it is a leader node. If the SgFr dfn and

SgFr dep fields are equal then we know that during its evaluation no dependencies

to older subgoals have appeared and thus the Strongly Connected Component (SCC)

including the subgoals starting from the frame referred by SF TOP up to the current

subgoal can be completed. On the other hand, if the SgFr dep field holds a number

less than its depth-first number, then we cannot perform completion. Instead, we must

propagate the current dependency to the subgoal call that continues the evaluation

and only when the computation reaches the subgoal that does not depends on older

subgoals we must perform completion.

Figures 4.12, 4.13 and 4.14 show three different examples that illustrate how the

SgFr dfn and SgFr dep fields are used to detect completion. At the top, each fig-

ure shows the subgoal dependencies and the leader nodes (nodes filled with a black

background). The black dots in the sub-figures below indicate the fields being updated

at each step of the example.

Figure 4.12 represents again the evaluation example from Fig. 4.6. Initially, p(1,Z) is

first called and a new subgoal frame is allocated with SgFr dfn and SgFr dep initialized

with 1. Next, p(2,Z) is also called and a second frame is allocated with SgFr dfn

and SgFr dep initialized with 2 (step 2 in Fig. 4.12). In the continuation, p(2,Z)

calls p(1,Z) again which creates a dependency between subgoals p(2,Z) and p(1,Z).

The SgFr dep field of subgoal p(2,Z) is thus updated to represent this dependency

to p(1,Z) (step 3 in Fig. 4.12). Then, when the computation returns to p(2,Z),

we cannot perform completion because the SgFr dfn and SgFr dep fields of p(2,Z)

are different. We thus propagate the dependency in the SgFr dep field of p(2,Z) to

p(1,Z) (step 4 in Fig. 4.12). This has no effect because the SgFr dep field of p(1,Z)

is already 1. At the end, when the computation returns to p(1,Z), the two subgoals

are marked as complete and the SF TOP global variable is updated (step 5 in Fig. 4.12).

Figure 4.13 shows an example for a graph with more edges as represented by the e/2

facts in the sub-figure at the top. As in the previous example, we start with p(1,Z)

and p(2,Z) allocating two subgoal frames with SgFr dfn and SgFr dep initialized with
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Figure 4.12: Detecting completion when evaluating the right recursive path/2 program

of Fig. 4.6

1 and 2, respectively. Next, p(3,Z) and p(4,Z) are also called and two new frames

are allocated with SgFr dfn and SgFr dep initialized with 3 and 4, respectively. In the

continuation, p(4,Z) calls p(2,Z) again, and the SgFr dep field of subgoal p(4,Z) is

updated to represent this dependency (step 5 in Fig. 4.13). Then, the computation

returns to p(4,Z) and we propagate the dependency in the SgFr dep field of p(4,Z)

to p(3,Z) (step 6 in Fig. 4.13). The same happens when the computation returns to

p(3,Z) and we propagate its dependency to p(2,Z) (step 7 in Fig. 4.13).

The interesting case occurs when the computation returns to p(2,Z). The SgFr dfn

and SgFr dep fields of p(2,Z) are equal which means that subgoal p(2,Z) is the

leader node of the SCC that includes the subgoals starting from SF TOP up to it,

that is, subgoals p(4,Z), p(3,Z) and p(2,Z). The three subgoals are thus marked as

complete and the SF TOP variable is updated to the previous subgoal in evaluation,

p(1,Z) in this case (step 8 in Fig. 4.13). At the end, the computation returns to

p(1,Z) and its subgoal frame is marked as completed as no more dependencies exist.

What this examples shows is that subgoals are not necessarily completed at the end

of the evaluation, and that we can also have sets of subgoals being completed while

others are still being evaluated.

Our last example shows a more complex graph as represented by the e/2 facts in the

sub-figure at the top of Fig. 4.14. Node 3 has two edges starting from it, one to node
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e(1,2).
e(2,3).
e(3,4).
e(4,2).

p(1,Z) p(2,Z)
1 2

5

8.complete9.complete

SgFr_dfn  1
SgFr_dep  1

p(1,Z)

(5)

SgFr_dfn  4
SgFr_dep  2

p(4,Z)

SF_TOP

SgFr_dfn  1
SgFr_dep  1

p(1,Z)

(6)

SgFr_dfn  4
SgFr_dep  2

p(4,Z)

SF_TOP

SgFr_dfn  1
SgFr_dep  1

p(1,Z)

(7)

SgFr_dfn  4
SgFr_dep  2

p(4,Z)

SF_TOP

p(1,Z)

(8)

.

.

p(3,Z)
3

7.propagate

p(4,Z)
4

6.propagate

SgFr_dfn  2
SgFr_dep  2

p(2,Z)
SgFr_dfn  2
SgFr_dep  2

p(2,Z)
SgFr_dfn  2
SgFr_dep  2

p(2,Z)

SgFr_dfn  3
SgFr_dep  3

p(3,Z)
SgFr_dfn  3
SgFr_dep  2

p(3,Z)
SgFr_dfn  3
SgFr_dep  2

p(3,Z)

.

SgFr_dfn  1
SgFr_dep  1

SF_TOP.

Figure 4.13: Detecting completion in the middle of the evaluation

4, as in the previous example, and an extra one to node 5. There is also a new edge

from node 5 to node 1. As we will see this induces more than a single dependency

during the evaluation.

Again, we start by allocating and initializing frames to subgoals p(1,Z), p(2,Z),

p(3,Z) and p(4,Z). Next, p(4,Z) calls p(2,Z) and the SgFr dep field of subgoal

p(4,Z) is updated to represent this dependency. Then, the computation returns to

p(4,Z) and we propagate the dependency in the SgFr dep field of p(4,Z) to p(3,Z)

(step 6 in Fig. 4.14).

The interesting case occurs when the computation backtracks from p(4,Z). The e(3,Z)

call has two alternatives and thus, when backtracking, we take the second alterna-

tive, calling then p(5,Z). A new subgoal frame is then allocated with SgFr dfn and

SgFr dep initialized with 5 (step 7 in Fig. 4.14). Next, p(5,Z) calls p(1,Z) again,

and the SgFr dep field of subgoal p(5,Z) is updated to 1 (step 8 in Fig. 4.14). Then,

the computation returns to p(5,Z) and we propagate the dependency in the SgFr dep

field of p(5,Z) to the continuation subgoal for p(5,Z), that is, the subgoal passed in
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e(1,2).
e(2,3).
e(3,4).
e(3,5).
e(4,2).
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Figure 4.14: Detecting completion when propagating more than one dependency

the second argument of the tabled call/5 for p(5,Z), p(3,Z) in this case (step 9 in

Fig. 4.14). The subgoal frame for p(3,Z) already holds a dependency in its SgFr dep

field, but as the new dependency from p(5,Z) is older (the depth-first number is

smaller) it is updated. This dependency is then propagated to p(2,Z) and next to

p(1,Z) (step 11 in Fig. 4.14). At the end, the computation returns to p(1,Z) and all

subgoals are marked as complete.
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Chapter 5

Dynamic Reordering of

Alternatives

This chapter describes the design and implementation of the second tabling mechanism

that we have implemented, the DRA (Dynamic Reordering of Alternatives) linear

tabling mechanism as proposed by Guo et al. [GG01]. As for the previous mechanism,

we follow a scheduling strategy based on the local scheduling strategy.

Initially, we describe the basic execution model for the DRA technique and then we

show how a tabled program is transformed to include specific tabling primitives for

this mechanism. Next, we present an example showing the interaction between Prolog

execution and the tabling primitives for DRA evaluation. We then provide the details

for implementing this mechanism as an external Prolog module in Yap.

5.1 Basic Execution Model

The DRA technique is based on the dynamic reordering of alternatives with repeated

calls for incorporating tabling into an existing logic programming system. The DRA

technique not only memorizes the answers for the tabled subgoal calls, but also

the alternatives leading to repeated calls, the looping alternatives. It then uses the

looping alternatives to repeatedly recompute them until a fix-point is reached. During

evaluation, a tabled call can be in one of three possible states: normal state, looping

state or complete state. The state transition graph for DRA evaluation is shown next

in Fig. 5.1

71
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Finding
all looping
alternatives

Finding
fix-point

Looping
state

Complete
state

Normal
state

Figure 5.1: State transition graph

Consider a tabled subgoal call C. Initially, C enters in normal state where it is allowed

to explore the matched clauses as in standard Prolog. In this state, while exploring

the matching clauses, the model checks for looping alternatives. If a repeated call is

found, the current clause that matches the original call to C will be memorized as

a looping alternative. Essentially, the alternative corresponding to this call will be

reordered and placed at the end of the alternative list for the call. This call will not be

expanded at the moment because it can potentially lead to an infinite loop. Instead,

it will consume the available answers for the call.

After exploring all the matched clauses, C goes into the looping state. From this

point, it keeps trying the looping alternatives repeatedly until reaching a fix-point. If

no new answers are found during one cycle of trying the looping alternatives, then we

have reached a fix-point and we can say that C is completely evaluated.

The DRA scheme repeatedly tries looping alternatives. Retrying these alternatives

may cause redundant computations: (i) a non-tabled subgoal in a looping alternative

will be recomputed every time the looping alternative is tried; (ii) a repeated call to a

tabled subgoal in a looping alternative will re-consume all tabled answers every time

it is called. In fact, the problem of re-computation cannot be avoided and in the case

of multiple dependent calls, the same computation has to be explored several times.

One advantage is that only the looping alternatives are recomputed.

5.2 Program Transformation

Figure 5.2 uses the right recursive path/2 program from Fig. 2.3 to illustrate how

programs are transformed and augmented with tabling primitives to implement the

DRA tabling mechanism.

Each clause in the original definition of path/2 becomes a clause for a new distinct
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path(X,Z):- tabled_call(path(X,Z),Sid,Eval),
((Eval=1 -> dra_loop(Sid,Alt), path0(path(X,Z),Sid,Alt) ; fail)
;
consume_answer(path(X,Z),Sid)).

path0(path(X,Z),Sid,1):- edge(X,Y), path(Y,Z), new_answer(path(X,Z),Sid,1).
path0(path(X,Z),Sid,2):- edge(X,Z), new_answer(path(X,Z),Sid,2).
path0(path(X,Z),Sid,3):- looping_state(Sid).

Figure 5.2: Program transformation for the right recursive path/2 program

predicate, path0/3 in the example, with 3 arguments. The first argument is the

previous head clause; the second is the subgoal id representing the corresponding

subgoal frame; and the third is the number of the clause regarding the textual order it

appears on the program. A new answer/3 primitive is added to the end of each clause

body in order to insert the answers in the table space. In addition, an extra path0/3

clause is used to determine when, after exhausting all the matching clauses, we should

move from the normal state to the looping state.

The path/2 clause is maintained so that we can call it from other predicates with-

out any change. The tabling primitive tabled call/3 in the body of path/2 in-

serts/checks for the subgoal in the table space and returns the subgoal id (Sid) and

a value (Eval) saying if the subgoal should be evaluated (cases where Eval is bound

to 1) or not (cases where Eval is bound to 0). The dra loop/2 primitive controls the

evaluation process and the consume answer/2 primitive implements the process of

consuming answers one at a time. Both primitives are implemented as backtrackable

predicates. The Alt argument in the dra loop/2 primitive is used to determine the

number of the path0/3 clause to be explored next. Note that, when we call a repeated

subgoal or when the subgoal is already completed, we simply consume answers from

the corresponding subgoal frame (cases where Eval is bound to 0). Otherwise, we

first execute the dra loop/2 primitive and then, when it fails, we also execute the

consume answer/2 primitive to consume answers. Next, we show an example that

better illustrates how these primitives are used to control the evaluation.

5.3 An Evaluation Example

Figures 5.3 to 5.6 show the evaluation sequence for the query goal p(1,Z) if applying

the program transformation for DRA evaluation presented in Fig. 5.2. At the top,

each figure illustrates the program code and the state of the table space at the end of
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the evaluation represented in the figure. The bottom sub-figures show the resulting

forest of trees with the numbering of nodes denoting the evaluation sequence. For

illustration purposes the program code was simplified, predicates consume answer/2,

path/2, path0/3 and edge/2 are respectively denoted as consume/2, p/2, p0/3 and

e/2.

The evaluation starts with the tabled call/3 primitive being called for the p(1,Z)

subgoal. As p(1,Z) is a first call (first calls are represented by black oval boxes), a new

subgoal frame, with id sid1, is allocated in the table space for it and Eval is bound

to 1 (step 2). The dra loop/2 primitive then starts exploring the first alternative of

p0/3 (Alt is bound to 1) and, in the continuation, p(2,Z) is first called (step 6).

As p(2,Z) is also a first call, we add a new subgoal frame, with id sid2 (step 7), and

proceed with p(2,Z) being resolved against the first clause for p0/3 (step 9). In the

continuation, subgoal p(1,Z) is called again (step 11). Since p(1,Z) is now a repeated

call (repeated calls are represented by white oval boxes), we mark the alternatives in

evaluation, up to the first call for p(1,Z), as looping alternatives (step 12). This

includes the first alternative for p(2,Z) and the first alternative for p(1,Z).

Next, we try to consume answers (step 13) and because no answers are available for

p(1,Z), the consume/2 primitive simply fails (step 14). The dra loop/2 primitive at

node 8 then tries the next unexplored alternative of p0/3 for p(2,Z), alternative two

in this case (step 15), and we obtain a first answer for p(2,Z) (step 17). The answer

is inserted in the table and, because we are following a local scheduling strategy, the

execution fails (step 18). We then backtrack again to the dra loop/2 primitive and

now we try the last alternative which moves p(2,Z) to the looping state (step 20).

We have found a new answer for p(2,Z), so we re-execute the looping alternative for

p(2,Z) (step 22). The evaluation calls again p(1,Z), but we fail because no answers are

still available for p(1,Z) (step 27). The evaluation then backtracks to the dra loop/2

primitive and, because we have reached a partial fix-point, we check whether p(2,Z)

can be completed. It can not, because it depends on p(1,Z). We thus fail in order

to consume the answer p(2,1) (step 29). The binding Z=1 is then propagated to the

context of subgoal p(1,Z), and a first answer for p(1,Z) is found (step 30).

We then explore the second alternative of p0/3 for p(1,Z) (step 32) obtaining, in the

continuation, a second answer for p(1,Z) (step 34). The evaluation then proceeds

with the third alternative of p0/3 for p(1,Z), which moves p(1,Z) from the normal

state to the looping state (step 37).
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?- p(1,Z).

6. p(2,Z).

1. p(1,Z).

2. tabled_call(p(1,Z),Sid,Eval), ((Eval=1 -> ...) ;...).

3. dra_loop(sid1,Alt), p0(p(1,Z),sid1,Alt) ; consume(p(1,Z),sid1).

4. p0(p(1,Z),sid1,1).

5. e(1,Y), p(Y,Z), new_answer(p(1,Z),sid1,1).

6. p(2,Z), new_answer(p(1,Z),sid1,1).

7. tabled_call(p(2,Z),Sid,Eval), ((Eval=1 -> ...) ;...).

8. dra_loop(sid2,Alt), p0(p(2,Z),sid2,Alt) ; consume(p(2,Z),sid2).

11. p(1,Z).

13. consume(p(1,Z),sid1). 

12. tabled_call(p(1,Z),Sid,Eval), ((Eval=1 -> ...) ;...).

14. fail

10. e(2,Y), p(Y,Z), 
new_answer(p(2,Z),sid2,1).

11. p(1,Z), 
new_answer(p(2,Z),sid2,1).

16. e(2,Y), new_answer(p(2,Z),sid2,2).

17. new_answer(p(2,1),sid2,2).

15. p0(p(2,Z),sid2,2).9. p0(p(2,Z),sid2,1).

18. fail

19. p0(p(2,Z),sid2,3).

20. lopping_state(sid2).

21. fail

p(X,Z):- tabled_call(p(X,Z),Sid,Eval),
         ((Eval=1 -> dra_loop(Sid,Alt), p0(p(X,Z),Sid,Alt) ; fail)
         ; consume(p(X,Z),Sid)).

p0(p(X,Z),Sid,1):- e(X,Y), p(Y,Z), new_answer(p(X,Z),Sid,1).
p0(p(X,Z),Sid,2):- e(X,Z), new_answer(p(X,Z),Sid,2).
p0(p(X,Z),Sid,3):- looping_state(Sid).

e(1,2). 
e(2,1).

2. p(1,Z)

7. p(2,Z)
17. p(2,1)

sid1

sid2

SubgoalSid Answers Looping Alternatives

12. p0(p(1,Z),sid1,1)

12. p0(p(2,Z),sid2,1)

Figure 5.3: DRA evaluation for the right recursive path/2 program (steps 1 to 21)

Since we have found two new answers for p(1,Z), the dra loop/2 primitive at node 3

then tries the looping alternative for p(1,Z) (step 39) which leads, in the continuation,

to a new call to p(2,Z) (step 41). Because p(2,Z) has already reached the looping
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6. p(2,Z).

1. p(1,Z).

3. dra_loop(sid1,Alt), p0(p(1,Z),sid1,Alt) ; consume(p(1,Z),sid1).

8. dra_loop(sid2,Alt), p0(p(2,Z),sid2,Alt) ; consume(p(2,Z),sid2).

28. consume(p(2,Z),sid2). 

4. p0(p(1,Z),sid1,1).

5. e(1,Y), p(Y,Z), 
new_answer(p(1,Z),sid1).

6. p(2,Z), 
new_answer(p(1,Z),sid1).

30. new_answer(p(1,1),sid1).

31. fail

22. p0(p(2,Z),sid2,1).

23. e(2,Y), p(Y,Z), new_answer(p(2,Z),sid2,1).

24. p(1,Z), new_answer(p(2,Z),sid2,1).

33. e(1,Y), new_answer(p(1,Z),sid1,2).

34. new_answer(p(1,2),sid1,2).

32. p0(p(1,Z),sid1,2).

35. fail

36. p0(p(1,Z),sid1,3).

37. lopping_state(sid1).

38. fail

29. (Z=1)

p(X,Z):- tabled_call(p(X,Z),Sid,Eval),
         ((Eval=1 -> dra_loop(Sid,Alt), p0(p(X,Z),Sid,Alt) ; fail)
         ; consume(p(X,Z),Sid)).

p0(p(X,Z),Sid,1):- e(X,Y), p(Y,Z), new_answer(p(X,Z),Sid,1).
p0(p(X,Z),Sid,2):- e(X,Z), new_answer(p(X,Z),Sid,2).
p0(p(X,Z),Sid,3):- looping_state(Sid).

e(1,2). 
e(2,1).

2. p(1,Z)

7. p(2,Z)

30. p(1,1)
34. p(1,2)

17. p(2,1)

sid1

sid2

SubgoalSid Answers Looping Alternatives

12. p0(p(1,Z),sid1,1)

12. p0(p(2,Z),sid2,1)

24. p(1,Z).

26. consume(p(1,Z),sid1). 

25. tabled_call(p(1,Z),Sid,Eval), ((Eval=1 -> ...) ;...).

27. fail

Figure 5.4: DRA evaluation for the right recursive path/2 program (steps 22 to 38)

state, we proceed with p(2,Z) being resolved against its looping alternative (step

44). Subgoal p(1,Z) is then called again (step 46) and we consume the two available

answers for it. The bindings Z=1 (step 49) and Z=2 (step 52) are propagated to the

context of subgoal p(2,Z), but only Z=2 produces a new answer for p(2,Z), p(2,2)

in this case (step 53).

Backtracking then sends us back to the dra loop/2 primitive at node 43 and because
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41. p(2,Z).

1. p(1,Z).

3. dra_loop(sid1,Alt), p0(p(1,Z),sid1,Alt) ; consume(p(1,Z),sid1).

42. tabled_call(p(2,Z),Sid,Eval), ((Eval=1 -> ...) ;...).

43. dra_loop(sid2,Alt), p0(p(2,Z),sid2,Alt) ; consume(p(2,Z),sid2).

46. p(1,Z).

48. consume(p(1,Z),sid1). 

47. tabled_call(p(1,Z),Sid,Eval), ((Eval=1 -> ...) ;...).

39. p0(p(1,Z),sid1,1).

40. e(1,Y), p(Y,Z), new_answer(p(1,Z),sid1,1).

41. p(2,Z), new_answer(p(1,Z),sid1,1).

54. fail

53. new_answer(p(2,2),sid2,1).50. new_answer(p(2,1),sid2,1).

51. fail

44. p0(p(2,Z),sid2,1).

45. e(2,Y), p(Y,Z), new_answer(p(2,Z),sid2,1).

46. p(1,Z), new_answer(p(2,Z),sid2,1).

49. (Z=1) 52. (Z=2)

p(X,Z):- tabled_call(p(X,Z),Sid,Eval),
         ((Eval=1 -> dra_loop(Sid,Alt), p0(p(X,Z),Sid,Alt) ; fail)
         ; consume(p(X,Z),Sid)).

p0(p(X,Z),Sid,1):- e(X,Y), p(Y,Z), new_answer(p(X,Z),Sid,1).
p0(p(X,Z),Sid,2):- e(X,Z), new_answer(p(X,Z),Sid,2).
p0(p(X,Z),Sid,3):- looping_state(Sid).

e(1,2). 
e(2,1).

2. p(1,Z)

7. p(2,Z)

30. p(1,1)
34. p(1,2)

17. p(2,1)
53. p(2,2)

sid1

sid2

SubgoalSid Answers Looping Alternatives

12. p0(p(1,Z),sid1,1)

12. p0(p(2,Z),sid2,1)

Figure 5.5: DRA evaluation for the right recursive path/2 program (steps 39 to 54)

we have found a new answer for p(2,Z), we re-execute the looping alternative (step

55). Next, we call again p(1,Z), but this time only redundant answers are found (steps

59 to 65). We thus fail in order to propagate the answers for p(2,Z) to p(1,Z), but

no new answers are found for p(1,Z) (steps 66 to 72). The evaluation then backtracks

to the dra loop/2 primitive for p(1,Z) and, because subgoals p(1,Z) and p(2,Z) are

now fully exploited, we can declared the two subgoals to be completed (step 73).
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43. dra_loop(sid2,Alt), p0(p(2,Z),sid2,Alt) ; consume(p(2,Z),sid2).

41. p(2,Z).

1. p(1,Z).

68. new_answer(p(1,1),sid1,1).

69. fail

71. new_answer(p(1,1),sid1,1).

72. fail

39. p0(p(1,Z),sid1,1).

40. e(1,Y), p(Y,Z), new_answer(p(1,Z),sid1,1).

41. p(2,Z), new_answer(p(1,Z),sid1,1).

74. consume(p(1,Z),sid1). 

75. (Z=1) 77. (Z=2)

?- p(1,Z).

76. Z=1 78. Z=2 79. no

p(X,Z):- tabled_call(p(X,Z),Sid,Eval),
         ((Eval=1 -> dra_loop(Sid,Alt), p0(p(X,Z),Sid,Alt) ; fail)
         ; consume(p(X,Z),Sid)).

p0(p(X,Z),Sid,1):- e(X,Y), p(Y,Z), new_answer(p(X,Z),Sid,1).
p0(p(X,Z),Sid,2):- e(X,Z), new_answer(p(X,Z),Sid,2).
p0(p(X,Z),Sid,3):- looping_state(Sid).

e(1,2). 
e(2,1).

2. p(1,Z)

7. p(2,Z)

30. p(1,1)
34. p(1,2)
73. complete

17. p(2,1)
53. p(2,2)
73. complete

sid1

sid2

SubgoalSid Answers Looping Alternatives

12. p0(p(1,Z),sid1,1)

12. p0(p(2,Z),sid2,1)

3. dra_loop(sid1,Alt), p0(p(1,Z),sid1,Alt) ; consume(p(1,Z),sid1).

61. new_answer(p(2,1),sid2,1).

62. fail

64. new_answer(p(2,2),sid2,1).

65. fail

55. p0(p(2,Z),sid2,1).

56. e(2,Y), p(Y,Z), new_answer(p(2,Z),sid2,1).

57. p(1,Z), new_answer(p(2,Z),sid2,1).

66. consume(p(2,Z),sid2). 

67. (Z=1) 70. (Z=2)

57. p(1,Z).

59. consume(p(1,Z),sid1). 

58. tabled_call(p(1,Z),Sid,Eval), ((Eval=1 -> ...) ;...).

60. (Z=1) 63. (Z=2)

73. complete

Figure 5.6: DRA evaluation for the right recursive path/2 program (steps 55 to 79)

Next, we consume the two available answers for p(1,Z) obtaining, in the continuation,

the two answers for the query goal (steps 76 and 78). Finally, at step 79, we return
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no to the query goal.

5.4 Implementation Details

We next describe in more detail all the implementation issues required to fully support

the DRA linear tabling mechanism.

5.4.1 Subgoal Frames

In the DRA linear tabling mechanism, a subgoal frame is an eleven field data structure.

The SgFr state, SgFr answers, SgFr first answer, SgFr last answer, SgFr dfn,

SgFr dep and SgFr previous fields are used as for the tabled evaluation with contin-

uation calls mechanism. The four extra fields have the following meaning:

• SgFr current alt: is the number of the alternative being evaluated.

• SgFr new answers: indicates if new answers were found during the normal state

or during the execution of the last looping alternative, if in the looping state.

• SgFr last alt: is the number of the alternative where we have found the last

answer.

• SgFr looping alts: is the pointer to the looping alternatives associated with

the subgoal or NULL if no looping alternatives are available.

The corresponding pseudo-code for the new subgoal frame() procedure is presented

next in Fig. 5.7. Figure 5.8 uses the example from Figures 5.3 to 5.6 to illustrate how

these fields are used and updated during a tabled evaluation.

Figure 5.8(a) shows the state of the table space after calling the tabled call/3

primitive for the p(1,Z) subgoal (step 2 in Fig. 5.3). As p(1,Z) is a first call, the

tabled call/3 primitive allocates and initializes a new subgoal frame in the table

space for it. The dra loop/2 primitive then starts exploring the first alternative of

p0/3 for p(1,Z) and the SgFr current alt field of the subgoal frame for p(1,Z)

is updated to 1. In the continuation, the tabled call/3 primitive is called for the

p(2,Z) subgoal and a new subgoal frame is also allocated and initialized (step 7 in

Fig. 5.3). Figure 5.8(b) shows the resulting state of both subgoal frames at that point.
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new_subgoal_frame() {
sf = allocate_subgoal_frame();
SgFr_state(sf) = READY;
SgFr_answers(sf) = open_trie();
SgFr_first_answer(sf) = NULL;
SgFr_last_answer(sf) = NULL;
SgFr_current_alt(sf) = 0;
SgFr_new_answers(sf) = FALSE;
SgFr_last_alt(sf) = 0;
SgFr_looping_alts(sf) = NULL;
SgFr_previous(sf) = SF_TOP;
if (SF_TOP == NULL)

SgFr_dfn(sf) = 1;
else

SgFr_dfn(sf) = SgFr_dfn(SF_TOP) + 1;
SgFr_dep(sf) = SgFr_dfn(sf);
SF_TOP = sf;
return sf;

}

Figure 5.7: Pseudo-code for new subgoal frame()

Next, subgoal p(1,Z) is called again (step 11 in Fig. 5.3). The alternatives in evalua-

tion for p(2,Z) and p(1,Z) are marked as looping alternatives and the SgFr dep field

of the subgoal frame for p(2,Z) is updated to 1, the depth-first number of p(1,Z). We

then try the second alternative for p(2,Z) (step 15 in Fig. 5.3) and, in the continuation,

we obtain a first answer for p(2,Z) (step 17 in Fig. 5.3). The answer is inserted in the

answer trie for p(2,Z), the SgFr new answers field of the subgoal frame for p(2,Z)

is updated to TRUE and the SgFr last alt field is updated to 2, the number of the

alternative in evaluation. Figure 5.8(c) shows the resulting state of the subgoal frame

for p(2,Z) at that point.

The evaluation then obtains two answers for p(1,Z) (steps 30 and 34 in Fig. 5.4)

and a second answer for p(2,Z) (step 53 in Fig. 5.5). At the end, both subgoals are

declared as complete (step 73 in Fig. 5.6). This includes marking the corresponding

subgoal frames as complete, deleting the looping alternatives, and updating the SF TOP

variable to NULL. Figure 5.8(d) shows the final state of both subgoal frames.

5.4.2 Tabling Primitives

We next show the implementation details for the five tabling primitives that support

the DRA linear tabling mechanism. We start with Fig. 5.9 showing the pseudo-code

for the new answer/3 primitive.
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SgFr_state NORMAL_EVAL
SgFr_dfn             1
SgFr_dep             1
SgFr_current_alt     1
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SgFr_last_alt        0
SgFr_looping_alts
SgFr_answers
SgFr_first_answer
SgFr_last_answer
SgFr_previous

p/2

2

1

root
node

Answer Trie Structure

(a)

SgFr_state       READY
SgFr_dfn             1
SgFr_dep             1
SgFr_current_alt     0
SgFr_new_answers FALSE
SgFr_last_alt        0
SgFr_looping_alts
SgFr_answers
SgFr_first_answer
SgFr_last_answer
SgFr_previous

(d)

SG_TRIE

p/2

1

VAR0

root
node

Subgoal Trie Structure

Subgoal frame
for call p(1,VAR0)

p/2

2

VAR0

root
node

Subgoal Trie Structure

1

VAR0

SG_TRIE

(b)

p/2

2

2

root
node

Answer Trie Structure

1

p/2

1

2

root
node

Answer Trie Structure

1

(c)

SF_TOP

Subgoal frame
for call p(1,VAR0)

Subgoal frame
for call p(2,VAR0)

SF_TOP

Subgoal frame
for call p(1,VAR0)

Subgoal frame
for call p(2,VAR0)

Subgoal frame
for call p(2,VAR0)

p0(p(2,Z),sid2,1)

Looping Alternatives

SgFr_state       READY
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SgFr_dep             2
SgFr_current_alt     0
SgFr_new_answers FALSE
SgFr_last_alt        0
SgFr_looping_alts
SgFr_answers
SgFr_first_answer
SgFr_last_answer
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SgFr_state NORMAL_EVAL
SgFr_dfn             2
SgFr_dep             1
SgFr_current_alt     2
SgFr_new_answers  TRUE
SgFr_last_alt        2
SgFr_looping_alts
SgFr_answers
SgFr_first_answer
SgFr_last_answer
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SgFr_state    COMPLETE
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Figure 5.8: Subgoal frames at different points of the evaluation of the right recursive

path/2 program of Figures 5.3 to 5.6
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new_answer(YAP_Term ANSWER, SgFr SF, YAP_Int ALT) {
if (put_answer(SF, ANSWER) == TRUE) {

SgFr_new_answers(SF) = TRUE;
SgFr_last_alt(SF) = ALT;

}
return FALSE; // always fail at the end

}

Figure 5.9: Pseudo-code for the new answer/3 primitive

The new answer/3 primitive calls the put answer() procedure to insert the given

ANSWER in the answer trie structure for the SF subgoal frame and, if the answer is new,

it updates the SgFr new answers to TRUE and the SgFr last alt to the alternative

in evaluation, as given by the ALT argument. We then implement a local scheduling

approach and always fail at the end.

When we reach the last clause of a tabled predicate, we execute the looping state/1

primitive. Figure 5.10 shows the pseudo-code for it.

looping_state(SgFr SF) {
if (SgFr_new_answers(SF) == TRUE)

SgFr_state(SF) = LOOPING; // move to the looping state
else

SgFr_state(SF) = NO_LOOPING;
return FALSE; // always fail at the end

}

Figure 5.10: Pseudo-code for the looping state/1 primitive

The looping state/1 primitive simply checks if any answer was found during the

normal state. If so (cases where SgFr new answers is TRUE), it changes the subgoal’s

state to LOOPING. Otherwise, it updates the subgoal’s state to NO LOOPING. We then

implement a local scheduling approach and always fail at the end. The computation

then returns to the dra loop/2 primitive for the tabled subgoal call in execution, and

the LOOPING and NO LOOPING states are then used to decide whether it should start

executing the looping alternatives, fail or complete.

We next show in Fig. 5.11 the pseudo-code for the tabled call/3 primitive. As for

the tabled evaluation with continuation calls mechanism, the tabled call/3 primi-

tive starts by calling the put tabled call() procedure in order to insert the given

SUBGOAL CALL in the subgoal trie structure. Then, if the resulting subgoal frame is

new, that is, if the SgFr state is READY, it changes the subgoal’s state to NORMAL EVAL

and unifies the EVAL argument with 1.
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tabled_call(YAP_Term SUBGOAL_CALL, SgFr SF, YAP_Int EVAL) {
sf = put_tabled_call(SUBGOAL_CALL);
YAP_Unify(SF, sf);
if (SgFr_state(sf) == READY) {

SgFr_state(sf) = NORMAL_EVAL;
YAP_Unify(EVAL, 1); // go to the dra_loop/2 primitive
return TRUE;

}
if (SgFr_state(sf) == LOOPING) {

YAP_Unify(EVAL, 1); // go to the dra_loop/2 primitive
return TRUE;

}
if (SgFr_state(sf) != COMPLETE) { // propagate dependencies and add ...

sf_aux = SF_TOP; // ... looping alternatives up to sf
while (sf != sf_aux) {
SgFr_dep(sf_aux) = minimum(SgFr_dep(sf_aux), SgFr_dep(sf));
if (SgFr_state(sf) == NORMAL_EVAL)

add_looping_alternative(sf_aux);
sf_aux = SgFr_previous(sf_aux);

}
if (SgFr_state(sf) == NORMAL_EVAL)
add_looping_alternative(sf);

}
YAP_Unify(EVAL, 0); // go to the consume_answer/2 primitive
return TRUE;

}

Figure 5.11: Pseudo-code for the tabled call/3 primitive

If the resulting subgoal frame is not new then the SgFr state can be in one of the

following states: NORMAL EVAL, LOOPING, LOOPING EVAL or COMPLETE. When a subgoal

executes the looping state/1 primitive to move from the normal state to the looping

state, the SgFr state is first marked as LOOPING. Then, when the subgoal starts

evaluating its looping alternatives, it enters the LOOPING EVAL state, returning to the

LOOPING state when it reaches a partial fix-point for the looping alternatives. The

LOOPING EVAL/LOOPING sequence can be repeated several times until the subgoal be

marked as COMPLETE. Thus, if after calling the put tabled call() procedure, the

SgFr state of the resulting subgoal frame is in the LOOPING state, then we simply

unify the EVAL argument with 1 and succeed. This is the situation that occurs at step

42 in Fig. 5.5 with the tabled call/3 primitive for the p(2,Z) subgoal.

Otherwise, if the subgoal is already in evaluation, that is, if the SgFr state is marked

as NORMAL EVAL or LOOPING EVAL, we propagate the dependency in the SgFr dep field

of the current subgoal to the SgFr dep field of all younger subgoal frames. Moreover,

if the current subgoal is in the normal state, we mark the alternatives in evaluation as

looping alternatives. When the subgoal is marked as NORMAL EVAL, LOOPING EVAL or
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COMPLETE we should consume answers and for that we thus unify the EVAL argument

with 0 and succeed. The consume answer/2 primitive for the DRA mechanism is the

same as for the tabled evaluation with continuation calls mechanism (please refer to

Fig. 4.10).

The dra loop/2 primitive controls the evaluation process. It was implemented in

Yap as a backtrackable predicate. This is a special case of a backtrackable predicate

because it uses the same procedure, the dra loop() procedure, to start the execution

of the primitive and to continue its execution when backtracking occurs. Figure 5.12

shows its implementation.

Initially, the procedure checks if the computation is in the normal state and, if so,

it succeeds with the ALT argument bound to the number of the next clause to be

explored. Otherwise, it checks if the subgoal’s state is LOOPING and, if there are

looping alternatives, it gets the next looping alternative, changes the subgoal’s state

to LOOPING EVAL, resets the SgFr last alt and SgFr new answers fields and succeeds

with the ALT argument bound to the number of the looping alternative.

Then, if the current subgoal is already in the looping state and being evaluated (cases

where the SgFr state is LOOPING EVAL), then it gets the next looping alternative,

resets the SgFr new answers field and succeeds with the ALT argument bound to the

number of the next looping alternative (when we have a single looping alternative,

the next looping alternative is always the same). This process repeats until we have

reached a partial fix-point, that is, until no new answers were found during one cycle

of trying the looping alternatives. In the continuation, it checks for completion and if

the SgFr dfn and SgFr dep fields are equal then no dependencies exist and, therefore,

all younger subgoals can be completed. Otherwise, the subgoal returns to the LOOPING

state.

5.4.3 Detecting Completion

In the DRA execution model, completion is detected in the dra loop/2 primitive. As

for the tabled evaluation with continuation calls mechanism, we use the SgFr dfn and

the SgFr dep fields of the subgoal frames to quickly determine whether a subgoal is a

leader node. Moreover, we use the SgFr state, SgFr new answers, SgFr current alt

and SgFr last alt fields of the subgoal frames to determine when we reach a partial

fix-point for the looping alternatives. Figure 5.13 uses again the example from Fig-

ures 5.3 to 5.6 to illustrate how completion is detected in the DRA execution model
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dra_loop(SgFr SF, YAP_Int ALT) {
if (SgFr_state(SF) == NORMAL_EVAL) {

SgFr_current_alt(SF)++;
YAP_Unify(ALT, SgFr_current_alt(SF));
return TRUE;

}
if (SgFr_state(SF) == LOOPING) {

SgFr_current_alt(SF) = get_next_looping_alternative(SF);
if (SgFr_current_alt(SF) == 0) { // no looping alternatives
YAP_cut_fail();
return FALSE;

}
SgFr_state(SF) = LOOPING_EVAL;
SgFr_last_alt(SF) = SgFr_current_alt(SF);
SgFr_new_answers(SF) = FALSE;
YAP_Unify(ALT, SgFr_current_alt(SF));
return TRUE;

}
if (SgFr_state(SF) == LOOPING_EVAL) {

SgFr_current_alt(SF) = get_next_looping_alternative(SF);
if (SgFr_last_alt(SF) != SgFr_current_alt(SF) || SgFr_new_answers(SF)) {
SgFr_new_answers(SF) = FALSE;
YAP_Unify(ALT, SgFr_current_alt(SF));
return TRUE;

}
}
if (SgFr_dfn(SF) == SgFr_dep(SF)) { // complete all frames up to SF

while (SF_TOP != SF) {
SgFr_state(SF_TOP) = COMPLETE;
delete_looping_alternatives(SF_TOP);
SF_TOP = SgFr_previous(SF_TOP);

}
SgFr_state(SF) = COMPLETE;
delete_looping_alternatives(SF);

} else
SgFr_state(SF) = LOOPING;

YAP_cut_fail();
return FALSE; // go to the consume_answer/2 primitive

}

Figure 5.12: Pseudo-code for the dra loop/2 primitive

(we omit the SgFr current alt and SgFr last alt fields because we have only a

single looping alternative). The black dots in the sub-figure below indicates the fields

being updated at each step of the example.

Initially, p(1,Z) and p(2,Z) are first called and two subgoal frames are allocated

(step 2 in Fig. 5.13). In the continuation, subgoal p(1,Z) is called again, creating a

dependency between subgoals p(2,Z) and p(1,Z), and the SgFr dep field of subgoal

p(2,Z) is updated to represent this dependency (step 4 in Fig. 5.13). The execution
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Figure 5.13: Detecting completion when evaluating the right recursive path/2 program

of Figures 5.3 to 5.6

then finds a first answer for p(2,Z) and the SgFr new answers field of the subgoal

frame for p(2,Z) is updated to TRUE. Next, subgoal p(2,Z) moves to the looping state

and we re-execute its looping alternative because we have found an answer for it (step

5 in Fig. 5.13).

The evaluation then calls again p(1,Z) but we fail because no answers are still available

for it (step 6 in Fig. 5.13). Then, the computation returns to p(2,Z) but we cannot
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perform completion because the SgFr dfn and SgFr dep fields of p(2,Z) are different.

We thus mark the subgoal as LOOPING and fail (step 7 in Fig. 5.13).

A similar situation then occurs with p(1,Z). First, the execution finds two answers

for p(1,Z) and its SgFr new answers field is updated to TRUE. Next, p(1,Z) moves

to the looping state and we re-execute its looping alternative because we have found

two answers for it (step 8 in Fig. 5.13).

The execution then proceeds with subgoals p(2,Z) and p(1,Z) being called again

(steps 9 and 10 in Fig. 5.13) and, in the continuation, we find a new answer for p(2,Z).

Thus, when the computation returns to p(2,Z) we re-execute its looping alternative

because we have found a new answer for it (step 11 in Fig. 5.13). Next, we call again

p(1,Z), but this time only redundant answers are found (step 12 in Fig. 5.13). The

evaluation then returns first to p(2,Z) and then to p(1,Z) and, because subgoals

p(1,Z) and p(2,Z) are now fully exploited, both subgoals are marked as COMPLETE

(step 14 in Fig. 5.13).

Figure 5.14 shows an example for a more complex graph as represented by the e/2

facts in the sub-figure at the top. Similarly to the previous example, we start by

allocating and initializing frames to subgoals p(1,Z), p(2,Z) and p(3,Z). Next,

p(3,Z) calls p(2,Z) and the SgFr dep field of subgoal p(3,Z) is updated to represent

this dependency (step 5 in Fig. 5.14). Next, p(4,Z) is also called and a new subgoal

frame is allocated (step 6 in Fig. 5.14). In the continuation, p(4,Z) calls p(1,Z) again,

and the SgFr dep field of all subgoals up to p(1,Z) are updated to represent this new

dependency (step 8 in Fig. 5.14).

The execution then finds a first answer for p(4,Z), p(4,1), which will force the re-

execution of its looping alternative (step 9 Fig. 5.14). Subgoal p(1,Z) is then called

again but we fail because no answers are still available for it (step 10 in Fig. 5.14).

When backtracking to p(4,Z) we cannot perform completion because the current

leader node is p(1,Z). We thus mark p(4,Z) as LOOPING and fail (step 11 in Fig. 5.14).

We then find three answers for p(3,Z): p(3,1), p(3,2) and p(3,4), which will also

force the re-execution of its looping alternative (step 12 in Fig. 5.14). Subgoals p(2,Z),

p(4,Z) and p(1,Z) are then called again but no new answers are found. In the

continuation, p(3,Z) is also marked as LOOPING and the execution fails (step 17 in

Fig. 5.14).

A similar situation then happens for p(2,Z), the execution finds four answers for it:

p(2,1), p(2,2), p(2,4) and p(2,3), which will force the re-execution of its looping

alternative (step 18 in Fig. 5.14). In the continuation, we find a new answer for p(3,Z),
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SgFr_dep              1
SgFr_new_answers  FALSE

p(4,Z)
.

.

SgFr_state LOOPING_EVAL
SgFr_dfn              1
SgFr_dep              1
SgFr_new_answers  FALSE

p(1,Z)

SgFr_state LOOPING_EVAL
SgFr_dfn              2
SgFr_dep              1
SgFr_new_answers  FALSE

p(2,Z)

SF_TOP

SgFr_state LOOPING_EVAL
SgFr_dfn              3
SgFr_dep              1
SgFr_new_answers  FALSE

p(3,Z)
.

SgFr_state LOOPING_EVAL
SgFr_dfn              4
SgFr_dep              1
SgFr_new_answers   TRUE

p(4,Z)
.

.

.

(8) (30) (38)

p(1,Z)
2726

28.looping

p(4,Z)

p(2,Z)

p(1,Z)
22

25

Figure 5.14: Detecting several partial fix-points not corresponding to completion
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p(3,3), when consuming the answer p(2,3) after step 20. Thus, when returning to

p(3,Z), we re-execute one more time its looping alternative (step 24 in Fig. 5.14) but

no new answers are found. Next, subgoal p(3,Z) is re-marked as LOOPING (step 29 in

Fig. 5.14), the execution fails to p(2,Z), and because no new answers were found for

p(2,Z) it is also marked as LOOPING (step 30 in Fig. 5.14).

Again, the same happens when the computation returns to p(1,Z), we also find four

answers for it: p(1,1), p(1,2), p(1,4) and p(1,3), which will force the re-execution

of its looping alternative (step 31 in Fig. 5.14). Subgoals p(2,Z), p(3,Z), p(4,Z) and

p(1,Z) are then called again and, in the continuation, we find three new answers for

p(4,Z): p(4,2), p(4,4) and p(4,3) when consuming answers from p(1,Z) after step

36. When returning to p(4,Z), we re-execute a last time its looping alternative (step

37 in Fig. 5.14) but no more answers are found. We then backtrack up to p(1,Z) and

all subgoals are marked as COMPLETE (step 42 in Fig. 5.14).
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Chapter 6

SLDT Linear Tabling

This chapter describes the design and implementation of the second linear tabling

mechanism that we have implemented, the SLDT linear tabling mechanism as origi-

nally proposed by Zhou et al. [ZSYY00]. As for the previous mechanisms, it follows a

scheduling strategy based on the local scheduling strategy.

We start by describing the basic execution model for SLDT and by presenting an

example showing how a tabled program is transformed to include specific tabling

primitives for this mechanism. We then present an evaluation example and provide

the details for implementing SLDT evaluation as an external Prolog module in Yap.

6.1 Basic Execution Model

In the SLDT execution model, each tabled call can be a generator and a consumer as

well. A first call to a tabled subgoal is called a pioneer and repeated calls to tabled

subgoals are called followers of the pioneer. For every pioneer and its followers there

is a single table entry associated with them.

The basic idea is as follows. The SLDT strategy constructs an SLD tree in the same

left-to-right and depth-first fashion as the SLD resolution except when a tabled subgoal

call is a follower. In this case, we first use the answers available from its table entry

to resolve the call. When no more unconsumed answers are available, we resolve the

call by using the remaining clauses of the latest former call. Using the terminology

in [ZSYY00], we say that the current call steals the choice point from the latest former

call.

91
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When backtracking, to a pioneer or a follower, we use the same strategy, we first try to

consume answers and then we try to use the clauses. After we exhaust all the answers

and clauses, we simply fail if not a pioneer. Otherwise, we should decide whether

it is necessary to re-execute the pioneer starting from the first clause of the tabled

predicate. Re-execution will be repeated until no new answers can be generated, that

is, until reaching a fix-point.

For computations with multiple calls containing recursive calls, followers may be

encountered several times. Each follower executes from the backtracking point of

the former repeated call, that is, each follower skips the previous clauses leading to

repeated calls. The answers that may potentially be lost by skipping these clauses

are found by re-computation. However, in the case of multiple calls with repeated

calls, re-computation will be quite complicated because new answers can be possibly

generated by exploring the multiple calls in different combinations. Thus, the whole

computation has to be re-explored one or more times from the first tabled call to

guarantee that all answers have been obtained and none missed.

6.2 Program Transformation

Figure 6.1 uses again the right recursive path/2 program from Fig. 2.3 to illustrate

how programs are transformed and augmented with tabling primitives to implement

SLDT evaluation.

path(X,Z):- tabled_call(path(X,Z),Sid,Cid),
sldt_loop(Sid,Cid,Alt),
(Alt=0 -> consume_answer(path(X,Z),Sid,Cid)

; path0(path(X,Z),Sid,Alt)).

path0(path(X,Z),Sid,1):- edge(X,Y), path(Y,Z), new_answer(path(X,Z),Sid).
path0(path(X,Z),Sid,2):- edge(X,Z), new_answer(path(X,Z),Sid).
path0(path(X,Z),Sid,3):- fixpoint_check(Sid).

Figure 6.1: Program transformation for the right recursive path/2 program

As for the previous mechanisms, the path/2 clause is maintained so that we can call

it from other predicates without any change. The tabling primitive tabled call/3

in the body of path/2 inserts/checks for the subgoal in the table space and returns

a subgoal id (Sid) and a consumer id (Cid). The subgoal id represents the subgoal

frame in the table space and the consumer id represents a consumer frame used to
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keep track of the last consumed answer for each call. A pioneer and its followers share

the same subgoal id, but each one has a different consumer id.

The sldt loop/3 primitive controls the evaluation process and the consume answer/3

primitive implements the process of consuming answers one at a time. Both primitives

are implemented as backtrackable predicates. The Alt argument in the sldt loop/3

primitive is used to switch between consuming answers (cases where Alt is bound to

zero) or explore clauses (cases where Alt is bound to the number of the clause to be

explored).

Each clause in the original definition of path/2 becomes a clause for a new distinct

predicate, path0/3 in the example, with 3 arguments. The first argument is the

previous head clause; the second is the subgoal id; and the third is the number of

the clause regarding the textual order it appears on the program. A new answer/2

primitive is added to the end of each clause body. In addition, an extra clause is used

to check for fix-points after we exhaust all the answers and clauses.

6.3 An Evaluation Example

Figures 6.2 to 6.5 show the evaluation sequence for the query goal p(1,Z) if applying

the program transformation for SLDT evaluation presented in Fig. 6.1. At the top,

each figure illustrates the program code and the state of the table space at the end of

the evaluation represented in the figure. The bottom sub-figures show the resulting

forest of trees with the numbering of nodes denoting the evaluation sequence. For

illustration purposes the program code was simplified, predicates consume answer/3,

path/2, path0/3 and edge/2 are respectively denoted as consume/3, p/2, p0/3 and

e/2.

The evaluation begins with the tabled call/3 primitive being called for the p(1,Z)

subgoal. As p(1,Z) is a pioneer (pioneers are represented by black oval boxes), a new

subgoal frame, with id sid1, and a new consumer frame, with id cid1, are allocated

in the table space for it (step 2). The sldt loop/3 primitive then starts exploring the

first alternative of p0/3 (Alt is bound to 1) and, in the continuation, p(2,Z) is first

called (step 6).

As p(2,Z) is a pioneer, we add a new subgoal frame, with id sid2, and a new consumer

frame, with id cid2 (step 7), and proceed with p(2,Z) being resolved against the first

clause for p0/3 (step 9). In the continuation, subgoal p(1,Z) is called again (step 11).
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?- p(1,Z).

6. p(2,Z).

1. p(1,Z).

2. tabled_call(p(1,Z),Sid,Cid), sldt_loop(Sid,Cid,Alt), (Alt=0 -> ...;...).

3. sldt_loop(sid1,cid1,Alt), (Alt=0 -> ...;...).

4. p0(p(1,Z),sid1,1).

5. e(1,Y), p(Y,Z), new_answer(p(1,Z),sid1).

6. p(2,Z), new_answer(p(1,Z),sid1).

7. tabled_call(p(2,Z),Sid,Cid), sldt_loop(Sid,Cid,Alt), (Alt=0 -> ...;...).

8. sldt_loop(sid2,cid2,Alt), (Alt=0 -> ...;...).

9. p0(p(2,Z),sid2,1).

10. e(2,Y), p(Y,Z), new_answer(p(2,Z),sid2).

11. p(1,Z), new_answer(p(2,Z),sid2).

p(X,Z):- tabled_call(p(X,Z),Sid,Cid), sldt_loop(Sid,Cid,Alt),
         (Alt=0 -> consume(p(X,Z),Sid,Cid) ; p0(p(X,Z),Sid,Alt)).

p0(p(X,Z),Sid,1):- e(X,Y), p(Y,Z), new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid,2):- e(X,Z), new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid,3):- fixpoint_check(Sid).

e(1,2). 
e(2,1).

11. p(1,Z).

13. sldt_loop(sid1,cid3,Alt), (Alt=0 -> ...;...).

14. p0(p(1,Z),sid1,2).

17. fail

20. new_answer(p(2,2),sid2).

21. fail

24. fail
(no fix-point)

25. fail

12. tabled_call(p(1,Z),Sid,Cid), sldt_loop(Sid,Cid,Alt), (Alt=0 -> ...;...).

15. e(1,Z), new_answer(p(1,Z),sid1).

16. new_answer(p(1,2),sid1).

18. consume(p(1,Z),sid1,cid3). 22. p0(p(1,Z),sid1,3).

23. fixpoint_check(sid1).19. (Z=2)

2. p(1,Z)

7. p(2,Z)

16. p(1,2)

20. p(2,2)

sid1

sid2 7. cid2

2. cid1

SubgoalSid Answers Cid

19. p(1,2)12. cid3

Figure 6.2: SLDT evaluation for the right recursive path/2 program (steps 1 to 25)

Since p(1,Z) is now a follower (followers are represented by white oval boxes) and no

answers are still available for it, the sldt loop/3 primitive tries the next unexplored
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alternative of p0/3 for p(1,Z), alternative two in this case (step 14).

In the continuation, we obtain a first answer for p(1,Z) (step 16). The answer is

inserted in the table and, because we are following a local scheduling strategy, the

execution fails. We then backtrack to the sldt loop/3 primitive and now we can

consume answers (step 18). The answer p(1,2) is thus consumed and the consumer

frame for the current follower, cid3, is made to point to it (step 19). The binding Z=2

is then propagated to the context of subgoal p(2,Z) and a first answer for p(2,Z) is

also found (step 20). The evaluation then fails and we backtrack again to node 13.

The sldt loop/3 primitive calls the third alternative of p0/3 for p(1,Z) (step 22)

and we check for a fix-point (step 23). We have found a new answer for p(1,Z), so

we declare the subgoal as no fix-point, meaning that we need to re-execute it starting

from its first clause, and fail (step 24). Note that to implement local scheduling we

also need to fail when executing the fixpoint check/1 primitive. The evaluation

then backtracks to node 13 and, because the current subgoal call for p(1,Z) is not

a pioneer, we also fail (step 25). Re-execution should be handled by the pioneer, as

otherwise we may lose part of the computation (please see subsection 6.4.3 for more

details).

The evaluation then backtracks to the sldt loop/3 primitive at node 8, and we

consume the answer p(2,2) (step 27). The binding Z=2 is then propagated to the

context of subgoal p(1,Z), and a new answer for p(1,Z) is found (step 28). However,

this last answer repeats the answer found in step 16, so we fail and backtrack again

to node 8. We then explore the second alternative of p0/3 for p(2,Z) (step 30)

obtaining, in the continuation, a second answer for p(2,Z) (step 32) and a second

answer for p(1,Z) (step 36). The evaluation then proceeds with the third alternative

of p0/3 for p(2,Z) (step 38) and we check for a fix-point (step 39). We have found

two new answers for p(2,Z), so we declare the subgoal as no fix-point and fail (step

40).

We then backtrack one more time to node 8 and, because the current subgoal call

for p(2,Z) is a pioneer, we re-execute the subgoal starting from its first alternative

(step 41). The execution then proceeds with another follower being called for subgoal

p(1,Z) (step 43). The sldt loop/3 primitive for this new follower (step 45) starts by

consuming the available answers for p(1,Z). The bindings Z=2 (step 47) and Z=1 (step

50) are propagated to the context of subgoal p(2,Z), but only redundant answers are

found (steps 48 and 51). We return to the sldt loop/3 primitive for the follower

(node 45) and then we try to use the clauses. Since we have failed to detect a fix-point

in step 24, we need to re-start the computation of path(1,Z) from the beginning, as



96 CHAPTER 6. SLDT LINEAR TABLING

26. consume(p(2,Z),sid2,cid2).

27. (Z=2)

6. p(2,Z).

1. p(1,Z).

3. sldt_loop(sid1,cid1,Alt), (Alt=0 -> ...;...).

6. p(2,Z), new_answer(p(1,Z),sid1).

8. sldt_loop(sid2,cid2,Alt), (Alt=0 -> ...;...).

p(X,Z):- tabled_call(p(X,Z),Sid,Cid), sldt_loop(Sid,Cid,Alt),
         (Alt=0 -> consume(p(X,Z),Sid,Cid) ; p0(p(X,Z),Sid,Alt)).

p0(p(X,Z),Sid,1):- e(X,Y), p(Y,Z), new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid,2):- e(X,Z), new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid,3):- fixpoint_check(Sid).

e(1,2). 
e(2,1).

2. p(1,Z)

7. p(2,Z)

16. p(1,2)
36. p(1,1)

20. p(2,2)
32. p(2,1)

sid1

sid2 7. cid2

SubgoalSid Answers Cid

29. fail

30. p0(p(2,Z),sid2,2).

33. fail

38. p0(p(2,Z),sid2,3).

40. fail
(no fix-point)

28. new_answer(p(1,2),sid1).

31. e(2,Z), new_answer(p(2,Z),sid2).

32. new_answer(p(2,1),sid2).

39. fixpoint_check(sid2).

27. p(2,2)
35. p(2,1)

34. consume(p(2,Z),sid2,cid2).

35. (Z=1)

37. fail

36. new_answer(p(1,1),sid1).

Figure 6.3: SLDT evaluation for the right recursive path/2 program (steps 26 to 40)

otherwise we may lose answers for the other subgoals in evaluation.

The evaluation of the first clause of p0/3 for p(1,Z) at step 53 leads, in the con-

tinuation, to another follower, but this time to subgoal p(2,Z) (step 55). Again,

the sldt loop/3 primitive for this new follower (step 57) starts by consuming the

available answers for it (step 58), but no new answers are found. When backtracking,

the sldt loop/3 primitive at node 57 executes the unexplored alternatives of p0/3

for p(2,Z). First it tries alternative two, but no new answers are found (steps 65 to

68), and then it checks for a fix-point using alternative three (step 69). Since we have

found no new answers during the last re-execution of subgoal p(2,Z), we declare the

subgoal as partial fix-point, meaning that we may have reached a fix-point, and fail

(step 71). The evaluation then backtracks to node 57 and, because the current call
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46. consume(p(1,Z),sid1,cid4).

47. (Z=2)

6. p(2,Z).

43. p(1,Z).

8. sldt_loop(sid2,cid2,Alt), (Alt=0 -> ...;...).

p(X,Z):- tabled_call(p(X,Z),Sid,Cid), sldt_loop(Sid,Cid,Alt),
         (Alt=0 -> consume(p(X,Z),Sid,Cid) ; p0(p(X,Z),Sid,Alt)).

p0(p(X,Z),Sid,1):- e(X,Y), p(Y,Z), new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid,2):- e(X,Z), new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid,3):- fixpoint_check(Sid).

e(1,2). 
e(2,1).

2. p(1,Z)

7. p(2,Z)

16. p(1,2)
36. p(1,1)

20. p(2,2)
32. p(2,1)

sid1

sid2 56. cid5

SubgoalSid Answers Cid

59. p(2,2)
62. p(2,1)

43. p(1,Z), new_answer(p(2,Z),sid2).

41. p0(p(2,Z),sid2,1).

42. e(2,Y), p(Y,Z), new_answer(p(2,Z),sid2).

49. fail

48. new_answer(p(2,2),sid2).

52. fail

51. new_answer(p(2,1),sid2).

45. sldt_loop(sid1,cid4,Alt), (Alt=0 -> ...;...).

53. p0(p(1,Z),sid1,1)

55. p(2,Z), new_answer(p(1,Z),sid1).

44. tabled_call(p(1,Z),Sid,Cid), sldt_loop(Sid,Cid,Alt), (Alt=0 -> ...;...).

54. e(1,Y), p(Y,Z), new_answer(p(1,Z),sid1).

44. cid4 47. p(2,2)
50. p(2,1)

50. (Z=1)

61. fail

60. new_answer(p(1,2),sid1).

64. fail

63. new_answer(p(1,1),sid1).

55. p(2,Z).

57. sldt_loop(sid2,cid5,Alt), (Alt=0 -> ...;...).

56. tabled_call(p(2,Z),Sid,Cid), sldt_loop(Sid,Cid,Alt), (Alt=0 -> ...;...).

58. consume(p(2,Z),sid2,cid5).

59. (Z=2) 62. (Z=1)

67. new_answer(p(2,1),sid2).

65. p0(p(2,Z),sid2,2).

66. e(2,Y), new_answer(p(2,Z),sid2).

68. fail

69. p0(p(2,Z),sid2,3).

71. fail
(partial fix-point)

70. fixpoint_check(sid2).

72. fail

Figure 6.4: SLDT evaluation for the right recursive path/2 program (steps 41 to 72)
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is not a pioneer, we also fail (step 72). Note that because followers avoid trying the

same alternatives as the former call, the computation may be incomplete, and thus we

should fail in order to fully exploit the current branch up to the pioneer. Therefore,

declaring a subgoal as complete is only safe when reaching the pioneer, as otherwise

we may lose part of the computation.

9. sldt_loop(sid2,cid2,Alt), (Alt=0 -> ...;...).

6. p(2,Z).

43. p(1,Z).

p(X,Z):- tabled_call(p(X,Z),Sid,Cid), sldt_loop(Sid,Cid,Alt),
         (Alt=0 -> consume(p(X,Z),Sid,Cid) ; p0(p(X,Z),Sid,Alt)).

p0(p(X,Z),Sid,1):- e(X,Y), p(Y,Z), new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid,2):- e(X,Z), new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid,3):- fixpoint_check(Sid).

e(1,2). 
e(2,1).

2. p(1,Z)

7. p(2,Z)

16. p(1,2)
36. p(1,1)
83. complete

20. p(2,2)
32. p(2,1)
81.complete

sid1

sid2

SubgoalSid Answers Cid

45. sldt_loop(sid1,cid4,Alt), (Alt=0 -> ...;...).

2. cid1 85. p(2,2)
87. p(2,1)

75. new_answer(p(1,2),sid1).

73. p0(p(1,Z),sid1,2).

74. e(1,Y), new_answer(p(1,Z),sid1).

76. fail

77. p0(p(1,Z),sid1,3).

79. fail
(partial fix-point)

78. fixpoint_check(sid1).

80. fail

81. complete

1. p(1,Z).

3. sldt_loop(sid1,cid1,Alt), (Alt=0 -> ...;...).

83. complete 84. consume(p(1,Z),sid1,cid1).

85. (Z=2) 87. (Z=1)

?- p(1,Z).

86. Z=2 88. Z=2 90. no

82. fail

89. fail

Figure 6.5: SLDT evaluation for the right recursive path/2 program (steps 73 to 90)

The same evaluation sequence occurs when we backtrack to the sldt loop/3 primitive

at node 45 and we execute the unexplored alternatives of p0/3 for p(1,Z). No new
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answers are found when exploring alternative two (steps 73 to 76), and we declare the

subgoal as partial fix-point when executing alternative three (steps 77 to 79). Since

the call for the sldt loop/3 primitive at node 45 is a follower, we also fail (step 80).

Backtracking sends us back to the sldt loop/3 primitive for the pioneer of p(2,Z)

(node 9). As p(2,Z) is declared as partial fix-point and no new answers were found

since then, we can declare p(2,Z) to be complete (step 81) and fail (step 82). Note

that we can fail because we have already consumed the two available answers for this

pioneer at steps 27 and 35, using the consumer frame cid2.

A similar situation occurs when we backtrack to the sldt loop/3 primitive for the

pioneer of p(1,Z) (node 3). Subgoal p(1,Z) is also declared as partial fix-point and

no new answers were found since then, and thus we can declare p(1,Z) to be complete

(step 83). Before failing at step 89, we first consume the two available answers

for p(1,Z) at steps 85 and 87, using the consumer frame cid1, obtaining, in the

continuation, the two answers for the query goal (steps 86 and 88). Finally, at step

90, we return no to the query goal.

6.4 Implementation Details

We next give a detailed description of all the implementation issues required to fully

support SLDT evaluation.

6.4.1 Subgoal Frames

In the SLDT linear tabling mechanism, a subgoal frame is a seven field data structure.

Four of the these fields are the usual SgFr state, SgFr answers, SgFr first answer

and SgFr last answer fields as implemented in the previous tabling mechanisms. The

three extra fields have the following meaning:

• SgFr next alt: is the number of the next clause to be tried.

• SgFr new answers: indicates if new answers were found since the last time we

(re-)started the computation from the first clause.

• SgFr pioneer: is a pointer to the consumer frame of the pioneer. It is used to

detect whether a call is a pioneer or a follower.
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The corresponding pseudo-code for the new subgoal frame() procedure is presented

next in Fig. 6.6. Figure 6.7 uses the example from Figures 6.2 to 6.5 to illustrate how

these fields are used and updated during a tabled evaluation.

new_subgoal_frame() {
sf = allocate_subgoal_frame();
SgFr_state(sf) = READY;
SgFr_answers(sf) = open_trie();
SgFr_first_answer(sf) = NULL;
SgFr_last_answer(sf) = NULL;
SgFr_next_alt(sf) = 1;
SgFr_new_answers(sf) = FALSE;
SgFr_pioneer(sf) = NULL;
return sf;

}

Figure 6.6: Pseudo-code for new subgoal frame()

Figure 6.7(a) shows the state of the table space after calling the tabled call/3

primitive for the p(1,Z) subgoal (step 2 in Fig. 6.2). As p(1,Z) is a pioneer, the

tabled call/3 primitive allocates and initializes a new subgoal frame in the table

space for it. The sldt loop/3 primitive then starts exploring the first alternative

of p0/3 for p(1,Z) and the SgFr next alt field of the subgoal frame for p(1,Z) is

updated to 2, the next alternative to be taken. In the continuation, the tabled call/3

primitive is called for the p(2,Z) subgoal and a new subgoal frame is also allocated

and initialized (step 7 in Fig. 6.2). Figure 6.7(b) shows the resulting state of both

subgoal frames at that point.

Subgoal p(1,Z) is then called again (step 11 in Fig. 6.2) and the sldt loop/3 primitive

executes the alternative stored in the SgFr next alt field of the subgoal frame for

p(1,Z), alternative two in this case, and updates the SgFr next alt field to 3 (step

14 in Fig. 6.2). The execution then continues and we obtain a first answer for p(1,Z)

(step 16 in Fig. 6.2). Figure 6.7(c) shows the resulting state of the subgoal frame for

p(1,Z) at that point.

The evaluation then obtains a first answer for p(2,Z) (step 20 in Fig. 6.2) and second

answers for p(2,Z) and p(1,Z) (steps 32 and 36 in Fig. 6.3). Later, subgoal p(2,Z) is

first declared as partial fix-point (step 71 in Fig. 6.4) and then subgoal p(1,Z) is also

declared as partial fix-point (step 79 in Fig. 6.5). Backtracking then sends us back to

the sldt loop/3 primitive for the pioneer of p(2,Z) where it is declared as complete

(step 81 in Fig. 6.5). Figure 6.7(d) shows the resulting state of both subgoal frames at

that point (a subgoal declared as partial fix-point is marked with the flag P FIXPOINT

in the SgFr state field). Finally, a similar situation occurs when we backtrack to the
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Figure 6.7: Subgoal frames at different points of the evaluation of the right recursive

path/2 program of Figures 6.2 to 6.5

sldt loop/3 primitive for the pioneer of p(1,Z) where it is also declared as complete

(step 83 in Fig. 6.5).
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6.4.2 Tabling Primitives

We next show the implementation details for the five tabling primitives that sup-

port SLDT evaluation. We start with Fig. 6.8 showing the pseudo-code for the

new answer/2 primitive.

new_answer(YAP_Term ANSWER, SgFr SF) {
if (put_answer(SF, ANSWER) == TRUE)

SgFr_new_answers(SF) = TRUE;
return FALSE; // always fail at the end

}

Figure 6.8: Pseudo-code for the new answer/2 primitive

The new answer/2 primitive calls the put answer() procedure to insert the given

ANSWER in the answer trie structure for the SF subgoal frame and, if the answer is

new, it updates the SgFr new answers to TRUE. We then implement a local scheduling

approach and always fail at the end.

When we reach the last clause of a tabled predicate, we execute the fixpoint check/1

primitive. Figure 6.9 shows the pseudo-code for it.

fixpoint_check(SgFr SF) {
if (SgFr_new_answers(SF) == TRUE) // check for a partial fix-point

SgFr_state(SF) = NO_FIXPOINT; // no fix-point
else

SgFr_state(SF) = P_FIXPOINT; // partial fix-point
SgFr_next_alt(SF) = 1; // reset the clause counter
return FALSE; // always fail at the end

}

Figure 6.9: Pseudo-code for the fixpoint check/1 primitive

The fixpoint check/1 primitive starts by checking if new answers were found during

the last traversal of the predicate clauses. If so (cases where SgFr new answers

is TRUE), it changes the subgoal’s state to NO FIXPOINT. Otherwise, it updates the

subgoal’s state to P FIXPOINT. In both cases it resets the SgFr next alt field to 1

and fails. The computation then returns to the sldt loop/3 primitive for the tabled

subgoal call in execution, and the NO FIXPOINT and P FIXPOINT states are then used to

decide whether it should fail, re-execute the subgoal from its first clause or complete.

We next describe the 3 primitives that implement the execution control for the entry

clause of each tabled predicate. We first show in Fig. 6.10 the pseudo-code for the

tabled call/3 primitive.
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tabled_call(YAP_Term SUBGOAL_CALL, SgFr SF, ConsFr CF) {
sf = put_tabled_call(SUBGOAL_CALL);
cf = add_consumer_frame(sf);
ConsFr_LastAnswer(cf) = NULL;
if (SgFr_state(sf) == READY) { // new subgoal call

SgFr_state(sf) = EVALUATING;
SgFr_pioneer(sf) = cf;

}
YAP_Unify(SF, sf);
YAP_Unify(CF, af);
return TRUE; // always succeed at the end

}

Figure 6.10: Pseudo-code for the tabled call/3 primitive

As for the previous mechanisms, the tabled call/3 primitive starts by calling the

put tabled call() procedure in order to insert the given SUBGOAL CALL in the subgoal

trie structure. Next, it adds a new consumer frame to the obtained subgoal frame

and initializes it with NULL, meaning that no answers were still consumed for the

current call. Then, if the resulting subgoal frame is new, it changes the subgoal’s state

to EVALUATING and updates the SgFr pioneer field to the current consumer frame.

Finally, the SF and CF arguments are unified with the corresponding pointers to the

subgoal and consumer frames and the procedure succeeds.

The sldt loop/3 primitive then controls the evaluation process. It was implemented

in Yap as a backtrackable predicate. This is a special case of a backtrackable predicate

because it uses the same procedure, the sldt loop() procedure, to start the execution

of the primitive and to continue its execution when backtracking occurs. Figure 6.11

shows its implementation. Initially, the procedure checks if the computation is return-

ing from the fixpoint check/1 primitive with the subgoal’s state as NO FIXPOINT.

If so, it changes the subgoal’s state to EVALUATING and, if is not a pioneer, fails.

Otherwise, it checks if the subgoal’s state is P FIXPOINT and, if new answers were

found in the meantime (cases where the SgFr new answers field is TRUE), it changes the

subgoal’s state to EVALUATING in order to re-execute the subgoal from the beginning.

Otherwise, if the current subgoal is a pioneer, then we know that no new answers were

found during the last time we (re-)executed the subgoal and thus we can safely mark

it as COMPLETE.

In the continuation, we first try to consume answers, cases where we succeed with the

NEXT ALT argument bound to zero, and if no unconsumed answers are available then

we try to use the clauses, cases where we succeed with the NEXT ALT argument bound

to the number of the next clause to be explored. When the subgoal is COMPLETE or
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sldt_loop(SgFr SF, CallFr CF, YAP_Int NEXT_ALT) {
if (SgFr_state(sf) == NO_FIXPOINT) {

SgFr_state(SF) = EVALUATING;
if (SgFr_pioneer(sf) != CF) {
delete_consumer_frame(CF);
YAP_cut_fail();
return FALSE;

}
} else if (SgFr_state(sf) == P_FIXPOINT) {

if (SgFr_new_answers(sf) == TRUE)
SgFr_state(SF) = EVALUATING;

else if (SgFr_pioneer(sf) == CF)
SgFr_state(SF) = COMPLETE;

}
if (CallFr_LastAnswer(CF) != SgFr_last_answer(SF)) {

YAP_Unify(NEXT_ALT, 0); // consume answers
return TRUE;

}
if (SgFr_state(SF) == COMPLETE || SgFr_state(sf) == P_FIXPOINT) {

delete_consumer_frame(CF);
YAP_cut_fail();
return FALSE;

}
if (SgFr_next_alt(sf) == 1) // before (re-)starting the computation ...

SgFr_new_answers(SF) = FALSE; // ... reset the new answers field
YAP_Unify(NEXT_ALT, SgFr_next_alt(SF)); // try the next clause
SgFr_next_alt(SF)++;
return TRUE;

}

Figure 6.11: Pseudo-code for the sldt loop/3 primitive

P FIXPOINT we avoid trying the clauses and simply fail.

We end with Fig. 6.12 showing the pseudo-code for the consume answer/3 primi-

tive. The consume answer/3 primitive was implemented in Yap as a backtrackable

predicate. The consume answer init() procedure is executed when the primitive is

first called, and the consume answer cont() procedure is executed when backtracking

occurs. The consumer frame pointer, argument CF, is used to keep track of the last

returned answer when backtracking.

6.4.3 Detecting Completion

In the SLDT execution model, completion is detected in two steps. First, we use the

fixpoint check/1 primitive to detect when no new answers were found during the

last traversal of the predicate clauses and, for such cases, we mark the subgoal as
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consume_answer_init(YAP_Term SUBGOAL_CALL, SgFr SF, ConsFr CF) {
leaf = ConsFr_LastAnswer(CF);
if (ans == NULL) // get first answer leaf node

leaf = SgFr_first_answer(SF);
else // get next answer leaf node

leaf = TrNode_child(ans);
answer = get_trie_entry(leaf); // load answer from trie
YAP_Unify(SUBGOAL_CALL, answer);
ConsFr_LastAnswer(CF) = leaf; // update for backtracking
return TRUE;

}

consume_answer_cont(YAP_Term SUBGOAL_CALL, SgFr SF, ConsFr CF) {
leaf = ConsFr_LastAnswer(CF);
if (leaf == SgFr_last_answer(SF)) { // no more answers

YAP_cut_fail();
return FALSE;

} else // get next answer leaf node
leaf = TrNode_child(ans);

answer = get_trie_entry(leaf); // load answer from trie
YAP_Unify(SUBGOAL_CALL, answer);
ConsFr_LastAnswer(CF) = leaf; // update for backtracking
return TRUE;

}

Figure 6.12: Pseudo-code for the consume answer/3 primitive

P FIXPOINT. Second, a subgoal marked as P FIXPOINT is considered to be completely

evaluated when the computation returns to the pioneer and no new answers were found

since the last execution of the fixpoint check/1 primitive. Figure 6.13 uses again

the example from Figures 6.2 to 6.5 to illustrate how the subgoal fields SgFr state

and SgFr new answers are used to detect completion. The black dots in the sub-figure

below indicates the fields being updated at each step of the example.

Initially, p(1,Z) and p(2,Z) are first called and two subgoal frames are allocated.

Next, p(2,Z) calls a follower of p(1,Z) and we obtain first answers for p(1,Z) and

p(2,Z). When executing the fixpoint check/1 primitive for the follower, p(1,Z) is

thus marked as NO FIXPOINT (step 4 in Fig. 6.13). In the continuation, we obtain

second answers for p(2,Z) and p(1,Z) and when executing the fixpoint check/1

primitive for p(2,Z), it is also marked as NO FIXPOINT (step 5 in Fig. 6.13).

The execution then proceeds with new followers for p(1,Z) and p(2,Z). Since we

have failed to detect a fix-point during the last execution of the fixpoint check/1

primitive for both subgoals, we re-start the computation from the beginning for each

follower and reset the SgFr new answers field to FALSE. Later, subgoal p(2,Z) is first

marked as P FIXPOINT (step 8 in Fig. 6.13) and then subgoal p(1,Z) is also marked
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Figure 6.13: Detecting completion when evaluating the right recursive path/2 program

of Figures 6.2 to 6.5

as P FIXPOINT (step 9 in Fig. 6.13).

Backtracking then sends us back to the pioneer of p(2,Z) where it is marked as

COMPLETE (step 10 in Fig. 6.13). Finally, when backtracking to the pioneer of p(1,Z)

it is also marked as COMPLETE (step 11 in Fig. 6.13).

Figure 6.14 presents a more complex example that illustrates better how the subgoal

fields SgFr state and SgFr new answers are used to detect completion.

Initially, p(1,Z) and p(2,Z) are first called and two subgoal frames are allocated.

Next, p(2,Z) calls a follower of p(1,Z) and we obtain two answers for each subgoal:

p(1,2) and p(1,3) for subgoal p(1,Z) and p(2,2) and p(2,3) for subgoal p(2,Z).

Next, the fixpoint check/1 primitive for the follower marks p(1,Z) as NO FIXPOINT

(step 4 in Fig. 6.14). In the continuation, we obtain a third answer for p(2,Z), p(2,1),

and a third answer for p(1,Z), p(1,1). Then, the fixpoint check/1 primitive for

p(2,Z) also marks p(2,Z) as NO FIXPOINT (step 5 in Fig. 6.14).

The execution then proceeds with new followers for p(1,Z) and p(2,Z). Since we have

failed to detect a fix-point during the last execution of the fixpoint check/1 primitive
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Figure 6.14: Detecting a partial fix-point not corresponding to completion

for both subgoals, we re-start the computation from the beginning for each follower

and reset the SgFr new answers field to FALSE. Next, subgoal p(2,Z) is marked as
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P FIXPOINT (step 8 in Fig. 6.14) and we fail. When backtracking we take the second

e/2 fact that matches p(1,Z), e(1,3), and, in the continuation, we call p(3,Z) and

p(4,Z).

Subgoal p(4,Z) is then marked as COMPLETE (step 11 in Fig. 6.14) and we fail. Next, we

obtain a first answer for p(3,Z), p(3,4), and a forth answer for p(1,Z), p(1,4). The

fixpoint check/1 primitive for p(3,Z) then marks p(3,Z) as NO FIXPOINT (step 12

in Fig. 6.14) and we call again p(4,Z), but no new answers are found. When returning

to p(3,Z), we mark it as COMPLETE (step 14 in Fig. 6.14).

Backtracking then sends us back to the follower of p(1,Z), we consume the newly

found answer p(1,4), and a forth answer for p(2,Z), p(2,4), is also found. Subgoal

p(1,Z) is then marked as NO FIXPOINT (step 15 in Fig. 6.14) and we fail to the pioneer

of p(2,Z). At that point, subgoal p(2,Z) is marked as P FIXPOINT since we have

detected a partial fix-point for it in step 7, but we have also found a new answer for it,

p(2,4), in the meantime. This is the typical situation where a partial fix-point does

not corresponds to completion. We thus re-start the computation from the beginning

for p(2,Z) and reset the SgFr new answers field to FALSE (step 16 in Fig. 6.14).

Again, the execution proceeds with new followers for p(1,Z) and p(2,Z). Next,

subgoal p(2,Z) is first marked as P FIXPOINT (step 19 in Fig. 6.14) and then subgoal

p(1,Z) is also marked as P FIXPOINT (step 21 in Fig. 6.14). Backtracking then sends

us back to the pioneer of p(2,Z) where now it is marked as COMPLETE (step 22 in

Fig. 6.14). Finally, when backtracking to the pioneer of p(1,Z) it is also marked as

COMPLETE (step 24 in Fig. 6.14).



Chapter 7

Experimental Results

This chapter presents a detailed performance analysis of the three tabling mechanisms

that we have implemented. We start by describing the set of tabled benchmark

programs that we have used to assess performance for tabling execution. Next, we

measure the performance of our three tabling mechanisms and compare the results

with those of YapTab, the built-in tabling engine of the Yap Prolog system. We then

discuss several statistics gathered during execution so that the performance results,

advantages and weaknesses of each tabling mechanism can be better understood.

7.1 Benchmark Programs

To put the performance results in perspective, we have evaluated our tabling mech-

anisms against six different versions of the path/2 program combined with several

different configurations of the edge/2 facts, for a total number of 96 programs. The six

different versions of the path/2 program are presented next in Fig. 7.1. It includes two

right recursive, two left recursive and two doubly recursive path/2 definitions. Each

pair has one definition with the recursive clause first and another with the recursive

clause last.

Regarding the edge/2 facts, we have used four main configurations: a binary tree,

a pyramid, a loop and a grid configuration. Figure 7.2 shows an example for each

configuration of the edge/2 facts. We have experimented the binary tree configuration

with depths 10, 12, 14 and 16; the pyramid and loop configurations with depths 100,

200, 300 and 400; and the grid configuration with 5x5, 10x10, 15x15 and 20x20 nodes.

109
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% right_first
path(X,Z):- edge(X,Y), path(Y,Z).
path(X,Z):- edge(X,Z).

% right_last
path(X,Z):- edge(X,Z).
path(X,Z):- edge(X,Y), path(Y,Z).

% left_first
path(X,Z):- path(X,Y), edge(Y,Z).
path(X,Z):- edge(X,Z).

% left_last
path(X,Z):- edge(X,Z).
path(X,Z):- path(X,Y), edge(Y,Z).

% doubly_first
path(X,Z):- path(X,Y), path(Y,Z).
path(X,Z):- edge(X,Z).

% doubly_last
path(X,Z):- edge(X,Z).
path(X,Z):- path(X,Y), path(Y,Z).

Figure 7.1: The six versions of the path/2 program

In the loop and grid configurations all pairs of nodes are connected and have an

infinite number of paths (if we consider cycles), while in the binary tree and pyramid

configurations there are some pairs of nodes that do not have any path. When there is

a path between two nodes, for the binary tree the path is unique, while for the pyramid

the maximum number of different paths is limited by the depth of the configuration.

All benchmark configurations find all the solutions for the problem. Multiple solu-

tions are computed through automatic failure after a valid solution has been found.

Figure 7.3 shows the Prolog code that we used to measure the total running time of

each run. The go/0 predicate is the top query goal and the run/0 predicate triggers

the benchmark execution with the generic query goal path(X,Z).

7.2 Performance Evaluation

The environment for our experiments was a Pentium M 1600MHz processor with 768

MBytes of main memory and running the Linux kernel 2.6.11. All experiments were

performed using the YapTab tabling engine based on the Yap Prolog system version

5.1.1 with the default compilation and execution parameters.
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(c) Loop configuration with depth 4 (d) Grid configuration with 4x4 nodes

(a) Bynary tree configuration with depth 4 (b) Pyramid configuration with depth 4

Figure 7.2: The four configurations of the edge/2 facts

go :- statistics(walltime, [Start,_]),
run,
statistics(walltime, [End,_]),
Time is End-Start,
write(’WallTime is ’), write(Time), nl.

run :- path(X,Z), fail.
run.

Figure 7.3: Prolog code to measure the running time

Tables 7.1, 7.2, 7.3 and 7.4 show the running times, in milliseconds, respectively for the

binary tree, pyramid, loop and grid configurations for the six versions of the path/2

program combined with the four versions of each configuration. Each table measures

the performance of our three tabling mechanisms and compares the results with those

of YapTab using local scheduling. The overhead over the YapTab execution time is

shown in parentheses. Each running time corresponds to the average running time

obtained in a set of 3 runs.
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Benchmark
Execution Model

YapTab Cont Calls DRA SLDT

btree right first

depth 10 6 28 (4.67) 19 (3.17) 29 (4.83)

depth 12 35 140 (4.00) 89 (2.54) 146 (4.17)

depth 14 178 664 (3.73) 426 (2.39) 705 (3.96)

depth 16 860 3,112 (3.62) 1,996 (2.32) 3,280 (3.81)

Average (4.01) (2.61) (4.19)

btree right last

depth 10 6 27 (4.50) 19 (3.17) 29 (4.83)

depth 12 37 138 (3.73) 90 (2.43) 149 (4.03)

depth 14 183 657 (3.59) 438 (2.39) 715 (3.91)

depth 16 836 3,096 (3.70) 1,969 (2.36) 3,272 (3.91)

Average (3.88) (2.59) (4.17)

btree left first

depth 10 5 15 (3.00) 18 (3.60) 17 (3.40)

depth 12 26 69 (2.65) 87 (3.35) 85 (3.27)

depth 14 142 340 (2.39) 443 (3.12) 434 (3.06)

depth 16 711 1,667 (2.34) 2,178 (3.06) 2,100 (2.95)

Average (2.60) (3.28) (3.17)

btree left last

depth 10 6 25 (4.17) 18 (3.00) 18 (3.00)

depth 12 25 125 (5.00) 87 (3.48) 86 (3.44)

depth 14 142 612 (4.31) 450 (3.17) 433 (3.05)

depth 16 710 3,021 (4.25) 2,149 (3.03) 2,099 (2.96)

Average (4.43) (3.17) (3.11)

btree doubly first

depth 10 12 114 (9.50) 109 (9.08) 101 (9.25)

depth 12 86 699 (8.13) 664 (7.72) 679 (7.90)

depth 14 509 3,927 (7.72) 3,801 (7.47) 3,816 (7.50)

depth 16 2,746 21,093 (7.68) 20,230 (7.37) 20,281 (7.39)

Average (8.26) (7.61) (8.01)

btree doubly last

depth 10 14 201 (14.36) 110 (7.86) 109 (7.79)

depth 12 83 1,249 (15.05) 665 (8.01) 672 (8.10)

depth 14 503 7,164 (13.96) 3,792 (7.39) 3,820 (7.45)

depth 16 2,751 37,644 (13.68) 20,167 (7.33) 20,327 (7.39)

Average (14.26) (7.65) (7.68)

Total average (6.28) (4.53) (5.06)

Table 7.1: Running times in milliseconds for the binary tree configuration
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Benchmark
Execution Model

YapTab Cont Calls DRA SLDT

pyr right first

depth 100 10 60 (6.00) 35 (3.50) 60 (6.00)

depth 200 41 235 (5.73) 139 (3.39) 237 (5.78)

depth 300 101 530 (5.25) 311 (3.08) 536 (5.31)

depth 400 181 938 (5.18) 552 (3.05) 945 (5.22)

Average (5.54) (3.26) (5.58)

pyr right last

depth 100 10 59 (5.90) 35 (3.50) 61 (6.10)

depth 200 44 236 (5.36) 139 (3.16) 238 (5.41)

depth 300 107 531 (4.96) 314 (2.93) 537 (5.02)

depth 400 182 938 (5.15) 555 (3.05) 945 (5.19)

Average (5.34) (3.16) (5.43)

pyr left first

depth 100 8 27 (3.38) 36 (4.50) 34 (4.25)

depth 200 46 111 (2.41) 140 (3.04) 139 (3.02)

depth 300 116 244 (2.10) 338 (2.91) 319 (2.75)

depth 400 217 439 (2.02) 596 (2.75) 569 (2.62)

Average (2.48) (3.30) (3.16)

pyr left last

depth 100 8 51 (6.38) 36 (4.50) 34 (4.25)

depth 200 45 204 (4.53) 143 (3.18) 137 (3.04)

depth 300 110 461 (4.19) 334 (3.04) 318 (2.89)

depth 400 213 823 (3.86) 601 (2.82) 568 (2.67)

Average (4.74) (3.39) (3.21)

pyr doubly first

depth 100 164 1,803 (10.99) 1,799 (10.97) 1,670 (10.18)

depth 200 1,345 15,145 (11.26) 14,181 (10.54) 13,478 (10.02)

depth 300 4,774 51,552 (10.80) 48,172 (10.09) 45,897 ( 9.61)

depth 400 11,156 122,324 (10.96) 112,785 (10.11) 107,278 ( 9.62)

Average (11.00) (10.43) (9.86)

pyr doubly last

depth 100 164 3,522 (21.48) 1,805 (11.01) 1,722 (10.50)

depth 200 1,338 29,184 (21.81) 14,189 (10.60) 13,553 (10.13)

depth 300 4,769 99,989 (20.97) 48,211 (10.11) 46,112 ( 9.67)

depth 400 11,146 236,481 (21.22) 112,738 (10.11) 107,896 ( 9.68)

Average (21.37) (10.46) (10.00)

Total average (8.41) (5.66) (6.21)

Table 7.2: Running times in milliseconds for the pyramid configuration
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Benchmark
Execution Model

YapTab Cont Calls DRA SLDT

loop right first

depth 100 6 32 (5.33) 455 (75.83) 150 (25.00)

depth 200 28 122 (4.36) 3,578 (127.79) 1,019 (36.39)

depth 300 70 279 (3.99) 12,293 (175.61) 3,293 (47.04)

depth 400 129 502 (3.89) 28,267 (219.12) 7,796 (60.43)

Average (4.39) (149.59) (42.22)

loop right last

depth 100 5 32 (6.40) 456 ( 91.20) 153 (36.60)

depth 200 27 123 (4.56) 3,572 (132.30) 1,032 (38.22)

depth 300 70 280 (4.00) 12,247 (174.96) 3,332 (47.60)

depth 400 126 501 (3.98) 28,519 (226.34) 7,839 (62.21)

Average (4.74) (156.20) (46.16)

loop left first

depth 100 5 16 (3.20) 20 (4.00) 18 (3.60)

depth 200 22 67 (3.05) 84 (3.82) 77 (3.50)

depth 300 57 151 (2.65) 187 (3.28) 174 (3.05)

depth 400 118 267 (2.26) 340 (2.88) 322 (2.73)

Average (2.79) (3.50) (3.22)

loop left last

depth 100 5 31 (6.20) 20 (4.00) 19 (3.80)

depth 200 24 123 (5.13) 82 (3.42) 78 (3.25)

depth 300 64 278 (4.34) 187 (2.92) 177 (2.77)

depth 400 116 492 (4.24) 346 (2.98) 324 (2.79)

Average (4.98) (3.33) (3.15)

loop doubly first

depth 100 250 2,636 (10.54) > 1 day 33,373 (133.18)

depth 200 2,120 22,160 (10.45) > 1 day 526,757 (248.47)

depth 300 6,664 77,122 (11.57) > 1 day 2,670,174 (400.69)

depth 400 16,051 180,056 (11.22) > 1 day 8,338,538 (519.50)

Average (10.95) (n.a.) (325.46)

loop doubly last

depth 100 247 5,181 (20.98) > 1 day 33,332 (135.18)

depth 200 2,114 43,048 (20.36) > 1 day 527,331 (249.45)

depth 300 6,669 148,270 (22.23) > 1 day 2,667,185 (399.94)

depth 400 16,054 348,734 (21.72) > 1 day 8,335,909 (519.24)

Average (21.32) (n.a.) (325.98)

Total average (8.19) (n.a.) (124.36)

Table 7.3: Running times in milliseconds for the loop configuration
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Benchmark
Execution Model

YapTab Cont Calls DRA SLDT

grid right first

5x5 nodes 1 6 (6.00) 21,821 (21,821) 10 (10.00)

10x10 nodes 12 93 (7.75) > 1 day 145 (12.08)

15x15 nodes 76 487 (6.41) > 1 day 753 ( 9.91)

20x20 nodes 259 1,583 (6.11) > 1 day 2,439 ( 9.42)

Average (6.57) (n.a.) (10.35)

grid right last

5x5 nodes 1 6 (6.00) 20,348 (20,348) 8 ( 8.00)

10x10 nodes 11 94 (8.55) > 1 day 158 (14.36)

15x15 nodes 78 489 (6.27) > 1 day 792 (10.15)

20x20 nodes 246 1,580 (6.42) > 1 day 2,441 ( 9.92)

Average (6.81) (n.a.) (10.61)

grid left first

5x5 nodes 1 2 (2.00) 3 (3.00) 3 (3.00)

10x10 nodes 9 28 (3.11) 41 (4.56) 40 (4.44)

15x15 nodes 56 138 (2.46) 221 (3.95) 213 (3.80)

20x20 nodes 210 445 (2.12) 749 (3.57) 728 (3.47)

Average (2.42) (3.77) (3.68)

grid left last

5x5 nodes 1 3 (3.00) 3 (3.00) 3 (3.00)

10x10 nodes 9 51 (5.67) 41 (4.56) 40 (4.44)

15x15 nodes 56 265 (4.73) 220 (3.93) 213 (3.80)

20x20 nodes 207 859 (4.15) 748 (3.61) 730 (3.53)

Average (4.39) (3.78) (3.69)

grid doubly first

5x5 nodes 4 44 (11.00) > 1 day 67 (16.75)

10x10 nodes 255 2,637 (10.34) > 1 day 3,948 (15.48)

15x15 nodes 3,300 31,894 ( 9.66) > 1 day 44,642 (13.53)

20x20 nodes 17,379 180,699 (10.40) > 1 day 242,358 (13.95)

Average (10.35) (n.a.) (14.93)

grid doubly last

5x5 nodes 3 80 (26.67) > 1 day 67 (22.33)

10x10 nodes 259 5,113 (19.74) > 1 day 3,990 (15.41)

15x15 nodes 3,377 61,625 (18.25) > 1 day 44,338 (10.15)

20x20 nodes 17,870 349,058 (19.53) > 1 day 241,245 (13.50)

Average (21.05) (n.a.) (15.35)

Total average (8.60) (n.a.) (9.77)

Table 7.4: Running times in milliseconds for the grid configuration
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By observing the results in these tables it is clear that, for these set of experiments,

the YapTab tabling engine is the best execution model. On average, it is about 2.5 to

20 times faster than the second best mechanism in each configuration. Regarding our

tabling mechanisms, the results indicate that globally the continuation calls execution

model obtains better results than the two linear tabling mechanisms. In particular, for

programs with more complex dependencies, the loop and grid configurations, it clearly

outperforms linear tabling. The results also indicate that globally the continuation

calls execution model is comparable to the state-of-the-art YapTab system.

A closer analysis of the results indicates that, on average, the DRA execution model is

the best choice when dealing with programs without cycles, as the results for the binary

tree and the pyramid configurations show. On the other hand, for the loop and grid

configurations the DRA execution model is only competitive if using left recursion.

For the right recursive and doubly recursive versions of the path/2 program it is

unsuitable, taking more than one day for most of the configurations.

The results also show that the continuation calls and the SLDT execution models

achieve a similar performance for the binary tree and the pyramid configurations. The

same can be observed for the loop and grid configurations with left recursion. For the

right and doubly recursive versions of the loop and grid configurations, the continuation

calls execution model outperforms the SLDT execution model. This behaviour is more

clear in the loop configuration. For the right and doubly recursive versions of the loop

configuration, the SLDT execution model increases exponentially as the size of the

problem also increases. In particular, for the configurations with depth 400, it is

about 60 times slower than the YapTab engine for right recursion and about 520 times

slower than the YapTab engine for the doubly recursive configurations.

7.3 Performance Analysis

In order to achieve a deeper insight on the behavior of each benchmark program and

therefore clarify some of the results presented in the previous section, we next present

in Tables 7.5 to 7.28 several statistics gathered during execution for the continuation

calls, DRA and SLDT execution models. The rows in these tables have the following

meaning:

Answers unique: is the number of non-redundant answers found for tabled subgoals.

It corresponds to the total number of answers stored in the table space.
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Answers redundant: is the number of redundant answers found for tabled subgoals.

A higher number of redundant answers may suggest that the tabling execution

model is doing a lot of re-computation to compute fix-points.

Calls unique: is the number of first calls to subgoals corresponding to tabled predi-

cates. It corresponds to the total number of subgoal frames allocated.

Calls repeated: is the number of repeated calls to subgoals corresponding to tabled

predicates. A higher number of repeated calls may also suggest that the tabling

execution model is doing a lot of re-computation to compute fix-points.

Calls complete: is the number of repeated calls to completed tabled subgoals.

Continuation calls: is the number of continuation calls executed by the primitives

tabled call/5 and new answer/2 in the continuation calls execution model.

Remember that the continuation calls are constructed and called using the C

language interface, so a higher number of continuation calls corresponds to a

proportional cost in the running time.

7.3.1 Right Recursive Configurations

Next we show in Tables 7.5 to 7.12 the statistics gathered for the group of configura-

tions using right recursion.

The statistics clearly show that the behaviour of each execution model is very similar

when we use the path/2 program with the recursive clause first or when we use the

version with the recursive clause last. In particular, for the binary tree and pyramid

configurations, the statistics are the same (please see Tables 7.5, 7.6, 7.7 and 7.8).

The statistics also show that, for the binary tree and pyramid configurations, the SLDT

execution model is the one that performs more re-computation because it finds a higher

number of redundant answers and it executes more repeated and completed calls.

For these configurations, the continuation calls and the DRA execution models show

similar statistics, the small difference observed in the running times results from the

cost of constructing and calling the continuation calls using the C language interface

for the continuation calls execution model.

For the loop configurations, Tables 7.9 and 7.10, the statistics clearly show that

the DRA and SLDT execution models do a lot of re-computation, they find a huge

number of redundant answers and they execute a lot of repeated calls. For the grid
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btree right first
Execution Model

Cont Calls DRA SLDT

depth 10

Answers unique 15,366 15,366 15,366

Answers redundant 0 0 15,366

Calls unique 1,023 1,023 1,023

Calls repeated 1,020 508 0

Calls complete 0 512 3,062

Continuation calls 13,324

Overhead over YapTab (4.67) (3.17) (4.83)

depth 12

Answers unique 77,830 77,830 77,830

Answers redundant 0 0 77,830

Calls unique 4,095 4,095 4,095

Calls repeated 4,092 2,044 0

Calls complete 0 2,048 12,278

Continuation calls 69,644

Overhead over YapTab (4.00) (2.54) (4.17)

depth 14

Answers unique 376,838 376,838 376,838

Answers redundant 0 0 376,838

Calls unique 16,383 16,383 16,383

Calls repeated 16,380 8,188 0

Calls complete 0 8,192 49,142

Continuation calls 344,076

Overhead over YapTab (3.73) (2.39) (3.96)

depth 16

Answers unique 1,769,478 1,769,478 1,769,478

Answers redundant 0 0 1,769,478

Calls unique 65,535 65,535 65,535

Calls repeated 65,532 32,764 0

Calls complete 0 32,768 196,598

Continuation calls 1,638,412

Overhead over YapTab (3.62) (2.32) (3.81)

Average (4.01) (2.61) (4.19)

Table 7.5: Statistics for the btree right first configurations

configurations, Tables 7.11 and 7.12, the SLDT model shows comparable numbers

to those of the continuation calls model. Regarding the DRA execution model, the

statistics obtained for the 5x5 configurations are representative of the re-computation

problems of this model in such kind of programs, for example, for the path/2 version
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btree right last
Execution Model

Cont Calls DRA SLDT

depth 10

Answers unique 15,366 15,366 15,366

Answers redundant 0 0 15,366

Calls unique 1,023 1,023 1,023

Calls repeated 1,020 508 0

Calls complete 0 512 3,062

Continuation calls 13,324

Overhead over YapTab (4.50) (3.17) (4.83)

depth 12

Answers unique 77,830 77,830 77,830

Answers redundant 0 0 77,830

Calls unique 4,095 4,095 4,095

Calls repeated 4,092 2,044 0

Calls complete 0 2,048 12,278

Continuation calls 69,644

Overhead over YapTab (3.73) (2.43) (4.03)

depth 14

Answers unique 376,838 376,838 376,838

Answers redundant 0 0 376,838

Calls unique 16,383 16,383 16,383

Calls repeated 16,380 8,188 0

Calls complete 0 8,192 49,142

Continuation calls 344,076

Overhead over YapTab (3.59) (2.39) (3.91)

depth 16

Answers unique 1,769,478 1,769,478 1,769,478

Answers redundant 0 0 1,769,478

Calls unique 65,535 65,535 65,535

Calls repeated 65,532 32,764 0

Calls complete 0 32,768 196,598

Continuation calls 1,638,412

Overhead over YapTab (3.70) (2.36) (3.91)

Average (3.88) (2.59) (4.17)

Table 7.6: Statistics for the btree right last configurations

with the recursive clause first the DRA model finds 31,797,065 redundant answers and

it calls 1,308,990 repeated subgoals!
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pyr right first
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 29,900 29,900 29,900

Answers redundant 9,801 9,801 49,502

Calls unique 201 201 201

Calls repeated 396 392 0

Calls complete 0 4 992

Continuation calls 39,105

Overhead over YapTab (6.00) (3.50) (6.00)

depth 200

Answers unique 119,800 119,800 119,800

Answers redundant 39,601 39,601 199,002

Calls unique 401 401 401

Calls repeated 796 792 0

Calls complete 0 4 1,992

Continuation calls 158,205

Overhead over YapTab (5.73) (3.39) (5.78)

depth 300

Answers unique 269,700 269,700 269,700

Answers redundant 89,401 89,401 448,502

Calls unique 601 601 601

Calls repeated 1,196 1,192 0

Calls complete 0 4 2,992

Continuation calls 357,305

Overhead over YapTab (5.25) (3.08) (5.31)

depth 400

Answers unique 479,600 479 600 479,600

Answers redundant 159,201 159,201 798,002

Calls unique 801 801 801

Calls repeated 1,596 1,592 0

Calls complete 0 4 3,992

Continuation calls 636,405

Overhead over YapTab (5.18) (3.05) (5.22)

Average (5.54) (3.26) (5.58)

Table 7.7: Statistics for the pyr right first configurations

7.3.2 Left Recursive Configurations

Tables 7.13 to 7.20 show the statistics gathered for the group of configurations using

left recursion.
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pyr right last
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 29,900 29,900 29,900

Answers redundant 9,801 9,801 49,502

Calls unique 201 201 201

Calls repeated 396 392 0

Calls complete 0 4 992

Continuation calls 39,105

Overhead over YapTab (5.90) (3.50) (6.10)

depth 200

Answers unique 119,800 119,800 119,800

Answers redundant 39,601 39,601 199,002

Calls unique 401 401 401

Calls repeated 796 792 0

Calls complete 0 4 1,992

Continuation calls 158,205

Overhead over YapTab (5.36) (3.16) (5.41)

depth 300

Answers unique 269,700 269,700 269,700

Answers redundant 89,401 89,401 448,502

Calls unique 601 601 601

Calls repeated 1,196 1,192 0

Calls complete 0 4 2,992

Continuation calls 357,305

Overhead over YapTab (4.96) (2.93) (5.02)

depth 400

Answers unique 479,600 479,600 479,600

Answers redundant 159,201 159,201 798,002

Calls unique 801 801 801

Calls repeated 1,596 1,592 0

Calls complete 0 4 3,992

Continuation calls 636,405

Overhead over YapTab (5.15) (3.05) (5.19)

Average (5.34) (3.16) (5.43)

Table 7.8: Statistics for the pyr right last configurations

By observing the statistics in these tables, it is obvious that the behaviour of the three

execution models for left recursive programs is guided by the fact of the programs being

left recursive. The three execution models show an identical pattern independently of

the configuration being used. The average overhead over the YapTab system is almost
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loop right first
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 20,000 20,000 20,000

Answers redundant 200 661,850 196,849

Calls unique 101 101 101

Calls repeated 100 10,001 5,050

Calls complete 0 99 199

Continuation calls 20,000

Overhead over YapTab (5.33) (75.83) (25.00)

depth 200

Answers unique 80,000 80,000 80,000

Answers redundant 400 5,313,700 1,453,699

Calls unique 201 201 201

Calls repeated 200 40,001 20,100

Calls complete 0 199 399

Continuation calls 80,000

Overhead over YapTab (4.36) (127.79) (36.39)

depth 300

Answers unique 180,000 180,000 180,000

Answers redundant 600 17,955,550 4,770,549

Calls unique 301 301 301

Calls repeated 300 90,001 45,150

Calls complete 0 299 599

Continuation calls 180,000

Overhead over YapTab (3.99) (175.61) (47.04)

depth 400

Answers unique 320,000 320,000 320,000

Answers redundant 800 42,587,400 11,147,399

Calls unique 401 401 401

Calls repeated 400 160,001 80,200

Calls complete 0 399 799

Continuation calls 320,000

Overhead over YapTab (3.89) (219.12) (60.43)

Average (4.39) (149.59) (42.22)

Table 7.9: Statistics for the loop right first configurations

the same when comparing the binary tree, pyramid, loop and grid configurations

against each particular execution model. In particular, for the DRA and SLDT models,

the average overhead over the YapTab system varies between 3.11 and 3.78 for the

path/2 versions with the recursive clause first and last. For the continuation calls



7.3. PERFORMANCE ANALYSIS 123

loop right last
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 20,000 20,000 20,000

Answers redundant 200 657,000 201,599

Calls unique 101 101 101

Calls repeated 100 9,902 4,950

Calls complete 0 99 298

Continuation calls 20,000

Overhead over YapTab (6.40) (91.20) (36.60)

depth 200

Answers unique 80,000 80,000 80,000

Answers redundant 400 5,294,000 1,473,199

Calls unique 201 201 201

Calls repeated 200 39,802 19,900

Calls complete 0 199 598

Continuation calls 80,000

Overhead over YapTab (4.56) (132.30) (38.22)

depth 300

Answers unique 180,000 180,000 180,000

Answers redundant 600 17,911,000 4,814,799

Calls unique 301 301 301

Calls repeated 300 89,702 44,850

Calls complete 0 299 898

Continuation calls 180,000

Overhead over YapTab (4.00) (174.96) (47.60)

depth 400

Answers unique 320,000 320,000 320,000

Answers redundant 800 42,508,000 11,226,399

Calls unique 401 401 401

Calls repeated 400 159,602 79,800

Calls complete 0 399 1,198

Continuation calls 320,000

Overhead over YapTab (3.98) (226.34) (62.21)

Average (4.74) (156.20) (46.16)

Table 7.10: Statistics for the loop right last configurations

execution model, it varies between 2.00 and 3.38 for the version with the recursive

clause first and between 3.00 and 6.38 for the version with the recursive clause last.

A closer analysis of the results presented in Tables 7.13 to 7.20 shows us that the
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grid right first
Execution Model

Cont Calls DRA SLDT

5x5 nodes

Answers unique 1,250 1,250 1,250

Answers redundant 2,910 31,797,065 12,427

Calls unique 26 26 26

Calls repeated 135 1,308,990 365

Calls complete 0 79 193

Continuation calls 4,000

Overhead over YapTab (6.00) (21,821) (10.00)

10x10 nodes

Answers unique 20,000 n.a. 20,000

Answers redundant 52,720 n.a. 200,578

Calls unique 101 n.a. 101

Calls repeated 620 n.a. 1,782

Calls complete 0 n.a. 851

Continuation calls 72,000

Overhead over YapTab (7.75) (n.a.) (12.08)

15x15 nodes

Answers unique 101,250 n.a. 101,250

Answers redundant 278,430 n.a. 1,026,014

Calls unique 226 n.a. 226

Calls repeated 1,455 n.a. 4,347

Calls complete 0 n.a. 1,954

Continuation calls 378,000

Overhead over YapTab (6.41) (n.a.) (9.91)

20x20 nodes

Answers unique 320,000 n.a. 320,000

Answers redundant 899,040 n.a. 3,393,067

Calls unique 401 n.a. 401

Calls repeated 2,640 n.a. 8,214

Calls complete 0 n.a. 3,689

Continuation calls 1,216,000

Overhead over YapTab (6.11) (n.a.) (9.42)

Average (6.57) (n.a.) (10.35)

Table 7.11: Statistics for the grid right first configurations

statistics gathered for the continuation calls, DRA and SLDT execution models are

very similar. In particular, for the DRA and SLDT models they are the same when

comparing the versions with the recursive clause first and last, the small exception is

the number of repeated calls in the DRA model, the path/2 versions with the recursive
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grid right last
Execution Model

Cont Calls DRA SLDT

5x5 nodes

Answers unique 1,250 1,250 1,250

Answers redundant 2,910 29,149,152 10,394

Calls unique 26 26 26

Calls repeated 135 1,185,756 275

Calls complete 0 79 188

Continuation calls 4,000

Overhead over YapTab (6.00) (20,348) (8.00)

10x10 nodes

Answers unique 20,000 n.a. 20,000

Answers redundant 52,720 n.a. 217,924

Calls unique 101 n.a. 101

Calls repeated 620 n.a. 1,914

Calls complete 0 n.a. 844

Continuation calls 72,000

Overhead over YapTab (8.55) (n.a.) (14.36)

15x15 nodes

Answers unique 101,250 n.a. 101,250

Answers redundant 278,430 n.a. 1,089,530

Calls unique 226 n.a. 226

Calls repeated 1,455 n.a. 4,614

Calls complete 0 n.a. 2,084

Continuation calls 378,000

Overhead over YapTab (6.27) (n.a.) (10.15)

20x20 nodes

Answers unique 320,000 n.a. 320,000

Answers redundant 899,040 n.a. 3,387,101

Calls unique 401 n.a. 401

Calls repeated 2,640 n.a. 8,175

Calls complete 0 n.a. 3,886

Continuation calls 1,216,000

Overhead over YapTab (6.42) (n.a.) (9.92)

Average (6.81) (n.a.) (10.61)

Table 7.12: Statistics for the grid right last configurations

clause first execute 3 repeated calls and the versions with the recursive clause last

execute only 2.

Regarding the continuation calls execution model, the statistics show that it finds
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btree left first
Execution Model

Cont Calls DRA SLDT

depth 10

Answers unique 8,194 8,194 8,194

Answers redundant 0 7,172 8,194

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 8,194

Overhead over YapTab (3.00) (3.60) (3.40)

depth 12

Answers unique 40,962 40,962 40,962

Answers redundant 0 36,868 40,962

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 40,962

Overhead over YapTab (2.65) (3.35) (3.27)

depth 14

Answers unique 196,610 196,610 196,610

Answers redundant 0 180,228 196,610

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 196,610

Overhead over YapTab (2.39) (3.12) (3.06)

depth 16

Answers unique 917,506 917,506 917,506

Answers redundant 0 851,972 917,506

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 917,506

Overhead over YapTab (2.34) (3.06) (2.95)

Average (2.60) (3.28) (3.17)

Table 7.13: Statistics for the btree left first configurations

a smaller number of redundant answers when compared with the DRA and SLDT

models for the path/2 versions with the recursive clause first, and a higher number of

redundant answers for the path/2 versions with the recursive clause last. The number

of continuation calls is also higher for the versions with the recursive clause last, thus



7.3. PERFORMANCE ANALYSIS 127

btree left last
Execution Model

Cont Calls DRA SLDT

depth 10

Answers unique 8,194 8,194 8,194

Answers redundant 6,152 7,172 8,194

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 15,366

Overhead over YapTab (4.17) (3.00) (3.00)

depth 12

Answers unique 40,962 40,962 40,962

Answers redundant 32,776 36,868 40,962

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 77,830

Overhead over YapTab (5.00) (3.48) (3.44)

depth 14

Answers unique 196,610 196,610 196,610

Answers redundant 163,848 180,228 196,610

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 376,838

Overhead over YapTab (4.31) (3.17) (3.05)

depth 16

Answers unique 917,506 917,506 917,506

Answers redundant 786,440 851,972 917,506

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 1,769,478

Overhead over YapTab (4.25) (3.03) (2.96)

Average (4.43) (3.17) (3.11)

Table 7.14: Statistics for the btree left last configurations

justifying the small difference in the running times between the two versions.
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pyr left first
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 15,050 15,050 15,050

Answers redundant 4,950 24,651 24,950

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 15,050

Overhead over YapTab (3.38) (4.50) (4.25)

depth 200

Answers unique 60,100 60,100 60,100

Answers redundant 19,900 99,301 99,900

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 60,100

Overhead over YapTab (2.41) (3.04) (3.02)

depth 300

Answers unique 135,150 135,150 135,150

Answers redundant 44,850 223,951 224,850

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 135,150

Overhead over YapTab (2.10) (2.91) (2.75)

depth 400

Answers unique 240,200 240,200 240,200

Answers redundant 79,800 398,601 399,800

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 240,200

Overhead over YapTab (2.02) (2.75) (2.62)

Average (2.48) (3.30) (3.16)

Table 7.15: Statistics for the pyr left first configurations

7.3.3 Doubly Recursive Configurations

Finally, we show in Tables 7.21 to 7.28 the statistics gathered for the group of config-

urations using doubly recursion.
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pyr left last
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 15,050 15,050 15,050

Answers redundant 24,256 24,651 24,950

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 29,801

Overhead over YapTab (6.38) (4.50) (4.25)

depth 200

Answers unique 60,100 60,100 60,100

Answers redundant 98,506 99,301 99,900

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 119,601

Overhead over YapTab (4.53) (3.18) (3.04)

depth 300

Answers unique 135,150 135,150 135,150

Answers redundant 222,756 223,951 224,850

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 269,401

Overhead over YapTab (4.19) (3.04) (2.89)

depth 400

Answers unique 240,200 240,200 240,200

Answers redundant 397,006 398,601 399,800

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 479,201

Overhead over YapTab (3.86) (2.82) (2.67)

Average (4.74) (3.39) (3.21)

Table 7.16: Statistics for the pyr left last configurations

The statistics show that the behaviour of the DRA and SLDT execution models is

very similar when we use the path/2 program with the recursive clause first or last.

In particular, for the binary tree and pyramid configurations, the statistics are the

same for the SLDT model and very similar for the DRA model (please see Tables 7.21,



130 CHAPTER 7. EXPERIMENTAL RESULTS

loop left first
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 10,000 10,000 10,000

Answers redundant 100 10,100 10,200

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 10,000

Overhead over YapTab (3.20) (4.00) (3.60)

depth 200

Answers unique 40,000 40,000 40,000

Answers redundant 200 40,200 40,400

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 40,000

Overhead over YapTab (3.05) (3.82) (3.50)

depth 300

Answers unique 90,000 90,000 90,000

Answers redundant 300 90,300 90,600

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 90,000

Overhead over YapTab (2.65) (3.28) (3.05)

depth 400

Answers unique 160,000 160,000 160,000

Answers redundant 400 160,400 160,800

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 160,000

Overhead over YapTab (2.26) (2.88) (2.73)

Average (2.79) (3.50) (3.22)

Table 7.17: Statistics for the loop left first configurations

7.22, 7.23 and 7.24). For the loop and grid configurations, the SLDT model shows

similar statistics for the first and last versions, while the DRA model do not executes

in less than a day even for the smaller configurations (please see Tables 7.25, 7.26,

7.27 and 7.28). For the continuation calls execution model, the statistics clearly show
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loop left last
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 10,000 10,000 10,000

Answers redundant 10,000 10,100 10,200

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 19,900

Overhead over YapTab (6.20) (4.00) (3.80)

depth 200

Answers unique 40,000 40,000 40,000

Answers redundant 40,000 40,200 40,400

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 79,800

Overhead over YapTab (5.13) (3.42) (3.25)

depth 300

Answers unique 90,000 90,000 90,000

Answers redundant 90,000 90,300 90,600

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 179,700

Overhead over YapTab (4.34) (2.92) (2.77)

depth 400

Answers unique 160,000 160,000 160,000

Answers redundant 160,000 160,400 160,800

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 319,600

Overhead over YapTab (4.24) (2.98) (2.79)

Average (4.98) (3.33) (3.15)

Table 7.18: Statistics for the loop left last configurations

why the path/2 versions with the recursive clause first are, on average, about two

times faster than the versions with the recursive clause last. The number of redundant

answers, repeated calls and continuations calls in the versions with the recursive clause

first is about half the number of the correspondent statistics for the last versions.
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grid left first
Execution Model

Cont Calls DRA SLDT

5x5 nodes

Answers unique 625 625 625

Answers redundant 1,455 3,455 3,535

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 625

Overhead over YapTab (2.00) (3.00) (3.00)

10x10 nodes

Answers unique 10,000 10,000 10,000

Answers redundant 26,360 62,360 62,720

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 10,000

Overhead over YapTab (3.11) (4.56) (4.44)

15x15 nodes

Answers unique 50,625 50,625 50,625

Answers redundant 139,215 328,215 329,055

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 50,625

Overhead over YapTab (2.46) (3.95) (3.80)

20x20 nodes

Answers unique 160,000 160,000 160,000

Answers redundant 449,520 1,057,520 1,059,040

Calls unique 1 1 1

Calls repeated 1 3 2

Calls complete 0 0 0

Continuation calls 160,000

Overhead over YapTab (2.12) (3.57) (3.47)

Average (2.42) (3.77) (3.68)

Table 7.19: Statistics for the grid left first configurations

The statistics also show why the continuation calls execution model outperforms

the SLDT model in the loop and grid configurations. In particular, for the loop

configurations, Tables 7.25 and 7.26, the statistics show that the SLDT model per-

forms a lot of re-computation as the number of redundant answers and repeated calls
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grid left last
Execution Model

Cont Calls DRA SLDT

5x5 nodes

Answers unique 625 625 625

Answers redundant 3,187 3,455 3,535

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 1,170

Overhead over YapTab (3.00) (3.00) (3.00)

10x10 nodes

Answers unique 10,000 10,000 10,000

Answers redundant 61,032 62,360 62,720

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 19,640

Overhead over YapTab (5.67) (4.56) (4.44)

15x15 nodes

Answers unique 50,625 50,625 50,625

Answers redundant 325,027 328,215 329,055

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 100,410

Overhead over YapTab (4.73) (3.93) (3.80)

20x20 nodes

Answers unique 160,000 160,000 160,000

Answers redundant 1,051,672 1,057,520 1,059,040

Calls unique 1 1 1

Calls repeated 1 2 2

Calls complete 0 0 0

Continuation calls 318,480

Overhead over YapTab (4.15) (3.61) (3.53)

Average (4.39) (3.78) (3.69)

Table 7.20: Statistics for the grid left last configurations

report. For example, in the loop doubly first configuration, the SLDT model finds

13,002,508,000 redundant answers and it calls 32,240,802 repeated subgoals!
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btree doubly first
Execution Model

Cont Calls DRA SLDT

depth 10

Answers unique 15,366 15,366 15,366

Answers redundant 38,888 91,100 93,142

Calls unique 1,023 1,023 1,023

Calls repeated 15,367 1,789 1,534

Calls complete 0 29,198 29,710

Continuation calls 67,578

Overhead over YapTab (9.50) (9.08) (9.25)

depth 12

Answers unique 77,830 77,830 77,830

Answers redundant 270,312 610,268 618,454

Calls unique 4,095 4,095 4,095

Calls repeated 77,831 7,165 6,142

Calls complete 0 149,518 151,566

Continuation calls 417,786

Overhead over YapTab (8.13) (7.72) (7.90)

depth 14

Answers unique 376,838 376,838 376,838

Answers redundant 1,671,144 3,686,364 3,719,126

Calls unique 16,383 16,383 16,383

Calls repeated 376,839 28,669 24,574

Calls complete 0 729,102 737,294

Continuation calls 2,392,058

Overhead over YapTab (7.72) (7.47) (7.50)

depth 16

Answers unique 1,769,478 1,769,478 1,769,478

Answers redundant 9,568,232 20,774,876 20,905,942

Calls unique 65,535 65,535 65,535

Calls repeated 1,769,479 114,685 98,302

Calls complete 0 3,440,654 3,473,422

Continuation calls 12,976,122

Overhead over YapTab (7.68) (7.37) (7.39)

Average (8.26) (7.61) (8.01)

Table 7.21: Statistics for the btree doubly first configurations

7.4 Summary

Globally, the statistics presented in Tables 7.5 to 7.28 confirm that there is a cost in

the running times that is proportional to the number of redundant answers, repeated
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btree doubly last
Execution Model

Cont Calls DRA SLDT

depth 10

Answers unique 15,366 15,366 15,366

Answers redundant 77,776 91,100 93,142

Calls unique 1,023 1,023 1,023

Calls repeated 28,691 1,534 1,534

Calls complete 0 29,710 29,710

Continuation calls 119,790

Overhead over YapTab (14.36) (7.86) (7.79)

depth 12

Answers unique 77,830 77,830 77,830

Answers redundant 540,624 610,268 618,454

Calls unique 4,095 4,095 4,095

Calls repeated 147,475 6,142 6,142

Calls complete 0 151,566 151,566

Continuation calls 757,742

Overhead over YapTab (15.05) (8.01) (8.10)

depth 14

Answers unique 376,838 376,838 376,838

Answers redundant 3,342,288 3,686,364 3,719,126

Calls unique 16,383 16,383 16,383

Calls repeated 720,915 24,574 24,574

Calls complete 0 737,294 737,294

Continuation calls 4,407,278

Overhead over YapTab (13.96) (7.39) (7.45)

depth 16

Answers unique 1,769,478 1,769,478 1,769,478

Answers redundant 19,136,464 20,774,876 20,905,942

Calls unique 65,535 65,535 65,535

Calls repeated 3,407,891 98,302 98,302

Calls complete 0 3,473,422 3,473,422

Continuation calls 24,182,766

Overhead over YapTab (13.68) (7.33) (7.39)

Average (14.26) (7.65) (7.68)

Table 7.22: Statistics for the btree doubly last configurations

calls and continuation calls executed during an evaluation.

The statistics also show that the behaviour of the DRA and SLDT execution models

is very similar when we use the path/2 program with the recursive clause first or
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pyr doubly first
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 29,900 29,900 29,900

Answers redundant 1,279,146 2,587,596 2,588,192

Calls unique 201 201 201

Calls repeated 29,901 597 400

Calls complete 0 59,597 59,600

Continuation calls 1,338,350

Overhead over YapTab (10.99) (10.97) (10.18)

depth 200

Answers unique 119,800 119,800 119,800

Answers redundant 10,448,296 21,015,196 21,016,392

Calls unique 401 401 401

Calls repeated 119,801 1,197 800

Calls complete 0 239,197 239,200

Continuation calls 10,686,700

Overhead over YapTab (11.26) (10.54) (10.02)

depth 300

Answers unique 269,700 269,700 269,700

Answers redundant 35,507,446 71,282,796 71,284,592

Calls unique 601 601 601

Calls repeated 269,701 1,797 1,200

Calls complete 0 538,797 538,800

Continuation calls 36,045,050

Overhead over YapTab (10.80) (10.09) (9.61)

depth 400

Answers unique 479,600 479,600 479,600

Answers redundant 84,456,596 169,390,396 169,392,792

Calls unique 801 801 801

Calls repeated 79,601 2,397 1,600

Calls complete 0 958,397 958,400

Continuation calls 85,413,400

Overhead over YapTab (10.96) (10.11) (9.62)

Average (11.00) (10.43) (9.86)

Table 7.23: Statistics for the pyr doubly first configurations

last. The continuation calls execution model only shows a similar behaviour for the

right recursive programs. For the left or doubly recursive programs, it achieves better

results for the versions with the recursive clause first.
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pyr doubly last
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 29,900 29,900 29,900

Answers redundant 2,548,491 2,587,596 2,588,192

Calls unique 201 201 201

Calls repeated 59,205 400 400

Calls complete 0 59,600 59,600

Continuation calls 2,636,999

Overhead over YapTab (21.48) (11.01) (10.50)

depth 200

Answers unique 119,800 119,800 119,800

Answers redundant 20,856,991 21,015,196 21,016,392

Calls unique 401 401 401

Calls repeated 238,405 800 239,200

Calls complete 0 239,200 800

Continuation calls 21,213,999

Overhead over YapTab (21.81) (10.60) (10.13)

depth 300

Answers unique 269,700 269,700 269,700

Answers redundant 70,925,491 71,282,796 71,284,592

Calls unique 601 601 601

Calls repeated 537,605 1,200 1,200

Calls complete 0 538,800 538,800

Continuation calls 71,730,999

Overhead over YapTab (20.97) (10.11) (9.67)

depth 400

Answers unique 479,600 479,600 479,600

Answers redundant 168,753,991 169,390,396 169,392,792

Calls unique 801 801 801

Calls repeated 956,805 1,600 1,600

Calls complete 0 958,400 958,400

Continuation calls 170,187,999

Overhead over YapTab (21.22) (10.11) (9.68)

Average (21.37) (10.46) (10.00)

Table 7.24: Statistics for the pyr doubly last configurations

Regarding the running times, the best result in each of the 16 different configurations

is always obtained by the continuation calls execution model for the left recursive

program with the recursive clause first. The DRA and SLDT execution models also

achieve better results for the left recursive programs with the recursive clause first.
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loop doubly first
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 20,000 n.a. 20,000

Answers redundant 1,980,200 n.a. 53,157,000

Calls unique 101 n.a. 101

Calls repeated 20,001 n.a. 515,202

Calls complete 0 n.a. 24,850

Continuation calls 2,020,000

Overhead over YapTab (10.54) (n.a.) (133.18)

depth 200

Answers unique 80,000 n.a. 80,000

Answers redundant 15,920,400 n.a. 825,294,000

Calls unique 201 n.a. 201

Calls repeated 80,001 n.a. 4,060,402

Calls complete 0 n.a. 99,700

Continuation calls 16,080,000

Overhead over YapTab (10.45) (n.a.) (248.47)

depth 300

Answers unique 180,000 n.a. 180,000

Answers redundant 53,820,600 n.a. 4,135,411,000

Calls unique 301 n.a. 301

Calls repeated 180,001 n.a. 13,635,602

Calls complete 0 n.a. 224,550

Continuation calls 54,180,000

Overhead over YapTab (11.57) (n.a.) (400.69)

depth 400

Answers unique 320,000 n.a. 320,000

Answers redundant 127,680,519 n.a. 13,002,508,000

Calls unique 401 n.a. 401

Calls repeated 320,001 n.a. 32,240,802

Calls complete 0 n.a. 399,400

Continuation calls 128,320,000

Overhead over YapTab (11.22) (n.a.) (519.50)

Average (10.95) (n.a.) (325.46)

Table 7.25: Statistics for the loop doubly first configurations

The exception is the DRA model that for the programs without cycles, binary tree

and pyramid, is slight better for right recursion. Note that with right recursion,

the DRA model calls more tabled subgoals and finds more answers than the left

recursive versions, but on the other hand it finds less redundant answers which suggests
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loop doubly last
Execution Model

Cont Calls DRA SLDT

depth 100

Answers unique 20,000 n.a. 20,000

Answers redundant 3,960,200 n.a. 53,151,949

Calls unique 101 n.a. 101

Calls repeated 39,801 n.a. 515,101

Calls complete 0 n.a. 24,850

Continuation calls 4,019,800

Overhead over YapTab (20.98) (n.a.) (135.18)

depth 200

Answers unique 80,000 n.a. 80,000

Answers redundant 31,840,400 n.a. 825,273,899

Calls unique 201 n.a. 201

Calls repeated 15,9601 n.a. 4,060,201

Calls complete 0 n.a. 99,700

Continuation calls 32,079,600

Overhead over YapTab (20.36) (n.a.) (249.45)

depth 300

Answers unique 180,000 n.a. 180,000

Answers redundant 107,640,600 n.a. 4,135,365,849

Calls unique 301 n.a. 301

Calls repeated 359,401 n.a. 13,635,301

Calls complete 0 n.a. 224,550

Continuation calls 108,179,400

Overhead over YapTab (22.23) (n.a.) (399.94)

depth 400

Answers unique 320,000 n.a. 320,000

Answers redundant 255,358,774 n.a. 13,002,427,799

Calls unique 401 n.a. 401

Calls repeated 639,200 n.a. 32,240,401

Calls complete 0 n.a. 399,400

Continuation calls 256,319,200

Overhead over YapTab (21.72) (n.a.) (519.24)

Average (21.32) (n.a.) (325.98)

Table 7.26: Statistics for the loop doubly last configurations

that it is doing less re-computation. Independently of the configuration being used,

the statistics gathered for the doubly recursive programs always present the higher

number of redundant answers, repeated calls and continuation calls. In consequence,

the difference between the YapTab system and our three execution models is more
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grid doubly first
Execution Model

Cont Calls DRA SLDT

5x5 nodes

Answers unique 1,250 n.a. 1,250

Answers redundant 30,160 n.a. 97,813

Calls unique 26 n.a. 26

Calls repeated 1,251 n.a. 2,483

Calls complete 0 n.a. 2,020

Continuation calls 32,500

Overhead over YapTab (11.00) (n.a.) (16.75)

10x10 nodes

Answers unique 20,000 n.a. 20,000

Answers redundant 1,980,720 n.a. 6,198,496

Calls unique 101 n.a. 101

Calls repeated 20,001 n.a. 48,411

Calls complete 0 n.a. 31,990

Continuation calls 2,020,000

Overhead over YapTab (10.34) (n.a.) (15.48)

15x15 nodes

Answers unique 101,250 n.a. 101,250

Answers redundant 22,681,680 n.a. 69,590,648

Calls unique 226 n.a. 226

Calls repeated 101,251 n.a. 247,436

Calls complete 0 n.a. 174,963

Continuation calls 22,882,500

Overhead over YapTab (9.66) (n.a.) (13.53)

20x20 nodes

Answers unique 320,000 n.a. 320,000

Answers redundant 127,683,040 n.a. 380,855,132

Calls unique 401 n.a. 401

Calls repeated 320,001 n.a. 757,946

Calls complete 0 n.a. 572,978

Continuation calls 128,320,000

Overhead over YapTab (10.40) (n.a.) (13.95)

Average (10.35) (n.a.) (14.93)

Table 7.27: Statistics for the grid doubly first configurations

clear when using the doubly recursive versions of the path/2 program.

The statistics gathered for the DRA execution model also show that for more complex

programs, that is, for programs with cycles and with more than an unique call,
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grid doubly last
Execution Model

Cont Calls DRA SLDT

5x5 nodes

Answers unique 1,250 n.a. 1,250

Answers redundant 57,410 n.a. 98,029

Calls unique 26 n.a. 26

Calls repeated 2,341 n.a. 2,426

Calls complete 0 n.a. 2,025

Continuation calls 60,840

Overhead over YapTab (26.67) (n.a.) (22.33)

10x10 nodes

Answers unique 20,000 n.a. 20,000

Answers redundant 3,908,720 n.a. 6,277,826

Calls unique 101 n.a. 101

Calls repeated 39,281 n.a. 44,165

Calls complete 0 n.a. 35,630

Continuation calls 3,967,280

Overhead over YapTab (19.74) (n.a.) (15.41)

15x15 nodes

Answers unique 101,250 n.a. 101,250

Answers redundant 45,084,930 n.a. 68,985,035

Calls unique 226 n.a. 226

Calls repeated 200,821 n.a. 230,440

Calls complete 0 n.a. 185,631

Continuation calls 45,385,320

Overhead over YapTab (18.25) (n.a.) (10.15)

20x20 nodes

Answers unique 320,000 n.a. 320,000

Answers redundant 254,467,040 n.a. 379,535,750

Calls unique 401 n.a. 401

Calls repeated 636,961 n.a. 744,203

Calls complete 0 n.a. 586,320

Continuation calls 255,420,960

Overhead over YapTab (19.53) (n.a.) (13.50)

Average (21.05) (n.a.) (15.35)

Table 7.28: Statistics for the grid doubly last configurations

the DRA evaluation mechanism needs to perform a lot of re-computation to detect

completion. For these kind of programs the DRA model is unsuitable, taking more

than one day for most of the configurations. The running times and statistics gathered

for the loop and grid configurations with right or doubly recursion are representative
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of the re-computation problems of the DRA model in such kind of programs.

The results obtained for the right and doubly recursive versions of the loop and grid

configurations also show that the SLDT execution model clearly outperforms the DRA

execution model for such problems. However, when compared with the continuation

calls execution model, the SLDT model also performs a lot of re-computation. This

behaviour is more clear in the loop configuration. Our results thus indicate that

the continuation calls execution model is the best choice for more complex problems

and that globally it achieves comparable results to those of YapTab, that implements

tabling support at the low-level engine.



Chapter 8

Conclusions

This final chapter summarizes the work developed in this thesis. First, we enumerate

the main contributions of the thesis, next we suggest some topics for further work,

and then we conclude with a final remark.

8.1 Main Contributions

The work described in this thesis can be stated as the design, implementation and eval-

uation of three different mechanisms to support tabled evaluation in Prolog. A major

guideline for our work was to incorporate tabled evaluation into existing Prolog systems

by applying source level transformations to a tabled program. The transformed

program then uses specific external tabling primitives that provide direct control

over the search strategy. To implement the tabling primitives we took advantage

of the C language interface of the Yap Prolog system to build external Prolog modules

implementing the support for each mechanism. We can distinguish two main modules

in each implementation: the module that implements the table space data structures

and the module that implements the specific control primitives of each mechanism.

We then summarize the main contributions of our work.

The program transformation module. To implement the program transforma-

tion step, we have extended the original program transformation module of

Ramesh and Chen [RC97] to include the tabling primitives for our mechanisms.

According to the tabling mechanism to be used, a tabled logic program is first

transformed to include tabling primitives through source level transformations
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and only then, the resulting program is compiled. No transformation is applied to

non-tabled predicates and the performance of Prolog programs without tabling

is unaffected. The program transformation module is fully written in Prolog.

The table space external module. The table space uses two levels of tries as pro-

posed by Ramakrishnan et al. [RRS+99]: one level stores the subgoal calls, the

other the answers. Each different subgoal call to a tabled predicate corresponds

to a unique path through the subgoal trie structure. Each unique path through

the answer trie nodes corresponds to a different answer to the entry subgoal call.

To implement the table space module we took advantage of the tries external

module written by Ricardo Rocha to support the efficient execution of Inductive

Logic Programming [FRCS03]. The table space module was implemented using

the C language interface of the Yap Prolog system.

The tabling primitives external modules. We have implemented tabling primi-

tives for three of the most successful delaying-based and linear tabling mecha-

nisms. We have implemented support for a delayed-based tabling mechanism

based on SLG resolution [CW96], that we named tabled evaluation with con-

tinuation calls, and for the DRA [GG01] and SLDT [ZSYY00] linear tabling

mechanisms. All mechanisms are based on a local scheduling strategy [FSW96]

and support tabled evaluation for definite programs, that is, for programs with-

out negation. The tabling primitives were implemented using the C language

interface of the Yap Prolog system.

Performance study. We have performed a first and fair comparison study between

the three tabling mechanisms implemented. The tabling mechanisms were eval-

uated against a set of 96 different programs corresponding to right, left and

doubly recursive versions of the path/2 program combined with several different

configurations of the edge/2 facts. During evaluation, we have measured the

running times and we have gathered a set of statistics related to the tabled

execution. From the results obtained, the following main conclusions can be

enumerated.

• In all configurations, the best result was achieved by the continuation calls

execution model for the left recursive program with the recursive clause

first. The DRA and SLDT execution models also achieved better results

for the left recursive programs with the recursive clause first. The exception

was the DRA model that, for the configurations without cycles, was slight

better for right recursion.
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• For the set of programs with complex dependencies, the continuation calls

execution model achieved better results than any of the two linear tabling

mechanisms. For these kind of programs, linear tabling clearly pays the

cost of performing re-computation to compute fix-points. The best linear

tabling mechanism was the SLDT execution model. The DRA evaluation

mechanism performs a lot of re-computation, taking more than one day for

most of the configurations tested.

• Globally, our results also showed that the continuation calls execution

model is comparable to the state-of-the-art YapTab system. This is an

interesting result because YapTab also implements a delaying-based mech-

anism based on SLG resolution, uses tries to implement the table space

and is implemented on top of the Yap Prolog system. This is thus a

first and fair comparison between the approach of supporting tabling at

the low-level engine and the approach of supporting tabling by applying

source level transformations coupled with tabling primitives. We thus argue

that our approach is a good choice to incorporate tabling into any Prolog

system. It requires neither advanced knowledge of the implementation

details of tabling nor time consuming or complex modifications to the low-

level engine.

8.2 Further Work

We then suggest some topics for further work.

Experimentation and portability. The current implementation needs to be tested

with a wider range of applications. A more intensive experimentation of each

tabling mechanism will certainly found many opportunities for refining and

making each implementation more robust and efficient. Further experimentation

should also include porting our implementation to other Prolog systems with a

C language interface. Currently, we are already working with the group of the

Ciao Prolog system [BCC+] to include our implementation of the continuation

calls execution model as a module of the Ciao system.

A new linear tabling mechanism. In computations with multiple calls containing

recursive calls, the DRA and SLDT execution models execute the same com-

putations several times until reaching a fix-point. One advantage of the DRA
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execution model is that only the looping alternatives are recomputed. In the

SLDT execution model, repeated calls avoid executing all the alternatives and

execute from the backtracking point of the former repeated call. Starting from

these observations and from the performance results obtained in this thesis, we

are already working on a new proposal that tries to combine the best features

of both mechanisms in order to produce a more robust and competitive linear

tabling mechanism.

Support for negation. A wide range of applications that use tabling require the

expressiveness granted by the possibility of manipulating negative subgoals.

Extending our mechanisms to efficiently support negation will certainly be one

major step forward to make them usable by a larger community.

8.3 Final Remark

Through this research we have described the basic execution models for three of the

most successful delaying-based and linear tabling mechanisms, we have showed how a

tabled program is transformed to include specific tabling primitives for each tabling

mechanism, and we have presented all the details for implementing each mechanism

as an external Prolog module in the Yap Prolog system. The results obtained show

us that our approach is a good choice to incorporate tabling into any Prolog system.

We hope that the work developed in this thesis will serve as an inspiration to others

and be a resource for further improvements and research in this area.
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