
Flávio Manuel Fernandes Cruz

Call Subsumption Mechanisms for
Tabled Logic Programs

Departamento de Engenharia Informática

Faculdade de Engenharia da Universidade do Porto
Junho de 2010

Flávio Manuel Fernandes Cruz

Call Subsumption Mechanisms for
Tabled Logic Programs

Dissertação submetida à Faculdade de Engenharia da
Universidade do Porto como parte dos requisitos para a obtenção do grau de

Mestre em Engenharia Informática e de Computação

Aprovada em provas públicas pelo júri:
Presidente: António Augusto de Sousa

Vogal Externo: Salvador Pinto Abreu

Orientador: Ricardo Rocha

Junho de 2010

To my parents

3

4

Acknowledgments

I would like to thank my supervisor, Prof. Ricardo Rocha, for the help and encour-

agement during the development of this thesis. He was always there to listen and to

give advice. I have certainly become a better researcher because of him.

To João Santos, João Raimundo, José Vieira and Miguel Areias for the excellent work

environment and companionship.

To my friends from FEUP, for their friendship and the great moments we have spent

together in the last five years.

Finally, I would like to thank my parents and sisters, for their unconditional love and

support, and to Joana, for her affection and understanding.

Flávio Cruz

June 2010

5

6

Abstract

Tabling is a particularly successful resolution mechanism that overcomes some limita-

tions of the SLD resolution method found in Prolog systems, namely, in dealing with

recursion and redundant sub-computations. In tabling, first calls to tabled subgoals are

evaluated through program resolution, while similar calls are evaluated by consuming

answers stored in the table space by the corresponding similar subgoal. In general, we

can distinguish between two main approaches to determine if a subgoal A is similar

to a subgoal B: variant-based tabling and subsumption-based tabling. In variant-based

tabling, A is similar toB if they are the same up to variable renaming. In subsumption-

based tabling, A is similar to B when A is subsumed by B (or B subsumes A). This

stems from a simple principle: if A is subsumed by B and SA and SB are the respective

answer sets, then SA ⊆ SB. While subsumption-based tabling (or call subsumption)

can yield superior time performance by allowing greater answer reuse, its efficient

implementation is harder than variant-based tabling, which makes tabling engines

with variant checks much more popular in the logic community.

This thesis first addresses the porting and integration of the Time Stamped Tries

mechanism from the SLG-WAM tabling engine into the YapTab tabling engine. Our

performance results show that our integration efforts were successful, with comparable

speedups when using subsumptive-based tabling against variant-based tabling.

In the second part of this thesis we present the design, implementation, and evalua-

tion of a novel extension based on subsumption-based tabling called Retroactive Call

Subsumption (RCS). RCS overcomes some limitations of traditional call subsumption,

namely, the fact that the call order of the subgoals can greatly affect its success and

applicability. RCS allows full sharing of answers, independently of the order they

are called by selectively pruning and restarting the evaluation of subsumed subgoals.

Our results show considerable gains for programs that can take advantage of RCS,

while programs that do not benefit from it show a small overhead using the new

mechanisms.

7

8

Resumo

A tabulação é um método de resolução particularmente bem sucedido que resolve

algumas das limitações do método de avaliação SLD encontrado em sistemas Prolog, no

tratamento de computações recursivas e/ou redundantes. Na tabulação, as primeiras

chamadas a subgolos tabelados são avaliadas normalmente através da execução do

código do programa, enquanto que chamadas similares são avaliadas através do con-

sumo das respostas guardadas na tabela e que foram geradas pelo subgolo similar

correspondente. Em geral, podemos distinguir entre duas formas de determinar se

um subgolo A é similar a um subgolo B: tabulação por variantes e tabulação por

subsumpção. Na tabulação por variantes, A é similar a B quando eles são iguais por

renomeação das variáveis. Na tabulação por subsumpção, A é similar a B quando

A é mais espećıfico do que B (ou B é mais geral do que A). Isto acontece pelo

simples prinćıpio de que se A é mais espećıfico do que B e SA e SB são os respectivos

conjuntos de respostas, então SA ⊆ SB. Embora a tabulação por subsumpção consiga

atingir maiores ganhos em termos do tempo de execução, devido à maior partilha de

respostas, a implementação eficiente dos mecanismos necessários para seu suporte é

bastante mais dif́ıcil em comparação com tabulação por variantes, o que faz com que

este último seja bastante mais popular entre os motores de tabulação dispońıveis.

Esta tese descreve a migração e integração do mecanismo de Time Stamped Tries do

motor de tabulação SLG-WAM no motor de tabulação YapTab. Os resultados obtidos

mostram que os nossos esforços de integração foram bem sucedidos, com desempenhos

comparáveis aos da SLG-WAM na execução entre tabulação por variantes e tabulação

por subsumpção.

Na segunda parte desta tese apresenta-se o desenho, implementação e avaliação de

uma nova extensão baseada na tabulação por subsumpção chamada Tabulação por

Subsumpção Retroactiva (TSR). A TSR resolve algumas limitações da tabulação por

subsumpção tradicional, nomeadamente, o facto de a ordem da chamada dos subgolos

poder afectar o seu sucesso e aplicação. A TSR permite uma partilha completa

9

e bidireccional de respostas entre subgolos, independentemente da sua ordem de

chamada através do corte da avaliação dos golos mais espećıficos. Os nossos resultados

mostram ganhos consideráveis para os programas que conseguem tirar partido do novo

mecanismo, enquanto que o custo associado aos programas que dele não conseguem

beneficiar é quase insignificante.

10

11

Contents

Acknowledgments 5

Abstract 7

Resumo 9

List of Tables 19

List of Figures 24

1 Introduction 25

1.1 Thesis Purpose . 27

1.2 Thesis Outline . 28

2 Logic Programming and Tabling 31

2.1 Logic Programming . 31

2.1.1 Logic Programs . 32

2.1.2 Prolog and the WAM . 33

2.1.2.1 Prolog . 34

2.1.2.2 WAM . 35

2.2 Tabling . 37

2.2.1 Tabled Evaluation . 38

12

2.2.2 Tabling Instructions . 42

2.2.3 Scheduling Strategies . 43

2.2.4 Variant Tabling . 44

2.2.5 Yap and XSB . 45

2.2.5.1 SLG-WAM . 47

2.2.5.2 YapTab . 47

2.3 Chapter Summary . 48

3 Table Space Organization 51

3.1 Table Space . 51

3.1.1 Tries . 51

3.1.2 Subgoal Frames . 54

3.2 Tabling by Call Subsumption . 55

3.2.1 Dynamic Threaded Sequential Automata 59

3.2.1.1 Sequential Factoring Automaton 59

3.2.1.2 Threaded Sequential Automata 61

3.2.1.3 Dynamic Threaded Sequential Automata 62

3.2.1.4 Table Space Organization 63

3.2.2 Time Stamped Tries . 64

3.2.2.1 New Answers . 64

3.2.2.2 Retrieving Answers . 65

3.2.2.3 Table Space Organization 66

3.3 Chapter Summary . 66

4 Time Stamped Tries 69

4.1 Finding General Subgoals . 69

13

4.1.1 Call Choice Point Stack . 72

4.1.2 Matching Constant Terms . 74

4.1.3 Matching Structured Terms . 76

4.1.4 Matching Variable Terms . 77

4.1.5 Variant Continuations . 78

4.2 Answer Templates . 79

4.3 Time Stamped Answer Trie . 82

4.3.1 Inserting New Answers . 83

4.3.2 Updating Time Stamps . 84

4.3.3 Lazy Creation of Time Stamp Indexes 87

4.4 Collecting Relevant Answers . 87

4.4.1 Choice Point Stack . 88

4.4.2 Unification of Constant Terms 90

4.4.3 Unification of Structured Terms 94

4.4.4 Unification of Variable Terms 97

4.5 Consuming Answers . 101

4.6 Compiled Tries . 102

4.7 Call Subsumption in YapTab . 104

4.7.1 Data Structures . 104

4.7.1.1 Table Entry . 105

4.7.1.2 Trie Nodes . 105

4.7.1.3 Subgoal Frames . 105

4.7.2 Tabled Subgoal Call . 107

4.7.3 Answer Resolution and Completion 112

4.7.4 Compiled Tries . 114

14

4.8 Chapter Summary . 115

5 Retroactive Call Subsumption 117

5.1 Motivation . 117

5.2 General Idea . 118

5.3 Retroactive Pruning . 120

5.3.1 Subgoal Dependency Tree . 120

5.3.2 Computing Stack Limits . 121

5.3.3 Basic Issues . 121

5.3.4 Pruning Actions . 124

5.3.4.1 Interior Nodes . 124

5.3.4.2 Internal Consumers . 124

5.3.4.3 Internal Generators . 125

5.3.5 Orphaned Consumers . 129

5.3.6 Lost Consumers . 130

5.3.7 Pseudo-Completion . 131

5.3.8 Leader Re-Computation . 133

5.4 Internal Pruning . 135

5.4.1 Multiple Internal Pruning . 136

5.5 Mixing External and Internal Pruning 138

5.6 Single Time Stamped Trie . 141

5.6.1 Answer Templates . 143

5.6.2 Reusing Answers . 143

5.6.3 Inserting Answers . 143

5.6.4 Compiled Tries and Completed Table 146

5.7 Searching Subsumed Subgoals . 147

15

5.7.1 Subgoal Trie Data Structure . 147

5.7.2 Matching Algorithm . 150

5.7.3 Choice Point Stack . 153

5.7.4 Matching Constant and Structured Terms 155

5.7.5 Matching Variable Terms . 156

5.7.6 Running Example . 158

5.8 Other Implementation Details . 160

5.8.1 Transforming Consumers Into Generators 161

5.8.2 Reference Counting . 161

5.8.3 Faster External or Internal Test 161

5.8.4 Data Structure Modifications 162

5.8.5 Tabling Operations . 162

5.9 Chapter Summary . 164

6 Experimental Results 165

6.1 Benchmark Programs . 165

6.2 Traditional Call Subsumption with TST 167

6.2.1 Performance Evaluation . 167

6.2.2 Memory Usage . 169

6.3 Retroactive Call Subsumption with STST 174

6.3.1 Support Mechanisms Overhead 174

6.3.2 Performance Evaluation . 176

6.4 Single Time Stamped Trie . 181

6.4.1 Execution Time . 181

6.4.2 Memory Usage . 182

16

7 Conclusions and Further Work 187

7.1 Main Contributions . 187

7.2 Further Work . 189

A Benchmark Programs 191

A.1 Programs . 191

A.2 Facts . 195

17

List of Tables

6.1 Average speedups for call subsumption in SLG-WAM and YapTab. . . 168

6.2 Times, in milliseconds, and speedups for call subsumption in SLG-WAM

and YapTab: path programs. 170

6.3 Times, in milliseconds, and speedups for call subsumption in SLG-WAM

and YapTab: samegen, genome, and model checking programs. . . . 171

6.4 Number of stored answer trie nodes for variant and subsumption-based

tabling in YapTab. 172

6.5 Number of stored subgoal trie nodes for variant and subsumption-based

tabling in YapTab. 173

6.6 Average overhead for programs not taking advantage of RCS. 175

6.7 Times, in milliseconds, and overheads for RCS in YapTab: path pro-

grams. 176

6.8 Times, in milliseconds, and overheads for RCS in YapTab: samegen

and model checking programs. 177

6.9 Average speedups for RCS in YapTab. 178

6.10 Times, in milliseconds, and speedups for RCS in YapTab: path programs.179

6.11 Times, in milliseconds, and speedups for RCS in YapTab: genome,

model checking, flora, fib, and big programs. 180

6.12 Average overheads for the query goal ‘path(f(X),f(Y))’ in YapTab. . 182

6.13 Times, in milliseconds, and overheads for the query goal ‘path(f(X),f(Y))’

in YapTab. 183

18

6.14 Average number of stored answer trie nodes for the query goal ‘path(f(X),f(Y))’

in YapTab. 184

6.15 Detailed number of stored answer trie nodes for the query goal ‘path(f(X),f(Y))’

in YapTab. 184

19

List of Figures

2.1 Factorial function in Prolog. 34

2.2 Factorial search tree. 35

2.3 WAM memory layout, frames and registers. 37

2.4 The path program. 38

2.5 Infinite loop evaluating path(X, Z). 39

2.6 Tabled evaluation of path(X,Z). 40

2.7 Compiled code for the tabled predicate path/2. 43

3.1 Using tries to represent terms. 53

3.2 Organizing the table space with tries for variant tabling. 54

3.3 Tabling path(X,Z) using call by subsumption. 56

3.4 Inserting answer terms in a SFA. 60

3.5 SFA transformed into a TSA. 61

3.6 DTSA before and after inserting answer p(a,b,c). 63

3.7 Time Stamped Trie for subgoal p(X,Y,Z). 64

3.8 Time Stamped Trie from Figure 3.7 after inserting the answer p(a,b,c). 65

4.1 Subgoal trie for a tabled predicate p/3. 70

4.2 Initial term stack and heap representation for subgoal p(X,f(Y),a(Z)). 72

4.3 Pseudo-code for procedure lookup subsuming call. 73

20

4.4 Call choice point stack organization. 74

4.5 Pseudo-code for procedure match constant term. 75

4.6 Pseudo-code for procedure match structured term. 76

4.7 Finding a subsuming goal for subgoal p(a,f(b)). 77

4.8 Pseudo-code for procedure match variable term. 78

4.9 Variant continuation for subgoal p(X,f(Y),b). 79

4.10 Substitution factor for p(X,f(Y)). 80

4.11 Consumer answer template for p(a,f(g(a,X))). 80

4.12 Pseudo-code for procedure construct answer template from lookup. 81

4.13 Pseudo-code for procedure construct answer template from generator. 81

4.14 Pseudo-code for procedure subsumptive answer search. 82

4.15 Indexing nodes through a hash table with time stamp indexes. 83

4.16 Pseudo-code for procedure tst insert. 84

4.17 Inserting answer {VAR0,a,VAR0}. 85

4.18 Inserting a node into the hash table and updating the index. 85

4.19 Pseudo-code for procedure update timestamps. 86

4.20 Promoting an index node. 86

4.21 Pseudo-code for procedure tst collect relevant answers. 89

4.22 Choice point stack organization. 90

4.23 Pseudo-code for procedure unify constant term. 91

4.24 Pseudo-code for procedure search chain exact match. 91

4.25 Pseudo-code for procedure search chain unify with constant. 92

4.26 Unification of answer template {a, b, b} with time stamp 3. 93

4.27 Pseudo-code for procedure unify structured term. 94

4.28 Pseudo-code for procedure search chain unify with structured term. 95

21

4.29 Unification of answer template {f(X), g(b), f(3)} with time stamp 1. 96

4.30 Pseudo-code for procedure unify variable term. 98

4.31 Pseudo-code for procedure unify with variable. 99

4.32 Unification of answer template {REF 2, REF 2, b} with time stamp 2. 100

4.33 Data structures related to answer consumption. 101

4.34 A compiled trie for subgoal p(X,Y,Z). 102

4.35 Compiled hash table. 104

4.36 Subgoal trie with a subsumptive generator and two subsumed consumer

subgoal frames. 106

4.37 Pseudo-code for the original tabled subgoal call operation. 107

4.38 Pseudo-code for procedure subsumptive subgoal search. 108

4.39 Making a structural copy of the answer template {X, f(a)}. 109

4.40 Making a non-structural copy of the answer template {X, f(a)}. . . . 110

4.41 Pseudo-code for the new tabled subgoal call operation. 110

4.42 Pseudo-code for function is new generator call. 111

4.43 Pseudo-code for function is new consumer call. 111

4.44 Pseudo-code for the new find dependency node procedure. 111

4.45 Pseudo-code for function get next answer continuation. 113

4.46 Pseudo-code for the new completion operation. 114

4.47 Subsumptive generator and consumers before completion. 114

5.1 An example of a program using retroactive tabling. 119

5.2 Evaluating ‘a(X), p(Y,Z)’ using retroactive tabling. 119

5.3 Pseudo-code for procedure is internal subgoal frame. 121

5.4 An example of a program using variant tabling and retroactive tabling. 122

5.5 Evaluation before pruning the subsumed subgoal p(1,X). 122

22

5.6 Evaluation after pruning the subsuming subgoal p(1,X). 123

5.7 Pseudo-code for procedure abolish dependency frames. 125

5.8 An example of a program using subsumptive tabling and retroactive

tabling. 126

5.9 Evaluation before pruning the subsumed subgoal p(1,A). 127

5.10 Evaluation after pruning the subsumed subgoal p(1,A). 127

5.11 Evaluation after pruning the subsumed subgoal b(1,C). 128

5.12 Evaluation after transforming the subsumed consumer t(1,2,B) in a

subsumptive generator. 128

5.13 Pseudo-code for procedure abolish subgoal frames. 129

5.14 An example of a program that originates a lost consumer. 130

5.15 Lost consumer b(1,Y) after an external pruning. 131

5.16 An example of a program that executes pseudo-completion. 132

5.17 Evaluation before pruning the subsumed subgoal p(1,A,B). 132

5.18 Executing a pseudo-completion. 133

5.19 An example of a program leading to the leader re-computation problem. 134

5.20 Evaluation before pruning the subsumed subgoal p(1,A). 134

5.21 Updating the leader cp field to avoid the leader re-computation problem.135

5.22 Left recursive path/2 program with retroactive tabling. 136

5.23 Evaluating ‘path(X,3)’ using retroactive tabling. 137

5.24 An example of a program that originates multiple internal pruning. . . 137

5.25 Evaluation before multiple internal pruning. 138

5.26 After the evaluation of p(X,). 138

5.27 Pseudo-code for procedure prune subgoal list. 139

5.28 An example of a program that originates multiple internal/external

pruning. 140

23

5.29 Evaluation before multiple internal/external pruning. 141

5.30 Evaluation after multiple internal/external pruning. 141

5.31 STST table organization for the p/2 predicate. 142

5.32 Answer redundancy with STST. 144

5.33 Answer insertion conflicts with STST. 145

5.34 Pseudo-code for procedure stst insert answer. 146

5.35 The in eval field in a subgoal trie representing a p/2 tabled predicate. 148

5.36 Inserting subgoal p(f(3),5) in the subgoal trie of Figure 5.35. 148

5.37 An hash table with an evaluation index. 149

5.38 Pseudo-code for procedure increment in eval. 150

5.39 Indexing a non-indexed subgoal trie node through an evaluation index. 151

5.40 Pseudo-code for procedure decrement in eval. 152

5.41 Pseudo-code for procedure collect subsumed subgoals. 154

5.42 Choice point stack organization. 154

5.43 Pseudo-code for procedure try structured term. 155

5.44 Pseudo-code for procedure try variable term. 157

5.45 Pseudo-code for procedure try variable matching. 157

5.46 An example of a subgoal trie with three evaluating subgoals for a p/3

predicate. 158

5.47 Auxiliary data structures configuration. 159

5.48 Pseudo-code for the new tabled subgoal call operation. 163

5.49 Pseudo-code for the new completion operation. 164

6.1 Transformed path/2 predicate to use functor term arguments. 181

24

Chapter 1

Introduction

Logic programming is a very high level programming paradigm that allows the pro-

grammer to focus on the declarative aspects of the problem, instead of describing

the specific steps needed to solve it. Arguably, the Prolog language is the most

popular logic programming language. Part of the success of the Prolog language can be

attributed to the development of a fast and very efficient sequential machine called the

Warren’s Abstract Machine (WAM) [War83]. The advances in WAM technology and

optimization techniques enabled Prolog to be applied in real world problems in a wide

range of fields such as Artificial Intelligence, Natural Language Processing, Machine

Learning, Knowledge Based Systems, Database Management, or Expert Systems.

While the declarative aspect of Prolog is based on mathematical logic and predicate

calculus, its operational semantics is based one a relatively simple refutation strategy

called Selective Linear Definite (SLD) [Llo87], which is a well defined evaluation

method for logic programs that is particularly well suited to stack based machines.

Furthermore, Prolog defines a few extra-logical constructs, such as the cut operator

or the assertion facilities that give the programmer more control over the evaluation.

Both the SLD operational semantics and these extra-logical features make the pro-

grammer more aware of the actual evaluation process in detriment to the declarative

aspect of the language that is naturally non-deterministic. It is possible to exploit

these deterministic rules to speedup execution or solve problems related to redundant

sub-computations. Notwithstanding, standard Prolog has still some deficiencies. For

instance, writing left-recursive programs can lead to infinite loops.

There have been some attempts in making Prolog less prone to problems related to

recursion and redundant sub-computations, in order to make the language more ex-

25

CHAPTER 1. INTRODUCTION 26

pressive and closer to its mathematical logic foundations. One of these attempts, which

is particularly successful, is called tabling (or tabulation or memoization [Mic68]). The

tabling technique stems from one simple idea: store intermediate answers in a place

called the table space and reuse those answers when a similar call appears during

the resolution process. Tabling refines the SLD resolution method by distinguishing

between first calls to tabled subgoals, which are evaluated as usual through program

resolution, and similar calls to tabled subgoals, which are evaluated through answer

resolution, i.e., by consuming answers that are being stored in the table space by

the corresponding similar subgoal, instead of being re-evaluated against the program

clauses. Tabled evaluation is able to reduce the search space, avoid looping, and has

better termination properties than traditional SLD resolution [CW96]. The advan-

tages of tabling have lead to its application in fields such as Deductive Databases

[SSW94], Program Analysis [RRS+00], Knowledge Based Systems [YK00], Inductive

Logic Programming [RFS05], and Model Checking [RRS+00].

In tabling, call similarity determines if a subgoal A is similar to a subgoal B, in other

words, whether A will generate its own answers or will consume answers from B. In

general, we can distinguish between two main approaches for call similarity:

• Variant-based tabling : A and B are variants if they can be made identical

through variable renaming as proposed by Bachmair et al [BCR93]. For example,

subgoals p(X,1,Y) and p(Y,1,Z) are variants, because both can be transformed

into p(VAR0,1,VAR1);

• Subsumption-based tabling or tabling by call subsumption: Subgoal A is consid-

ered similar to B if A is subsumed by B (or B subsumes A), i.e., if A is more

specific than B (or an instance of). For example, subgoal p(X,1,2) is subsumed

by subgoal p(Y,1,Z) because there is a substitution {Y = X, Z = 2} that makes

p(X,1,2) an instance of p(Y,1,Z). Tabling by call subsumption is based on the

principle that if A is subsumed by B and SA and SB are the respective answer

sets, then SA ⊆ SB.

In general, subsumption-based tabling has the following advantages over variant tabling:

superior time performance, because less program resolution is required; and less space

requirements, as it allows greater reuse of answers, since the answer sets for the

subsumed subgoals are not stored. However, the mechanisms to efficiently support

subsumption-based tabling are more complex and harder to implement, which makes

the variant-based tabling approach more popular within the available tabling systems,

CHAPTER 1. INTRODUCTION 27

such as YapTab [RSS00], B-Prolog [ZSYY00], and ALS-Prolog [GG01]. To the best

of our knowledge, the SLG-WAM [SS98] engine from XSB Prolog is the sole tabling

system that supports subsumption-based tabling, initially by using an organization

of the table space called Dynamic Threaded Sequential Automata (DTSA) [RRR96],

and later by using an alternative design called Time Stamped Tries (TST) [JRRR99],

which is a simpler approach and uses far less memory.

1.1 Thesis Purpose

In this thesis we address the design, implementation, integration and evaluation of two

subsumption-based engines built on top of YapTab [RSS00], the tabling system that is

part of Yap Prolog. For the first engine, we reused and integrated the Time Stamped

Tries approach from SLG-WAM into YapTab. We studied how subsumption-based

and variant-based tabling were seamlessly integrated into the SLG-WAM engine and

we attempted to reuse most of the original code and data structures when integrating

these new mechanisms into YapTab. Consequently, we made minimal modifications

to the YapTab engine that enabled it to support a mix of variant and subsumptive

subgoals on the same program. Our performance results show that our integration

efforts were successful, with comparable speedups to the SLG-WAM when using

subsumptive-based tabling against variant-based tabling.

For the second system, we designed a novel extension for subsumptive-based tabling

called Retroactive Call Subsumption (RCS). This extension attempts to solve one

major problem in traditional call subsumption: the order in which subgoals are called

during a particular evaluation can greatly affect the success and applicability of the

call by subsumption technique. For example, if more specific subgoals are called before

the more general subgoal, no reuse will be employed, while if the more general subgoal

is called first, reuse will happen. The RCS extends the original TST design by allowing

full sharing of answers, independently of the order they are called. The basic idea is to

selectively prune and restart the evaluation of generator subgoals that are subsumed

by a new called subgoal in order to reuse the answers from the subsuming subgoal,

instead of continuing to generate their own answers.

To implement retroactive-based tabling we developed a few novel ideas: (1) a novel al-

gorithm to efficiently traverse the table space data structures and retrieve the running

instances of a subgoal; (2) a novel table space organization, based on the ideas of the

common global trie proposal [CR08], where answers are represented only once; and (3)

CHAPTER 1. INTRODUCTION 28

a new evaluation strategy capable of pruning and transforming generator nodes into

consumer nodes.

Our results show that the overhead of the new mechanisms for RCS support are low

enough in programs that do not benefit from it, which, combined with considerable

gains for programs that can take advantage of them, validates this new evaluation tech-

nique. With this in mind, we argue that Retroactive Call Subsumption makes tabling

more adapted and useful for practical applications and is another great functionality

in the programmer’s toolbox for writing tabled logic programs.

1.2 Thesis Outline

In the following list we describe each chapter of this thesis.

Chapter 1: Introduction. Is this chapter.

Chapter 2: Logic Programming and Tabling. Provides an overview of the main

topics of this thesis. The subjects discussed are logic programming, Prolog, and

tabling for logic programs. A brief description of the YapTab and SLG-WAM

tabling engines is also presented.

Chapter 3: Table Space Organization. Describes the table space organization for

both variant and subsumption-based tabling engines. We start by describing

the variant table space for both SLG-WAM and YapTab systems. We then give

a brief overview about the table space organization for the DTSA and TST

techniques that implement tabling with subsumptive checks.

Chapter 4: Time Stamped Tries. Throughly presents the Time Stamped Tries

approach to subsumption-based tabling. First, we describe the algorithm used

to detect subsuming subgoals. Next, we give a detailed description of the data

structures used in the table space that are used to speedup the identification of

relevant answers for subsumed subgoals. Finally, we focus on the modifications

we have made to the YapTab tabling engine in order to support tabling by call

subsumption based on the TST approach.

Chapter 5: Retroactive Call Subsumption. We start with the motivations be-

hind RCS, by showing the shortcomings of pure subsumption-based tabling.

We next describe the rules for the new mechanism and the problems that arise

CHAPTER 1. INTRODUCTION 29

when pruning execution branches. Finally, we discuss the novel table space

organization called Single Time Stamped Trie (STST) and then we throughly

describe the new algorithm developed to find executing subsumed subgoals of a

subgoal on the table space.

Chapter 6: Experimental Results. This chapter first presents the experimental

results we achieved with the new YapTab engine that reuses the TST approach

and how it compares to the SLG-WAM. We also make a space analysis compar-

ison between call subsumption and variant-based tabling. Next, we present and

discuss the overhead of the RCS mechanism on programs that do not benefit from

it and the speedups we have achieved for programs that can take advantage of it.

Finally, we present an analysis of the STST table organization by experimenting

with programs that stress the nature of this table space organization.

Chapter 7: Conclusions. Summarizes the work, enumerates the contributions and

suggests directions for future work.

30

Chapter 2

Logic Programming and Tabling

The purpose of this chapter is to give an overview of the research areas involved in

this dissertation. First we explain the fundamental ideas of logic programming and

Prolog; next, the main concepts behind tabling evaluation are described, focusing

on the execution rules and strategies; finally, we introduce the Yap Prolog and XSB

Prolog systems, focusing on the tabling engines designed for both systems.

2.1 Logic Programming

Logic programming presents a declarative style of programming based on mathemat-

ical logic and the predicate calculus. It is a very high level programming paradigm

that allows the programmer to focus on the problem at hand, leaving the steps on how

to solve the problem to the computer.

In its purest form, logic programming is solely based on Horn Clause Logic [Llo87],

a subset of First Order Logic. Programming in logic can be viewed as a two step

process: (1) first, the theory is formulated as logic clauses, next (2) we use this theory

to search for alternative ways in which an arbitrary query is satisfied.

Logic programming is often mentioned to include the following advantages [Car90]:

Simple declarative semantics: a logic program is simply a collection of predicate

logic clauses.

Simple procedural semantics: a logic program can be read as a collection of re-

cursive procedures. In Prolog, for instance, clauses are tried in the order they

31

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 32

are written and goals within a clause are executed from left to right.

High expressive power: logic programs can be seen as executable specifications

that despite their simple procedural semantics allow for designing complex and

efficient algorithms.

Inherent non-determinism: because several clauses can match a goal, problems

involving search are easily programmed in these kind of languages.

2.1.1 Logic Programs

A logic program is composed by a set of Horn clauses. Each clause is a disjunction of

literals and contains at most one positive literal. Horn clauses are usually written as

L1, ..., Ln =⇒ L(≡ ¬L1 ∨ ...¬Ln ∨ L)

or

L1, ..., Ln(≡ ¬L1 ∨ ...¬Ln)

where n >= 0 and L is the only positive literal.

A Horn clause that has exactly one positive literal is called a definitive clause; in the

Prolog language it is usually called a rule. A Horn clause without a positive literal is

called a goal.

Using Prolog’s notation, one can write rules in the form

L : −L1, ..., Ln.

Usually, L is called the head of the rule and L1, ..., Ln the body of the rule, where each

Li is called a subgoal. A logical fact is a special rule where the body is replaced by

the true symbol:

L.

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 33

Goals are rules without the head component and are also named as queries.

Each literal in a Horn clause has the form f(t1, ..., tn), where f is the functor symbol

and each ti are terms. A term can be a constant (or atom), a variable or a struc-

tured (or compound) term. Structured terms follow the functor structure, recursively.

Variables are assumed to be universally quantified and have the following major

characteristics:

• Variables are logical variables that can be instantiated only once.

• Variables are untyped until instantiated.

• Variables are instantiated via unification, a pattern matching operation that

finds the most general common instance of two data objects.

A sequence of clauses with the same functor in the head form a predicate. The ordering

of these clauses can have some implications depending on the resolution semantics of

the underlying language. Prolog for instance, uses a top-down resolution mechanism

known as Selective Linear Definite (SLD) resolution [Llo87].

SLD starts by matching the first subgoal query to the first clause of the respective

predicate, generating a new query using the body of the clause, which is added to the

remaining query subgoals. During this process, a finite set of pairs θ called substitution

is built. Each pair has the form X = t, where X is a variable and t is a term. No

variable in the left-hand side of a pair appears on the right-hand side and no two pairs

have the same variable as left-hand side [SS94]. When the clause body is reused as

query, all the variables present in the terms are replaced using the set θ. If unification

fails, the next clause of the predicate is tried, using a mechanism called backtracking.

This recursive computation fails when there are any more clauses left to try. It succeeds

when the subgoal query is empty.

The resolution process is fundamentally non-deterministic and can be viewed as a

search within a tree. SLD does not force any specific search strategy for exploring the

tree. Prolog for example, uses a depth-first, one branch at a time search.

2.1.2 Prolog and the WAM

Prolog is one of the first logic programming languages and arguably the most success-

ful. The first implementation of Prolog was Marseille Prolog, developed in 1972 by

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 34

Alain Colmerauer and Robert Kowalski [Kow74].

The use of Prolog as a practical and efficient language was made viable by David

Warren in 1977, when he built a compiler that could compete with other languages

like Lisp [WPP77]. Then in 1983, David Warren formulated an abstract machine

known as the Warren’s Abstract Machine (WAM) [War83] that is still widely used in

modern Prolog implementations.

2.1.2.1 Prolog

Prolog follows the semantics of the SLD resolution through a depth first search strat-

egy. It starts by choosing the top-most clauses of the predicate and the subgoals are

solved within a left-to-right fashion.

factorial(0,1) :- !.

factorial(N,R) :-

N > 0,

N1 is N - 1,

factorial(N1,R1),

R is N * R1.

Figure 2.1: Factorial function in Prolog.

For illustration purposes, in Figure 2.1 we define the predicate factorial/2 that

computes the factorial of a given number. This predicate has arity of 2, where the

first argument is an input argument and the second argument an output argument.

Factorial is composed of two clauses, the first represents the factorial base case (facto-

rial of 0 is 1) and the second represents the recursive relation. The second clause first

checks if the input number is positive, to discard non-positive numbers, then computes

N−1 and recursively calls factorial to compute the value of factorial(N−1). Finally,

the output argument R is then unified to N ∗ factorial(N − 1). The first clause uses

the cut operator (!) that tells the Prolog engine to not explore alternative clauses,

i.e., the factorial of 0 is not to be computed using the recursive call defined on the

second clause. Once Prolog finds the first answer (Figure 2.2), the cut control operator

disables further alternatives, completing the depth first search in the tree.

The cut operator is not the only special instruction in Prolog, more built-in predicates

are also available:

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 35

?- factorial(2, X).

1. fail 2. factorial(1, X1), X is 2 * X1

3. fail 4. factorial(0, X2), X1 is 1 * X2, X is 2 * X1

5. X1 is 1 * 1, X is 2 * X1 PRUNED

X2 = 1

6. X is 2 * 1

7. X = 2

X1 = 1

Figure 2.2: Factorial search tree.

Meta-logical predicates: inquire the state of the computation and manipulate terms.

Extra-logical predicates: manipulate the Prolog database, adding or removing clauses

from the program being executed. Input/Output operators are another example

of extra-logical predicates.

Other predicates: predicates to perform arithmetic operations, to compare terms,

to support debugging, etc.

These special operators make programming more practical and useful in real world

applications.

2.1.2.2 WAM

The Warren’s Abstract Machine is a stack-based architecture with various data areas,

registers, and low level instructions that can be efficiently executed, manipulated and

optimized. A simplified layout is presented in Figure 2.3.

In terms of execution stacks, the WAM defines the following:

PDL: a push down list used by the unification process.

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 36

Trail: stores the addresses of the variables that must be reset when backtracking.

Stack: stores environment and choice point frames. Environments track the flow con-

trol in a program and consist of: the stack address of the previous environment;

a pointer to the next instruction to execute upon return of the invoked clause;

and a set of permanent variables 1 as a sequence of cells.

Choice points store open alternatives which are used to restore the state of

the computation when backtracking. A pointer to the instruction for the next

alternative is stored in case the current execution branch fails. A choice point

is created when there are more than one alternative for a subgoal call. We pop

the choice point from the stack when the last alternative clause is attempted.

Heap: array of data cells used to store variables and structured terms that cannot be

stored in the stack.

Code Area: contains the compiled instructions.

For the registers, WAM defines the following:

P: points to the current WAM instruction.

CP: stores the value of P before the current invoked call and it is used to restore the

execution point.

TR: points to the top of the trail stack.

E: points to the current active environment.

B: the active choice point.

B0: the choice point to return to upon backtracking over a cut.

H: points to the top of the heap stack

HB: marks the value of the register H at the time of the latest choice point. It is used

to determine conditional variable bindings that affect variables existing before

the creation of the choice point.

S: used during the unification of structured terms.

1A permanent variable is a variable which occurs in multiple body subgoals and must be preserved
between calls.

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 37

Code Area

HEAP

STACK

TRAIL

PDL

TR

E

B

H

HB
S

P
CP

HIGH MEMORY

LOW MEMORY

n arity
A1 1st argument
...
An nth argument
CE cont. environment
CP cont. code
B previous choice point

BP next clause

TR trail pointer
H heap pointer
B0 cut pointer

B0

CE cont. environment
CP cont. code
Y1 1st permanent variable
...
Yn nth permanent variable

Environment Frame

Choice Point Frame

Figure 2.3: WAM memory layout, frames and registers.

WAM instructions can be grouped into four main groups: choice point instructions

to manipulate choice points; control instructions to manage environments and control

the execution flow; unification instructions that implement specialized versions of the

unification algorithm; and indexing instructions to efficiently determine which clauses

unify with a given subgoal call.

The WAM being a complex topic has complete books dedicated to explaining its

intricacies. An example is the Warren’s Abstract Machine – A Tutorial Reconstruction

written by H. Aı̈t-Kaci [AK91].

2.2 Tabling

Despite Prolog’s declarativeness and expressiveness, the past few years have seen

wide efforts at solving shortcomings that arise when using SLD resolution. One

proposal that has gained popularity is tabling or tabulation [CW96]. In comparison

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 38

to the traditional SLD resolution method, tabling can reduce the search space to cut

redundant computations, avoids looping and has better termination properties [TS86].

In a nutshell, tabling is a refinement of the SLD resolution that consists in storing

intermediate answers for subgoals so that they can be reused when a repeated (or

similar) subgoal appears in the resolution process. The use of tabling enables the

programmer to write more expressive, but still valid, logical programs.

One classical example that is used to demonstrate the advantages of using tabling is

presented in Figure 2.4. This program describes the predicate path/2 that computes

reachability between two nodes on a directed graph. Connections are established as

facts using the edge/2 predicate.

:- table path/2.

path(X,Z) :- edge(X,Y), path(Y,Z).

path(X,Z) :- edge(X,Z).

edge(a,b).

edge(b,a).

Figure 2.4: The path program.

If we tried to evaluate the query goal path(X,Z), traditional Prolog would enter an

infinite loop (Figure 2.5) because edge/2 facts define a cyclic graph and the first clause

of path/2 is right recursive, leading to a repeated call.

2.2.1 Tabled Evaluation

In this new method of evaluation, when a tabled subgoal is first called, a new entry

is allocated on the table space. Table entries are used to store subgoal calls but they

also store answers found during evaluation. Each time a tabled subgoal is called, we

know if it is a repeated call by inspecting the table space. Nodes in the search space

can thus be classified as: generator nodes, if they are being called for the first time;

consumer nodes if they are repeated calls; or interior nodes if they are non-tabled

subgoals. Generator nodes are matched against the predicate clauses as usual but

consumer nodes are not, instead they consume answers stored in the table space from

the respective subgoal.

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 39

1. edge(X, Y), path(Y, Z)

2. path(b, Z)

3. edge(b, Y), path(Y, Z)

4. fail

Y=a

X=a, Y=b

5. path(a, Z)

6. edge(a, Y), path(Y, Z)

7. path(b, Z)

INFINITE
LOOP

?- path(X, Z)

Y=b

Figure 2.5: Infinite loop evaluating path(X, Z).

In Figure 2.6 we depict the tabled evaluation of the query goal path(X,Z). Generator

nodes are represented by rectangles with double lines and consumer nodes by simple

rectangles. Note that we need to declare path/2 as tabled using the table directive.

Tabled evaluation starts by inserting a new entry in the table space and by allocating

a generator node to represent path(X,Z) (step 1). Like SLD resolution, path(X,Z)

is then resolved against the first path/2 clause (step 2). The goal edge(X,Y) is not

tabled and is resolved as usual. We use the first edge/2 clause with {X = a, Y = b}
and these values are carried to path(b,Z) (step 3). This goal is not yet in the table

space, hence we add a new entry for it.

Goal path(b,Z) is then resolved against the first clause of path/2 (step 4). Next,

edge(b,Y) fails against the first clause but succeeds with {Y = a} for the second

clause. A new tabled subgoal path(a,Z) is registered in the tabled space (step 6) and

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 40

resolved against the first clause of path/2 (step 7). This time the edge/2 subgoal

matches with the first clause with {Y = b}. This originates a repeated tabled subgoal

call to path(b,Z) and the first consumer node is allocated (step 8). As we have no

answers for path(b,Z) in the table space, the current evaluation point is suspended.

Later on, this node can be resumed to consume new answers.

Next, we backtrack to node 7 and try the second edge/2 clause, but resolution fails

(step 9). We backtrack again, this time to node 6 to try the second clause of path/2

(step 10). Here edge(a, Z) is resolved against the first clause of edge/2 and the

answer {Z = b} is found for the subgoal path(a,Z) (step 11). This answer is stored

in the table space and forward execution is made, propagating the binding {Z = b}
to path(b,Z), and a first answer to this subgoal is also found and stored in the

table space (step 12). We continue forward execution and the binding is once again

propagated, this time to node 3 finding an answer to path(X,Z) and to the query

subgoal, {X = a, Z = b} (step 13).

3. path(b, Z)

4. edge(b, Y), path(Y, Z)

5. fail 6. path(a, Z)

12. Z = b

15. edge(b, Z)

16. fail 17. Z = a

21. fail
(Z = a)

22. complete

1. path(X, Z)

2. edge(X, Y), path(Y, Z)

3. path(b, Z)

13. X = a,
Z = b

18. X = a,
Z = a

23. path(a, Z)

24. X = b,
Z = b

25. X = b,
Z = a

26. edge(X, Z)

27. fail
(X = a, Z = b)

28. fail
(X = b, Z = a)

29. complete

13. X = a, Z = b
18. X = a, Z = a
24. X = b, Z = b
25. X = b, Z = a

29. complete

12. Z = b
17. Z = a

22. complete

11. Z = b
20. Z = a

22.complete

Answers

1. path(X, Z)

3. path(b, Z)

6. path(a, Z)

Subgoal

6. path(a, Z)

7. edge(a, Y), path(Y, Z)

8. path(b, Z) 9. fail

10. edge(a, Z)

11. Z = b 14. fail

19. fail
(Z = b) 20. Z = a

22. complete

Figure 2.6: Tabled evaluation of path(X,Z).

If the user asks for more answers, the computation returns to node 10 to try the second

clause of edge/2, but it fails (step 14). The process backtracks to node 6 but at this

node there are no more clauses left to try. Moreover, we can not complete the subgoal

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 41

path(a,Z) because it depends on a older subgoal (node 3 is the generator node for

the consumer node 8 under it), thus we backtrack to node 3.

At node 3, the second clause of path/2 is tried (step 15) and the first clause of edge/2

fails (step 16), but the second succeeds with a new answer for path(b,Z), {Z = a}
(step 17). Again, we propagate variable bindings in step 18, generating a new answer

to subgoal path(X,Z), {X = a, Z = a}.

We go back to node 3, where no more clauses are available, but now completion can

be safely attempted because all consumers in lower branches do not depend on any

generator node older than node 3. Node 3 is called, by definition, a leader node and

the branch of nodes below it form a Strongly Connected Component (SCC) [Tar72].

However, by inspecting the execution tree, we can see that node 8 has two unconsumed

answers. We thus resume the computation at node 8 to consume the answer {Z = b}
and forward it to subgoal path(a,Z) at node 6 (step 19). Here, we note that it is a

repeated answer to this subgoal by checking the table space, and thus we fail (step 19).

Failing repeated answers is crucial to avoid unnecessary computations and sometimes

looping. Then, we fetch the next available answer, {Z = a}, that is propagated to

node 6, generating a new answer to path(a,Z) (step 20). This binding is once again

propagated, now for node 3 but it is a repeated answer, and thus the computation

fails (step 21). With no more unconsumed answers, we return back to node 3 to re-

attempt completion. This time, no consumers have unconsumed answers and we can

safely complete all the subgoals in the current SCC (step 22). Subgoals path(b,Z)

(node 3) and path(a,Z) (node 6) are marked as complete in the table space and no

new answers are accepted.

Next, we backtrack to node 2 to try the second edge/2 clause. A new consumer node

is allocated (step 23) and answers can be promptly consumed from the table space

as the subgoal path(a,Z) is already completed. The retrieved answers in step 23 are

propagated to node 1 and new answers are generated (steps 24 and 25).

We backtrack to node 1 to try the second path/2 clause (step 26). Resolution succeeds

for both edge/2 clauses but as the newly found answers are repeated we fail for both

cases (steps 27 and 28). The process backtracks again to node 1 and with no more

clauses to try, we attempt completion. As there are no consumer nodes, completion

is done (step 29) and computation terminates successfully.

From the described example we can summarize four main operations needed to support

tabled evaluation:

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 42

• The tabled subgoal call operation represents a call to a tabled subgoal. If a

similar subgoal is already in the table space, it creates a new consumer node to

consume answers. If it is a new subgoal call it creates a new generator node and

adds a new entry to the table space. Each new entry is initialized with an empty

set S that will contain the answers for the subgoal.

• The new answer operation adds a new answer s to the table space. If the answer

is repeated the operation fails, otherwise a new answer set S ′ for the subgoal is

generated: S ′ ≡ S ∪ {s}.

• The answer resolution operation checks whether new answers from the table

space are available for consumption. When no new answers are available, the

consumer node is suspended and execution proceeds using a specific strategy.

Given the last consumed answer, we determine the unconsumed answer set R

(R ⊆ S) and fetch the element r ∈ R, which is the first element from the set R.

The last consumed answer can be seen as a continuation that is stored in each

consumer node and is used to determine the next available answer.

• The completion operation determines if a tabled subgoal is completely evaluated.

Only leader nodes can complete themselves and younger generator nodes. Once

a subgoal is completed the set of answers S is closed and no more answers are

accepted; future subgoal calls can use the set S without the need to suspend.

2.2.2 Tabling Instructions

Tabling engines extend the WAM instruction set with tabling instructions to support

the four main tabling operations. Usually, each tabled predicate is compiled by using

variants of the following instructions: table try, table retry and table trust.

These instructions are very similar to try me, retry me and trust me, which the

WAM natively implements.

For tabled predicates with multiple clauses, table try is used on the first clause,

table retry for the middle clauses and table trust for the last clause. Predicates

with a single clause use a special instruction: table try single.

The table try instruction implements the tabled subgoal call operation. If the

subgoal is called for the first time, the data structures associated with this subgoal

and a new generator node are created. Execution then proceeds by executing each

predicate clause. This is performed by the table retry instruction, which alters the

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 43

path/2_1:

table_try_me path/2_2

% WAM code for path(X,Z) :- edge(X,Y), path(Y,Z).

new_answer

path/2_2:

table_trust_me

% WAM code for path(X,Z) :- edge(X,Z).

new_answer

Figure 2.7: Compiled code for the tabled predicate path/2.

next instruction of the generator choice point to the next clause of the predicate.

On the other hand, if the subgoal is repeated, a consumer choice point is allocated

and set to execute the answer resolution instruction, which consumes answers and

implements the answer resolution operation.

The instruction table trust is executed by generator nodes and sets the next in-

struction to execute upon backtracking to completion, which runs the completion

operation.

Finally, at the end of each clause, the instruction new answer is appended to implement

the new answer operation. This instruction has access to the arguments of a tabled

subgoal call, thus by dereferencing them it obtains the corresponding answer, which

can be added into the table space.

2.2.3 Scheduling Strategies

During evaluation of the previous example it is very clear that at several points

we can choose between different scheduling strategies: continue forward execution,

backtrack to interior nodes, return answers to consumer nodes, or perform completion.

Depending on how and when the return of answers is scheduled, different strategies

and searches can be formulated. It is also well known that using different strategies

can lead to tremendous effect on performance as some predicates are better suited to

specific strategies. The most popular scheduling strategies are batched scheduling and

local scheduling [FSW96].

Batched scheduling reduces the need to suspend and move around the search tree by

batching the return of answers. When the engine generates answers, while evaluating

a particular goal, the answers are added to the table and the subgoal continues its

normal evaluation until it resolves all available program clauses. Only then the answers

are consumed by consumer nodes [FSW96]. In some cases, this results in creating

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 44

dependencies to older subgoals, therefore enlarging the current SCC and delaying

completion to older generator nodes. When backtracking, three situations may arise:

• if backtracking to a generator or interior node, try the next available clause.

• if backtracking to a consumer node, consume new answers.

• if no more clauses are left to try or no more unconsumed answers are available,

two new situations may arise:

– if the node is a leader node, attempt completion.

– if not, backtrack to a previous branch.

Note that batched scheduling was the strategy used in the evaluation of the example

in Figure 2.6.

For some problems, local scheduling is better suited because it tries to evaluate a

single SCC at a time, preserving the dynamic SCC ordering during the evaluation. In

other words, in a local evaluation, answers are returned to consuming nodes outside of

an SCC only after that SCC is completely evaluated [FSW96]. It differs from batched

scheduling in that once the answers are found, they are added to the table space, but

execution fails. Because this strategy tries to complete sooner rather than later, we

can expect less dependencies between subgoals.

2.2.4 Variant Tabling

When the subgoal path(X,Z) is called, we first check for an identical subgoal in the

table space. In the example in Figure 2.6, this was done by checking whether a variant

of the new goal already exists in the table. We say that two terms t1 and t2 are variants

of each other if they are identical up to renaming of their variables.

For example, path(X,Z) is variant of the subgoal path(X,Y), as they represent the

same subgoal if we try to rename their variables to a standardized format. One

format was proposed by Bachmair et al [BCR93]. Formally, we have a set V of

variables present in a term and a function renameV ar, such that the first term variable

v0 ∈ V results in renameV ar(v0) = V AR0 and the next distinct variables are named

incrementally (V AR1, V AR2, ...). Using this mechanism, path(X,Z) and path(X,Y)

both result in path(VAR0,VAR1). The resulting standardized subgoal is then checked

against the table space to verify if it is a repeated subgoal call.

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 45

The variant approach is widely used in tabling systems, but other approaches do exist.

One approach named call by subsumption works by checking whether the new goal is

subsumed by another goal in the table space. In other words, we verify if there is a

more general subgoal than the one being called. For example path(b,Z) is subsumed

by the subgoal path(X,Z).

In this approach, instead of creating a new generator node at step 3, we create a

consumer node that would consume answers stored in the subgoal path(X,Z). For

correct results, it should be clear that the answers used from the table space must

unify with path(b,Z). Like variant tabling, those new consumer nodes do not expand

by using the program clauses, hence the search tree for this new method will be greatly

reduced.

Variant and subsumption-based tabling define the call similarity property of the

tabling engine. In a nutshell, when a subgoal A is declared to be similar to subgoal B,

we say that A consumes from B (A is a consumer) and B generates its own answers.

2.2.5 Yap and XSB

Yap [SDRA] and XSB [SWS+] are two well known Prolog systems that implement

tabling.

The YAP Prolog system is a high-performance Prolog compiler developed at the

University of Porto. It is one of the fastest available Prolog systems and implements

a wide range of functionalities: stream I/O, sockets, modules, exceptions, debugging,

a C-interface, dynamic code, internal database, DCGs, saved states, co-routining,

arrays, threads and tabling. It is based on the WAM and follows the Edinburgh

tradition. Most of the ISO-Prolog standard is implemented.

Tabling in Yap is implemented through the YapTab sub-system [RSS05b], a suspension

based tabling engine supporting evaluation of definite programs. YapTab follows

the seminal SLG-WAM (Linear resolution with Selection function for General logic

programs in WAM) design from XSB Prolog [SSW96, SS98], but it innovates by

proposing a new fix-point check algorithm, and by considering that the control of fix-

point detection should be performed at the level of the data structures corresponding to

suspended sub-computations. YapTab was originally designed to achieve good results

in sequential tabling, but could be extended with the OPTYap engine, for parallel

execution [RSS05b]. Other innovations in YapTab include: support for a dynamic

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 46

combination of batched and local scheduling [RSS05a] and efficient handling of incom-

plete tables [Roc06a]. Incomplete tables are created when the current computation is

pruned from the execution stacks, keeping the pruned subgoals from retrieving the

complete answer set. Currently, only call by variant checking is supported.

XSB is a research-oriented logic programming system for Unix and Windows based

systems. In addition to providing all the functionality of the Prolog language, XSB

contains several features not usually found in logic programming systems, namely,

evaluation according to the Well-Founded Semantics (tabling with negation) [GRS91]

through the use of a delaying-based tabling engine, the SLG-WAM. Other features

of XSB include: a fully threaded engine, constraint handling for tabled programs at

the engine level, a variety of indexing techniques, interfaces to other languages, and

various compiler directives like auto table, which does static analysis to decide which

predicates to table, etc [SWS+].

SLG-WAM supports both tabling by variant checking and by subsumption checking.

Tabling by call-subsumption was initially implemented by a technique called Dynamic

Threaded Sequential Automata [RRR96] and is currently implemented using Time

Stamped Tries [JRRR99].

In terms of design, both YapTab and SLG-WAM introduce the following extensions

to the traditional WAM machine: the table space; a new set of registers, the freeze

registers, one per stack (local stack, heap and trail); an extension of the standard trail,

called the forward trail ; and the tabling operations: tabled subgoal call, new answer,

answer resolution, and completion.

The set of freeze registers says where stacks are frozen and protect the space belonging

to suspended computations until the completion of the appropriate SCC takes place.

They need to be adjusted in two different situations: when a computation suspends,

increasing the portion of frozen stacks; and when a completion takes place, releasing

part of space previously frozen.

The forward trail is used to restore all the variable bindings to their state at the time

the computation was suspended. Thus, the WAM trail is extended with parent trail

entry pointers to create this new trail. Also, a new register is created, the TR FZ trail

freeze register.

The differences between SLG-WAM and YapTab reside in the data structures and

algorithms used to control the process of leader detection and the scheduling of

unconsumed answers. These differences are described next in more detail.

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 47

2.2.5.1 SLG-WAM

The SLG-WAM considers that evaluation control should be done at the level of

the data structures corresponding to first calls to tabled subgoals, and does so by

associating completion frames to generator nodes [SS98].

The completion stack maintains, for each subgoal S, a representation of the deepest

subgoal Sdep upon which S or any subgoal on top of S may depend.

When S and all subgoals on top of S have exhausted all program and answer clause

resolution, S is checked for completion. If S depends on no subgoals deeper than itself,

S and all subgoals on top of S are completely evaluated. Otherwise, if Sdep is deeper

in the completion stack than S, S may depend upon subgoals that appear below it in

the completion stack, and cannot be completed [SS98].

A one-to-one correspondence exist between completion stack frames and generator

nodes, as the completion stack frame is pushed onto the stack when a new tabled

subgoal is called. A completion frame is popped off when a subgoal is completed.

Also, for each tabled subgoal there is a data structure called subgoal frame that is

associated with a completion frame.

Consumer and generator choice points are extended to support the suspend and resume

mechanism. The generator choice contains the following extra data: an explicit pointer

of the failure continuation to take upon backtracking out of the choice point; a cell

that records the value of a new global register, called the RS (root subgoal register)

register, which points to the root subgoal of the node currently under execution; a

pointer to the subgoal frame; a set of freeze registers, so that the stored values can be

restored later on; and an area called the substitution factor, the set of free variables

which exist in the terms in the argument registers.

The consumer choice point is extended with: a copy of the RS register; a pointer

of the failure continuation to take upon backtracking; a substitution factor; the last

consumed answer continuation; and a pointer to chain together all consumer choice

points of the same subgoal.

2.2.5.2 YapTab

In YapTab, it is considered that the control of leader detection and scheduling of

unconsumed answers should be performed through the data structures corresponding

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 48

to repeated calls to tabled subgoals, and it associates a new data structure, the

dependency frame, to consumer nodes [RSS00]. Each consumer choice point thus

contains a field that points to the respective dependency frame.

Dependency frames are used to check for completion points and to move across the

consumer nodes with unconsumed answers, thus they are linked together, forming the

dependency space.

Generator choice points are WAM choice points extended with the substitution factor

area, a pointer to the subgoal frame, and a pointer to a dependency frame. This

pointer is only used when local scheduling is employed. A generator node using local

scheduling only exports its answers to the calling environment when all clauses for the

subgoal have been exhausted, hence it must act like a consumer.

In SLG-WAM, if we want to release space previously frozen and restore the freeze

registers, we use the stack values stored in the generator choice point to perform

completion. In YapTab, as the freeze registers are not saved there, we use the top

stack values kept in the youngest consumer choice point younger than the current

completion point.

YapTab reduces the size of consumer choice points by using dependency frames. Each

frame contains the following fields: last answer field that stores the last answer

consumed by the choice point; the consumer cp field that points to the consumer

choice point; the leader cp field which points to the leader node at creation time;

and the backchain cp field that changes during evaluation, pointing to the leader

node where we performed the last unsuccessful completion operation. A new global

register, called TOP DF, always points to the youngest dependency frame.

2.3 Chapter Summary

In this chapter we introduced logic programming and Prolog. We discussed the

shortcomings of the SLD resolution and then we presented tabling, a technique that

solves these problems.

Next, we discussed how tabled programs are evaluated, by introducing the concepts

of generator, consumer, scheduling strategies, such as batched scheduling and local

scheduling, and the call similarity property in variant and subsumption-based tabling

engines. We also discussed two of the most widely known Prolog systems that imple-

CHAPTER 2. LOGIC PROGRAMMING AND TABLING 49

ment tabling, Yap Prolog and XSB Prolog.

In the next chapter we will throughly discuss and analyze how the table space is

organized to efficiently implement variant-based tabling and then subsumption-based

tabling.

50

Chapter 3

Table Space Organization

In this chapter, the table space organization for both variant and subsumption tabling

engines are described. First, the variant table space for both SLG-WAM and YapTab is

explained. Because they share a lot of similarities, the description covers the common

ground between the two systems. Next, we explore two well-known mechanisms that

modify the previous table space for call by subsumption. Those two mechanisms have

already been implemented in XSB Prolog [RRR96,JRRR99].

3.1 Table Space

Implementing a tabling engine on a Prolog system involves the design of compact and

time efficient data structures to organize the table space. The table space is heavily

used throughout the evaluation process in various operations:

• to lookup if a subgoal is in the table, and if not insert it;

• to verify whether a newly found answer is already in the table, and if not insert

it;

• to retrieve answers for consumer nodes.

3.1.1 Tries

Clearly, the success of tabling is highly dependent on the data structures used. Both

the YapTab [RSS00] and SLG-WAM [RRS+95] engines use a trie-based approach.

51

CHAPTER 3. TABLE SPACE ORGANIZATION 52

Tries were initially proposed to index dictionaries [Fre62] and have since been gener-

alized to index recursive data structures such as terms. The essential idea underlying

a trie is to partition a set T of terms based upon their structure, in such a way that

common term prefixes are represented only once.

A trie is a tree-structured automaton with the root as the start state and each leaf

state associated with a term in T . Each state specifies the position to be inspected in

the input term on reaching that state. The outgoing transitions specify the function

symbols expected at that position. A transition is taken if the current symbol in the

input term matches the symbol of the transition. If we recursively reach a leaf state we

say that the input term matches the term represented by the leaf state. A complete

path, from the root to a leaf, corresponds to a pre-order traversal of the matching

term. If no transition can be taken, the lookup operation fails. On the other hand,

for an insert operation we add a new outgoing transition for the current input symbol

and a new node, which is linked to this transition. To complete the insert operation,

we consume the rest of the input term, until a leaf node is created that represents the

newly inserted term.

Given the nature of tries, the following conclusions can be made:

• the lookup/insert operation can be done in a single pass through a term. If the

lookup fails, it is possible to complete an insert operation using the last lookup

state;

• the efficiency and memory consumption of a particular trie depends on the

percentage of terms that have common prefixes.

When creating transitions for variables, we use the format outlined by Bachmair et

al. [BCR93], that was described in Section 2.2.4.

Figure 3.1 shows a trie with three terms. First, in (a) the trie is represented by a root

node and has no terms. Next, in (b) the term t(X,a) is inserted and three nodes are

created that represent each part of the term. In (c) a new term, u(X,b,Y) is inserted.

This new term differs from the first one and a new distinct branch is created. Finally,

in (d), the term t(Y,1) is inserted and only a new node needs to be created as this

term shares two prefix nodes with t(X,a).

Yap and XSB use two levels of tries to implement the table space (see Figure 3.2):

• The first level, the subgoal trie, stores subgoal calls for each predicate;

CHAPTER 3. TABLE SPACE ORGANIZATION 53

root node

Trie is empty

root node

t/2

VAR0

a

t(X, a)
inserted

root node

t/2

VAR0

a

u/3

VAR0

b

VAR1

u(X, b, Y)
inserted

root node

t/2

VAR0

a

u/3

VAR0

b

VAR1

1

t(Y, 1)
inserted

(a) (b) (c) (d)

Figure 3.1: Using tries to represent terms.

• The second level, the answer trie, stores answers for a specific subgoal.

For both levels, each trie node usually contains four fields. The first field represents

the symbol (or atom) of the transition. The second points to the first descendant

transition (called the child node) and the third stores a pointer to the parent node.

The fourth field points to a sibling node, if any.

When the chain of sibling nodes gets too big, a hashing scheme is dynamically em-

ployed to provide direct access to nodes, optimizing the search of transitions.

Each tabled predicate contains a table entry that points to a subgoal trie. Each different

call to a tabled predicate corresponds to a unique path through the subgoal trie. Notice

that for the subgoal trie only the subgoal arguments are stored. The leaf points to a

data structure called subgoal frame. The subgoal frame stores information about the

subgoal, namely an entry point to its answer trie.

The answer trie stores answers to the subgoal. When inserting answers, only substi-

tutions for the variables in the call are stored. This optimization is called substitution

factoring [RRS+95].

Figure 3.2 shows the table space organization after evaluating the query goal path(X,Z)

for the example in Figure 2.6. The figure shows how the subgoals path(X,Z), path(b,Z)

CHAPTER 3. TABLE SPACE ORGANIZATION 54

Table entry for path/2

Subgoal trie for path/2

root

a

VAR0

b

VAR0

VAR0

VAR1

Subgoal Frame for
path(a, VAR0)

Subgoal Frame for
path(b, VAR0)

Subgoal Frame for
path(VAR0, VAR1)

Answer trie for path(a, VAR0)

root

ba

Figure 3.2: Organizing the table space with tries for variant tabling.

and path(a,Z) are stored in the path/2 subgoal trie and how the answer trie for

path(a,Z) is represented. Notice that by using substitution factoring for the answer

trie, only the substitutions {VAR0 = b} and {VAR0 = a} need to be stored.

3.1.2 Subgoal Frames

A subgoal frame contains general information about the state of a tabled subgoal. To

access answers, this frame contains a pointer to the root of the answer trie. A chain of

answers used by consumers is also kept in the form of head and tail pointers. In XSB

Prolog, a answer return list is built and the consumer has a pointer to the node of

the list representing the last consumed answer. In Yap, answers are chained using the

child pointer of the leaf answer nodes and consumers only keep the last consumed

answer leaf. The last consumed answer pointer is an answer continuation. When a

consumer needs to verify or consume the next available answer, it uses the continuation

to retrieve the next answer, following the chain of answers. To load an answer, the

trie nodes are traversed in bottom-up order and the answer is reconstructed.

CHAPTER 3. TABLE SPACE ORGANIZATION 55

To simplify memory management, both systems link subgoal frames by storing next

and previous pointers in each subgoal frame, forming a double linked list. The

evaluation state of the subgoal is also stored. For example, YapTab has the following

states: ready, evaluating, complete and incomplete.

3.2 Tabling by Call Subsumption

Although variant based tabling has proven to be greatly beneficial in solving some

shortcomings of the SLD resolution, other approaches are possible. Tabling by call

subsumption aims to reuse answer computations by sharing answers from more general

subgoals [JRRR99].

When a subgoal is first called, a variant engine will lookup in the table space for a

variant subgoal, i.e., one that is identical by renaming the variables. If such a subgoal

already exists on the subgoal trie, a new consumer is created and the available answers

from the variant subgoal are pushed for consumption.

Although a variant check is a light-weight operation computationally, tabling engines

using such checks can end up computing answers through program clause resolution,

which takes time and space, when they could retrieve answers from a subgoal that

subsumes the new call. By other words, a more specific subgoal could consume answers

from a general subgoal, which contains the set of relevant answers for the specific

subgoal in its answer set.

Formally, if two subgoals G and G′ exist, such that S and S ′ are the respective answer

sets and G′ subsumes G, then we can conclude that S ⊆ S ′.

The effects of using subsumptive checks are greater reuse of computed answers and

reduced program clause resolution, yielding superior time performance and memory

usage. In terms of memory usage, improvements can be made since fewer calls and

their associated answer sets need to be preserved [JRRR99]. However, implementing

call subsumption poses various challenges:

(a) How to efficiently check for subsuming subgoals in the subgoal trie;

(b) How to design new mechanisms to represent answers supporting fast retrieval of

subsets that are only related to a subsumed call;

(c) How to support incremental retrieving of the answer subset. Note that, during

CHAPTER 3. TABLE SPACE ORGANIZATION 56

evaluation, it may be not possible for the subsuming call to contain all answers,

as the process of generating answers is incremental.

For illustration purposes, in Figure 3.3, we describe the evaluation of path(X,Z) using

the program presented in Figure 2.4 and compare it against the variant approach in

Figure 2.6.

6. X = a, Z = b
7. X = b, Z = a
8. X = a, Z = a
9. X = b, Z = b
12. complete

Z = a
Z = b

12. complete

Z = b
Z = a

12. complete

Answers

1. path(X, Z)

3. path(b, Z)

4. path(a, Z)

Subgoal

1. path(X, Z)

3. path(b, Z)

2. edge(X, Y), path(Y, Z)

4. path(a, Z)

5. edge(X, Z)

6. X = a, Z = b 7. X = b, Z = a

8. X = a,
 Z = a

9. X = b,
 Z = b

10. X = b
 Z = a

(fail)

11. X = a
 Z = b

(fail)

12. complete

X = a X = b

Figure 3.3: Tabling path(X,Z) using call by subsumption.

At step 1 the subgoal path(X,Z) is called and a new generator node is created as

there is no existing subgoals in the table space that could be variant or subsuming.

Being a generator node, it is evaluated using the program clauses (step 2). The first

solution for the edge(X,Y) predicate is evaluated using Prolog’s standard rules and

yields a subgoal call to path(b,Z) (step 3).

In variant tabling the engine would search for a variant subgoal in the table space, thus

failing and creating a new generator node, meanwhile expanding the execution tree by

means of program clause resolution. In subsumptive tabling, the engine searches for a

CHAPTER 3. TABLE SPACE ORGANIZATION 57

subsuming call, and finds path(X,Z). As this subgoal is more general than path(b,Z)

it will generate all the answers needed for the subsumed goal. A special type of

consumer called a subsumed consumer is thus created. This consumer knows how to

retrieve the answers that unify with the subsumed call.

As path(X,Z) has no answers, no answers can be consumed by path(b,Z), and thus

the consumer node is suspended and execution backtracks to node 2. The second clause

of edge/2 is tried and a new tabled subgoal is called: path(a,Z) (step 4). Like the

subgoal path(b,Z), this subgoal is subsumed by path(X,Z), hence a new subsumed

consumer node is created. Execution suspends once again because no answers are

available and the engine goes back to node 1 to try the second path/2 clause (step 5).

Answers for path(X,Z) are found in steps 6, {X = a, Z = b}, and 7, {X = b, Z = a}.
They are stored in the answer set for this subgoal. Execution thus backtracks to node

1 and completion is attempted. Node 1 verifies that node 3 and 4 have unconsumed

answers and starts by resuming computation at node 3.

Node 3 being a subsumed consumer, looks up in the path(X,Z) answer set for answers

specific to path(b,Z), finding one: {Z = a}. At this point, the consumer marks

the answer for later retrieval, so that answers can be immediately consumed when a

variant subgoal is called. Like variant tabling, the consumer keeps a last consumed

answer continuation to know which answers have already been consumed. Variable

bindings for this answer are propagated and a new answer to path(X,Z) is found:

{X = a, Z = a} (step 8). Node 3 tries to consume a new answer, but no new answers

are available.

Execution suspends node 3 and resumes computation at node 4. Here path(a,Z)

begins to consume answers from path(X,Z) using the subsumption mechanism. The

first answer in path(X,Z), {X = a, Z = b}, unifies with the subsumed goal and is

consumed. By variable propagation, a new answer for path(X,Z) is also generated,

{X = b, Z = b} (step 9). Node 3 then tries to consume a new answer and finds

{X = a, Z = a}. This new answer is added to the path(a,Z) table space. As the new

variable bindings are propagated, a new answer is also generated for the top subgoal,

but the answer {X = b, Z = a} is repeated (step 10), hence it is not inserted into the

table space.

Execution now suspends node 4 and resumes the the leader node, path(X,Z), that

will once again attempt completion. By using the last consumed answer continuation,

it verifies that node 3 has new unconsumed answers. Execution thus resumes again

at node 3.

CHAPTER 3. TABLE SPACE ORGANIZATION 58

Node 3 inspects path(X,Z) answer set and consumes the next matching answer,

{X = b, Z = b}. A new answer for path(b,Z) is generated and variable bindings

are propagated to the leader node (step 11). However, the new answer is already

stored in the table space and it is discarded.

Once again, evaluation returns to the leader node and completion is performed (step

12) as each consumer has exhausted the available answers.

This evaluation example, when compared to variant tabling, shows a smaller execution

tree with less program clauses expanded. The subsumptive computation also took

less steps to complete and a greater reuse of answers was done between path(X,Z),

path(b,Z) and path(a,Z).

Like variant tabling, the same four main operations are used when evaluating sub-

sumptive subgoals. These operations are very similar, with a few key differences.

Operations new answer and completion remain the same, while the tabled subgoal call

and answer resolution operations work slightly differently:

• The tabled subgoal call operation represents a call to a tabled subgoal. When a

subgoal G is called, a search for a subsuming subgoal G′ is done. If such subgoal

is found, G will be resolved using answer clause resolution, thus consuming

answers from G′. If no subgoal G′ is found, then a new entry, representing G,

is inserted into the table space and G will be evaluated using program clause

resolution.

• The answer resolution operation checks whether new answers from the table

space are available for consumption. Each subsumed consumer node uses an

answer continuation that represents the set of remaining answers to be consumed.

Given this answer continuation, we inspect the answer trie from the subsuming

subgoal and retrieve the next answer that matches with the subsumed subgoal.

Once the answer is retrieved and loaded, the answer continuation is updated to

reflect the new answer consumed.

We next describe two known techniques that implement subsumptive tabling. These

two approaches were both implemented in XSB.

CHAPTER 3. TABLE SPACE ORGANIZATION 59

3.2.1 Dynamic Threaded Sequential Automata

Dynamic Threaded Sequential Automata (DTSA) is a data structure that provides

good indexing and incremental returning of a subset of answers from a subsuming call

to a subsumed call [RRR96].

This structure orders answers as they are generated, hence it can easily mark which

answers were already retrieved, enabling efficient retrieval of the remaining answers.

A DTSA is based on a Sequential Factoring Automaton (SFA) [DRR+95] but has a

few more features for dealing with fast indexing and incremental retrieving of answers.

3.2.1.1 Sequential Factoring Automaton

A SFA solves the problem of retrieving an ordered subset of answers, starting from

the oldest to the newest answer. It is an ordered tree-structure automaton and is very

similar to a trie. It begins with a root as the start state and has edges as transitions

that represent unifications. Every leaf represents a distinct term and the transitions

on the path from the root to a leaf represent the operations necessary to unify the

goal with the answer at the leaf.

Apart from ordering, SFAs differ from tries in that transitions from a state may not be

unique and each transition in a trie denotes match operations, not unify operations.

To insert a new term into a SFA, we must start by inserting symbols from the answer

term into the root state. In each state we verify if the last transition s matches the

current term symbol t. If t matches s we take the transition and advance to the next

state; if not, a new transition for t is created and we advance to the newly created

state. When all term symbols t are exhausted, the current state is marked as a leaf,

representing a new answer. Figure 3.4 represents a SFA for the subgoal p(X,Y,Z) and

illustrates insert operations.

When a new subgoal G subsumed by the subgoal G′ is first called, we must determine

the substitutions from G′ to the sub-terms of G, because only variable substitutions

are inserted into a SFA. For example, if G′ is p(X,Y,Z) and G is p(a,a,V), the

substitutions are {X = a, Y = a, Z = VAR0}. During unification operations, we

must unify the first SFA symbol to a, then to a again, and finally with VAR0. Once a

variable is bound, subsequent unify operations must unify with the bounded sub-term.

The unification process starts in the root state with an empty continuation stack.

CHAPTER 3. TABLE SPACE ORGANIZATION 60

(a) (b) (c)

s3

s4

root node

a

a

a

b

a

VAR0

a

a

c

b

b

a

d

s1

s2 s5

s11s6

s7

s8

s9

s10 s12

s13

s14

p(a, a, d)
inserted

root node

a

a

a

b

a

VAR0

a

a

c

Inserted terms:
p(a, a, a)
p(b, a, W)
p(a, a, c)

s2

s1

s3

s4

s5

s6

s7

s8

s9

s10

root node

a

a

a

b

a

VAR0

a

a

c

b

b

p(a, b, b)
inserted

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

Figure 3.4: Inserting answer terms in a SFA.

When a state s is reached, the leftmost transition that unifies with the current G

substitution is chosen, this is called the applicable transition. Before moving to the

next state, we select the next applicable transition and push it on the continuation

stack. If no applicable transitions are available at state s or if an answer was found,

we pop a transition from the stack and use it to search for more answers. Once no

more transitions can be taken and the stack is empty, the search process ends.

Using the SFA in Figure 3.4 and the subgoal G, p(a,a,V), the search mechanism

starts at the root state and is ready to retrieve all answers that unify with G. The

first applicable transition is s1 → s2 because it unifies with the first symbol: a. The

transition s1→ s5 can not be pushed into the continuation stack because it does not

unify, but s1 → s8 does. In state s2 only one transition is available, thus nothing is

pushed into the stack. Transition s2→ s3 unifies with symbol a and we move to state

s3. Here, the variable VAR0 (that represents V) can unify with a, thus we can get to

state s4, arriving at a leaf state and a new answer, {V = a}.

Next, the process must use the continuation stack to retrieve more answers. Transition

s1→ s8 is popped from the stack and we arrive at state s8 with 3 available transitions.

Using the previous rules, a new answer is retrieved, {V = c} and the continuation stack

contains the transition s8→ s13.

Finally, once states s13 and s14 are visited, the process arrives at a leaf state and

CHAPTER 3. TABLE SPACE ORGANIZATION 61

a new answer, {V = d}, is retrieved. The process finishes and every answer that is

specific to p(a,a,V) is found.

3.2.1.2 Threaded Sequential Automata

A Threaded Sequential Automata extends the SFA with a concept called equivalent

states. One state S1 is equivalent to state S2 if when S1 is taken, S2 is also guaranteed

to be visited. For example, in Figure 3.4, whenever states s2 and s3 are visited, states

s8 and s9 are also guaranteed to be visited, as they denote the same path.

A SFA is converted to a TSA by adding equivalence links between equivalent states.

The SFA in Figure 3.4 was transformed into a TSA in Figure 3.5.

root node

a

a

a

b

a

VAR0

a

a

c

b

b

a

d

s1

s2 s5

s11s3

s4

s6

s7

s8

s9

s10 s12

s13

s14

Figure 3.5: SFA transformed into a TSA.

In the TSA, the concept of applicable transitions is changed. Now it is also possible to

push equivalence links into the continuation stack as if they were normal transitions.

So, if we were at state s3 we use the transition to s9 and then to s13 instead of going

from the start state.

Although equivalence links provide an efficient indexing mechanism, they must be

used with care. If not, some situations arise where following equivalence links lead

to repeated answers and answers in the incorrect order [RRR96]. The selection of

transitions must consider only safe transitions, which reach answers that cannot be

reached through the pending transitions on the stack. So, if the process is at state s2

and the transition s1 to s8 is already on the stack, we can not use the equivalence link

s2→ s8, as the transition s1→ s8 already covers the same branch.

If we followed only safe transitions, no equivalence links would be used, hence we

CHAPTER 3. TABLE SPACE ORGANIZATION 62

must check if the usual next applicable transition covers some answers that can not be

reached from using the equivalence links on the next branch to explore, thus favoring

equivalence links. Notice that at state s2 we would use the equivalence link s2→ s8,

instead of the transition s1→ s8, as s2→ s8 will cover the same answers.

3.2.1.3 Dynamic Threaded Sequential Automata

The previously described mechanisms only work if we have the complete set of answers

for the subsuming subgoal. A new mechanism that deals with incomplete answer sets

must be devised, so that after all current answers are retrieved, the continuation stack

can be used to retrieve newly inserted answers.

The Dynamic Threaded Sequential Automata extends the TSA with special transitions

in states were new transitions can be inserted or in states were no equivalence links

exist. Figure 3.6 illustrates two DTSAs: (a) shows the converted TSA from Figure 3.5,

and (b) the resulting DTSA after inserting the answer p(a,b,c).

During answer retrieval, if no answer is found and the top of the continuation stack

contains a transition to a special state, the process stops and the continuation stack is

saved along the last state visited. Later on, when new answers must be retrieved, the

last state is used to transform the stack to account for new states that were introduced

during the insertion of new terms. If the new stack contains a valid transition, it can

now be used as usual.

For example, retrieving answers to subgoal p(a,X,c) from the DTSA in Figure 3.6 (a)

results in the answer p(a,a,c) and a continuation formed by the last visited state s13

and the stack containing (from bottom to top): [s1 → v1, s8 → v8, s13 → v13].

This continuation stack contains the transitions from where it is possible that a

relevant answer will be inserted, by using either normal transitions or equivalence

links.

After the new answer p(a,b,c) is inserted into the DTSA in Figure 3.6 (b) and a

consumer is resumed to consume new answers, we must check if new answers are

available, hence the continuation stack must be transformed in order to convert the

virtual transitions to instantiated transitions that may have been created after the

last retrieval operation. This stack modification is done by using the last visited state

s13, resulting in the following stack configuration: [s1 → v1, s8 → s15]. Now the

answer p(a,b,c) can be easily retrieved using the transition s8→ s15. Note that the

transition s1 → v1 remains unmodified as new transitions can be created from s1.

CHAPTER 3. TABLE SPACE ORGANIZATION 63

root node

a

a

a

b

a

VAR0

a

a

c

b

b

a

d

v1

v5

v6 v11 v13

v8

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

root node

a

a

a

b

a

VAR0

a

a

c

b

b

a

d

v1

v5

v6 v13

v8
b

c v15

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

(a)

(b)

Figure 3.6: DTSA before and after inserting answer p(a,b,c).

3.2.1.4 Table Space Organization

This new DTSA mechanism was implemented in XSB Prolog by extending the variant

engine [RRR96]. First, each subgoal frame now contains both an answer trie and a

DTSA. Answer tries are used to check for duplicate answers and the DTSA is created

lazily, when a subsumed subgoal is first called.

Each subsumed subgoal keeps an answer return list that is built using the DTSA

retrieval algorithm. This answer list is used when variant goals of the subsumed

goal are called, thus instead of using the DTSA, answers are retrieved directly by

traversing the linked list. When a subgoal is marked as complete, the DTSA is deleted

and the answer trie is converted into WAM instructions, a feature called compiled

trie code [RRS+99]. Answers for subsumed goals are then retrieved using the trie

instructions through unification and backtracking.

CHAPTER 3. TABLE SPACE ORGANIZATION 64

3.2.2 Time Stamped Tries

Time Stamped Tries (TST) is another mechanism that was implemented in XSB

Prolog to support tabling by call subsumption [JRRR99].

TST is a relatively simple technique based around the idea of augmenting a trie with

information about the relative time its terms were inserted. The time of insertion of

each term is called its time stamp and is represented by a positive integer. The time

stamps are then used for incremental answer retrieval.

For each node in a trie, we extend it by including a time stamp. Along the augmented

trie, the maximum time stamp T is also stored, thus allowing the insert mechanism

to know the next time stamp to use for new trie paths. An example TST for the

subgoal p(X,Y,Z) is represented in Figure 3.7. By looking at the leaf nodes, the

order of answer insertion can be readily known: p(a,a,a), p(b,a,VAR0), p(a,a,c),

p(a,b,b) and then p(a,a,d).

root node

a, 5

a, 5

a, 1c, 3d, 5

b, 4

b, 4

b, 2

a, 2

VAR0, 2

Figure 3.7: Time Stamped Trie for subgoal p(X,Y,Z).

3.2.2.1 New Answers

The process of inserting a new answer into a TST starts by traversing matching nodes

as long the stored symbols match the new answer. If the current symbol does not

match, the process changes from search to insert mode and new nodes are inserted to

represent a new trie path. Once the leaf node is created, each node from leaf to root

is traversed and its time stamp is updated to T + 1.

Figure 3.8 shows the TST from Figure 3.7 after a new answer p(a,b,c) was inserted.

Note that each node from the answer leaf node to root node was updated with time

CHAPTER 3. TABLE SPACE ORGANIZATION 65

root node

a, 6

a, 5

a, 1c, 3d, 5

b, 6

b, 4

b, 2

a, 2

VAR0, 2c, 6

Figure 3.8: Time Stamped Trie from Figure 3.7 after inserting the answer p(a,b,c).

stamp 6. Apart from the time stamps, search and insertion in TSTs work exactly the

same as standard tries.

3.2.2.2 Retrieving Answers

Retrieving all answers that are specific to a subsumed subgoal G from a TST with

answers from subgoal G′ works by navigating the TST and unifying the answers

against the subsumptive substitutions. If we wanted to retrieve answers to the subgoal

p(a,a,X) from the TST in Figure 3.8, during the subgoal call we must determine

the substitutions relative to path(X,Y,Z), {X = a, Y = a, Z = VAR0}, and then we

must unify the terms [a, a, VAR0] against the trie symbols.

Like tries, TSTs only store substitutions for variables, thus we must unify the first

sub-term a, then a again and then the variable, which unifies with any symbol. During

the unification process, if a variable appears multiple times, it must unify with any

previous sub-term assignment.

Time stamps guide the answer unification process by filtering transitions to already

explored branches, where answers were already retrieved, thus avoiding repeated

answers.

The unification process that finds new answers by using a time stamp is separated from

the process of unifying the retrieved answers with the subsumed subgoal. This two-tier

mechanism is key to the space and time efficiency of the design of TSTs [JRRR99]

and allows identification of all relevant answers that have been added since the last

time a search operation was done by using the time stamp.

CHAPTER 3. TABLE SPACE ORGANIZATION 66

3.2.2.3 Table Space Organization

The table space in this technique extends the variant table space by using TSTs instead

of answer tries for subsuming goals.

Each subsumed subgoal frame, also represented in a subgoal trie, stores the last search

time stamp t. The process of incrementally searching for new answers in a TST will

use t and update it after the process completes. When a subsumed subgoal is first

called, t is set to 0, thus initially allowing the retrieval of all relevant answers.

The subgoal in the subgoal trie also stores an answer return list. Each time new

answers are identified, they are appended to this linked list. The original subsumed

consumer and its variant subgoals will then consume answers from it. If no new

answers can be retrieved from the list, the TST process is employed to identify more

answers from the subsuming TST, inserting them into the list.

An hashed TST node maintains a time stamp index which stores all transitions in

reverse order. It is not until a subsumed subgoal is first called that all time stamp

related structures are created, thus allowing a more efficient use of space.

Like DTSAs, the TST indexing mechanism is only used during the evaluation of

subsumed calls. For calls with completed tables, subsumed subgoals will use compiled

trie instructions from the more general subgoal.

The main advantage of using TSTs instead of DTSAs is in terms of space complexity.

In TSTs, the maximum table space used is at most twice that of the variant engine,

because each node can have both the time stamp and a time stamp index node. For

DTSAs, the space used is at least double, but in the worst case can be quadratic.

DTSA is at advantage in terms of speed, because it supports identification of answers

and unification in one step, thus answers can share some elementary unifications. In

TSTs, identifying answers and doing answer unification is a two step process, thus it

takes more time to construct all answers.

3.3 Chapter Summary

In this chapter we explored how the table space is efficiently designed to support the

tabling operations in a variant or a subsumption-based engine. For the variant engine,

we presented the YapTab’s table space that is based on two levels of tries, the subgoal

CHAPTER 3. TABLE SPACE ORGANIZATION 67

trie and the answer trie.

Next, we discussed the two most well-known table space organizations to implement

call subsumption. The first technique is the Dynamic Threaded Sequential Automata

(DTSA). This method creates a special data structure based on tries to efficiently

collect the relevant answers for a subsumed subgoal. The second technique is the

Time Stamped Trie (TST). It improves upon the previous technique by being simpler

and having reduced space needs.

In the next chapter we will discuss the algorithms and data structures used in the TST

technique, covering the algorithm used to discover subsuming subgoals and the algo-

rithm to collect relevant answers. Finally, we will explain how the TST mechanisms

are integrated into the YapTab tabling engine to enable call by subsumption.

68

Chapter 4

Time Stamped Tries

In this chapter, we throughly describe the Time Stamped Tries approach to implement

a subsumptive tabling engine. This mechanism was proposed by Ernie Johnson et

al. [JRRR99] and is currently implemented in XSB Prolog. It is based on the idea of

extending each answer trie node with time stamp information as a means to distinguish

between new answers and old answers.

First, we start by describing the algorithms and data structures associated with the

detection of subsuming goals. Next, we explain the data structures introduced in the

answer tries to support subsumption, focusing on answer insertion and retrieval for

subsumed subgoals. Finally, we describe the modifications made to the YapTab tabling

engine in order to support subsumptive tabling, focusing on the tabling operations and

on the table space.

4.1 Finding General Subgoals

The problem of finding on a subgoal trie C a subgoal G′ that subsumes G is an

important part of a subsumptive tabling engine, as it makes possible to identify a

subsumptive relation between G′ and G.

In the SLG-WAM, the search is performed by recursively backtracking through the

subgoal trie C, trying to match the node symbols with sub-terms from G. The process

stops once a leaf node is reached.

The matching process gives priority to match non-variable terms from G with an

69

CHAPTER 4. TIME STAMPED TRIES 70

identical symbol from C. Alternatively, if the current trie symbol is a variable, for

example VAR0, on its first occurrence, VAR0 is bound to the respective G sub-term

and match succeeds. On the next occurrences, the current sub-term from G must be

identical to the term bound to VAR0. Throughout the search process, bound variables

are matched before new unbound variables.

Favoring non-variable terms, results in a mechanism that finds minimally subsuming

calls. In particular, if there is a variant trie path of G called G′′, G′′ is found before

any other subgoal. If no variant path exits, it is possible to speedup the process of

inserting a variant path of G by recording the trie node where: (1) the first constant

match failure occurred; or (2) an already seen G variable paired to a trie variable

could not be paired to the same trie variable.

root node

VAR0

f/1

VAR1

2

VAR0

a/1

VAR2

n1

n2

n3

n4

n5

n6

n7

VAR1

VAR2

n8

n9

Figure 4.1: Subgoal trie for a tabled predicate p/3.

For illustration purposes, Figure 4.1 shows a subgoal trie for a tabled predicate

p/3. The first subgoal called was p(X,2,X), followed by p(X,f(Y),a(Z)) and finally

p(X,Y,Z).

If the subgoal p(X,2,X) is called again, the algorithm described above should find

the variant subgoal represented by the leaf node n3. First, we unify the trie variable

VAR0 with X (node n1), hence we must mark the variable X as seen, because if the

same variable appears again it must unify with the same trie variable for a variant

path to exist. Next, 2 easily unifies with trie node n2 and unification proceeds. In trie

node n3, the current call term is X and we also have a variable in the trie node. As

CHAPTER 4. TIME STAMPED TRIES 71

X was already seen before, it must unify with VAR0. It does and thus a variant path

is found. Please note that if the trie symbol at node n3 was VAR1 no variant path

would exist, but the process could proceed and a subsuming subgoal would be found,

as p(VAR0,2,VAR1) subsumes path(VAR0,2,VAR0). In this case, a variant path could

be created by resuming the insert operation at node n2 to insert a VAR0 node.

For a more complex example, let the subgoal p(2,f(X),a(2)) now be called for the

same subgoal trie. First, the algorithm searches for a trie node with the symbol 2,

and as it does not find one, no variant path exists in this subgoal trie. Next, the

algorithm tries to unify with bound variables, but as the process has just started, only

unbound variables are found, and VAR0 (node n1) is unified with 2. The functor term

f/1 is the next term on the subgoal and node n4 matches with it. The next term

is X and it can unify with VAR1 (node n5). Note that if we failed at this point, the

process would backtrack to node n1 and node n8 would be tried next, which would

lead to a more general subgoal. Next, the functor term a/1 matches with trie node

n6 and the process proceeds. The last term symbol 2 can match with node n7, as it

is an unbound variable and the only node available. If the variable was bound, like

VAR0 for instance, the process would check if the current term symbol unifies with

the variable binding made before (VAR0 = 2) and it would also succeed. As node n7

is a leaf node, the process finishes with a subsumptive path found and the following

variable bindings made: VAR0 = 2, VAR1 = X, and VAR2 = 2.

Implementation wise, this algorithm uses the following data structures:

• variable bindings vector : saves bindings for each numbered trie variable. Starts

with each position pointing to itself;

• variable enumerator vector : when a never seen term variable appears it must be

bound to a position in this enumerator, ensuring that it can be recognized if the

same variable appears a second time;

• term stack : stores the remaining terms to be unified against the trie symbols;

• term log stack : stores already matched terms taken from the term stack. Each

frame contains the top index and the top element of the term stack during the

creation of a frame;

• trail stack : stores bindings that were made during the process. It is used to

untrail variables during backtracking;

CHAPTER 4. TIME STAMPED TRIES 72

• call choice point stack : used to restore the search process at a certain node to

explore alternatives.

During execution, two matching methods are considered: the first tries to match exact

trie symbols against the current term; the second method uses trie variables instead of

exact symbols and is employed when the first method fails. When a trie node match

succeeds, matching defaults to the first method, which means that exact matches are

always tried before variables when a new trie level is reached and variables are usually

attempted when backtracking. A trie level represents a set of nodes that are linked

by sibling links or that are in the same hash table.

The process starts by pushing the G subgoal arguments, X1, X2, ...Xn into the term

stack, so that X1 is at the top and Xn at the bottom (Figure 4.2). Then, the algorithm

proceeds in a modified depth-first manner, trying to match the exact nodes first, and

then the variable trie nodes. The skeleton for this algorithm is presented in Figure 4.3.

X

Heap

STR 12

f/1

Term Stack

Y

STR 15

a/1

Z

10

11

12

13

14

15

16

X (10)

STR 12 (11)

STR 15 (14)

Figure 4.2: Initial term stack and heap representation for subgoal p(X,f(Y),a(Z)).

The basic idea of this algorithm is to match the current term from the term stack

against a node in the current trie level and store the next alternative node on this

level on the call choice point stack. If no node is found, we try alternatives on the

choice point stack, else we use the matched node to descend into the trie. Two modes

of matching exist: (1) MATCH EXACTLY, which is used when a new trie level is reached

for the first time in order to do exact matches; (2) MATCH TRIE VARS, used when the

current trie node is reached by backtracking, forcing variable matching.

4.1.1 Call Choice Point Stack

The call choice point stack (Figure 4.4) contains alternative search paths to use if the

process fails somewhere in the trie. Each stack frame can resume the search at a given

CHAPTER 4. TIME STAMPED TRIES 73

lookup_subsuming_call(subgoal_trie, subgoal_call) {

match_mode = MATCH_EXACTLY

path_type = VARIANT_PATH

parent = trie_root(subgoal_trie)

node = child(parent)

var_chain = NULL

push_arguments(term_stack, subgoal_call)

while (!empty(term_stack))

term = deref(pop(term_stack))

push(term_log_stack, term)

if (is_atom(term) or is_integer(term))

match_node = match_constant_term(term, parent, node, var_chain, match_mode, path_type)

else if (is_functor(term) or is_list(term))

match_node = match_structured_term(term, parent, node, var_chain, match_mode, path_type)

else if (is_variable(term))

match_node = match_variable_term(term, parent, node, var_chain, match_mode, path_type)

if (match_node == NULL)

if (empty(call_choice_point_stack)) // no more alternatives

return NO_PATH

else

match_mode = MATCH_TRIE_VARS // backtrack mode

(node, var_chain) = pop_call_choice_point_frame(call_choice_point_stack)

parent = parent(node)

else // valid match, descend into node

match_mode = MATCH_EXACTLY

parent = match_node

node = child(parent)

return (path_type, parent)

}

Figure 4.3: Pseudo-code for procedure lookup subsuming call.

node by restoring all the auxiliary stacks state at the time of the call frame creation.

Each frame contains the next trie node to explore (alt node), the current variable

chain (var chain), and the following stack indexes during frame creation: the top of

the term stack (term stack top), the top of the term log stack (term log stack top),

and the top of the trail stack (trail stack top).

When popping a frame from the call choice point stack, the state of the auxiliary

stacks and the other data structures is restored. Consider a computational state S1

pushed onto the stack as frame F1. Given that we are at state S2 and we need to

backtrack to the previous state, first we need to remove F1 from the stack and then

we use the frame’s information to restore S1.

Any terms that were popped from the term stack from S1 to S2, which were stored

CHAPTER 4. TIME STAMPED TRIES 74

alt_node

var_chain

term_stack_top

term_log_stack_top

trail_stack_top

Frame 0

Frame 1

Base

Top

Figure 4.4: Call choice point stack organization.

in the term log stack must be restored back into the term stack. Then, any bindings

made from S1 to S2 must be untrailed, which is accomplished by unwinding the trail

stack. The unwind process untrails the trie variables bound to the variable bindings

vector and the term variables which may have been made to point to the variable

enumerator vector. The node associated with state S2 and its successors are never

visited again and the process continues until a leaf node is reached or the call choice

point stack is exhausted.

4.1.2 Matching Constant Terms

The match constant term procedure (Figure 4.5) is called whenever the next term

from the term stack is an integer or an atom term. First, the procedure checks if the

match method is to exactly match the sub-term constant against a trie symbol, which

means that this is the first time this trie level is explored (phase 1 in Figure 4.5). If

the current trie level is represented by a simple linked list, both node and var chain

point to the start of the chain, but if the trie level is a hash table, node will be made

to point to the corresponding indexed bucket and var chain to the variable bucket,

which is always the first bucket. This is accomplished by the set node and var chain

procedure.

The procedure find matching node iterates over a linked list and locates a trie node

that matches the constant symbol. When successful, we conditionally push a new

call choice frame on the stack with the first node from the variable chain that contains

a trie variable (conditionally push call choice point frame). Note that only trie

variables can be explored next as there is at most one node with the previously matched

CHAPTER 4. TIME STAMPED TRIES 75

match_constant_term(constant, parent, node, var_chain, match_mode, path_type) {

// phase 1: try exact match

if (match_mode == MATCH_EXACTLY)

(node, var_chain) = set_node_and_var_chain(constant, node)

match_node = find_matching_node(constant, node)

if (match_node != NULL)

conditionally_push_call_choice_point_frame(call_choice_point_stack, var_chain)

return match_node

else // no match found

no_variant_found(parent, path_type)

node = var_chain

// phase 2: no exact match, try bound trie variables

match_node = find_bound_trie_var(constant, node)

if (match_node != NULL)

push_call_choice_frame(call_choice_point_stack, sibling(match_node), var_chain)

return match_mode

// phase 3: no bound trie variable, try unbound trie variables

match_node = find_unbound_trie_var(var_chain)

if (match_node != NULL)

bind_trie_var(match_node, constant)

return match_node

return NULL

}

Figure 4.5: Pseudo-code for procedure match constant term.

symbol.

If an exact match fails, we know that no variant path exists for the called subgoal, and

we use the no variant found procedure to record the node from where the variant

path can be constructed and to mark the path type as SUBSUMPTIVE PATH.

Phase 2 of match constant term can be reached by a failed exact match or by

backtracking (remember that the match mode changes to MATCH TRIE VARS when

backtracking). In this step we call find bound trie var that will iterate over the

node chain to look for bound trie variables. When traversing the subgoal trie, each

new trie variable along a path is marked, so it is easy to check for old variables,

which have already been bound to some term before arriving at the current node.

The variable binding can be retrieved by checking the variable bindings vector for the

position corresponding to this variable number, which points to a heap term. Given

that we are trying to match a constant symbol, we verify if the bound term matches

our symbol. In this case, we create a new choice point for the sibling node of the

matched trie variable, and use the currently set variable chain.

Finally, if phases 1 and 2 fail, we try to match our constant against an unbound trie

variable (procedure find unbound trie var). Phase 3 can be also reached by a failed

CHAPTER 4. TIME STAMPED TRIES 76

exact and bound trie variable match or by subsequent backtrack attempts. If a node

is found, we trail the variable and its position on the variable bindings vector is made

to point to the constant term (procedure bind trie var).

4.1.3 Matching Structured Terms

When a structured term appears on the term stack, either a functor or a list, the

matching process works just like as for constants, except that the functor or list

arguments are pushed to the term stack after an exact match is found (Figure 4.6).

match_structured_term(term, parent, node, var_chain, match_mode, path_type) {

// phase 1: try exact match

if (match_mode == MATCH_EXACTLY)

(node, var_chain) = set_node_and_var_chain(term, node)

match_node = find_matching_node(term, node)

if (match_node != NULL)

push_arguments(term_stack, term)

conditionally_push_call_choice_point_frame(call_choice_point_stack, var_chain)

return match_node

else // no match found

no_variant_found(parent, path_type)

node = var_chain

// phase 2: no exact match, try bound trie variables

match_node = find_bound_trie_var(term, node)

if (match_node != NULL)

push_call_choice_frame(call_choice_point_stack, sibling(match_node), var_chain)

return match_node

// phase 3: no bound trie variable, try unbound trie variables

match_node = find_unbound_trie_var(var_chain)

if (match_node != NULL)

bind_trie_var(match_node, term)

return match_node

return NULL

}

Figure 4.6: Pseudo-code for procedure match structured term.

Figure 4.7 shows the evolution of the term stack for finding a subsuming goal for

subgoal p(a,f(b)). Step 1 shows the initial term stack, followed by the match of the

term on top of the stack, a, against the trie node n1, VAR0. Being an unbound trie

variable, the first position of the variable bindings vector is thus bound to a. Next,

we try to match the functor f/1 against node n2, but we fail (step 2). Then, node

n3 succeeds, as it is an exact match, and the functor argument b is pushed on the

term stack (step 3). Finally, b matches against node n4, and we find a subsuming call:

p(VAR0,f(b)).

CHAPTER 4. TIME STAMPED TRIES 77

a
STR 20

STR 20
f/1
b

19
20
21

Heap

STR 20

b

Step 1

Step 2

Step 3

a

a

0 1 2 3

Variable bindings vector

18

ROOT

VAR0

a f/1

b

n1

n2 n3

n4

Call TrieTerm Stack

Figure 4.7: Finding a subsuming goal for subgoal p(a,f(b)).

4.1.4 Matching Variable Terms

The last case for the matching algorithm are variable terms. Because we are trying

to find a more general goal, a term variable must only be matched or bound against a

trie variable and a never seen variable must match only with an unbound trie variable.

Consider the case of trying to match p(X,Y) against p(VAR0,VAR0). The first call

variable X could match the first trie variable VAR0, but then the call variable Y must

be matched against an unbound variable and thus the trie variable VAR0 cannot be

used, because it was already bound to variable X.

To recognize already seen call variables, we bind them to the variable enumerator

vector, indexed by the corresponding trie variable number. The trail stack is used to

trail those variables. When a bound variable must be matched again, first we try to

pair it with the same trie variable, and if such trie variable can not be found, we try

an unbound trie variable, thus avoiding two different call variables to be bound to the

same trie variable.

The pseudo-code for this procedure is shown in Figure 4.8. From it, we can conclude

that a variant path cannot be found when: (1) we cannot match an already seen call

variable against the same trie variable already bound to it; or (2) a new trie variable

cannot be found for a new call variable.

CHAPTER 4. TIME STAMPED TRIES 78

match_variable_term(variable, parent, node, var_chain, match_mode, path_type) {

if (match_mode == MATCH_EXACTLY)

(node, var_chain) = set_node_and_var_chain(variable, node)

if (!is_in_variable_enumerator_vector(variable))

// variable not seen before

foreach (match_node in node)

if (is_trie_var(match_node) and is_new_variable(match_node))

// only one new trie variable per level, no choice point needed

bind_trie_var(match_node, variable)

mark_variable_enumerator_vector(variable, var_index(match_node))

return match_node

no_variant_found(parent, path_type)

return NULL

// variable has been seen before

foreach (match_node in node)

if (is_trie_var(match_node) and !is_new_variable(match_node))

if (identical_terms(trie_var_bindings[match_node], variable))

push_call_choice_frame(call_choice_point_stack, sibling(match_node), var_chain)

return match_node

// variant path is not possible here

no_variant_found(parent, path_type)

// match against unbound trie variable

foreach (match_node in var_chain)

if (is_trie_var(match_node) and is_new_variable(match_node))

// only one new trie variable per level, no choice point needed

bind_trie_var(match_node, trie_var_bindings[prolog_var_index(variable)])

return match_node

return NULL

}

Figure 4.8: Pseudo-code for procedure match variable term.

4.1.5 Variant Continuations

A variant continuation is built when the algorithm detects that a variant path of

the called subgoal cannot be found on the subgoal trie during the search process. A

variant continuation stores all the needed information to later resume the algorithm

that creates the variant path. This includes the node from where the rest of the

variant path is created (i.e., the last node from where the search for a variant path

was still valid), the term stack and all the bindings made to the call variables that

were trailed on the trail stack. In previous pseudo-code listings we used the procedure

no variant found to do that. This procedure creates a variant continuation the first

time it is called.

Figure 4.9 shows a variant continuation that is built after the match process failed at

node c. If a variant path for subgoal p(X,f(Y),b) needs to be created, the following

must be done: (1) the term stack is restored with the terms saved on the continuation;

CHAPTER 4. TIME STAMPED TRIES 79

(2) the trail stack is initialized with the two variable heap addresses and each variable

is bound to the saved enumerator addresses. The variable enumerator vector is used

during the insertion of variant paths to detect if a variable was already seen and easily

compute its number by looking at the enumerator position.

ROOT

VAR0

f/1

VAR1

c

VAR1

b

Call Trie

b

Variable enumerator vector

Variable bindings vector

Term stack Variant continuation

last_node
stack terms: 1

b

p(V0, f(V1), c)

p(V0, V1, b)

bindings: 2

X

Heap

...
Y
...

Trail stack

X heap addr
X enumerator
Y heap addr

Y enumerator

Figure 4.9: Variant continuation for subgoal p(X,f(Y),b).

4.2 Answer Templates

In a variant engine, the substitution factor [RRS+95] represents the variables which

exist in the terms of the argument registers. These variables are dereferenced when

inserting answers in an answer trie (for general calls) or bound to terms when con-

suming answers from an answer trie (for consumer calls). Figure 4.10 shows how a

substitution factor is constructed on the local stack associated with a generator choice

point. Note that the substitution factor size (2) in the example is also stored.

When using call by subsumption, the same factor is used for subgoals which do not

CHAPTER 4. TIME STAMPED TRIES 80

Generator
choice point

Local stack

2
X
Y

...

Heap

10
X
...
...
Y

11
12
13
14

...

Substitution
Factor

Figure 4.10: Substitution factor for p(X,f(Y)).

consume from more general subgoals, i.e., generator subgoals or variants of generator

subgoals. We call this type of substitution factor a generator answer template.

For subgoals with more general subgoals, subsumed subgoals or variants of subsumed

subgoals, the answer template must specialize the generator answer template from the

most general subgoal, and is called a consumer answer template. Consumer answer

templates have the exact same size of their corresponding generator answer templates

and instead of being composed only with variables, they can also include other types

of sub-terms.

Consider a generator subgoal p(X,f(Y)) and that the subgoal p(a,f(g(2,X))) is

then called. The corresponding answer template [a, g(2,X)] is derived by instanti-

ating the generator variables, X and Y, with the terms in the consumer subgoal (see

Figure 4.11).

Consumer
choice point

Local stack

2
a

STR 15

...

Heap

10
a
...
...

STR 15

11
12
13
14

...

g/2
2
X

15
16
17

Answer
Template

Figure 4.11: Consumer answer template for p(a,f(g(a,X))).

The construction of answer templates is done when searching the subgoal trie for a

more general goal. If no subsuming subgoal is found, then a generator answer template

is built. If a subsuming subgoal exists, then the found subgoal frame S can be either:

CHAPTER 4. TIME STAMPED TRIES 81

1. a generator subgoal frame: the answer template is built using the variable bind-

ings vector as shown in procedure construct answer template from lookup

(Figure 4.12);

2. a consumer subgoal frame: the answer template is reconstructed by using the

generator subgoal frame of S as we consume only from proper generators. The

procedure construct answer template from generator (Figure 4.13) builds

this answer template by matching new trie variables against terms from the

specific subgoal. It uses another stack, the symbol stack, to push the trie symbols

from the general subgoal path. The term stack is used to push the called subgoal

arguments that will be matched against the trie symbols. Note that when a

functor or list symbol appears on the symbol stack the current term is also

certainly a functor or list, because the called subgoal specializes the more general

subgoal.

construct_answer_template_from_lookup() {

total = 0

foreach (binding in variable_bindings_vector)

total++

answer_template[total] = binding

answer_template[0] = total

return answer_template

}

Figure 4.12: Pseudo-code for procedure construct answer template from lookup.

construct_answer_template_from_generator(subgoal_call, generator_sf) {

push_trie_path(symbol_stack, subgoal_trie_path(generator_sf))

push_arguments(term_stack, subgoal_call)

total = 0

while (!empty(term_stack))

term = deref(pop(term_stack))

symbol = pop(symbol_stack)

if (is_trie_var(symbol) and is_new_variable(symbol))

total++

answer_template[total] = term

else if (is_functor(symbol) or is_list(symbol))

push_arguments(term_stack, term)

answer_template[0] = total

return answer_template

}

Figure 4.13: Pseudo-code for procedure construct answer template from generator.

CHAPTER 4. TIME STAMPED TRIES 82

4.3 Time Stamped Answer Trie

A time stamped node extends an answer trie node with time stamp information. Each

node contains the following fields: symbol, child, parent, sibling and timestamp.

For implementation and algorithmic purposes, each node also needs a bit field, status,

that defines some node properties that will be described shortly.

Insertion of an answer S into a TST can be divided into two steps:

1. Finding a more general answer S ′ on the trie.

2. Inserting S if S ′ could not be found.

To implement step 1, we use the same algorithm described in Section 4.1 but now to

search for a more general answer or a repeated answer (i.e., a variant of S). If step 1

fails, step 2 then uses the variant continuation to resume the insertion of the answer

on the last node where the variant answer path was still expected to be found during

step 1.

subsumptive_answer_search(trie_root, ans_vector)

(path, leaf) = lookup_subsuming_call(trie_root, ans_vector) // step 1

if (path == NO_PATH)

// step 2

node = restore_variant_continuation()

leaf = tst_insert(trie_root, node)

return leaf

}

Figure 4.14: Pseudo-code for procedure subsumptive answer search.

The procedure subsumptive answer search (Figure 4.14) implements this process

and needs two arguments: the root of the answer trie trie root, and the answer as a

vector of terms, ans vector.

When a chain of sibling nodes becomes larger than a threshold value, we dynamically

index the nodes through a hash table to provide direct node access and therefore

optimize the search. Given that a hash table can have a large number of answer nodes

with different time stamp values, we maintain a reference to these nodes, in decreasing

order of their time stamp values in a double linked list called the time stamp index.

Besides the double linked list pointers, each index node contains a pointer to the

corresponding answer node and the value of its time stamp. Each answer node indexed

CHAPTER 4. TIME STAMPED TRIES 83

in the hash table has a different use for the timestamp field: instead of containing

a positive integer, contains a pointer to the respective index node. The trie node

field status distinguishes both cases. Figure 4.15 illustrates a hash table with a time

stamp index.

symbol: a

parent

sibling

timestamp

child

0

1

2

3

4

5

6

7

buckets: 8

nodes: 3

index_head

index_tail

bucket_array

symbol: 1
parent
sibling

timestamp
child

symbol: 12
parent
sibling

timestamp
child

symbol: 5
parent
sibling

timestamp
child

Time stamp index

previous
next

timestamp: 2
node

previous
next

timestamp: 1
node

previous
next

timestamp: 5
node

H
as

h
ta

bl
e

Figure 4.15: Indexing nodes through a hash table with time stamp indexes.

4.3.1 Inserting New Answers

Once the variant continuation is restored, the rest of the answer path can be inserted on

the trie starting from the restored node. Inserting is then a simple operation because

no checking for equal trie symbols is required. The first symbol will be inserted either

into: (1) a childless parent node (i.e., the trie root); (2) a parent node pointing to

a sibling chain list; (3) a parent node pointing to a hashed child node. Every other

CHAPTER 4. TIME STAMPED TRIES 84

symbols will be inserted on childless parents.

Procedure tst insert (Figure 4.16) does the job of inserting all the terms contained

in a stack of terms into the trie, starting from node. The difference between proce-

dures tst add symbol and tst insert symbol is that the former inserts symbols on

childless nodes and the later on nodes with children.

tst_insert(trie_root, node) {

symbol = process_term_stack(term_stack)

if (child(node) == NULL)

// inserting on the root

node = tst_add_symbol(node, symbol)

else if (is_hash_table(node))

node = tst_hash_table_add_symbol(node, symbol)

else

node = tst_insert_symbol(node, symbol)

// at this point, just add nodes on childless parents

while (!empty(term_stack))

symbol = process_term_stack(term_stack)

node = tst_add_symbol(node, symbol)

update_timestamps(trie_root, node)

return node

}

Figure 4.16: Pseudo-code for procedure tst insert.

The procedure process term stack pops a term from the term stack and converts

the term to a trie representation, which is usually called a symbol. If the term is a

functor or a list, the arguments are pushed into the stack of terms to be processed

next.

While appending a new node in a sibling list does not involve any time stamp indexing

(see Figure 4.17), inserting a new node into a hash table does, because hash tables

index nodes by time stamp. Figure 4.18 illustrates the insertion of a symbol (25)

and the creation of the respective index node. Note that the index head field was

changed to point to the new index node, which is always the node with the greatest

time stamp.

4.3.2 Updating Time Stamps

Once an answer is inserted, the time stamps must be updated. The time stamp for

the new answer is calculated by inspecting the time stamp of the trie root node. Next,

CHAPTER 4. TIME STAMPED TRIES 85

a

VAR1 2 f/1

3

VAR0

VAR0

ROOT

Figure 4.17: Inserting answer {VAR0,a,VAR0}.

Time stamp index

previous
next

timestamp: 2
node

previous
next

timestamp: 1
node

previous
next

timestamp: 5
node

previous
next

timestamp: 6
node

0

1

2

3

4

5

6

7

buckets: 8

nodes: 4

index_head

index_tail

bucket_array

symbol: 1
parent
sibling

timestamp
child

symbol: 12
parent
sibling

timestamp
child

symbol: 5
parent
sibling

timestamp
child

H
as

h
ta

bl
e

symbol: 25
parent
sibling

timestamp
child

Figure 4.18: Inserting a node into the hash table and updating the index.

we update the time stamps in the answer trie branch starting from the answer leaf

node to the root node.

If the current node is a hashed node with a time stamp index, the corresponding index

node is moved to the head of the index’s double linked list. We can test whether an

answer node is indexed by a hash table by inspecting its status field. Figure 4.19

contains the pseudo-code for procedure update timestamps.

When moving an index node N , the index head field of the hash table must be

CHAPTER 4. TIME STAMPED TRIES 86

update_timestamps(trie_root, leaf) {

new_timestamp = timestamp(trie_root) + 1

while (leaf != trie_root)

if (is_hashed_node_with_time_stamp_indexes(leaf))

// relocate index node

promote_entry(leaf, new_timestamp)

else

timestamp(leaf) = new_timestamp

leaf = parent(leaf)

timestamp(trie_root) = new_timestamp

}

Figure 4.19: Pseudo-code for procedure update timestamps.

updated to point to N . Moreover, if N was at the end of the chain, the index tail

field must be also updated to the previous field of N . Previous pointers of the next

node of N and the next pointer of the previous node of N must also be updated to

keep the chain consistent. Figure 4.20 illustrates the relocation of an index node, after

its time stamp be updated from 5 to 7.

Time stamped index

previous
next

timestamp: 2
node

previous
next

timestamp: 1
node

previous
next

timestamp: 7
node

previous
next

timestamp: 6
node

0

1

2

3

4

5

6

7

buckets: 8

nodes: 4

index head

index tail

bucket array

symbol: 1
parent
sibling

timestamp
child

symbol: 12
parent
sibling

timestamp
child

symbol: 5
parent
sibling

timestamp
child

H
as

h
ta

bl
e

symbol: 25
parent
sibling

timestamp
child

Figure 4.20: Promoting an index node.

CHAPTER 4. TIME STAMPED TRIES 87

4.3.3 Lazy Creation of Time Stamp Indexes

Time stamp indexes are only created when a consumer subgoal is first called. We must

iterate over all the hash tables present on the trie to create the time stamp index. To

efficiently locate all hash tables in an answer trie, we chain these hash tables using the

next field and the start of this chain is stored in the sibling field of the root node.

Creating the index for a hash table amounts to iterating over the hashed nodes and

orderly inserting new index nodes on the index chain. Later, when the subgoal

completes, the time stamp indexes can be thrown away to save space, because they

are only necessary during collection of relevant answers for consumer subgoals.

4.4 Collecting Relevant Answers

The process of collecting relevant answers for a consumer subgoal G from an answer

trie T of the generator subgoal G′, involves searching T for a set S of answers that

unify with the consumer answer template AT and are newer than the time stamp TS

stored in the consumer subgoal frame. After collection, TS is updated to the time

stamp of the root node of T , thus avoiding repeated answers in future iterations of the

algorithm. Collected answers are then appended to the list of answers of the consumer

subgoal frame, so that they can be reused in future calls of G.

Various data structures are used for this algorithm, namely:

• WAM data structures : the push down list (PDL), heap, trail, and associated

registers. The heap is used to build structured terms, in which the answer

template or trie variables are bound. Whenever a variable is bound, we trail

it using the WAM trail. The unify operation provided by the WAM is used to

check for term equality in structured terms;

• term stack : used to store the next terms to be processed as we navigate through

the time stamped trie T ;

• term log stack : when an unification fails, there is a need to backtrack to inspect

other alternative branches. This stack is used to store already processed terms

of the term stack, so they can be restored back during backtracking;

• variable bindings vector : stores the bindings for the trie variables;

CHAPTER 4. TIME STAMPED TRIES 88

• choice point stack : stores choice point frames, where each frame contains in-

formation needed to restore the computation in order to search for alternative

branches.

The pseudo-code for the algorithm is presented in Figure 4.21. The whole algorithm

can be summarized into eight steps:

1. Setup phase: setup term stack and WAM machinery.

2. Fetch a term T from the term stack;

3. Search for a node N at the current trie level that has a valid time stamp;

4. Search for the next valid node to be pushed on the choice point stack;

5. Unify T with the trie symbol of N ;

6. Proceed into the child of N or, if steps 3 or 5 fail, backtrack by popping a frame

from the choice point stack and use the alternative node to unify;

7. Once a leaf is reached, mark it as a new answer and possibly backtrack to retrieve

more answers.

8. If no more choice point frames exist, return the marked answers.

The setup phase pushes the answer template into the term stack and backups the

WAM registers. The trail register is set to the next free position of the WAM trail,

thus avoiding writing on frozen segments. Registers HB, H and TR are saved as they

will be manipulated and need to be restored to avoid any interference with the normal

WAM execution.

4.4.1 Choice Point Stack

The choice point stack stores alternative search branches to use upon backtracking.

Each stack frame (see Figure 4.22) stores the following fields: alt node, the alternative

node to explore; term stack top, the top of the term stack; term log stack top, the

top of the term log stack; trail top, the current trail position; and saved HB, the

register HB.

CHAPTER 4. TIME STAMPED TRIES 89

tst_collect_relevant_answers(trie_root, ts, answer_template) {

answers = NULL

push_terms(term_stack, answer_template)

save_wam_registers()

parent = trie_root

node = child(parent)

while_loop:

while (!empty(term_stack))

term = deref(pop(term_stack))

if (is_atom(term) or is_integer(term))

unify_node = unify_constant_term(term, node, ts)

else if (is_functor(term) or is_list(term))

unify_node = unify_structured_term(term, node, ts)

else if (is_variable(term))

unify_node = unify_variable_term(term, node, ts)

if (unify_node != NULL)

parent = unify_node

node = child(parent)

continue

else if (empty(choice_point_stack))

unwind_wam_trail()

restore_wam_registers()

return answers

else

node = pop_choice_point_frame(choice_point_stack)

parent = parent(node)

new_answer_found(parent, answers)

if (empty(choice_point_stack)

unwind_wam_trail()

restore_wam_registers()

return answers

node = pop_choice_point_frame(choice_point_stack)

parent = parent(node)

goto while_loop

}

Figure 4.21: Pseudo-code for procedure tst collect relevant answers.

The HB register serves the same purpose as the standard HB register in a WAM choice

point. During execution, the WAM’s HB register is compared against the value of H to

determine if a variable is conditional, that is, if a variable needs to be trailed, so that

when execution backtracks to a previous choice point we can reset variable bindings.

In our case, instead of executing WAM code, we unify a time stamped node, thus

the meaning of a conditional variable is extended to include the trie variables in the

variable bindings vector.

When a choice point frame is popped from the stack, the state of the computation is

CHAPTER 4. TIME STAMPED TRIES 90

alt_node

term_stack_top

term_log_stack_top

trail_top

saved_HB

Frame 0

Frame 1

Base

Top

Figure 4.22: Choice point stack organization.

resumed by executing the following actions:

• the current and parent nodes are reset;

• all terms stored in the term log stack are pushed back to the term stack;

• the trail is unwound to reset the variables that were bound after the choice point

creation;

• registers H and HB are also reseted to previous values.

4.4.2 Unification of Constant Terms

Once a trie node N is reached we must select the next trie node N ′ that unifies with

our term and has a valid time stamp. Node N can lead either to a simple node chain

or a hash table. With constant terms we can index the hash table to prune the search

space (procedure set match and unify chains in Figure 4.23) by using the match

bucket.

Because variables can unify with the constant term, there is a need to retrieve the

variable chain (from the variable bucket), which will be used as the alternative chain

to push on the choice point stack. We call this chain the unify chain. If the constant

is found on the match chain, the unify chain is used as alternative, but if no match

was found, the variable chain will be attempted next and, depending on the remaining

nodes, also be used as the backtracking alternative.

In Figure 4.23 we present the pseudo-code for procedure unify constant term. First,

we check for a hash table and inspect the match bucket using search chain exact match

(Figure 4.24). Next, if no match is found we execute search chain unify with constant

CHAPTER 4. TIME STAMPED TRIES 91

unify_constant_term(constant, node, ts) {

if (is_hash_table(node))

// retrieve the indexed and variable buckets

(match_chain, unify_chain) = set_match_and_unify_chains(constant, node)

if (match_chain != unify_chain)

node = search_chain_exact_match(constant, match_chain, unify_chain, ts)

if (node != NULL)

return node

// exact match failed

node = unify_chain

if (node == NULL)

return NULL

return search_chain_unify_with_constant(constant, node, ts)

}

Figure 4.23: Pseudo-code for procedure unify constant term.

search_chain_exact_match(term, match_chain, unify_chain, ts) {

foreach (node in match_chain)

if (term == symbol(node))

if (valid_timestamp(timestamp(node), ts))

push_choice_point_frame(choice_point_stack, next_valid_node(unify_chain, ts))

push(term_log_stack, term)

return node

else

return NULL

return NULL

}

Figure 4.24: Pseudo-code for procedure search chain exact match.

(Figure 4.25) on the unify chain. Otherwise, if no hash table is found, we would

consider the simple chain of sibling nodes as the unify chain and simply execute

search chain unify with constant on it.

When searching the unify chain, first we locate the next node with a valid time stamp

on the chain, that is, with the time stamp greater than our target time stamp. Next,

we dereference the node symbol by using trie deref, which returns a position on

the variable bindings vector if the node symbol is a trie variable, hence allowing trie

variables to be used as normal variables.

In case (1), a variable was found, which can be a position on the variable bindings

vector or a Prolog variable that was bound to a trie variable. Either way, we bind

the variable to the constant term, push a new choice point frame with the next

valid node, and return chain to be explored next. Please note that the procedure

bind and conditionally trail tests if the variable (first argument) is a conditional

variable and then trails it using the WAM trail.

CHAPTER 4. TIME STAMPED TRIES 92

search_chain_unify_with_constant(constant, chain, ts) {

chain = next_valid_node(chain, ts)

while (chain != NULL)

alt_chain = chain_next_valid_node(sibling(chain), ts)

symbol = trie_deref(symbol(chain))

if (is_variable(symbol)) // case (1)

push_choice_point_frame(choice_point_stack, alt_chain)

bind_and_conditionally_trail(symbol, constant)

push(term_log_stack, constant)

return chain

else if (symbol == constant) // case (2)

// exact match

push_choice_point_frame(choice_point_stack, alt_chain)

push(term_log_stack, constant)

return chain

else

chain = alt_chain

}

// case (3)

return NULL

}

Figure 4.25: Pseudo-code for procedure search chain unify with constant.

In case (2) the node symbol matches our constant and we simply push a new choice

point frame and advance into the next node.

Otherwise, if we could not found a valid trie node in the unify chain, we get into case

(3), and the choice point stack must be used to try alternatives.

As an example, let’s consider the time stamped trie in Figure 4.26a. The input answer

template is {a,b,b} and the target time stamp is 3.

We start on node n1, the root of the trie (Figure 4.26). The unify chain is composed

by nodes n2 and n3. Node n2 is discarded because its time stamp is invalid, but node

n3 has a valid time stamp and its symbol matches a (Figure 4.26b).

On node n3, only our first alternative, node n4, has a valid time stamp and, after

doing trie deref, we find an unbound variable, VAR0, which is represented by the

first position of the variable bindings vector. This variable is trailed and bound to b,

resulting in what is presented in Figure 4.26c.

On node n4, the unify chain is composed by nodes n5 and n6. Both have valid time

stamps (> 3). Node n5 is attempted first and easily unifies, because it is an unbound

trie variable. Leaf node n5 is our first answer (Figure 4.26d).

Now, we need to backtrack to collect more answers. The top choice point frame is

CHAPTER 4. TIME STAMPED TRIES 93

5

a

1

b

1

c

3

b

3

c

2

a

3

d

2

c

5

VAR0

5

VAR1

5

ROOT
n1

n2 n3

n4

n5 4

VAR0
n6

(a) Time stamped trie.

Trail Variable bindings
TR

Term stack

a

b

b

(b) At trie node n1.

Trail Variable bindings

b
TR

Term stack

b

(c) At trie node n4.

Trail Variable bindings

b

b
TR

Term stack

(d) New answer leaf node n5.

Trail Variable bindings

b

RESET
TR

Term stack

b

(e) Backtracking to node n6.

Trail Variable bindings

b
TR

Term stack

(f) New answer as the leaf node (f).

Trail Variable bindings

RESET
TR

Term stack

(g) Untrailing variables and returning.

Figure 4.26: Unification of answer template {a, b, b} with time stamp 3.

CHAPTER 4. TIME STAMPED TRIES 94

retrieved from the stack resulting in a variable being untrailed and the term b being

pushed into the term stack (Figure 4.26e).

In node n6 we dereference the trie variable VAR0 and get the constant term b, which

matches the target term. No binding or trailing is needed and we succeed in collecting

another relevant answer (Figure 4.26f).

As there are no more available choice points we need to untrail any bindings made

and return the answers found (Figure 4.26g), finishing the search.

4.4.3 Unification of Structured Terms

For structured terms, the unification process is similar to constant unification (Fig-

ure 4.27). First, we check if the current trie node is an hash table and then the match

and unify chains are computed. If the match chain contains a valid trie node, before

we descend into the child node we must push the functor or list arguments into the

term stack, so they can be unified with the next trie nodes.

unify_structured_term(term, node, ts) {

if (is_hash_table(node))

// retrieve the indexed and variable buckets

(match_chain, unify_chain) = set_match_and_unify_chains(term, node)

if (match_chain != unify_chain)

node = search_chain_exact_match(term, match_chain, unify_chain, ts)

if (node != NULL)

push_arguments(term_stack, term)

return node

// exact match failed

node = unify_chain

if (node is NULL)

return NULL

return search_chain_unify_with_structured_term(term, node, ts)

}

Figure 4.27: Pseudo-code for procedure unify structured term.

When using the unify chain (procedure search chain unify with structured term),

we also iterate the chain looking for valid time stamped nodes. For each valid node

four situations may arise (Figure 4.28):

1. The trie symbol is a variable, which is trailed and bound to the structured term;

2. The trie symbol is a structured term and matches our functor or list. The term

arguments are pushed into the term stack for unification;

CHAPTER 4. TIME STAMPED TRIES 95

3. We find a trie variable bound to a structured term. The WAM function unify

is executed to check for a match and perform additional unifications;

4. No match was found, the next alternative node is inspected.

search_chain_unify_with_structured_term(term, chain, ts) {

chain = next_valid_node(chain, ts)

while (chain != NULL)

alt_chain = next_valid_node(sibling(chain), ts)

symbol = trie_deref(symbol(chain))

if (is_variable(symbol)) // case (1)

push_choice_point_frame(choice_point_stack, alt_chain)

bind_and_conditionally_trail(symbol, term)

push(term_log_stack, term)

return chain

else if (is_functor(symbol) or is_list(symbol))

if ((is_functor(symbol(chain)) or is_list(symbol(chain))) and symbol == term)

// case (2)

push_choice_point_frame(choice_point_stack, alt_chain)

push(term_log_stack, term)

push_arguments(term_stack, term)

return chain

else if (unify(term, symbol)) // case (3)

// trie variable bound to a heap structured term

push_choice_point_frame(choice_point_stack, alt_chain)

push(term_log_stack, term)

return chain

else

chain = alt_chain

}

// case (4)

return NULL

}

Figure 4.28: Pseudo-code for procedure search chain unify with structured term.

Let’s consider the time stamped trie in Figure 4.29a and the following answer template:

{STR 3, STR 6, STR 9}. The target time stamp is 1.

Initially, at node n1, the term stack contains the full answer template and the variable

bindings vector is empty (Figure 4.29b). Here, only node n2 satisfies the time stamp

requirements (2 > 1).

Node (b) contains a trie variable and the current term is STR 3 or f(VAR). In this

situation, the variable bindings position for VAR0 is trailed and bound to STR 3

(Figure 4.29c).

Next, node n4 contains the symbol g/1 and the current term is STR 6 or g(b), which

matches. The argument b of g(b) is thus pushed into the term stack to be processed

CHAPTER 4. TIME STAMPED TRIES 96

Time stamped trie

1

a

2

VAR0

2

g/1

2

b

1

VAR0

1

VAR1

2

ROOT
n1

n2 n3

n4

n5

2

VAR0
n6

STR 3

f/1

REF 4

STR 6

g/1

b

STR 9

2

3

4

5

6

7

8

f/1

3

9

10

Heap

(a) Time stamped trie and heap.

Variable bindingsTerm stack

STR 3

STR 6

STR 9

(b) At node n1.

Variable bindings

STR 3

Term stack

STR 6

STR 9

(c) At node n2.

Variable bindings

STR 3

Term stack

b

STR 9

(d) At node n4.

Variable bindings

STR 3

Term stack

STR 9

(e) At node n5.

Variable bindings

STR 3

Term stack

STR 3

f/1

3

STR 6

g/1

b

STR 9

2

3

4

5

6

7

8

f/1

3

9

10

Heap

(f) At node n6.

Figure 4.29: Unification of answer template {f(X), g(b), f(3)} with time stamp 1.

CHAPTER 4. TIME STAMPED TRIES 97

in the next node (Figure 4.29d).

Then, node n5 has the symbol b, which matches with b from the term stack, and

execution proceeds to node n6 (Figure 4.29e).

At n6 we find a trie variable, which, after being dereferenced, contains the functor

f(VAR). The current term to be unified is f(3). In this situation we call unify, which

will try to unify both terms. The unification has the side effect of setting the heap

variable cell 4 to 3 (Figure 4.29f). This variable is conditional because it is positioned

before the register HB, which given the algorithm must be greater than 10.

4.4.4 Unification of Variable Terms

Variable unification is done when the next term to unify is a variable. In this case,

trie branches are only pruned by using the time stamp as variables can unify with

anything. Figure 4.30 presents the procedure unify variable term. In this function,

three situations may arise:

1. The current node is a hash table. In this situation we can select the next

transitions by using the time stamp index, which can efficiently prune based

on the time stamp. Notice that we visit a hash table only once, subsequent

backtracking uses the time stamp index nodes;

2. The current node is inside a hash table and thus indexed on the time stamp

index. The node is matched against the variable and the alternative node is

selected by following the index chain link;

3. Current node is a simple sibling chain. Both the chain and the alternative chain

are set by iterating over the node chain, looking for valid time stamps.

Once the chains are set, we create a new choice point, run the variable unification

algorithm and proceed into the next trie node. From the pseudo-code in Figure 4.31,

unification with a term variable is dictated by the type of trie symbol. It follows the

following rules:

• Constant: the term variable is bound to the symbol and conditionally trailed;

• Structured term: if the symbol was a trie variable bound to a term then we bind

the variable to the heap location; else, we create a new structure (functor or list)

CHAPTER 4. TIME STAMPED TRIES 98

unify_variable_term(variable, node, ts) {

if (is_hash_table(node))

// case 1: current node is a hash table

index = index_head(node)

if (timestamp(index) > ts)

node = node(index)

alt_chain = node(next_valid_index_node(index, ts))

else

return NULL

else if (is_hashed_node(node))

// case 2: current node is a hashed node and has a corresponding index node

// can only be here via backtracking

alt_chain = node(next_valid_index_node(index_node(node), ts))

else

// case 3: simple chain of siblings

node = chain_next_valid_node(node, ts)

if (node == NULL)

return NULL

alt_chain = sibling(node)

push_choice_point_frame(choice_point_stack, alt_chain)

push(term_log_stack, variable)

symbol = trie_deref(symbol(node))

return unify_with_variable(variable, symbol, node)

}

Figure 4.30: Pseudo-code for procedure unify variable term.

on the heap and bind the variable to it, resulting in a term with various heap

variables as arguments, which will be pushed into the term stack and will be

used in the next iterations of the algorithm;

• Variable: if the variable is a trie variable, we bind and trail it; if it is a heap

variable that was dereferenced from a trie variable using trie deref, unify

chooses the binding direction, resulting in one of the variables being trailed.

As an example, consider the trie and heap in Figure 4.32a. The input answer template

is {REF 2,REF 2, b} and the target time stamp is 2.

On root node n1, we start with the configuration presented in Figure 4.32b.

Node n2 is then the only valid transition, with time stamp 3. The functor f/1 is

unified against the variable REF 2, which results in the functor f/1 being created on

the heap and its argument (REF 5) being pushed into the term stack (Figure 4.32c).

The yet unbound functor argument matches atom a in node n4, resulting in the update

of the heap cell 5 (Figure 4.32d).

CHAPTER 4. TIME STAMPED TRIES 99

unify_with_variable(variable, symbol, node) {

if (is_constant(symbol))

bind_and_conditionally_trail(variable, symbol)

else if (is_functor(symbol) or is_list(symbol))

if (is_list(symbol(node)) or is_functor(symbol(node))

term = create_heap_structure(symbol)

bind_and_conditionally_trail(variable, term)

// push new structure arguments

push_arguments(term_stack, deref(variable))

else

// trie variable bound to a heap structure

bind_and_conditionally_trail(variable, symbol)

else if (is_variable(symbol))

if (is_trie_variable(symbol))

bind_and_trail(symbol, variable)

else

// two heap variables

unify(symbol, variable)

else

return NULL

return node

}

Figure 4.31: Pseudo-code for procedure unify with variable.

Now on the term stack we have REF 2, which dereferences to a structure on cell 4,

and on node n5 we have the unbound trie variable VAR0, that gets bound to STR 4

(Figure 4.32e).

Finally, the last term on the term stack is b, which can not be matched against a on

node n6, hence no relevant answers are found on this trie.

CHAPTER 4. TIME STAMPED TRIES 100

Time Stamped Trie

1

a

3

f/1

3

a

3

VAR0

1

VAR0

1

VAR1

3

ROOT
n1

n2 n3

n4

n5

3

a
n6

REF 2

Heap

b

2

3

4

5

6

7

(a) Time stamped trie and heap.

REF 2

Heap

b

2

3

4

5

6

7

REF 2

REF 2

b

Term Stack Variable Bindings

(b) At node n1.

STR 4

Heap

b

f/1

REF 5

2

3

4

5

6

7

REF 5

REF 2

b

Term Stack Variable Bindings

(c) After unifying with node n2.

STR 4

Heap

b

f/1

a

2

3

4

5

6

7

REF 2

b

Term Stack Variable Bindings

(d) After unifying with node n4.

STR 4

Heap

b

f/1

a

2

3

4

5

6

7

b

Term Stack

STR 4

Variable Bindings

(e) After unifying with node (e).

Figure 4.32: Unification of answer template {REF 2, REF 2, b} with time stamp 2.

CHAPTER 4. TIME STAMPED TRIES 101

4.5 Consuming Answers

Each consumer subgoal frame stores a linked list with all the answers collected during

evaluation. This list is built incrementally and whenever a consumer choice point

exhausts its answer list, the retrieval of new relevant answers is attempted in order to

reflect the answers generated in the meantime by the generator subgoal.

While the retrieval of relevant answers is done in one step by searching the answer

trie and pruning branches by time stamp and unification failure, the consumption of

answers is done by consuming one answer at a time and is completely separated from

the collection phase.

Consider an answer A with a trie path from a leaf node L to the trie root R. Consuming

A amounts to unifying the symbols on the trie path to the answer template AT that

was built for the consumer choice point. In such a way that, in the end, the variables

on AT match the answer on the trie.

As we are certain that A unifies with AT , consumption is reduced to an unification

operation between AT and the trie nodes from L to R. Implementation wise, we use

the term stack that is initially pushed with AT and a symbol stack containing symbols

from L to R. Then, we proceed by iteratively popping one term from the term stack

and one symbol from the symbol stack and unifying one against the other.

In Figure 4.33, we present an example showing the data structures involved in consum-

ing a subsumptive answer. The subsumptive subgoal is p(X,Y,Z) and the subsumed

subgoal is p(d,f(X),3). The answer to consume is p(d,f(a),3), which corresponds

to the substitution {X = a}.

p(X,Y,Z) Answer Trie

d

ROOT

f/1

a

3

VAR0

b

Answer p(3,f(a),3)

Answer Template

3

d

STR 14

Consumer Choice
Point

3

d

Heap

STR 14

f/1

REF 15

3

12

13

14

15

15

17

Local Stack

Symbol Stack

d

f/1

a

3

Term Stack

d

STR 14

3

Figure 4.33: Data structures related to answer consumption.

CHAPTER 4. TIME STAMPED TRIES 102

4.6 Compiled Tries

After an answer trie is completed, we can optimize the process of consuming answers

from a complete subgoal by annotating each trie node with a trie instruction. This

optimization technique is called compiled tries [RRS+99].

Compiled tries are based on the observation that all common prefixes of the terms

in a trie are shared during execution of trie instructions. Thus, when backtracking

through the terms of a trie, each transition is taken at most only once.

In Figure 4.34, we represent a compiled answer trie for the subgoal p(X,Y,Z). Notice

that each node is extended with an instruction field. The instruction set follows the

standard WAM instruction style with try, retry and trust. On a sibling chain, the left-

most nodes are marked with try instructions and middle nodes with retry instructions.

Rightmost nodes use trust instructions, while single nodes use do instructions.

retry_atom

a

try_struct

f/1

do_atom

a

do_var

VAR0

do_var

VAR0

do_val

VAR0

ROOT

do_atom

a

trust_atom

b

do_atom

d

do_int

3

p(X, Y, Z)

Figure 4.34: A compiled trie for subgoal p(X,Y,Z).

A try instruction creates a new WAM choice point pointing to the sibling node, while

retry instructions change the previous choice point to point to the next sibling node,

thus enabling us to navigate to new trie branches while backtracking. The trust

instruction removes the choice point as no more siblings are available. Finally, do

instructions do not create choice points as no backtracking options are available.

In a variant tabling engine, each trie instruction just binds each variable on the

substitution factor to a term. On structured terms, like functors or lists, the term

CHAPTER 4. TIME STAMPED TRIES 103

is first built on the heap and then bound to the current variable, while the unbound

arguments are then passed into the next trie levels to be instantiated.

In XSB Prolog, time stamped tries are used to evaluate subsumed subgoals while the

subsuming subgoal is incomplete, thus providing incremental retrieving of answers.

When a subgoal G completes, the engine uses the compiled answer trie from G to

evaluate a subsumed subgoal G′, instead of loading each individual answer. Not all

answers of from G will be relevant to G′, thus we must prune irrelevant paths through

the process of unification.

Some modifications are thus required to use compiled tries in subsumptive tabling.

First, instead of using the substitution factor when running compiled code, we use the

answer template. Next, each instruction must now do unifications instead of simple

bind operations, because in addition to unbound variables, these instructions can also

receive instantiated terms. Finally, while each instruction succeeds when running

with the substitution factor of the generator subgoal, for subsumed subgoals some

instructions can fail, because not every answer will be relevant, hence will not unify

with the answer template. The unification operations applied on each trie node are

similar to the unifications done while collecting relevant answers in time stamped tries

(Section 4.4).

Variant engines like YapTab collapse each hash table into a chain of nodes before com-

piling the trie. While this technique makes sense for a variant engine, in subsumptive

engines having hash tables helps the unification process by enabling fast search of

instantiated terms. If we had a very long sibling chain, locating a specific term would

have a linear time complexity, while hash tables provide O(1) search complexity. Thus,

instead of removing hash tables, they must be kept on a subsumptive tabling engine.

To use the hash tables, we must extend the trie instruction set with a new instruction,

the do hash instruction (Figure 4.35).

When the next term to unify is instantiated, we first lookup the bucket for this term

and execute the code of the bucket chain. But periodically, we store a choice point

that will execute code from the variable bucket, because variables can unify with any

term.

If the term is a variable, we must visit every trie node in the hash table. This is done

by storing a choice point that keeps the next hash bucket to be executed.

CHAPTER 4. TIME STAMPED TRIES 104

VAR BUCKET

MATCH BUCKET

0

1

2

3

4

5

6

7

buckets: 8

nodes: 4

index head

index tail

bucket array

symbol: 1
parent
sibling

timestamp
child

symbol: 12
parent
sibling

timestamp
child

Hash table

symbol: VAR0
parent
sibling

timestamp
child

symbol: VAR1
parent
sibling

timestamp
child

do_hash

try_val trust_val

try_int trust_int

Figure 4.35: Compiled hash table.

4.7 Call Subsumption in YapTab

Our first attempt to extend the variant YapTab engine to support call by subsumption

involved importing the subsumption related algorithms and data structures described

in the previous sections from XSB Prolog into Yap Prolog. These algorithms were

imported as faithful as possible, hence very little modifications were made as C macros

were used to translate the original code to YapTab. Sections of code specific to XSB

Prolog or Yap Prolog were protected with conditional compilation, thus enabling both

Prolog systems to use the same code.

In this section we will describe in more detail the modifications made to the following

components of YapTab: tabled data structures, tabling operations and compiled tries.

4.7.1 Data Structures

This section describes the modifications and extensions made to existent data struc-

tures in order to implement call subsumption.

CHAPTER 4. TIME STAMPED TRIES 105

4.7.1.1 Table Entry

Each table entry contains a bit field called mode flags which stores information about

the behavior of the corresponding tabled predicate. The original YapTab supports

the following mutually exclusive flags: batched / local, for defining the scheduling

strategy; and load answers / exec answers, the later makes the engine to use

compiled tries, while the first forces the engine to load a completed table by loading

answers individually.

Two new mutually exclusive flags were created: variant, which forces the predicate

to use variant tabling and subsumptive to use subsumptive tabling.

4.7.1.2 Trie Nodes

YapTab uses two types of trie nodes: subgoal trie nodes, for subgoal tries; and answer

trie nodes, for answer tries. In terms of hash tables, the same data structures are

used for both subgoal and answer hash tables. Both answer and subgoal trie nodes

were extended with a status bit field and the answer trie nodes were extended with

a timestamp field in order to create a time stamped trie from the standard answer

trie. The status bit field is used to identify the type of trie node, i.e., if it is a hash

table, a leaf node or a hashed node. For hash tables, we extended the answer hash

table with the time stamp indexes to create the time stamped hash table. The index

data structure was integrally copied from XSB Prolog.

4.7.1.3 Subgoal Frames

The subgoal frame structure in YapTab is a main component of the table space. It

contains the following fields: answer trie, a pointer to the answer trie; state, the

state flag; first answer and last answer, as the answer return list; next, a pointer

to the next executing subgoal; and generator cp, which points to the generator choice

point.

Two new kinds of subgoal frame were created: the subsumptive generator subgoal

frame and the subsumed consumer subgoal frame.

The subsumptive generator subgoal frame extends the original variant subgoal frame

with the field consumers. This field points to a consumer subgoal frame and works as

a chain link to the subsumed subgoal frames of the generator subgoal.

CHAPTER 4. TIME STAMPED TRIES 106

The subsumptive consumer subgoal frame does not extend the variant subgoal frame,

because some variant fields are not needed. The consumer frame contains the follow-

ing fields: state, the state of execution; generator, a pointer to the subsumptive

generator subgoal frame; consumer cp, a pointer to the first consumer choice point;

first answer and last answer, as the answer return list; ts, the consumer time

stamp; next, a pointer to the next evaluating consumer subgoal frame; a pointer to

the answer template built on the heap called answer template; and consumers, to

link consumer subgoals of the generator subgoal frame.

Each subgoal frame was also extended with a type field, which identifies the subgoal

frame type. The variant subgoal frame now uses an answer return list instead of using

the child field of each trie node to link answers.

Figure 4.36 illustrates a subgoal trie for the predicate p/2 with the following subgoals:

p(X,Y), as a generator subgoal; and p(2,X) and p(3,X) as consumer subgoals.

p/2 table entry

ROOT

VAR0

VAR1

2

VAR0

3

VAR0

type: generator
state: evaluating

first_answer
last_answer

next
answer_trie

generator_cp
consumers

Producer Subgoal

type: consumer
state: evaluating

first_answer
last_answer

ts: 2

generator
cons_cp

answer_template

Consumer Subgoal

consumers

type: consumer
state: evaluating

first_answer
last_answer

ts: 1

generator
cons_cp

answer_template

Consumer Subgoal
consumers

nextnext

Figure 4.36: Subgoal trie with a subsumptive generator and two subsumed consumer

subgoal frames.

CHAPTER 4. TIME STAMPED TRIES 107

4.7.2 Tabled Subgoal Call

The tabled subgoal call operation is one of the four main tabling operations. In

YapTab, if a subgoal call is already on the table space, a new consumer node is

allocated and the execution runs the answer resolution operation, in order to consume

answers. Otherwise, a new generator node is allocated and the subgoal code is

executed.

Figure 4.37 presents the pseudo-code for the original tabled subgoal call operation. In

the consumer case, we use the find dependency node and find leader node proce-

dures to locate the leader node for this consumer. The function find dependency node

returns the choice point of the generator node for this subgoal, while find leader node

iterates the dependency space between dependency and the new dependency frame for

this consumer, to locate a dependency frame in which the leader is outside this range.

If no such dependency frame exists, the leader node is set as the generator choice point

found in find dependency node, else we use the leader of the dependency frame that

satisfied the previous condition [Roc01].

tabled_subgoal_call(table_entry, arguments) {

subgoal_frame = subgoal_search(subgoal_trie(table_entry), arguments)

if (state(subgoal_frame) == READY)

// new generator

store_generator_node(table_entry, arguments, subgoal_frame)

jump_to_predicate_code()

else if (state(subgoal_frame) == EVALUATING)

// new consumer

dependency = find_dependency_node(subgoal_frame)

leader = find_leader_node(subgoal_frame, dependency)

store_consumer_node(table_entry, subgoal_frame, leader)

jump_to_answer_resolution()

else

// subgoal is completed

if (state(answer_trie(subgoal_frame)) != COMPILED)

compile_answer_trie(answer_trie(subgoal_frame))

execute_answer_trie(answer_trie(subgoal_frame))

}

Figure 4.37: Pseudo-code for the original tabled subgoal call operation.

The new YapTab engine extends the tabled subgoal call operation to deal with either

subsumptive and variant subgoals, and if a predicate uses call by subsumption, we call

the subsumptive subgoal search procedure (Figure 4.38) to look on the subgoal trie

for subsuming subgoals. If no subsuming path is found, we insert the subgoal path on

the subgoal trie and create a new generator subgoal frame. If some path is found and

CHAPTER 4. TIME STAMPED TRIES 108

the subgoal frame is a generator it can be either a variant of our subgoal or a more

general subgoal. For both cases we use construct answer template from lookup,

which constructs the right answer template for us. If the found subgoal frame is a

consumer, we must consume from its generator and reconstruct the answer template

by using the generator trie path. Consumer trie paths are only constructed when the

generator subgoal frame is still evaluating. When the generator is completed, we just

execute the compiled trie, so there is no need to create a consumer subgoal frame.

subsumptive_subgoal_search(table_entry, arguments) {

(path, leaf) = lookup_subsuming_call(subgoal_trie(table_entry), arguments)

if (path == NO_PATH)

leaf = insert_with_variant_continuation(subgoal_trie)

local_stack = construct_answer_template_from_insertion(local_stack)

return create_generator_subgoal_frame(leaf)

else

found_sf = subgoal_frame(leaf)

if (type(found_sf) == SUBSUMPTIVE_GENERATOR)

subsumer_sf = found_sf

local_stack = construct_answer_template_from_lookup(local_stack)

else

subsumer_sf = generator(found_sf)

local_stack = construct_answer_template_from_generator(subsumer_sf, local_stack)

if (path_type == VARIANT_PATH)

return found_sf

// subsumptive path

if (state(subsumer_sf) == EVALUATING)

// create variant path

leaf = insert_with_variant_continuation(subgoal_trie)

copy_answer_template_to_heap(local_stack)

return create_consumer_subgoal_frame(leaf, subsumer_sf)

else

return subsumer_sf

}

Figure 4.38: Pseudo-code for procedure subsumptive subgoal search.

When a consumer subgoal frame is created we make a structural copy of the answer

template into the heap. A structural copy is made by recursively copying structured

terms (functors and lists) and by making integral copies of constant terms. For

variables, we create a new variable on the heap for each variable on the local stack,

in such a way that no references exist between the two answer templates. Figure 4.39

illustrates a structural copy of the answer template {X, f(a)} between the local stack

and the heap.

CHAPTER 4. TIME STAMPED TRIES 109

The answer template on the heap will be used as an argument to the algorithm that

collects relevant answers from the generator answer trie. Each consumer subgoal frame

has just one copy of the answer template on the heap, while each consumer node uses

its own answer template built on the local stack to consume answers, because it

references variables and terms from the arguments.

Consumer
choice point

Local stack

2
REF 11
STR 13

...

Heap

10
REF 11
STR 13

f/1
a

...

... 15
2

REF 17
STR 19

f/1

Structural
copy

a
...

Answer
Template

Figure 4.39: Making a structural copy of the answer template {X, f(a)}.

The field consumer cp of the consumer subgoal frame is set to point to the first call

of the consumer subgoal and will be used to access the value of H stored on the choice

point. This value of H points to the top of the heap during the choice point creation

which corresponds to the answer template copied before. The field answer template

points to H and is used to avoid accessing the choice point, thus it must be recalculated

during garbage collection.

YapTab thus differs from SLG-WAM [Joh00] where a non-structural copy of the answer

template is built on the heap for each consumer node. A non-structural copy is

made by making references from the heap to the terms on the heap. Figure 4.40

illustrates a non-structural copy of the answer template {X, f(a)}. While making

non-structural copies is faster than doing structural copies, collecting relevant answers

can, potentially, involve more environment switching, because we must reconstitute

the environment of the consumer to ensure that the answer template is valid, which

involves using the trail to unbind and/or rebind variables. Our approach has the

disadvantage of making structural copies, but only one copy is done and there is no

need to invoke the algorithm within the environment of the subsumed call.

Other modifications were applied to the tabled call operation in order to abstract some

details about variant and subsumptive tabling. Figure 4.41 shows the updated tabled

CHAPTER 4. TIME STAMPED TRIES 110

Consumer
choice point

Local stack

2
REF 11
STR 13

...

Heap

10
REF 11
STR 13

f/1
a

...

... 15
2

REF 11
STR 13

...

Non-structural
copy

Figure 4.40: Making a non-structural copy of the answer template {X, f(a)}.

subgoal operation.

tabled_subgoal_call(table_entry, arguments) {

subgoal_trie = subgoal_trie(table_entry)

if(mode_flags(table_entry) == VARIANT)

subgoal_frame = variant_subgoal_search(subgoal_trie, arguments)

else

subgoal_frame = subsumptive_subgoal_search(subgoal_trie, arguments)

if (is_new_generator_call(subgoal_frame)) // CHANGED

store_generator_node(table_entry, arguments, subgoal_frame)

jump_to_predicate_code()

else if (is_new_consumer_call(subgoal_frame)) // CHANGED

dependency = find_dependency_node(subgoal_frame)

leader = find_leader_node(subgoal_frame, dependency)

store_consumer_node(table_entry, subgoal_frame, leader)

// NEW

if ((type(subgoal_frame) == SUBSUMED_CONSUMER) and (state(subgoal_frame) == READY))

recompute_answer_template(subgoal_frame)

consumer_cp(subgoal_frame) = B

add_to_consumer_stack(subgoal_frame)

jump_to_answer_resolution()

else

// subgoal is completed

if (state(answer_trie(subgoal_frame)) != COMPILED)

compile_answer_trie(answer_trie(subgoal_frame))

execute_answer_trie(answer_trie(subgoal_frame))

}

Figure 4.41: Pseudo-code for the new tabled subgoal call operation.

The function is new generator call (Figure 4.42) inspects the found subgoal frame

in order to tell if a new generator node must be allocated. For call by subsumption,

a new generator is allocated whenever a variant subgoal is not found on the trie and

the resulting subgoal frame is a generator.

CHAPTER 4. TIME STAMPED TRIES 111

is_new_generator_call(subgoal_frame) {

if (type(subgoal_frame) == VARIANT or type(subgoal_frame) == SUBSUMPTIVE_GENERATOR)

// must be a first call to either a variant or subsumptive generator subgoal

return state(subgoal_frame) == READY

// consumer subgoal are not generator calls

return FALSE

}

Figure 4.42: Pseudo-code for function is new generator call.

The function is new consumer call (Figure 4.43) decides that a consumer node must

be allocated when:

1. The subgoal frame is variant or generator and is currently being evaluated;

2. Or, the subgoal frame is consumer and the generator subgoal is still evaluating.

is_new_consumer_call(subgoal_frame) {

if (type(subgoal_frame) == VARIANT or type(subgoal_frame) == SUBSUMPTIVE_GENERATOR)

// equal to the old tabled subgoal operation

// but also considering subsumptive generator calls

return state(subgoal_frame) == READY

// consumer subgoal frames

return state(generator(subgoal_frame)) == EVALUATING

}

Figure 4.43: Pseudo-code for function is new consumer call.

Another important change involves calculating the leader node of a subsumptive

consumer node. Surprisingly, only the algorithm to find the dependency node must

be altered, as the dependency node of a subsumed consumer is the generator choice

point of the generator subgoal frame (Figure 4.44).

find_dependency_node(subgoal_frame) {

if (type(subgoal_frame) == VARIANT or type(subgoal_frame) == SUBSUMPTIVE_GENERATOR)

return generator_cp(subgoal_frame)

else

return generator_cp(generator(subgoal_frame))

}

Figure 4.44: Pseudo-code for the new find dependency node procedure.

If the subsumed subgoal is called for the first time, we copy the answer template to the

heap and the consumer cp is made to point to the current choice point. The subgoal

CHAPTER 4. TIME STAMPED TRIES 112

frame is also pushed into the consumer subgoal frame stack in order to be completed

in the completion operation (see next section for more details).

4.7.3 Answer Resolution and Completion

The tabling operations answer resolution and completion both check if a given con-

sumer node has unconsumed answers. The completion operation iterates over the

dependency space to look for consumer nodes with unconsumed answers and the

answer resolution operation attempts to consume the next answer of a consumer and

also iterates over the dependency space in order to run the completion algorithm.

In order to abstract away if a consumer node has answers to consume, we created a

function that distinguishes between both variant and subsumptive cases (Figure 4.45).

The function accepts a dependency frame (note that there is a dependency frame for

each consumer node) and returns an answer continuation. An answer continuation is

represented by a pointer to a linked list with two fields: answer, the answer itself; and

next, which points to the next element of the list, if any.

With subsumed consumer nodes we first verify if the answer return list of the consumer

subgoal frame contains more answers from the saved continuation. If there is any, we

return the next answer from this list and consume it. If the list has no more answers,

we inspect if the consumer time stamp is equal to the generator time stamp, which

means that no new answers were generated for the general subgoal. On the other

hand, if new answers are available, we run tst collect relevant answers to collect

any relevant answers for this consumer that can be appended into the answer return

list and returned for consumption. In any case, the time stamp of the consumer is

thus updated to avoid collecting repeated answers in future iterations. Remember

that once a single consumer node collects newer answers, every consumer node of a

subsumed subgoal will see them, thus enabling sharing of answers among the consumer

nodes. Note that in order to run this algorithm, the dependency frame data structure

was extended with a new sg fr field.

Figure 4.46 presents the new completion operation, using the devised abstractions.

Once a generator subgoal completes we must mark each subgoal that appears under

the SCC as complete. Hence, some modifications must be made to complete subsumed

consumer subgoal frames.

In YapTab each variant subgoal frame is stacked into the subgoal frame stack during

CHAPTER 4. TIME STAMPED TRIES 113

get_next_answer_continuation(dependency_frame) {

sg_fr = sg_fr(dependency_frame)

last_continuation = last_answer(dependency_frame)

next_continuation = next(last_continuation)

if (type(sg_fr) == VARIANT or type(sg_fr) == PRODUCER)

return next_continuation

// subsumed consumer subgoal frame case

if (next_continuation != NULL)

// no need to collect answers from the generator’s answer trie

// as answers are still available on the answer return list

return next_continuation

// must collect new available answers, if any

consumer_ts = timestamp(sg_fr)

generator = generator(sg_fr)

generator_ts = timestamp(answer_trie(generator))

if (generator_ts == consumer_ts)

return NULL

// collect answers

answer_list = tst_collect_relevant_answers(answer_trie(generator),

consumer_ts, answer_template(sg_fr))

timestamp(sg_fr) = generator_ts

if (answer_list != NULL)

append_return_list(sg_fr, answer_list)

return answer_list

}

Figure 4.45: Pseudo-code for function get next answer continuation.

execution. The top of the stack can be accessed by using TOP SG FR. On completion,

the subgoal frame stack is iterated until the leader subgoal frame is reached. We used

this stack to complete both variant and subsumptive generator subgoal frames.

Subsumed consumer subgoal frames are pushed into a stack called consumer subgoal

frame stack. During completion, the subgoal frames with a consumer choice point

younger than the completion point are completed. Figure 4.47 illustrates the subgoal

frame stack, the consumer subgoal frame stack and the dependency space.

Some data structures, like the time stamp indexes, are deleted during completion from

the subsumptive generator subgoal frames.

CHAPTER 4. TIME STAMPED TRIES 114

completion(generator) {

if (is_leader_node(generator))

df = TOP_DEP_FR

while (younger_than(consumer_cp(df), generator))

cont = get_next_answer_continuation(dep_fr) // CHANGED

if (cont)

// unconsumed answers

back_cp(df) = generator

consumer = consumer_cp(df)

restore_bindings(CP_TR(generator), CP_TR(consumer))

goto answer_resolution(consumer)

df = next(df)

perform_completion()

adjust_freeze_registers()

backtrack_to(CP_B(generator))

}

Figure 4.46: Pseudo-code for the new completion operation.

p(X,Y)

Dependency
Space

p(2,X)

p(3,X)

Ti
m

e
of

 C
re

at
io

n

p(2,X)

p(3,X)

Subgoal Frame
Stack

Consumer
Subgoal Frame

Stack

Figure 4.47: Subsumptive generator and consumers before completion.

4.7.4 Compiled Tries

YapTab also implements the compiled tries optimization, but as described in Section

4.6 we needed to change each trie instruction to do unification instead of simple variable

binding.

Another important modification was the hash instructions. Two new instructions were

implemented: trie do hash and trie retry hash. The instruction trie do hash is

executed once a hash table node is reached. If the next term to unify is a variable

(case 1) each hash bucket will be executed, if it is an instantiated term (case 2) the

indexed bucket will be executed first, followed by the variable bucket.

We use a hash choice point (hash choice pt) to execute each bucket. For instantiated

CHAPTER 4. TIME STAMPED TRIES 115

terms, the hash choice point is only allocated when both variable and indexed bucket

exist and are different. For variables, the choice point is always stored. The instruction

set to execute upon backtracking is trie retry hash.

An hash choice point is an WAM choice point extended with two new fields: last bucket

and final bucket. The field last bucket points to the last executed bucket on case

1 or the variable bucket for case 2. The second field, final bucket, helps differentiate

between case 1 and 2, as in case 2 its value is NULL. In case 1 points to the final hash

table bucket, hence it is easy to know when to remove the choice point.

4.8 Chapter Summary

This chapter throughly explained the algorithms and data structures behind the Time

Stamped Tries technique to implement call by subsumption in a tabling engine. We

discussed how the answer trie was extended with time stamp information and explained

the need for a time stamp index to efficiently collect relevant answers for subsumed

subgoals.

We discussed how the YapTab engine was extended with the Time Stamped Tries

mechanisms to provide tabling by call subsumption. We also showed how the core

algorithms in YapTab were minimally affected.

In the next chapter, we will present a new tabling extension called Retroactive Call

Subsumption (RCS), that improves upon call subsumption by enabling bidirectional

sharing of answers, that is, answers will be shared even if a subsumed subgoal is called

before a subsuming subgoal.

116

Chapter 5

Retroactive Call Subsumption

This chapter explores the concept of Retroactive Call Subsumption (RCS). RCS enables

full sharing of answers among subsumptive subgoal calls, independently of the order

they are called.

We start by introducing the motivation behind RCS by illustrating the shortcomings

of traditional call subsumption mechanisms. Next, we present the concepts introduced

by RCS and how execution rules are extended to support retroactive-based tabling.

Other extensions are then discussed, namely: the new table space organization based

around the ideas of the common global trie proposal [CR08] and the algorithm to

traverse the subgoal trie to search for subsumed subgoals. Finally, we give some extra

details about the implementation of this new extension in the YapTab system.

5.1 Motivation

In traditional call subsumption, a new call to the subgoal G is considered a generator

subgoal when it is called for the first time and a more general subgoal G′ is not found

on the subgoal trie. When G′ exists, G is considered a consumer subgoal and a new

consumer node is allocated to consume answers from the subsuming subgoal G′.

Consider two subgoals, p(X,1,2) and p(X,1,Z), and that subgoal p(X,1,2) is called

first, followed by p(X,1,Z). When p(X,1,2) is called, it is considered a generator

subgoal as no subgoals exist on the subgoal trie. The subgoal p(X,1,Z) is also

considered a generator, because p(X,1,2) does not subsume p(X,1,Z). However, If

the call order is swapped, p(X,1,Z) is still considered a generator subgoal, but now

117

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 118

p(X,1,2) finds p(X,1,Z) as a subsuming subgoal on the subgoal trie, and thus it is

considered a consumer subgoal.

While call subsumption provides good results in terms of memory usage and execution

time, it suffers from a major problem: the order in which the subgoals are called

can greatly affect the performance and applicability of the technique. To solve this

problem, we introduce a new mechanism, called Retroactive Call Subsumption (RCS),

that retroactively modifies active tabled nodes in order to enable full sharing of

answers between subsuming and subsumed subgoals, independently of the order they

are called. Please notice that retroactive-based tabling is only applicable if using a

batched scheduling strategy (see Section 2.2.3 for more details about tabling scheduling

strategies).

5.2 General Idea

The key idea of Retroactive Call Subsumption is to stop the computation of the sub-

sumed subgoals that are currently running, by transforming those generator subgoals

into consumer subgoals. Thus, instead of generating their own answers by means of

program resolution, they will consume answers from the more general subgoal that

has been called.

When a generator subgoal G executes, an arbitrary number of choice points directly

related to G can be created to compute G’s answers. Therefore, when G is to be

transformed into a consumer subgoal, we must selectively prune the parts of the

computation that are related to G and transform G’s generator choice point in such a

way that it will consume answers from the new generator subgoal, instead of generating

its own answers. Pruning the computation of G can thus potentially save execution

time as G no longer properly executes but consumes answers from the more general

subgoal.

Consider the program in Figure 5.1 that uses RCS and the query goal ‘a(X), p(Y,Z)’.

The goal a(X) starts by calling p(1,X), which succeeds with the answer {X = 3}. By

following forward execution, p(Y,Z) is called in the continuation and it then verifies if

any subsumed subgoal is currently running (Figure 5.2a). It finds p(1,X) and thus it

marks this subgoal frame as a consumer subgoal frame that will consume from p(Y,Z).

In order for p(1,X) to act as a consumer, its generator choice point is transformed

into a retroactive choice point, which amounts to update the continuation alternative

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 119

(CP AP choice point field) to a pseudo-instruction called retroactive resolution, which

implements the needed mechanisms to control the evaluation of a retroactive node

(Figure 5.2b).

:- use_retroactive_tabling p/2.

a(X) :- p(1, X).

p(1, 3).

p(2, 3).

p(1, 2).

Figure 5.1: An example of a program using retroactive tabling.

Next, p(Y,Z) continues execution and a new answer is generated, {Y = 1, Z = 3}.
By means of backtracking, all answers for p(Y,Z) are generated and the subgoal

completes. Execution then returns to the retroactive choice point of p(1,X) and

retroactive resolution is employed. As the generator subgoal p(Y,Z) has already

completed, p(1,X) can be turned into a loader node in order to consume all the

new matching answers found by p(Y,Z). In this case, the only matching answer is

{X = 2} (Figure 5.2 (c)). Note that a retroactive node can be transformed into other

types of nodes, as it will become clear in the next sections.

?- a(X), p(Y, Z)

p(1, X), p(Y, Z)

p(Y, Z)

X = 3

...

a(X)

p(1, X)

p(Y, Z)

Internal

Generator

Generator

Choice Point Stack ?- a(X), p(Y, Z)

p(1, X), p(Y, Z)

p(Y, Z)

X = 3
...

a(X)

p(1, X)

p(Y, Z)

Internal

Retroactive

Generator

Choice Point Stack

?- a(X), p(Y, Z)

p(1, X), p(Y, Z)

p(Y, Z)

X = 2

a(X)

p(1, X)

Internal

Loader

Choice Point Stack

p(Y, Z) Loader

(a) (b)

(c)

Figure 5.2: Evaluating ‘a(X), p(Y,Z)’ using retroactive tabling.

The previous example has illustrated one special type of pruning called external

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 120

pruning. External pruning occurs when the subsuming subgoal G′ is an external

subgoal to the evaluation of the subsumed subgoal G. Another type of pruning is

called internal pruning and happens when G′ is an internal subgoal to the evaluation

of G, that is, G′ is called as a part of the evaluation of G. Although these two basic

types of pruning can derive any other situation, they both must deal with the same

issues related to pruning. These issues will be explored in detail in the next section.

5.3 Retroactive Pruning

When pruning parts of the computation, we must know the areas of the local stack that

contain the choice points to prune. Given the nature of tabled evaluation, choice points

not directly related to the pruned subgoal can get mixed with other choice points. This

happens when a branch containing external choice points has been suspended, but after

backtracking to internal choice points we execute a subsuming subgoal. Therefore, we

must have a mechanism that computes the range of choice points in a pruned branch

and a mechanism that can tell us if a certain choice point is internal to a pruned

subgoal.

5.3.1 Subgoal Dependency Tree

To solve the problem of determining if a tabled node is internal to a subgoal, we con-

struct a subgoal dependency tree by extending the subgoal frame and the dependency

frame data structures with a new field called top gen. This field is a pointer to the top

generator subgoal G in evaluation, if any, from which the corresponding tabled node

is internal to the evaluation of G. Hence, we can use the subgoal dependency tree to

know if a subgoal A is internal to a subgoal B. For this, we traverse the top gen links

until: (1) subgoal B is reached, thus A is internal to B; (2) we reach an older subgoal

than B, therefore A is not internal to B. We use B’s generator choice point as the

limit for abandoning search and declaring A external of B. Figure 5.3 presents the

pseudo-code for the is internal subgoal frame procedure.

When a new subgoal frame or dependency frame is stored, the top gen field is ini-

tialized with the value of a global variable called TOP GEN. The TOP GEN variable is

updated in the following situations: (1) when a tabled subgoal call creates a new

generator node we update TOP GEN to the corresponding new subgoal frame; (2) when

the new answer tabled operation is executed we set TOP GEN to the value of the subgoal

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 121

is_internal_subgoal_frame(target_fr, sg_fr) {

do

if(sg_fr == target_fr)

return TRUE

sg_fr = top_gen(sg_fr)

while (sg_fr and younger_or_equal_than(generator_cp(sg_fr), generator_cp(target_fr)))

return FALSE

}

Figure 5.3: Pseudo-code for procedure is internal subgoal frame.

frame’s top gen field; (3) finally, when a consumer node is resumed we set TOP GEN to

the value of its dependency frame’s top gen field.

5.3.2 Computing Stack Limits

One important input parameter of pruning is the youngest choice point that is affected

by the computation of the subsumed subgoal and is known as top cp in range. This

parameter, along the generator choice point of the subsumed subgoal, represent the

range of choice points to be pruned. The top cp in range parameter is updated to

the youngest value of B FZ or B in the following situations: (1) when a new answer is

generated, (2) when a new clause is executed, or (3) when completion is attempted.

While this is a simple approach, some parts of the local stack can belong to an external

generator. Updating the top cp in range choice point to B FZ allow us to cover areas

of the stack that were frozen during evaluation of the subgoal.

5.3.3 Basic Issues

When pruning execution branches, issues arise mostly when the computation of the

subsumed subgoal involves consumer and/or generator nodes. As an example, consider

the program in Figure 5.4 that mixes retroactive and variant-based tabled predicates.

For this program, we will use the query goal ‘a(X,Y), p(Z,W)’.

Initially, the evaluation calls a(X,Y) and a new generator node is stored. Next, the

retroactive subgoal p(1,X) is called and because no subsuming subgoal is found, a new

generator node is created. The first clause of p/2 then executes a(,X), which is a

consumer of a(X,Y), but, as no answers are available to consume, execution suspends

this node and backtracks to try the second clause of p/2. Here, b(X) is called for the

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 122

:- use_variant_tabling [a/2, b/1].

:- use_retroactive_tabling p/2.

a(X, Y) :- p(1, X), b(Y).

a(3, 4).

b(1).

b(2).

p(1, X) :- a(_, X).

p(1, X) :- b(X).

Figure 5.4: An example of a program using variant tabling and retroactive tabling.

first time, creating a new generator choice point. An answer for b(X) is then found,

{X = 1}, and by forward execution it is also an answer for p(1,X). In the continuation,

b(Y) is called, creating a new consumer node that consumes the answer {X = 1} and

by forward execution, a first answer for a(X,Y), {X = 1, Y = 1}, is generated.

?- a(X,Y), p(Z, W)

p(1, X), b(Y), p(Z, W)

a(_, X), b(Y), p(Z, W) b(X), b(Y), p(Z, W)

b(Y), p(Z, W)

p(Z, W)

...

...

...

...

X = 1

Y = 1

a(X,Y)

p(1,X)

a(_,X)

b(X)

b(Y)

p(Z,W)

Generator

Generator

Consumer

Generator

Consumer

Generator

Choice Point Stack

a(V0,V1)
top_gen

p(1,V0)
top_gen

b(V0)
top_gen

p(V0,V1)
top_gen

Subgoal Frame Stack Dependency Space

a(_,X)
top_gen

b(Y)
top_gen

Figure 5.5: Evaluation before pruning the subsumed subgoal p(1,X).

Next, subgoal p(Z,W) is called, which subsumes p(1,X) and thus the evaluation of this

subgoal must be pruned (Figure 5.5). As p(Z,W) is external to p(1,X), we have a case

of external pruning. Please notice that p(1,X) includes two choice points involved in

its computation, namely a(,X) and b(X), which must be pruned.

The consumer node associated with subgoal a(,X) must leave the computation and

for that its dependency frame is removed from the dependency space.

Pruning the generator node associated with the subgoal b(X) is a more tricky case.

Notice that the consumer b(Y) depends on this subgoal to consume new answers, thus

by removing the generator node the consumer will become an orphaned consumer and

the computation may not complete properly. Therefore, we mark the subgoal b(X)

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 123

as pruned and turn the consumer node of b(Y) into a retroactive node. Finally, the

previous choice point field of the choice point associated with b(Y) must now point

to p(1,X), because we must prevent the evaluation to step into pruned branches by

means of backtracking. The choice point of b(Y) is called a frontier choice point.

Figure 5.6 shows the state of the computation after pruning.

?- a(X,Y), p(Z, W)

p(1,X), b(Y), p(Z,W)

b(Y), p(Z, W)

p(Z, W)

...

...
Y = 1

a(X,Y)

p(1,X)

a(_,X)

b(X)

b(Y)

p(Z,W)

Generator

Retroactive

Retroactive

Generator

Choice Point Stack

a(V0,V1)
top_gen

p(V0,V1)
top_gen

Subgoal Frame Stack Dependency Space

b(Y)
top_gen

X = 1

Figure 5.6: Evaluation after pruning the subsuming subgoal p(1,X).

Next, the subgoal p(Z,W) starts to execute the first clause of p/2 and creates a new

consumer for a(,X), that will consume the answer found previously. By forward

execution, an answer for p(Z,W), {Z = 1, W = 1}, is generated. By means of back-

tracking, the second clause of p/2 is executed and b(W) is called. As the subgoal

b(VAR0) is a pruned subgoal, we first load the answers already generated for this

subgoal and then execute the clauses of b/1. After b(W) generates all the answers, it

completes successfully and execution backtracks to p(Z,W), to attempt completion of

this subgoal. As there is a younger consumer node, a(,W), that depends on an older

subgoal, the completion operation cannot be done because p(Z,W) is not the leader.

We backtrack to the retroactive node b(Y) in order to do retroactive resolution.

Evaluation notices that the subgoal has already completed, thus the retroactive node is

transformed into a loader node to consume all answers that were not consumed yet. By

forward execution, a new consumer for p(Z,W) is created that will generate further

answers for the query goal. Once b(Y) does not have more answers to consume,

execution backtracks to the retroactive node of p(1,X). Here, we note that the

generator subgoal, p(Z,W) has still not completed and this retroactive node must

be turned into a consumer node, which amounts to create a new dependency frame

that is added into the dependency space, in order to participate in the resolution

process.

After p(1,X) executes the answer resolution operation, evaluation backtracks to a(X,Y)

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 124

that will execute the second clause of a/2. Once a(X,Y) executes the completion

operation and each consumer has consumed its answers, the subgoal completes and

evaluation is finished.

5.3.4 Pruning Actions

The previous example has illustrated some of the different actions that can be applied

to the choice points belonging to the computation of a pruned subsumed subgoal.

These actions depend on the choice point type and are summarized in the next

subsections.

5.3.4.1 Interior Nodes

Interior nodes are related to normal Prolog execution and can be easily pruned by

ignoring them altogether. This approach, while simple, suffers from the problem of

trapped choice points. This problem also affects the normal execution of delaying based

tabling engines like YapTab and SLG-WAM, where choice points under consumers

are frozen and remain on stack until completion. The CHAT approach to tabling

solves this problem by removing trapped choice points [DS99]. Another solution would

involve modifications to the WAM garbage collector to collect unused space on the

choice point stack.

5.3.4.2 Internal Consumers

Internal consumers must be explicitly pruned by removing the associated dependency

frames from the dependency space. This prevents the resolution process to reactivate

pruned branches. In the previous example, a(,X) was an internal consumer.

Figure 5.7 shows the procedure abolish dependency frames that abolishes inter-

nal dependency frames given the subsumed subgoal to prune, subsumed sg and the

youngest choice point address from the range of choice points to selectively prune,

top cp in range. First, we ignore dependency frames that are younger than the

top cp in range choice point. Next, we iterate the dependency frames inside the

range and check if they are internal to the choice point by using a procedure called

is internal dependency frame. This procedure uses the top gen field of the depen-

dency frame to traverse the chain of subgoal frames in order to reach the subsumed sg

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 125

abolish_dependency_frames(subsumed_sg, top_cp_in_range) {

dep_fr = TOP_DEP_FR

while (dep_fr != NULL and younger_than(consumer_cp(dep_fr), top_cp_in_range))

dep_fr = previous(dep_fr)

while (dep_fr != NULL and younger_than(consumer_cp(dep_fr), generator_cp(subsumed_sg)))

previous_dep_fr = previous(dep_fr)

if (is_internal_dependency_frame(subsumed_sg, dep_fr, generator_cp(subsumed_sg)))

remove_dependency_frame_from_stack(dep_fr)

dep_fr = previous_dep_fr

}

Figure 5.7: Pseudo-code for procedure abolish dependency frames.

subgoal frame. If we reach it, we remove the dependency frame from the dependency

space. Otherwise, the dependency frame is not internal and is not pruned.

5.3.4.3 Internal Generators

For internal generators we must remove its corresponding subgoal frame from the

subgoal frame stack and alter its state to pruned. Generally, when pruning internal

generators, we have two situations: (1) the generator does not have consumers that

are external to the computation of the subsumed subgoal; or (2) the generator has

external consumers. The former situation does not introduce any problem, but the

latter origins orphaned consumers. In our previous example, the consumer node for

b(Y) was an orphaned consumer.

Usually, a pruned generator is called again during the evaluation of the subsuming

subgoal, and before the computation reaches any of the orphaned consumers. Once

reactivated, the subgoal frame for the pruned generator is pushed again into the top

of the subgoal frame stack and its state is updated to evaluating. Then, the new

generator node starts by consuming the previously generated answers and only then

executes the program clauses.

Our system is also able to mix tabled subgoals using traditional call subsumption

with retroactive-based tabling. For this case we distinguish between variant con-

sumers (identical consumers by variable renaming) and subsumed consumers (proper

subsumed consumers). Both consumer nodes are also transformed into retroactive

nodes.

If a subgoal G has no external variant consumers, we remove G’s subgoal frame

from the subgoal frame stack, update its state to dead and remove its path from the

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 126

subgoal trie, which means that external subsumed consumers of G must be turned into

generators as G will not be reactivated. When we have external variant consumers,

the pruned subgoal G changes its state to pruned, in order to be reactivated later by

a new call to it or by an orphaned consumer, and the external subsumed consumers

remain unaltered.

A tricky situation happens when an orphaned variant consumer of G is later pruned

by another subgoal and the external subsumed consumers of G are left in a situation

where the generator subgoal G will not be reactivated. In this case, we check for

situations where G has no more variant consumers and we change its state to dead.

Later on, when an external subsumed consumer is reactivated by means of retroactive

resolution, we verify if the generator G is dead. If this is the case, we simply convert

the subgoal frame to a subsuming subgoal frame and turn the retroactive node into

a generator. This also involves modifications to the answer template, which must be

transformed into a generator answer template (with only variables).

For an example using subsumptive subgoals, consider the program in Figure 5.8 and

the query goal ‘p(1,A), t(1,2,B), b(1,C), p(D,E), b(F,G)’.

:- use_subsumptive_tabling t/3.

:- use_retroactive_tabling [b/2, p/2].

t(1, 2, 3).

t(1, 2, 5).

t(3, 10, 20).

b(X, 20) :- t(X, Y, Z).

b(3, 1).

p(X, 55) :- t(X, Y, Z).

p(1, 5).

p(10, 10).

Figure 5.8: An example of a program using subsumptive tabling and retroactive

tabling.

The first goal p(1,A) creates a new generator node and calls t(1,Y,Z), which is a sub-

sumptive generator subgoal. By forward execution we then call the subgoal t(1,2,B),

which will create a consumer node that is subsumed by the subgoal t(1,Y,Z). In the

continuation, we call the retroactive generator subgoal b(1,C) which calls t(1,Y,Z),

a variant consumer of the initial subsumptive generator. Next, we call p(D,E) and

p(1,A) must be pruned (Figure 5.9).

The generator t(1,Y,Z) is internal to p(1,A) and has two external consumers: one

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 127

p(1,A) Generator

Choice Point Stack

p(1,V0)
top_gen

t(1,V0,V1)
top_gen

Subgoal Frame Stack Dependency Space

t(1,2,B)
top_gen

t(1,Y,Z)

t(1,2,B)

b(1,C)

t(1,Y,Z)

p(D,E)

b(1,V0)
top_gen

p(V0,V1)
top_gen

Generator

Consumer

Generator

Consumer

Generator

t(1,Y,Z)
top_gen

generator

Figure 5.9: Evaluation before pruning the subsumed subgoal p(1,A).

variant and one subsumed consumer, t(1,2,B). Here, we modify the state of sub-

sumptive subgoal t(1,Y,Z) to pruned and turn each external consumer node into a

retroactive node. We are hoping that t(1,Y,Z) will be reactivated and that t(1,2,B)

will still consume from it. Figure 5.10 shows the state of computation after pruning.

p(1,A) Retroactive

Choice Point Stack Subgoal Frame Stack Dependency Space

t(1,2,B)
top_gen

t(1,Y,Z)

t(1,2,B)

b(1,C)

t(1,Y,Z)

p(D,E)

b(1,V0)
top_gen

p(V0,V1)
top_genRetroactive

Generator

Retroactive

Generator

t(1,Y,Z)
top_gen

generator
t(1,V0,V1)
top_gen

PRUNED

Figure 5.10: Evaluation after pruning the subsumed subgoal p(1,A).

Next, evaluation of p(D,E) generates a call to the subsumptive subgoal t(D,Y,Z),

which is a generator subgoal. By forward execution, we call b(F,G) which subsumes

b(1,C) and triggers a new external pruning operation. The computation of b(1,C)

contains the internal consumer t(1,Y,Z) that is currently associated with a retroactive

node. We delete this consumer from the dependency space and as t(1,VAR0,VAR1)

has no more variant consumers, we update its state to dead, in order to inform the

retroactive nodes that may depend on it that it will no longer produce answers (in

this example, t(1,2,B)). The result of pruning is shown in Figure 5.11.

After the subgoals b(F,G), t(D,Y,Z) and p(D,E) complete, we backtrack to the

retroactive node b(1,C). This node is transformed into a loader node as the gen-

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 128

p(1,A) Retroactive

Choice Point Stack Subgoal Frame Stack Dependency Space

t(1,2,B)
top_gen

t(1,Y,Z)

t(1,2,B)

b(1,C)

p(D,E)

p(V0,V1)
top_gen

Retroactive

Retroactive

Generator

generator

t(1,V0,V1)
top_gen
DEAD

t(1,Y,Z)

t(D,Y,Z)

t(V0,V1,V2)
top_gen

Generator

b(V0,V1)
top_gen

b(F,G) Generator

Figure 5.11: Evaluation after pruning the subsumed subgoal b(1,C).

erator subgoal has already completed. After the answers have been exhausted, we

backtrack to the retroactive node t(1,2,B). As the current generator subgoal is dead

we transform the consumer subgoal frame into a generator subgoal frame and the

retroactive node is transformed into a generator node, because the subgoal must now

generate its own answers. In order for this to work, the answer template is transformed

from {1, 2, B} to {B}. Figure 5.12 shows the state of the computation after this

transformation.

p(1,A) Retroactive

Choice Point Stack Subgoal Frame Stack Dependency Space

t(1,Y,Z)

t(1,2,B)

t(1,2,V0)
top_gen

Generator

Figure 5.12: Evaluation after transforming the subsumed consumer t(1,2,B) in a

subsumptive generator.

Figure 5.13 shows the procedure abolish subgoal frames that is responsible to abol-

ish internal generators. For internal subgoals we check if the subgoal has exter-

nal consumers, both variant or subsumed. If those consumers are found, they are

turned into retroactive nodes by the procedure update external consumers. If the

subgoal to prune is a subsumptive subgoal with external subsumed consumers and

no external variant consumers, we turn the corresponding consumer subgoal frames

into generator subgoal frames using the transform external subsumed consumers

procedure. Finally, we remove the subgoal frame from the subgoal frame stack using

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 129

the remove subgoal frame from stack procedure.

abolish_subgoal_frames(subsumed_sg, top_cp_in_range) {

sg_fr = subsumed_sg

while (sg_fr != NULL and younger_or_equal_than(top_cp_in_range, generator_cp(sg_fr)))

next_sg_fr = next(sg_fr)

if (is_internal_subgoal_frame(subsumed_sg, sg_fr))

state(sg_fr) = pruned

if (has_external_consumers(sg_fr))

update_external_consumers(subsumed_sg, sg_fr, top_cp_in_range)

if (type(sg_fr) == SUBSUMPTIVE and

!has_external_variant_consumers(sg_fr))

state(sg_fr) = dead

delete_from_subgoal_trie(sg_fr)

if (has_external_subsumed_consumers(sg_fr))

// transform consumers into producers

transform_external_subsumed_consumers(subsumed_sg, sg_fr, top_cp_in_range)

remove_subgoal_frame_from_stack(sg_fr)

sg_fr = next_sg_fr

}

Figure 5.13: Pseudo-code for procedure abolish subgoal frames.

5.3.5 Orphaned Consumers

An orphaned consumer is an external consumer that loses its generator after a pruning

operation. As we have seen, we transform each orphaned consumer node into a retroac-

tive node. When an orphaned consumer node is reached by means of backtracking

it will be transformed into either: (1) a loader node, if the pruned generator was

reactivated and has completed; (2) a consumer node, if the pruned generator was

reactivated but has not completed yet, which means that below the new reactivated

subgoal choice point there is a dependency to an upper generator node, thus this

new consumer will participate in the completion operation as usual; or (3) a generator

node, if the pruned generator was not reactivated until then. This latter situation only

occurs with variant or subsumptive tabling. With retroactive tabling, the execution

of a subsuming subgoal that prunes a generator call G, will necessarily call in its

evaluation the same or a more general than G, and the subsuming subgoal will update

the generator field of any subsumed subgoal frame, including orphaned consumers.

By default, orphaned consumers always keep their frames on the dependency frame

stack. The frame is only removed if the retroactive node turns into a loader or

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 130

generator node. If the retroactive node turns again into a consumer node, lazy removal

of dependency frames allows us to avoid removing and allocating a new frame and the

potentially expensive operation of inserting it on the dependency frame stack in the

correct order (ordered by choice point address).

5.3.6 Lost Consumers

While it is usually possible to transform each retroactive node into the correct type of

node by means of backtracking or answer resolution, there are some cases where this is

not possible. This maybe the case of external consumers turned into retroactive nodes

and we call them lost consumers. For an example, consider the program in Figure 5.14

and the query goal ‘a(X,Y)’.

:- use_variant_tabling [a/2, b/2].

:- use_retroactive_tabling p/2.

a(X, 0) :- p(1, X).

a(0, Y) :- b(1, Y).

a(X, Y) :- p(X, Y).

b(1, Y) :- a(_, Y).

b(2, 1).

p(X, Y) :- b(X, Y).

Figure 5.14: An example of a program that originates a lost consumer.

Evaluation starts by storing a generator node for a(X,Y) and then by calling the

retroactive subgoal p(1,X). Next, the subgoal b(1,X) is called, creating a new gen-

erator node, and then b(1,X) calls subgoal a(,Y), that is a variant of the initial

subgoal and thus a consumer node is stored. As no answers are available to consume,

evaluation suspends and then backtracks to the second clause of b/2, but it does

not unify with b(1,X). By backtracking, we attempt the second clause of a/2, which

originates a call to b(1,Y). This is a variant call of b(1,X) and a new consumer

is created. This node must be suspended as no answers are available (gray node in

Figure 5.15).

Through backtracking, we execute the third clause of a/2 and the retroactive subgoal

p(X,Y) is called. As this subgoal subsumes p(1,X) we must prune the evaluation

of p(1,X). The internal generator b(1,X) is pruned, leaving an orphaned consumer

b(1,Y), and the internal consumer a(,X) is simply thrown away. Note that here,

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 131

we do not have a frontier choice point to prevent the evaluation to step into the

pruned branch when backtracking. This is safe, because the branch including the

subsumed subgoal will only be resumed on consumers during completion and thus no

backtracking to previous choice points will occur.

After p(X,Y) is fully explored, we attempt completion at the leader node, a(X,Y).

At this point, b(1,Y) still remains a retroactive node and it is clear that it must be

resumed in order to be reactivated as a generator. However, since b(1,Y) is not a

real consumer, it will not participate in the completion operation before retroactive

resolution is applied. Therefore, to ensure that all retroactive nodes are resumed, the

completion operation is extended to, while traversing the dependency space checking

for new answers, also check for retroactive nodes, and resume the corresponding node

in both cases. In the example, b(1,Y) is resumed and transformed into a generator

node, thus allowing the computation to finish correctly.

?- a(X, Y)

p(1,X) b(1, Y) p(X, Y)

b(1, X)

a(_,X)

b(X, Y)

a(_,Y) true

Y = 0

X = 0

X = 1 X = 2
Y = 1

pruned by

Dependency Space

p(1, Y)
top_gen

b(1, Y)
top_gen

a(_, Y)
top_gen

Execution tree

Figure 5.15: Lost consumer b(1,Y) after an external pruning.

5.3.7 Pseudo-Completion

When a subsumed subgoal G is pruned being a leader node for some consumers, the

completion operation will not be run at node G because G is now a retroactive node

thus, it might happen that these consumers will not be resumed by other leader nodes.

Therefore, we must ensure that every consumer is resumed in order to fully explore

all evaluation branches.

Consider the query goal ‘p(1,A,B), p(1,3,C), p(D,E,F)’ and the program in Fig-

ure 5.16. The call to p(1,A,B) first succeeds with the answer {A = 2, B = 3}. Next,

subgoal p(1,3,C) is called and a first consumer for the subsuming call p(1,VAR0,VAR1)

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 132

is created (consumer C1 in Figure 5.17). As no matching answers are available

to consume, execution backtracks to p(1,A,B) and a second answer is generated,

{A = 3, B = 2}. Next, subgoal p(1,3,C) is called again and a new consumer for

p(1,VAR0,VAR1) is stored (consumer C2 in Figure 5.17). This consumer consumes

the answer {C = 2} and execution proceeds.

:- use_retroactive_tabling p/2.

p(1, 2, 3).

p(1, 3, 2).

Figure 5.16: An example of a program that executes pseudo-completion.

Subgoal p(D,E,F) is then called and the evaluation of p(1,A,B) must be pruned

(Figure 5.17). The subgoal frame for the subgoal p(1,A,B) is transformed into

a consumer subgoal frame, and the subgoal frames for the subgoals p(1,3,C) and

p(1,A,B) have the generator field made to point to the subgoal frame of p(D,E,F).

?- p(1, A, B), p(1, 3, C), p(D, E, F)

A = 2
B = 3

A = 3
B = 2

p(D, E, F)

C = 2

p(1, 3, C), p(D, E, F) p(1, 3, C), p(D, E, F)

Dependency Space

p(1,3,C)
top_gen

p(1,3,C)
top_gen

Execution Tree

C2C1

C1

C2

Figure 5.17: Evaluation before pruning the subsumed subgoal p(1,A,B).

After p(D,E,F) completes, execution backtracks to retroactive node C2 that is trans-

formed in a loader node by retroactive resolution. After all answers are loaded, execu-

tion backtracks to the retroactive node of p(1,A,B). If we transform the retroactive

node into a loader node and then load all the answers relevant to this node we might

lose the consumer C1, because there is no other way to reach that node.

Notice that when consumer C1 has been created its leader node was p(1,A,B). Hence,

before loading all answers in p(1,A,B), we act as a pseudo-leader (since no upper

dependencies exist) and we look for younger retroactive nodes with unconsumed

answers on the dependency frame stack. When we find node C1, we set the field

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 133

backchain cp of the its dependency frame to the choice point of the pseudo-leader,

and computation is first resumed at C1 (Figure 5.18).

After C1 is solved through retroactive resolution, it loads all its answers and, instead of

backtracking, jumps to the choice point saved in the backchain cp field, thus allowing

the pseudo-leader to resume other retroactive nodes in the same situation. The reason

to use the backchain cp field instead of backtracking, is because any choice point

between the pseudo-leader and the target consumer as been already fully exploited,

thus we must jump explicitly between nodes. The process of resuming consumers

through a pseudo-leader is called pseudo-completion.

?- p(1, A, B), p(1, 3, C), p(D, E, F)

A = 2
B = 3

A = 3
B = 2

p(D, E, F)

p(1, 3, C), p(D, E, F) p(1, 3, C), p(D, E, F)

Dependency Space

p(1,3,C)
top_gen

Execution Tree

C1

p(D, E, F)

C = 2

backchain_cpjump to

C = 2

Figure 5.18: Executing a pseudo-completion.

5.3.8 Leader Re-Computation

Each dependency frame contains the value of the leader node during the creation of

the consumer node. External consumers can reference as a leader either: (1) a pruned

generator choice point; or (2) any other generator. In the second case we keep the

dependency frame unmodified. In the first case, we update the leader choice point

field (leader cp) to point to the consumer node itself.

The reason we update the leader cp field is to avoid the leader computation algorithm

to compute a leader that simply does not exist, making completion impossible. For an

example describing this problem, consider the program in Figure 5.19 and the query

goal ‘p(1,A), a(B,C), a(1,D), p(E,F)’.

During the evaluation of the subgoal p(1,A), a generator node for a(1,A) is created.

Next, a new generator is allocated for a(B,C), followed by a consumer for a(1,D).

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 134

:- use_variant_tabling a/2.

:- use_retroactive_tabling p/2.

a(1, 3).

a(1, 2).

a(2, 4).

p(X, Y) :- a(X, Y).

Figure 5.19: An example of a program leading to the leader re-computation problem.

When p(E,F) is called to prune p(1,A) (Figure 5.20), the generator a(1,A) must also

be pruned, but the leader cp field of the consumer a(1,D) still points to a(1,A).

During execution of p(E,F) a new consumer is allocated for a(E,F) that will compute

that its leader is the pruned a(1,A) generator, because below the generator node

a(B,C) for the new consumer node a(E,F) there is a consumer node, a(1,D), with an

older leader dependency.

Dependency Space

a(1,D)
top_gen

p(1,A)

a(1,A)

a(B,C)

a(1,D)

p(E,F)

Generator

Generator

Generator

Consumer

Generator

Subgoal Frame Stack

p(1,V0)
top_gen

a(1,V0)
top_gen

a(V0,V1)
top_gen

p(V0,V1)
top_gen

leader_cp

Choice Point Stack

Figure 5.20: Evaluation before pruning the subsumed subgoal p(1,A).

Finally, execution proceeds and completion is attempted at the subgoal p(E,F). Be-

cause this is not the leader node, we backtrack to a(1,D) that is transformed into a

generator and then completes. Next, we backtrack to a(B,C) to try other alternatives

of a/2 and then completion is attempted, but without success because the leader

node is the pruned generator a(1,A). It is then impossible to complete the evaluation

because no leader node will be reached.

By our delineated rules, the leader cp of the consumer a(1,D) would have been

modified to itself, thus making the generator a(B,C) the leader of the computation at

that point. Notice that the consumer node, a(E,F) created during the evaluation of

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 135

p(E,F) would still consider that the current leader is a(B,C). Figure 5.21 shows the

state of the computation at that point.

Dependency Space

a(1,D)
top_gen

p(1,A)

a(1,A)

a(B,C)

a(1,D)

p(E,F)

Retroactive

Generator

Retroactive

Generator

Subgoal Frame Stack

a(V0,V1)
top_gen

p(V0,V1)
top_gen

leader_cp

Choice Point Stack

a(E,F) Consumer

a(E,F)
top_gen

leader_cp

Figure 5.21: Updating the leader cp field to avoid the leader re-computation problem.

5.4 Internal Pruning

Although all the previous examples use external pruning, both external and internal

pruning suffer from the same issues described previously. This section explores internal

pruning and its differences to external pruning.

Internal pruning occurs when the subsuming subgoal S is internal to the evaluation

of the subsumed subgoal R. In this type of pruning we want to keep one part of R

running, the one that computes S, hence we are able to compute all answers of R just

by computing S.

Our approach involves computing S using local scheduling [FSW96], but without

returning answers to the environment of R, as it has been pruned. Instead, we jump

directly to the choice point of R, which was transformed into a retroactive node, and

resume the computation there in order to consume the matching answers found by S.

When resuming the retroactive node for R, it can become either: (1) a loader node,

if S has completed; or (2) a consumer node, if S has not completed because it is not

a leader node, i.e., the leader node is above R. Notice that, when the completion

operation is later attempted at the leader node, the computation can still be resumed,

as usual and without any special handling, at R or at the internal consumers of S,

until no unconsumed answers are available.

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 136

For an example, consider the path/2 program presented in Figure 5.22. It computes

the reachability between two nodes on a directed graph by using a left recursive

definition. To know from which nodes we can reach node 3, we are interested in

the solutions for the query goal ‘path(X,3)’.

:- use_retroactive_tabling path/2.

path(X, Y) :- path(X, Z), edge(Z, Y).

path(X, Y) :- edge(X, Y).

edge(1, 2).

edge(2, 3).

Figure 5.22: Left recursive path/2 program with retroactive tabling.

Execution starts by creating a generator node for path(X,3), followed by a call to sub-

goal path(X,Z). Given that path(X,Z) is internal to the computation of path(X,3),

we have a case of internal pruning. Using the rules for internal pruning defined above,

we will evaluate path(X,Z) with local scheduling (see Figure 5.23).

Next, a repeated call to the subgoal path(X,Z1) is made and a consumer is cre-

ated(step 3). As no answers are available for consumption, execution backtracks

to the second clause of p/2. Here, we call edge(X,Z) and two new answers for

path(X,Z) are generated, {X = 1, Z = 2} and {X = 2, Z = 3}. Execution returns

to path(X,Z) and completion is attempted. As the path(X,Z1) consumer now has

answers to consume, they are thus consumed and by forward execution the solution

{X = 1, Z = 3} is generated for path(X,Z) (step 8). Notice that these answers are

not returned to the environment of path(X,3), but are only saved on the table space.

After a batch of repeated answers, execution backtracks to path(X,Z) where comple-

tion is attempted again. With no more unconsumed answers, the subgoal path(X,Z)

completes and instead of backtracking, it jumps directly to the retroactive node of

the subgoal path(X,3) (step 13). Here, the retroactive node first determines the

relevant answers from the set of answers generated for path(X,Z), namely, {X = 1}
and {X = 2}. Next, the retroactive node is transformed into a loader node and loads

its answers (step 14).

5.4.1 Multiple Internal Pruning

An important aspect in internal pruning is multiple internal pruning. Consider that a

subgoal R1 calls recursively internal subgoals R2, R3, ..., Rn until a subgoal S is called

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 137

3. path(X,Z1), edge(Z1,Z) 4. edge(X,Z)

5. true 6. true

X = 1
Z = 2

X = 2
Z = 3

7. edge(2,Z)

X = 1
Z1 = 2

8. true

Z = 3

X = 2
Z1 = 3

9. edge(3,Z) 11. edge(3,Z)

X = 1
Z1 = 3

10. fail 12. fail

1. ?- path(X,3)

2. path(X,Z), edge(Z,3)
pruned

14. ...

13. jump to

Local Scheduling

Figure 5.23: Evaluating ‘path(X,3)’ using retroactive tabling.

that subsumes R1, R2, ..., Rn. In such cases, we ignore all intermediate subgoals and

answers are only pushed from S to R1, the top subgoal. For an example, consider the

query goal ‘p(1,X)’ and the program in Figure 5.24.

:- use_retroactive_tabling p/2.

p(1,X) :- p(2,X).

p(2,X) :- p(X, _).

p(2,4).

p(1,5).

Figure 5.24: An example of a program that originates multiple internal pruning.

Execution starts by storing generator nodes for p(1,X) and p(2,X) and then p(2,X)

calls p(X,) that subsumes both p(1,X) and p(2,X). Pruning is done between the top

subsumed subgoal p(1,X) and the subsuming subgoal p(X,) and the node for p(2,X)

is ignored (Figure 5.25). The choice point for p(1,X) is transformed into a retroactive

node and execution proceeds by applying local scheduling to evaluate p(X,).

After p(X,) completes with 7 answers, execution is resumed at the retroactive node

of subgoal p(1,X), where the answers {X = 1}, {X = 2}, {X = 4}, and {X = 5} are

loaded (Figure 5.26). Notice that while the subgoal p(2,X) did not participate in the

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 138

?- p(1, X)

p(2, X)

p(X, _)

...

...

p(1,X)

p(2,X)

p(X,_)

Generator

Generator

Generator

Choice Point Stack

p(1,V0)
top_gen

p(2,V0)
top_gen

p(V0,V1)
top_gen

Subgoal Frame Stack

Figure 5.25: Evaluation before multiple internal pruning.

later phase of the evaluation, it has also been completed during the computation of

p(X,).

?- p(1, X)

p(X, _)

p(1,X)

p(2,X)

p(X,_)

Retroactive

Choice Point Stack

p(V0,V1)
top_gen

Subgoal Frame Stack

jump to

Generator
Local

Scheduling

Figure 5.26: After the evaluation of p(X,).

5.5 Mixing External and Internal Pruning

Although internal and external pruning form the basis of Retroactive Call Subsump-

tion, clear rules must be devised in order to prune multiple subgoals that combine

both types of pruning. We want to minimize the number of pruned subgoals in such

a way that a choice point is pruned at most once. Figure 5.27 shows the procedure

that implements that idea. This procedure follows the principles of Observation 1 and

Observation 2.

Observation 1. Let R1, R2, ..., Rn be a set of subgoals that are recursively internal. In

order to prune the subgoals R1, R2, ..., Rn, only the top subgoal R1 needs to be pruned.

Observation 2. Let G be a subgoal and G′ a subgoal internal to G. If G is pruned,

G′ will also pruned.

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 139

prune_subgoal_list(subsuming, list) {

// phase 1: compute top internal subgoal corresponding to internal pruning

top_internal_sg = NULL

foreach (subgoal in list)

if (is_internal(subgoal, subsuming))

if (top_internal_sg == NULL or

older_than(generator_cp(subgoal), generator_cp(top_internal_sg)))

top_internal_sg = subgoal

remove_from_list(list, subgoal)

// change type of subgoal frame and producer

type(subgoal) = RETROACTIVE_CONSUMER

generator(subgoal) = subsuming

// phase 2: return early if no more subgoals exist

if (empty(list))

internal_pruning(subsuming, top_internal_sg)

return

if (top_internal_sg)

// phase 3: remove subgoals that are internal to ’top_internal_sg’

// and then apply internal pruning

foreach (subgoal in list)

if (is_internal_subgoal_frame(top_internal_sg, subgoal))

remove_from_list(list, subgoal)

internal_pruning(subsuming, top_internal_sg)

// phase 4: remove subgoals internal to other subgoals in ’list’

// and then apply external pruning

foreach (subgoal in list)

if (is_internal_to_set(subgoal, list))

remove_from_list(list, subgoal)

foreach (subgoal in list)

external_pruning(subsuming, subgoal)

}

Figure 5.27: Pseudo-code for procedure prune subgoal list.

The prune subgoal list procedure accepts as arguments a subsuming subgoal (as

a subgoal frame) and the list of subgoals (as subgoal frames) to prune. This list

is obtained by searching for running subsumed subgoals in the subgoal trie (see

Section 5.7). Initially, the procedure computes the top subgoal R in the list of subgoals

corresponding to internal pruning and discards the other internal subgoals (phase 1).

By using the multiple internal pruning principle (Observation 1), we can prune only

the top subgoal because it will also prune the other internal subgoals as a side-effect.

The is internal function uses an optimization to determine if the subsuming subgoal

is internal to the argument subgoal and differs from the is internal subgoal frame

by not making use of the subgoal dependency tree (see Section 5.8.3 for more details).

Notice also that we change the corresponding subgoal frame type of all subsumed

subgoals to RETROACTIVE CONSUMER and update the generator field to point to the

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 140

subsuming subgoal.

Next, in phase 2, we check if the list of subgoals is empty, and, if this is the case, we

thus return early from the procedure by doing an internal pruning. In phase 3, we

remove all subgoals that are internal to the subgoal R found in phase 1. Since we will

prune the computation of R, every subgoal internal to R will also be pruned (except

the subsuming subgoal), thus there is no need to prune the two subgoals separately

(Observation 2). Next, we do an internal pruning using the R subgoal frame and the

resulting list at this point will be either empty or only containing subgoal frames not

internal to R.

In phase 4, we iterate over the resulting list of subgoals and also based on Observation 2

we remove the subgoals that are internal to another one in the list. Finally, we apply

external pruning to each remaining subgoal.

For an example, consider the query goal ‘p(2,X), p(4,Y)’ and the program in Fig-

ure 5.28. Initially, execution creates the generator p(2,X) followed by the internal

generator p(3,X). Next, the subgoal p(4,Y) is called and the first matching alternative

calls the subgoal p(5,Z), that immediately generates the answer {Z = 2}. In the

continuation, subgoal p(,Y) is called, which subsumes all the previous subgoals

(Figure 5.29).

:- use_retroactive_tabling p/2.

p(2, X) :- p(3, X).

p(2, 1).

p(3, 2).

p(3, 5).

p(4, X) :- p(5, Z), p(_, X).

p(4, 7).

p(5, 2).

p(5, 1).

Figure 5.28: An example of a program that originates multiple internal/external

pruning.

By following the rules defined above for procedure prune subgoal list, p(4,X) is

the top subgoal computed by phase 1. Next, we filter the subgoals that are internal to

p(4,X), and subgoal p(5,Z) is removed from the list. Computation is then internally

pruned for p(4,X) (phase 3 of procedure prune subgoal list).

The remaining subgoals are p(2,X) and p(3,X). Here we must ignore the subgoals that

are internal to each other (phase 4 of procedure prune subgoal list). The subgoal

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 141

?- p(2, X), p(4, Y)

p(3, X), p(4, Y)

p(4, Y)

p(5, Z), p(_, Y)

...

...

...

p(2,X)

p(3,X)

p(4,Y)

p(5,Z)

Generator

Generator

Generator

Generator

Choice Point Stack

p(2,V0)
top_gen

p(3,V0)
top_gen

p(4,V0)
top_gen

p(5,V0)
top_gen

Subgoal Frame Stack

X = 2

p(_, Y)

Z = 2
p(_,Y) Generator

p(V0,V1)
top_gen

...

Figure 5.29: Evaluation before multiple internal/external pruning.

p(3,X) matches these conditions, and is thus removed. Finally, the only remaining

subgoal, p(2,X), is then externally pruned and the computation can continue as usual

(Figure 5.30).

?- p(2, X), p(4, Y)

p(4, Y)

p(_, Y)

...

...

p(2,X)

p(3,X)

p(4,Y)

p(_,Y)

Retroactive

Generator

Retroactive

Choice Point Stack

p(V0,V1)
top_gen

Subgoal Frame Stack

X = 2

p(5,X)

External Pruning

Internal Pruning

Figure 5.30: Evaluation after multiple internal/external pruning.

5.6 Single Time Stamped Trie

Once a pruned subgoal is reactivated and transformed into a loader or consumer node,

it is important to avoid consuming answers that were generated when the subgoal was

a generator. In order to efficiently identify what answers have already been used, we

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 142

designed the Single Time Stamped Trie (STST) table space organization. In STST

we have a common answer trie to all subgoal calls for the predicate. This approach

reduces memory usage because an answer is represented only once and permits easy

sharing of answers between subgoals, because an answer can be referenced by various

subgoals.

In this new table space organization, each tabled predicate has two tries, the subgoal

trie as usual and the STST, while each subgoal frame has an answer return list that

references the matching answers from the STST. Figure 5.31 illustrates an example

of the new table space organization for a tabled predicate p/3 with the subgoals

p(1,VAR0), p(2,VAR0) and p(VAR0,VAR1).

Single Time Stamped Trie

root node

1

2

2

3

timestamp: 2

timestamp: 2

timestamp: 1

timestamp: 1

timestamp: 2

Subgoal Trie

root node

1

VAR0

2

VAR0

VAR0

VAR1

p(VAR0,VAR1)
subgoal
frame

p(2,VAR0)
subgoal
frame

p(1,VAR0)
subgoal
frame

answer return
list

answer return
list

answer return
list

1
2

1

2

timestamp: 2 timestamp: 1 timestamp: 2

Figure 5.31: STST table organization for the p/2 predicate.

In terms of implementation, the STST is accessed by using the sibling field of the

root trie node of the subgoal trie. For the subgoal frames, we have extended each

retroactive subgoal frame with a timestamp field that stores the time stamp of the

last answer generated or consumed. At any time, the answers in the answer return

list are thus the matching answers from the STST that have a time stamp between 0

and timestamp. When we turn a subgoal frame from generator to consumer, we can

collect new answers by using the time stamp stored in the subgoal frame, which was

the time stamp of the last answer successfully inserted on the STST.

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 143

5.6.1 Answer Templates

On a traditional call subsumption engine, that uses an answer trie per generator

subgoal, the answer template for each consumer subgoal is built accordingly to its

generator subgoal. For retroactive answer templates, the answer template is simply

built by copying the full set of argument registers for the consumer and also the gener-

ator call. This is a very efficient operation compared to traditional call subsumption.

Notice that we need the full answer template because the answers stored on the STST

contain all the predicate arguments, hence the unification of matching answers must

be seen as unifying against the most general subgoal.

5.6.2 Reusing Answers

The STST approach also allows reusing answers when a new subgoal is called. As

an example, consider that two unrelated (no subsumption involved) subgoals S1 and

S2 are fully evaluated. If a subgoal S is then called, it is possible that some of the

answers on the STST match S even if S neither subsumes S1 or S2. Hence, instead of

eagerly running the predicate clauses, we can start by loading the matching answers

already on the STST, which can be enough if, for example, S gets pruned by a cut.

This is a similar approach to the incomplete tabling technique for tabling with variant

checks [Roc06b].

While the reusing of answers has some advantages, it can also lead to redundant com-

putations. This happens when the evaluation of S generates more general answers than

the ones initially stored on the STST. For an example, consider the retroactive tabled

predicate p/1 with only one fact, ’p(X)‘. If p(1) is called, the answer represented as

{ARG0 = 1} is added to the STST and execution would return true. If the subgoal

p(X) is then called, we would search the STST for relevant answers and the first answer

would be {X = 1}. If we ask for more answers, the system would return a new answer,

true, and add it to the STST, {ARG0 = VAR0} (Figure 5.32). On the other hand, if

we called p(X) with an empty STST, only the answer true would be returned.

5.6.3 Inserting Answers

The insertion of answers on a STST works like the insertion of answers on standard

TSTs, but special care must be taken when updating the subgoal frame timestamp

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 144

Single Time Stamped Trie

root node

VAR0 1

timestamp: 2 timestamp: 1

timestamp: 2

p(VAR0)
subgoal
frame

answer return
list

1
2

p(1)
subgoal
frame

answer return
list

1

timestamp: 2 timestamp: 1

Figure 5.32: Answer redundancy with STST.

field. When only one subgoal is adding answers to the STST, the subgoal frame

timestamp field is incremented each time an answer is inserted. Repeated answers

are easily recognized by testing if the answer is new or not. The problem arises when

various subgoals are inserting answers, as it may be difficult to determine when an

answer is new or repeated for a certain subgoal.

Let’s consider that two subgoals S1 and S2 are currently being evaluated and that S1

has generated the first 3 answers (time stamp 3) and S2 has generated answers 4, 5

and 6 (time stamp 6) (see Figure 5.33).

Now, if S1 generates answer 5, we can incorrectly detect a repeated answer for this

subgoal if we consider that repeated answers on the STST are repeated answers for

any particular subgoal (which are not).

An alternative would be to consider it a new answer, since the current S1 time stamp

is in the past (3 < 5). But this can also lead to problems if next we update S1 time

stamp to either 6 (the global time stamp) or 5 (the newer answer time stamp for the

subgoal). For example, if later, answer 4 is also found for S1, it will be considered as a

repeated answer during its insertion. Therefore, we need a more complex mechanism

to detect repeated answers per subgoal.

In our new approach, we use a pending answer index for each subgoal frame. This

index contains all the answers that are older than the subgoal frame time stamp but

still were not generated by the subgoal. It is built, whenever the STST global time

stamp is greater than the current subgoal frame time stamp, by collecting all the

relevant answers in the STST with a time stamp greater than the current subgoal

frame time stamp. Then, whenever an answer with a past time stamp appears, we

look up on the pending answer index to check if the answer is there. If so, we consider

it a new answer and remove it from the index; if not, we consider it a repeated answer.

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 145

S1 subgoal
frame

S2 subgoal
frame

1 2 3 4 5 6 7 8 9 10

timestamp: 6

answer result list

4
5
6

timestamp: 3

answer result list

1
2
3

New answer

Figure 5.33: Answer insertion conflicts with STST.

The pending answer index is implemented as a single linked list, but can be trans-

formed into a hash table if the list reaches a certain threshold.

Figure 5.34 presents the code for the stst insert answer procedure, which inserts

an answer on the STST. The pseudo-code is organized into four cases:

1. Answers are inserted in order by the same subgoal. This is the most common

situation.

2. The answer being inserted is the only answer that the current subgoal has still

not considered. It is trivially marked as a new answer.

3. The time stamp of the answer being inserted is older than the subgoal frame

time stamp. The pending answer index must be consulted.

4. The time stamp of the answer being inserted is younger than the subgoal frame

time stamp t. We must collect all the relevant answers in the STST with a time

stamp greater than t and add them to the pending answer index, except for the

current answer.

It is important to note that when a generator subgoal frame is transformed into a

consumer subgoal frame, we remove all the answers from the pending answer index

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 146

stst_insert_answer(subgoal_fr, answer) {

table_entry = table_entry(subgoal_fr)

stst = answer_trie(table_entry)

old_timestamp = timestamp(stst)

leaf_node = subsumptive_answer_search(stst, answer)

new_timestamp = timestamp(stst)

if (new_timestamp == old_timestamp + 1 and

timestamp(subgoal_fr) == old_timestamp)

// case 1: new, incremental, answer

timestamp(subgoal_fr) = new_timestamp

return leaf_node

else if (new_timestamp == old_timestamp and

timestamp(subgoal_fr) == new_timestamp - 1 and

timestamp(leaf_node) == new_timestamp)

// case 2: only answer still not considered

timestamp(subgoal_fr) == new_timestamp

return leaf_node

else if (timestamp(leaf_node) <= timestamp(subgoal_frame))

// case 3: answer with a past time stamp

// check if it must be considered new

if (is_in_pending_answer_index(subgoal_fr, leaf_node))

remove_from_pending_answer_index(subgoal_fr, leaf_node)

return leaf_node

else

return NULL

else

// case 4: answers were inserted by someone else

pending_list = tst_collect_relevant_answers(stst, timestamp(subgoal_fr), answer_template(subgoal_fr))

remove_from_list(pending_list, leaf_node)

add_to_pending_answers_index(subgoal_fr, pending_list)

timestamp(subgoal_fr) = new_timestamp

return leaf_node

}

Figure 5.34: Pseudo-code for procedure stst insert answer.

and we can safely insert them on the answer return list. By doing this, all the consumer

mechanisms can be used as usual, without awareness of the pending answer index.

5.6.4 Compiled Tries and Completed Table

Our system only compiles the STST when the most general subgoal is completed.

This avoids problems when a subgoal is executing compiled code and another subgoal

is inserting answers, leading to the loss of answers as hash tables can be dynamically

created and expanded.

We also implemented the completed table optimization. This optimization throws

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 147

away the subgoal trie and the subgoal frames when the most general subgoal is

completed. When a subgoal call is made, we just build the answer template by

copying the argument registers and then we execute the compiled trie, thus bypassing

all the mechanisms of locating the subgoal on the subgoal trie, leading to memory and

speedup gains.

5.7 Searching Subsumed Subgoals

In order to efficiently find which evaluating subgoals are subsumed by the called

subgoal, we extended the subgoal trie data structure and designed a new algorithm to

search for these subgoals.

5.7.1 Subgoal Trie Data Structure

Each subgoal trie node was extended with a new field, named in eval, which stores

the number of subgoals, represented below the node, that are in evaluation. This field

is used to, during the search for subsumed subgoals, prune the subgoal trie branches

without evaluating subgoals, i.e., the ones with in eval = 0.

When a subgoal starts being evaluated, all subgoal trie nodes in its subgoal trie path

get the in eval field incremented. When a subgoal completes its evaluation, the path

is decremented. Hence, for each subgoal leaf trie node, the in eval field can be equal

to either: 1, when the corresponding subgoal is in evaluation; or 0, when the subgoal

is completed. For the root subgoal trie node, we know that it will always contain

the total number of subgoals being currently evaluated. For an example, consider the

subgoal trie in Figure 5.35 representing four evaluating subgoals and one completed

subgoal for a tabled predicate p/2.

Consider now, that a new subgoal p(f(3),5) enters the evaluation. One new subgoal

trie node is created on the subgoal trie to represent the new subgoal call and all the

trie nodes from the leaf node to the root node get the in eval field incremented

(Figure 5.36). Note also how the root node is incremented from 4 to 5, meaning that

5 subgoals are now in evaluation.

When a chain of sibling nodes is organized in a linked list, it is easy to select the

trie branches with evaluating subgoals by looking for the nodes with in eval > 0.

But, when the sibling nodes are organized in a hash table, it can become very slow to

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 148

root node

VAR0

VAR0

f/1

VAR0

1

1

2

1

4

3

1

2

1

VAR0

1

3

1

VAR0

1

in_eval

4

0
p(X,X)

p(f(X),2) p(f(3),X)

p(3,X) p(3,4)

Figure 5.35: The in eval field in a subgoal trie representing a p/2 tabled predicate.

root node

VAR0

VAR0

f/1

VAR0

1

1

3

1

5

3

2

2

1

VAR0

1

3

1

VAR0

1

4

0
p(X,X)

p(f(X),2) p(f(3),X)

p(3,X) p(3,4)

5

1
p(f(3),5)

Figure 5.36: Inserting subgoal p(f(3),5) in the subgoal trie of Figure 5.35.

inspect each node as the number of siblings increase. In order to solve this problem,

we designed a new data structure, called evaluation index, in a similar manner to the

time stamp index of the TST design.

An evaluation index is a double linked list that is built for each hash table and is

used to chain the subgoal trie nodes where the in eval field is greater than 0. Note

that this linked list is not ordered by the in eval value. Each evaluation index node

contains the following fields: prev, a pointer to the previous evaluation index node, if

any; next, a pointer to the next evaluation index node, if any; node, a pointer to the

subgoal trie node the index node represents; and in eval, the number of evaluating

subgoals under the corresponding subgoal trie node. We also extended the hash table

with a field named index to point to the evaluation index.

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 149

Figure 5.37 shows a hash table and the corresponding evaluation index. Note that an

indexed subgoal trie node now uses the in eval field to point to the index node, while

a trie node with in eval = 0 is not indexed. To compute the in eval value of a trie

node, we first use the status field to determine if the node is inside a hash table or

not, and then we use the in eval field accordingly.

symbol: a

parent

sibling

in_eval: 5

child

0

1

2

3

4

5

6

7

buckets: 8

nodes: 4

index

bucket_array

symbol: VAR0
parent
sibling
in_eval

child

symbol: a
parent
sibling
in_eval

child

symbol: b
parent
sibling

in_eval: 0
child

Evaluation index

previous
next

in_eval: 2
node

previous
next

in_eval: 1
node

previous
next

in_eval: 2
node

H
as

h
ta

bl
e

symbol: 42
parent
sibling
in_eval

child

Figure 5.37: An hash table with an evaluation index.

The evaluation index makes the operation of pruning trie branches much more efficient

by providing direct access to trie nodes with evaluating subgoals. While advantageous,

the operation of incrementing or decrementing a subgoal trie path is more costly,

because these indexes must be maintained.

Figure 5.38 presents the pseudo-code for the increment in eval procedure. This

procedure iterates over the subgoal trie path and increments the in eval field from

the leaf to the root node. When we find hashed trie nodes, we must check if the node

is currently being indexed. If this is the case, we simply increment the in eval field of

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 150

the index node, otherwise we create a new index node on the evaluation index pointing

to the current subgoal trie node and the in eval field of the subgoal trie node is made

to point to the index node.

increment_in_eval(leaf_node, root_node) {

current_node = leaf_node

while (current_node != root_node)

if (is_hashed_node(current_node))

if (in_eval(current_node) == 0)

// not indexed

hash_table = child(parent(current_node))

index_node = add_index_node(hash_table, current_node)

in_eval(current_node) = index_node

else

// indexed

index_node = in_eval(current_node)

in_eval(index_node) = in_eval(index_node) + 1

else

// simple chain list

in_eval(current_node) = in_eval(current_node) + 1

current_node = parent(current_node)

in_eval(root_node) = in_eval(root_node) + 1

}

Figure 5.38: Pseudo-code for procedure increment in eval.

Figure 5.39 shows the resulting hash table and evaluation index if the subgoal trie

node in Figure 5.37 that is not indexed gets indexed.

The procedure in Figure 5.40, decrement in eval, does the inverse job of procedure

increment in eval. When decrementing an indexed subgoal trie node, if the in eval

field reaches 0, the trie node no longer needs to be indexed, and hence we must remove

the index node from the evaluation index. In the other cases, we simply decrement

the respective in eval field.

5.7.2 Matching Algorithm

The algorithm that finds the currently running subgoals that are subsumed by a more

general subgoal S works by matching the subgoal arguments SA of S against the trie

symbols in the subgoal trie T . By using the in eval field as described previously,

we can prune irrelevant branches as we descend the trie. When reaching a leaf node,

we append the corresponding subgoal frame in a result list that is returned once the

process finishes. If the matching process fails at some point or if a leaf node was

reached, the algorithm backtracks to try alternative branches, in order to fully explore

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 151

Evaluation Index

previous
next

in_eval: 2
node

previous
next

in_eval: 1
node

previous
next

in_eval: 2
node

previous
next

in_eval: 1
node

symbol: a

parent

sibling

in_eval: 6

child

0

1

2

3

4

5

6

7

buckets: 8

nodes: 4

index

bucket_array

symbol: VAR0
parent
sibling
in_eval

child

symbol: a
parent
sibling
in_eval

child

symbol: b
parent
sibling
in_eval

child

H
as

h
ta

bl
e

symbol: 42
parent
sibling
in_eval

child

Figure 5.39: Indexing a non-indexed subgoal trie node through an evaluation index.

the subgoal trie T .

When traversing T , trie variables cannot be matched against ground terms of SA.

Ground terms of SA can only be matched with ground terms of T . For example, if

matching the trie subgoal p(VAR0,VAR1) with the subgoal p(2,X), we cannot match

the constant 2 against the trie variable VAR0, because p(2,X) does not subsume

p(X,Y).

When a variable of SA is matched against a ground term of T , subsequent occurrences

of the same variable must also match the same term. As an example, consider the

trie subgoal p(2,4) and the subgoal p(X,X). The variable X is first matched against

2, but the second matching, against 4, must fail because X is already bound to 2.

Now consider the trie subgoal p(VAR0,VAR1) and the subgoal p(X,X). Variable X is

first matched against VAR0, but then we have a second match against a different trie

variable, VAR1. Again, the process must fail because p(X,X) does not subsume p(X,Y).

This last example evokes a new rule for variable matching. When a variable of SA

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 152

decrement_in_eval(leaf_node, root_node) {

current_node = leaf_node

while (current_node != root_node)

if (is_hashed_node(current_node))

index_node = in_eval(current_node)

if (in_eval(index_node) == 1)

// remove from index

hash_table = child(parent(current_node))

remove_index_node(hash_table, index_node)

in_eval(current_node) = 0

else

// keep indexed

in_eval(index_node) = in_eval(index_node) - 1

else

// simple chain list

in_eval(current_node) = in_eval(current_node) - 1

current_node = parent(current_node)

in_eval(root_node) = in_eval(root_node) - 1

}

Figure 5.40: Pseudo-code for procedure decrement in eval.

is matched against a trie variable, subsequent occurrences of the same variable must

always match the same trie variable. This is necessary, because the found subgoals

must be instances of S. Therefore, this problem can be reduced to the task of finding

all instances of S in trie T . To implement this algorithm, we use the following data

structures:

• WAM data structures : heap, trail, and associated registers. The heap is used to

build structured terms, in which the subgoal arguments are bound. Whenever a

term variable is bound, we trail it using the WAM trail;

• term stack : stores the remaining terms to be matched against the subgoal trie

symbols;

• term log stack : stores already matched terms from the term stack and is used

to restore the state of the term stack when backtracking;

• variable enumerator vector : used to mark the term variables that were matched

against trie variables;

• choice point stack : stores choice point frames, where each frame contains in-

formation needed to restore the computation in order to search for alternative

branches.

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 153

Figure 5.41 shows the pseudo-code for the procedure that traverses a subgoal trie and

collects the set of subsumed subgoals of a given subgoal call. This procedure can be

summarized in the following steps:

1. setup WAM machinery and push subgoal arguments into the term stack.

2. fetch a term T from the term stack;

3. search for a trie node N where the in eval field is not 0.

4. search for the next node with a valid in eval field to be pushed on the choice

point stack, if any;

5. match T against the trie symbol of N ;

6. proceed into the child of N or, if steps 3 or 5 fail, backtrack by popping a frame

from the choice point stack and use the alternative trie node;

7. once a leaf is reached, add the corresponding subgoal frame to the resulting

subgoal frame list. If there are choice points available, backtrack to try them;

8. if no more choice point frames exist, return the found subsumed subgoals.

5.7.3 Choice Point Stack

To store alternative branches for exploration, we use a choice point stack. Each choice

point frame (see Figure 5.42) stores the following fields: alt node, the alternative

node to explore; term stack top, the top of the term stack; term log stack top, the

top of the term log stack; trail top, the current trail position; and saved HB, the

register HB. Note that we use the same choice point stack from Section 4.4.1.

The HB register is used to detect conditional bindings in same manner as for the HB

register in WAM choice points, that is, we use it do know if a term variable needs

to be trailed. When a choice point frame is popped from the stack, the state of the

computation is restored by executing the following actions:

• the current node and parent node are reset;

• all terms stored in the term log stack are pushed back to the term stack;

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 154

collect_subsumed_subgoals(subgoal_trie, subgoal_call) {

save_wam_registers()

push_arguments(term_stack, subgoal_call)

subgoals = NULL

parent = subgoal_trie

node = child(parent)

while (true)

term = deref(pop(term_stack))

if (is_atom(term) or is_integer(term))

try_node = try_constant_term(term, node)

else if (is_functor(term) or is_list(term))

try_node = try_structured_term(term, node)

else if (is_variable(term))

try_node = try_variable_term(term, node)

if (try_node != NULL)

push(term_log_stack, term)

parent = try_node

node = child(parent)

if (empty(term_stack)) // new subsumed subgoal found

add_subgoal(subgoals, subgoal_frame(parent))

else

continue

if (empty(choice_point_stack))

unwind_wam_trail()

restore_wam_registers()

return subgoals

else

node = pop_choice_point_frame(choice_point_stack)

parent = parent(node)

}

Figure 5.41: Pseudo-code for procedure collect subsumed subgoals.

alt_node

term_stack_top

term_log_stack_top

trail_top

saved_HB

Frame 0

Frame 1

Base

Top

Figure 5.42: Choice point stack organization.

• the trail is unwound to reset the variables that were bound after choice point

creation;

• registers H and HB are reset to their previous values.

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 155

Since constant and structured terms can have at most one matching alternative in a

trie level, choice point frames are only pushed when the current term is a variable.

Remember that if a node satisfies the in eval requisite, variable terms can match all

types of trie symbols, including trie variables.

5.7.4 Matching Constant and Structured Terms

If the next term from the term stack is a constant or a structured term we must

match it against a similar ground term only. Both constant and structured terms

work pretty much the same way, except that for a list or a functor term we push the

term arguments into the term stack before descending into the next trie level. The

arguments are pushed into the stack in order to be matched against the next trie

symbols.

Figure 5.43 presents the pseudo-code for the try structured term procedure. This

procedure is divided into two steps. We arrive at step 1, if the current node is a hash

table. Here, first, we hash the term to get the hash bucket that might contain the

matching trie node. If the bucket is empty we simply return NULL. Otherwise, we move

into step 2. In step 2 we traverse a chain of sibling nodes (a simple chain or a bucket

chain) looking for a node with a matching symbol and with a valid in eval value.

try_structured_term(term, current_node)

if (is_hash_table(current_node))

// step 1: check hash bucket

hash_table = current_node

current_node = bucket_array(hash_table, term)

if (current_node == NULL)

return NULL

foreach (node in current_node)

// step 2: traverse chain of sibling nodes

if (symbol(node) == term)

if (in_eval(node) > 0)

push_arguments(term_stack, term)

return node

else

// no running subgoals below

return NULL

return NULL

}

Figure 5.43: Pseudo-code for procedure try structured term.

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 156

5.7.5 Matching Variable Terms

A variable term can potentially be matched against any trie symbol. It is only when

the variable is matched against a trie variable that the process may fail. Figure 5.44

shows the pseudo-code for the try variable term procedure. It is defined by three

main cases, depending on the type of the current node, namely:

1. the node is a hash table. For faster access of valid trie nodes, we use the

evaluation index, which gives us all the valid trie nodes in a linked list. We

set the next alternative node to be pushed on the choice point stack by using

the function next valid index node that uses the next pointer of the first index

node to locate the alternative trie node.

2. the node is a hashed node, thus is on the evaluation index of the corresponding

hash table. In this case, we also use the next valid index node function to

identify the next alternative trie node.

3. the node is part of a simple linked list. Here we must use the function next valid node

to find the next valid trie node (in eval > 0). The alternative trie node is also

set using this function on the sibling node.

After the current valid node and alternative node are set, we push the alternative into

the choice point stack and call the try variable matching procedure (Figure 5.45)

to match the term variable with the trie node symbol.

Matching a term variable with a trie symbol depends on the type of the trie symbol.

If the trie symbol is a trie variable, we have two cases. If the term variable is free

(i.e., this is its first occurrence), we simply make it to point to the position on the

variable enumerator vector that corresponds to the trie variable index and we trail the

term variable using the WAM trail. Otherwise, the term variable is already matched

against a trie variable (on the variable enumerator vector), thus we get both indexes

(term and trie variable indexes) and the matching succeeds if they correspond to the

same index (same variable).

If the trie symbol is a ground term, we must verify if the term variable is on the

variable enumerator vector and, in such case, we must fail. Term variables matched

against trie variables must only be matched against the same trie variable. Otherwise,

for constant trie symbols, we simply bind the term variable to the trie symbol. For

structured terms (lists and functors), we create the structured term on the heap, bind

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 157

try_variable_term(variable, current_node) {

if (is_hash_table(current_node))

// case 1: hash table

hash_table = current_node

index_node = index(hash_table)

if (index_node == NULL)

// no running subgoals below

return NULL

current_node = node(index_node)

alt_node = next_valid_index_node(current_node)

else if (is_hashed_node(current_node))

// case 2: indexed node

alt_node = next_valid_index_node(current_node)

else

// case 3: simple chain list

current_node = next_valid_node(current_node)

if (current_node == NULL)

return NULL

alt_node = next_valid_node(current_node)

push_choice_point_frame(choice_point_stack, alt_node)

if (try_variable_matching(variable, symbol(current_node)))

return current_node

else

return NULL

}

Figure 5.44: Pseudo-code for procedure try variable term.

try_variable_matching(symbol, variable) {

if (is_variable(symbol))

if (is_in_variable_enumerator_vector(variable))

return (variable_enumerator_index(variable) == var_index(symbol))

else

// new term variable

var_index = var_index(symbol)

mark_variable_enumerator_vector(variable, var_index)

return TRUE

else

// ground trie symbol

if (is_in_variable_enumerator_vector(variable))

// variable must be matched against the same trie variable

return FALSE

if (is_constant(symbol))

bind_and_conditionally_trail(variable, symbol)

else if (is_functor(symbol) or is_list(symbol))

term = create_heap_structure(symbol)

bind_and_conditionally_trail(variable, term)

push_arguments(term_stack, deref(variable))

return FALSE

}

Figure 5.45: Pseudo-code for procedure try variable matching.

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 158

the term variable to the heap address, and push the new term arguments into the

term stack to be matched against the next trie symbols.

5.7.6 Running Example

Consider the subgoal trie in Figure 5.46 representing three evaluating subgoals and

two completed subgoals for a tabled predicate p/3. Now assume that we want to

retrieve the subgoals that are subsumed by the subgoal call p(X,2,X).

root node

f/1

3

VAR0

VAR1

2

1

0

0

3

4

0

5

1

2

1

5

1

p(f(3),2,X)

p(X,Y,4) p(5,2,7) p(5,2,5)

7

0

VAR0

1

2

1

p(f(X),2,f(X))

f/1

1

VAR0

1

2

1

VAR0

1

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

n11

n12

n13

n14 n15

Figure 5.46: An example of a subgoal trie with three evaluating subgoals for a p/3

predicate.

Initially, the algorithm setups the WAM registers and then pushes the subgoal argu-

ments into the term stack, resulting in the following stack configuration (from bottom

to top): [X,2,X]. Next, we pop the X variable from the term stack and inspect the

linked list of nodes n1, n9 and n12. Because X is a variable term, we can potentially

match this term with any node with in eval > 0. We thus match X against the trie

symbol f/1 from node n1 by constructing a new f/1 functor term into the heap stack

and by binding X to it (this includes trailing X’s reference). Figure 5.47a shows the

configuration of the auxiliary data structures at this point. Notice that the H register

now points to the next free heap cell, the X variable (REF 7) was pushed into the

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 159

Term Stack

REF 7

Term Log Stack

REF 7
STR 11

Heap

f/1
REF 12

9
10
11
12

(...)
13
14

H

REF 7

2
STR 11

(...)

8
7
6

0 1 2

Variable Enumerator
Vector

Trail

(...)
REF 7

(...)
TR Subgoal

Arguments

REF 12
2

HB

(a) Before descending in node n2.

Term Stack

REF 7

Term Log Stack

REF 7
STR 11

Heap

f/1
ENUM 0

9
10
11
12

(...)
13
14

H

2
REF 12
REF 7

2
STR 11

(...)

8
7
6

0 1 2

Variable Enumerator
Vector

HB

Trail

(...)
REF 7

(...)
TR Subgoal

Arguments

(b) After descending in node n7.

Figure 5.47: Auxiliary data structures configuration.

term log stack, and the new variable representing the argument of f/1 (REF 12) was

pushed into the term stack. Before descending into node n2, we need to push the

alternative node n12 into the choice point stack. Note that node n9 cannot be used

as an alternative because no evaluating subgoals exist in that trie branch.

Next, we pop the unbound functor argument from the term stack and we match it

against the trie symbol 3 from node n2. Node n5 is then pushed into the choice point

stack, and we now have the following stack configuration: [n12,n5]. We then descend

into node n3, where the next term from the term stack, 2, matches the trie symbol 2.

Here, there are no alternative nodes to explore, and matching proceeds to node n4.

In node n4, we first pop the X variable from the term stack that, after dereferenced,

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 160

points to the constructed f/1 functor on the heap. As we cannot match ground terms

with trie variables, the process fails.

We then pop the top frame from the choice point stack and search is resumed at node

n5. The resulting choice point stack configuration is [n12]. Because we backtracked

to try node n5, the term stack is restored with the X variable (REF 7), the constant

2 and the functor argument (REF 12). In node n5, the functor argument is popped

from the term stack and, because the trie symbol is the VAR0 trie variable, it is made

to point to the index 0 of the variable enumerator vector. We then descend into node

n6, where matching succeeds and then we arrive at node n7. Figure 5.47b shows the

configuration of the auxiliary data structures at this point. Notice that the twelfth

cell on the heap now points to a variable enumerator position and that the HB register

points again to the tenth cell on the heap, which corresponds to the value of the H

register when we pushed the choice point frame for the alternative node n12.

Node n7 contains the functor f/1 and the next term from the term stack is the

X variable (REF 7) that is bound to the functor f/1 created on the heap. Matching

therefore succeeds and we get into node n8. In node n8, we have the trie variable VAR0

and a variable that is in the variable enumerator vector. Because they both correspond

to the same index, index 0, matching succeeds and a first subsumed subgoal is found:

p(f(X),2,f(X)).

Next, we pop the next top frame from the choice point stack and search is resumed

at node n12. The term stack is restored to its initial state and the choice point stack

is now empty. Node n12 contains the trie symbol 5 that matches the term variable X.

Execution proceeds to node n13 where the trie symbol 2 matches the constant term 2.

We then descend again, now to node n14. Here, only node n15 can be used. We then

pop the variable X from the term stack that is bound to the constant 5. As it matches

the trie symbol 5 in node n15, a new subsumed subgoal is thus found: p(5,2,5).

Finally, as there are no more alternatives, the algorithm ends and returns the two

subsumed subgoals found.

5.8 Other Implementation Details

In this section, we describe some extra details of the implementation that were not

described in the previous sections, but that are still important to understand how RCS

was implemented.

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 161

5.8.1 Transforming Consumers Into Generators

In order to be able to transform a consumer node into a retroactive node and then into

a generator node, all consumer choice points are allocated, by default, as generator

choice points.

A generator choice points extends a WAM choice point with two extra fields: sg fr, a

pointer to the subgoal frame; dep fr, a pointer to a dependency frame, if evaluating

using local scheduling. Allocated along the generator choice point we also have the

answer template and the subgoal arguments. In order for a consumer choice point be

of the same size as a generator choice point, we extended the consumer choice point

with the sg fr field and the subgoal arguments are also pushed into the local stack.

5.8.2 Reference Counting

We extended the subgoal frame data structure with a field called num deps. This field

counts the number of variant consumers that depend on this subgoal. Therefore, while

updating external consumers to transform them into retroactive nodes, we count the

number of external consumers already processed, and thus we can exit early when the

count reaches the target number.

For subsumptive generator subgoal frames, we extended them with an extra field

called num sub deps, that counts the number of subsumed consumers. By knowing

how many variant consumers and subsumed consumers we have for a generator we

can easily decide when to transform subsumed consumer nodes if the generator gets

pruned and no variant external consumers exist anymore.

5.8.3 Faster External or Internal Test

While the subgoal dependency tree is a reasonably way to test for internal/external

subgoals, it is possible to implement a faster mechanism to test if a more general

subgoal is internal or external to a target subsumed subgoal.

This mechanism extends each subgoal frame with two new fields: start code and

end code, that initially are standard WAM variables. The start code field is bound

to an arbitrary value when the subgoal starts executing and unbound when the subgoal

backtracks, therefore allowing us to detect if the subgoal is in the current branch. The

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 162

end code field is bound when a new answer is found, i.e., when the code has reached

the end of a program clause, thus allowing us to easily detect if a pruned subgoal is

external or external.

5.8.4 Data Structure Modifications

In order to be able to set a predicate to use variant, call subsumption, or retroactive

call subsumption, we added three new flags to the mode flags field of the table entry:

the flags variant, subsumptive, and retroactive.

The dependency frame was extended with a bit field called flags. Among other things,

one bit marks if the corresponding consumer is a potential lost consumer, therefore

allowing the completion operation to easily detect such consumers. The retroactive

subgoal frame was extended with a try answer field. This field is used to consume

the available answers from the answer trie that are relevant to the subgoal before

attempting to execute the predicate clauses.

We also extended both the subgoal and the dependency frame with two new fields,

previous and next, that are used to double link the frames on the respective stacks.

These pointers make the operation of removing a frame from the respective stack more

efficient.

5.8.5 Tabling Operations

Some of the most important modifications to the tabling operations were done in the

tabled subgoal call and completion operations. For the tabled subgoal call operation

(Figure 5.48) we distinguish the new retroactive evaluation method by calling the

procedure retroactive subgoal search. When we have a new retroactive generator

call, after storing the generator node, we collect the running subsumed subgoals,

we mark ourselves as a running subgoal, and then we prune the found subgoals by

calling prune subgoal list. Next, we attempt to collect new relevant answers from

the STST with collect available retroactive answers and if the subgoal frame

contains any answer we load them by using the table try answer instruction.

The tabled subgoal call operation must also check if the subgoal frame is in the

pruned state. Here, we simply load all the available answers and then call the

table try answer instruction, which will load all the available answers and then

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 163

execute the program clauses.

tabled_subgoal_call(table_entry, arguments) {

subgoal_trie = subgoal_trie(table_entry)

if(mode_flags(table_entry) == VARIANT)

subgoal_frame = variant_subgoal_search(subgoal_trie, arguments)

else if (mode_flags(table_entry) == SUBSUMPTIVE)

subgoal_frame = subsumptive_subgoal_search(subgoal_trie, arguments)

else if (mode_flags(table_entry) == RETROACTIVE) // NEW

subgoal_frame = retroactive_subgoal_search(subgoal_trie, arguments)

if (is_new_generator_call(subgoal_frame))

store_generator_node(mode_flags(table_entry), arguments, subgoal_frame)

if (type(subgoal_frame) == RETROACTIVE_GENERATOR) // NEW

subgoals = collect_subsumed_subgoals(subgoal_trie, arguments)

increment_in_eval(subgoal_trie_leaf(subgoal_frame), subgoal_trie_root(table_entry))

prune_subgoal_list(subgoal_frame, subgoals)

collect_available_retroactive_answers(subgoal_frame)

if (get_first_answer(subgoal_frame))

// consume pre-stored answers

first = get_first_answer(subgoal_frame)

load_answer_from_trie(first)

try_answer(subgoal_frame) = first

CP_AP(B) = table_try_answer

goto continuation_instruction()

else if (state(subgoal_frame) == pruned) // NEW

// consume pre-stored answers

state(subgoal_frame) = evaluating

first = get_first_answer(subgoal_frame)

load_answer_from_trie(first)

try_answer(subgoal_frame) = first

CP_AP(B) = table_try_answer

goto continuation_instruction()

else if (is_new_consumer_call(subgoal_frame))

// (...)

else

// (...)

}

Figure 5.48: Pseudo-code for the new tabled subgoal call operation.

When trying to complete by traversing the dependency space for unconsumed an-

swers, we must also check for lost consumers. These consumers must be restarted

as generators in order for the computation to be completed. Figure 5.49 presents

the new completion operation. Note that we detect a lost consumer we call the

retroactive resolution instruction in order to restart the consumer.

CHAPTER 5. RETROACTIVE CALL SUBSUMPTION 164

completion(generator) {

if (is_leader_node(generator))

df = TOP_DEP_FR

while (younger_than(consumer_cp(df), generator))

if (is_lost_consumer(df)) // NEW

consumer = consumer_cp(df)

CP_B(consumer) = generator

restore_bindings(CP_TR(generator), CP_TR(consumer))

goto retroactive_resolution(consumer)

cont = get_next_answer_continuation(dep_fr)

if (cont)

// unconsumed answers

back_cp(df) = generator

consumer = consumer_cp(df)

restore_bindings(CP_TR(generator), CP_TR(consumer))

goto answer_resolution(consumer)

df = next(df)

perform_completion()

adjust_freeze_registers()

backtrack_to(CP_B(generator))

}

Figure 5.49: Pseudo-code for the new completion operation.

5.9 Chapter Summary

In this chapter, we discussed the shortcomings of tabling by call subsumption and

presented a new extension that overcomes these limitations. The new extension

is called Retroactive Call Subsumption (RCS) and enables full sharing of answers,

independently of the order the subgoals are called.

We presented the concept of pruning the execution of a subsumed subgoal by trans-

forming its state from generator to consumer and then by pruning its current execution.

We also discussed two main types of pruning: internal pruning and external pruning.

We described the several issues that arise when pruning a range of choice points

and we gave examples to illustrate our proposed solutions. We also presented the

new mechanisms necessary to support RCS, namely: a novel table space organization

called Single Time Stamped Trie (STST), where answers are represented only once;

and a novel algorithm to find executing subsumed subgoals in a subgoal trie.

In the next chapter, we will analyze the performance of the two tabling engines

implemented in this thesis. First, we will experiment with the engine that implements

traditional call subsumption, and then with the engine that supports RCS. We will

also perform some analysis on the table space organization of each engine.

Chapter 6

Experimental Results

This chapter presents a detailed performance analysis of our two subsumption-based

tabling engines. We divided this chapter into four sections. The first section describes

the set of tabled benchmark programs used. The second section evaluates the engine

supporting traditional call subsumption that was implemented by integrating the Time

Stamped Tries algorithms and data structures from XSB Prolog into Yap Prolog. This

includes analyzing the memory gains of call subsumption by measuring the size of

subgoal and answer tries and comparing them to variant-based tabling. In the third

section, we evaluate the retroactive-based tabling engine for programs that do not

benefit from the new mechanisms and for programs that can take advantage of this

new evaluation method. Finally, in the fourth section, we evaluate the STST table

space overhead in a potentially not so good scenario, where the operations of loading

and storing answers are more expensive than usual.

6.1 Benchmark Programs

In order to assess the performance of our tabling engines we used various programs

and data sets. We next briefly describe the programs used (see Appendix A for more

details).

path: This program computes the reachability between two nodes in a graph. Con-

nections between two nodes are represented by edge/2 facts. We used the

following graph configurations in our tests: tree, a binary tree; chain, a chain of

nodes; cycle, a chain of nodes, where the last node connects with the first one;

165

CHAPTER 6. EXPERIMENTAL RESULTS 166

pyramid, a pyramid-like configuration; and grid, where nodes are connected in

a grid-like fashion. For the path/2 predicate itself, we used 6 different versions:

left first, left last, right first, right last, double first, and double last.

samegen: The samegen/2 predicate solves the same generation problem. For this

program, we used the configurations described above for path.

genome: This program computes the set of nodes that are reachable by nodes 1 and

2 in a graph. This is an interesting problem, since it creates lots of subsumed

consumers when using call subsumption. We also used the same configurations

described above for path. To compute reachability this program uses the

left last version.

reach: The reach/2 predicate computes the reachability in a relation graph for

a set of model specifications. The benchmark is actually a set of programs

originally taken from the XMC project [RRS+00]1, which is a model checker

implemented atop the XSB system. We used two variants of the reach/2

predicate, reach first and reach last. The following relation graphs where

used:

iproto: i-protocol specification defined for a correct version with a huge window

size.

leader: leader election specification defined for 5 processes.

sieve: sieve specification defined for 5 processes and 4 overflow prime numbers.

flora: This program was generated by an object-oriented knowledge base language

and application development environment known as FLORA-2 [YK00]2.

fib: This program uses a fib/2 predicate to compute the Fibonacci number of a given

parameter which allows to benchmark the pruning of one subsumed subgoal.

big: This program also uses the fib/2 predicate, but instead of one, multiple sub-

sumed subgoals are called and pruned. As a parameter, we can input the number

of subsumed subgoals to call and prune.

Again, note that the relevant parts of the Prolog code for these programs are presented

in Appendix A.

1http://www.cs.sunysb.edu/˜lmc/
2http://flora.sourceforge.net

CHAPTER 6. EXPERIMENTAL RESULTS 167

The environment for our experiments was an Intel Core(TM) 2 Quad 2.66 GHz with

4 GBytes of memory and running the Linux kernel 2.6.31 with Yap Prolog 6.0.3 and

XSB Prolog 3.2. The scheduling strategy used by default was batched scheduling.

6.2 Traditional Call Subsumption with TST

In this section, we first evaluate the performance of YapTab against the SLG-WAM,

by comparing the gains obtained by using call subsumption instead of variant checks.

In the second part of this section, we measure the impact in terms of space by using

call subsumption. For this, we compared the number of answer and subgoal trie nodes

created when using variant checks and when using subsumptive checks.

6.2.1 Performance Evaluation

In order to compare the YapTab tabling engine with the SLG-WAM we used the

following benchmarks:

• The path/2 program with all combinations of versions and data sets and the

query goal ‘path(X,Y)’.

• The samegen/2 program with all data sets and the query goal ‘samegen(X,Y)’.

• The genome/1 program with all data sets and the query goal ‘genome(X)’.

• The two versions of the reach/2 program with the following queries for each

relation graphs:

– iproto: ‘reach(iproto 0(, ,end),Y)’.

– leader: ‘reach(systemLeader 0(5,end),Y)’.

– sieve: ‘reach(sieve 0(5,4,27,end),Y)’.

For each benchmark, we used variant-based tabling and then subsumption-based

tabling. Next, we computed the execution time and compared the speedups obtained

(Tvariant/Tsubsumptive) for each engine. The times presented next are the average of

3 runs. Given that YapTab’s implementation is largely based on XSB’s code to

implement the subsumption mechanisms, we expect the speedups to be very similar.

CHAPTER 6. EXPERIMENTAL RESULTS 168

Some potential differences between them will arise because of particular characteris-

tics, namely: the way they implement the tabling algorithms, the WAM engine itself,

the compiled trie code, and the handling of answer templates.

Table 6.1 summarizes the average speedups obtained for each program, while Ta-

bles 6.2 and 6.3 show the full details, with times and speedups for YapTab and SLG-

WAM.

Program
SLG-WAM YapTab

Average Speedup Average Speedup

left first 0.78 1.02

left last 0.77 0.96

right first 1.01 1.01

right last 0.94 1.07

double first 1.37 1.48

double last 1.31 1.40

samegen 339.76 1.03

genome 559.54 648.51

reach first 0.96 0.94

reach last 0.97 0.90

Table 6.1: Average speedups for call subsumption in SLG-WAM and YapTab.

The first thing we note is that, YapTab has a better speedup than SLG-WAM in

6 benchmarks, while in 3 of them SLG-WAM wins. In most of the benchmarks, the

speedups for the two engines are very similar, which proves that our integration efforts

were largely successful. However, for the samegen benchmark, the speedups are not

very similar at all, because the SLG-WAM engine has an average speedup of 339.76

and YapTab only 1.03. This happens because the performance of the variant-based

version of SLG-WAM performs very poorly against YapTab, which explains such big

differences (see Table 6.3 for details).

The programs left first and left last do not generate any subsumed consumer, there-

fore they are good benchmarks to assess the overhead of using the subsumption

mechanisms. For YapTab, the overhead is minimal with an average speedup of 0.96

for the left last program. Surprisingly, for the left first program the speedup is

1.02, that is, the subsumptive-based engine performed better than the variant-based

engine. The SLG-WAM behavior for these two programs is clearly worst, with an

average speedup of 0.78 and 0.77 for left first and left last, respectively.

CHAPTER 6. EXPERIMENTAL RESULTS 169

On the other hand, the programs right first and right last do generate subsumed

consumers, as many as the number of edge/2 facts. Notably, only YapTab achieves

an average speedup bigger than 1 for both programs. These programs show poor

speedups because simple facts are faster to evaluate than to use the time stamped trie

to collect relevant answers. In particular, the binary tree graph configuration with the

right first and right last programs in YapTab has a very poor speedup of 0.92 and

0.33, respectively, which is clearly influencing the average speedups (see Table 6.2).

In the right first benchmark, the time stamp index is created right at the beginning

of the program, when the time stamped trie is still empty, and maintained thereafter,

but, in the case of the right last program, the indices are only created when the

recursive clause is executed, and at that time the trie already contains a considerable

amount of answers. We thus modified the subsumptive engine to create the time

stamp index from the beginning, and the right last program had considerable better

results. Therefore, we argue that the lazy creation of the time stamp index can

affect considerably the execution time, for programs where consumers appear when

the answer trie already contains lots of answers. The operation of creating the time

stamp index and sorting each trie node at each trie level can be very costly when a

large number of nodes exist. By experimentation we found that it seems more efficient

to maintain the index as the answer trie is being expanded.

For the double first and double last we have attained speedups between 1.31 and

1.48 for both YapTab and SLG-WAM. These benchmarks are more computationally

expensive given that they create more dependencies in variant-based tabling. However,

in subsumption-based tabling, the number of dependencies is reduced and thus less

program clauses are explored.

The genome program shows the best speedup results, with an impressive average

speedup of 648.51 for YapTab. In this program, the subgoal path(2,X) and path(1,X)

are called very early in the evaluation which makes all further subgoals calls to path/2

that are subsumed by these two goals, as consumers.

For the model checking programs, the results were not so good with close speedups

for YapTab and SLG-WAM.

6.2.2 Memory Usage

In this section we measure the size of the table space for the variant and the sub-

sumptive engine. As a metric, we use the number of allocated answer trie nodes

CHAPTER 6. EXPERIMENTAL RESULTS 170

Data
SLG-WAM YapTab

Var Sub Speedup Var Sub Speedup

left first

chain (4096) 2793 3869 0.72 2688 2533 1.06
cycle (4096) 6201 9561 0.65 7260 6100 1.19

grid (64) 15416 16003 0.96 10702 11638 0.92
pyramid (4096) 9565 13849 0.69 13550 13462 1.01

tree (32768) 140 161 0.87 129 142 0.91

left last

chain (4096) 2766 3900 0.71 2666 2505 1.06
cycle (4096) 5724 9273 0.62 7042 6394 1.10

grid (64) 13609 15670 0.87 10801 12396 0.87
pyramid (2048) 2385 2958 0.81 2904 3112 0.93

tree (32768) 133 156 0.85 122 145 0.84

right first

chain (4096) 2830 3030 0.93 3253 3434 0.95
cycle (4096) 6313 7012 0.90 7090 6648 1.07

grid (64) 21318 15282 1.39 16659 16091 1.04
pyramid (4096) 10348 10617 0.97 12781 11677 1.09

tree (32768) 157 180 0.87 217 237 0.92

right last

chain (4096) 2864 2970 0.96 4032 3672 1.10
cycle (4096) 6373 7036 0.91 8362 6654 1.26

grid (64) 18346 13374 1.37 19741 13286 1.49
pyramid (4096) 10548 10900 0.97 13496 11397 1.18

tree (65536) crashed crashed — 478 1458 0.33

double first

chain (512) 5070 3546 1.43 3626 2705 1.34
cycle (512) 31053 20431 1.52 36334 15141 2.40
grid (16) 3906 2594 1.51 2762 1845 1.50

pyramid (512) 22507 14176 1.59 19341 11589 1.67
tree (32768) 773 961 0.80 756 1602 0.47

double last

chain (512) 5032 3553 1.42 3638 2578 1.41
cycle (512) 30991 20881 1.48 31302 16918 1.85
grid (16) 4048 2697 1.50 2510 1882 1.33

pyramid (512) 20518 15255 1.35 19969 10586 1.89
tree (32768) 766 972 0.79 730 1453 0.50

Table 6.2: Times, in milliseconds, and speedups for call subsumption in SLG-WAM

and YapTab: path programs.

across all answer tries and the number of allocated subgoal trie nodes across all tabled

predicates. For this, we used the following benchmarks:

• The programs left first, right first and double first with all the data sets

and the query ‘path(X,Y)’. Note that there is no need to use the last versions

of these programs, because they will result in the same number of answer trie

CHAPTER 6. EXPERIMENTAL RESULTS 171

Data
SLG-WAM YapTab

Var Sub Speedup Var Sub Speedup

samegen

chain (32768) 23439 22 1065.41 57 58 0.98
cycle (16384) 6046 12 503.83 38 33 1.15

grid (32) 2234 1362 1.64 1437 1205 1.19
pyramid (4096) 2286 18 127.00 25 21 1.19

tree (8192) 8037 8785 0.91 4856 7605 0.64

genome

chain (16384) 9276 18 515.33 21133 16 1320.81
cycle (8192) 2356 8 294.50 4744 8 593.00

grid (64) 1098 8 137.25 1733 12 144.42
pyramid (4096) 1957 8 244.62 2229 8 278.62

tree (32768) 41756 26 1606.00 47097 52 905.71

reach first
iproto 2533 2582 0.98 1321 1433 0.92
leader 5797 6042 0.96 2304 2420 0.95
sieve 17822 19099 0.93 14130 14880 0.95

reach last
iproto 2428 2558 0.95 1177 1426 0.83
leader 5786 6005 0.96 2170 2504 0.87
sieve 18027 17945 1.00 14888 14782 1.01

Table 6.3: Times, in milliseconds, and speedups for call subsumption in SLG-WAM

and YapTab: samegen, genome, and model checking programs.

nodes.

• The samegen program with all data sets and the query goal ‘samegen(X,Y)’.

• The genome program with all data sets and the query goal ‘genome(X)’.

• The flora program with the query goal ‘´ $ $ flora isa rhs(́ ,direct)’.

Table 6.4 presents the results we obtained for the number of created answer trie nodes.

From the table, we can see that, for the left first program, where no subsumed

subgoals are called, the number of answer trie nodes created is exactly same when

compared to variant-based tabling. Please notice that, while the number of trie nodes

is the same, the size of the nodes in subsumption-based tabling make the time stamped

answer trie 16.6% more costly in terms of memory usage, because they have the extra

timestamp field.

For the right first and double first programs, the number of answer trie nodes

is reduced in half. Using variant-based tabling, these programs generate a large

number of subgoals, that in subsumption-based tabling are consumers of the first

called subgoal, thus creating more answer tries for each one of these subgoals, and

CHAPTER 6. EXPERIMENTAL RESULTS 172

thus more answer trie nodes globally. For the genome benchmark, we need only to

store from 66% to 75% of the nodes used for variant-based tabling.

Data
YapTab

Var Sub Sub / Var

left first

chain (4096) 8390656 8390656 1.00000
cycle (4096) 16781313 16781313 1.00000

grid (64) 16781313 16781313 1.00000
pyramid (4096) 25171968 25171968 1.00000

tree (32768) 442370 442370 1.00000

right first

chain (4096) 16777216 8390656 0.50012
cycle (4096) 33562625 16781313 0.50000

grid (64) 33562625 16781313 0.50000
pyramid (4096) 50335744 25171968 0.50008

tree (32768) 868356 442370 0.50943

double first

chain (512) 262144 131328 0.50098
cycle (512) 525313 262657 0.50000
grid (16) 131585 65793 0.50000

pyramid (512) 786944 393984 0.50065
tree (32768) 868356 442370 0.50943

samegen

chain (32768) 131071 3 0.00002
cycle (16384) 65539 3 0.00005

grid (32) 1050627 524291 0.49903
pyramid (4096) 49147 16383 0.33335

tree (8192) 27974313 22369623 0.79965

genome

chain (16384) 65533 49151 0.75002
cycle (8192) 32771 24580 0.75005

grid (64) 16387 12292 0.75011
pyramid (4096) 24575 16385 0.66673

tree (32768) 98299 65534 0.66668

flora 83564 30228 0.36173

Table 6.4: Number of stored answer trie nodes for variant and subsumption-based

tabling in YapTab.

The samegen/2 program presents a curious behavior for the cycle and chain data

sets. In these cases, the program generates an answer that subsumes all the other

answers and every other subgoal call is subsumed by the top subgoal, resulting in only

3 created answer trie nodes, the root node, and the two nodes for the two terms of the

CHAPTER 6. EXPERIMENTAL RESULTS 173

general solution. Compared to tabling with variant checks, this result in an impressive

space saving.

Table 6.5 present the results for the number of allocated subgoal trie nodes for the

benchmarks shown in Table 6.4.

Data
YapTab

Var Sub Sub / Var

left first ... 3 3 1.00000

right first 1.00000

double first 1.00000

samegen 1.00000

genome

chain (16384) 16390 8 0.00049
cycle (8192) 8199 8 0.00098

grid (64) 4103 8 0.00195
pyramid (4096) 8198 8 0.00098

tree (32768) 32773 8 0.00024

flora 28471 19057 0.70096

Table 6.5: Number of stored subgoal trie nodes for variant and subsumption-based

tabling in YapTab.

The programs left first, right first and double first all create the same number

of subgoal trie nodes for all data sets. The left first program allocates a generator

and one variant consumer, therefore only 3 subgoal trie nodes are needed. When

using subsumptive tabling, both the programs right first and double first create

subsumed consumers that are represented on the subgoal trie, but for variant-based

tabling, these consumers are actually generators that are also represented in the

subgoal trie. Because the two engines create the same number of subgoal trie nodes,

we argue that using subsumptive-based tabling on these programs does not decrease

the number of unique called subgoals.

For the genome benchmark, we observe that there is an impressive reduction in stored

subgoal trie nodes. Because the subgoal path(2,X) is called and completed early in

the program, subsequent consumers of this subgoal are not inserted on the subgoal trie,

but they directly execute compiled trie code. Therefore, for subsumptive-based tabling

only three subgoals are represented on the subgoal tries: genome(X), path(1,X),

path(2,X) and a fourth subgoal for the predicate path/2 that is instantiated in the

two arguments.

CHAPTER 6. EXPERIMENTAL RESULTS 174

For the flora benchmark, we observe a considerable reduction in both subgoal and

answer trie nodes when using subsumptive-based tabling. The flora benchmark shows

that it is possible to apply call subsumption in complex programs in order to reduce

the table space and the number of tabled subgoals and thus maximize the sharing of

answers.

6.3 Retroactive Call Subsumption with STST

In this section we evaluate our retroactive-based tabling engine implemented on top

of YapTab. First, we start by assessing the overhead of using the new mechanisms

that support the RCS engine. In the second part of this section, we evaluate the RCS

engine with programs where specific subgoals are called before general subgoals, in

order to assess the advantages of the new mechanism.

6.3.1 Support Mechanisms Overhead

To measure the overhead of our RCS engine, we executed programs where RCS is

never applied, i.e., where general subgoals are always called before subsumed subgoals.

Therefore we can estimate the impact in the execution time of the RCS support

mechanisms, namely: building the subgoal dependency tree, the STST table space,

and searching for running subsumed subgoals. We used the following benchmarks:

• The path/2 program with all combinations of versions and data sets and the

query goal ‘path(X,Y)’.

• The samegen/2 program with all data sets and the query goal ‘samegen(X,Y)’.

• The two versions of the reach/2 program with the following queries for each

relation graphs:

– iproto: ‘reach(iproto 0(, ,end),Y)’.

– leader: ‘reach(systemLeader 0(5,end),Y)’.

– sieve: ‘reach(sieve 0(5,4,27,end),Y)’.

Notice that compared to traditional call subsumption, RCS should have relatively

identical execution times with a minimal overhead, because RCS also reuses answers

when a subsumed subgoal is called after a subsuming subgoal.

CHAPTER 6. EXPERIMENTAL RESULTS 175

For each table, we present the average execution time of 3 runs of the RCS engine and

its relative time to the other YapTab engines by computing the value TRCS/Tengine.

If the value is greater than 1.0 then RCS performs worse, otherwise RCS performs

better.

Table 6.6 summarizes the average overheads obtained for each program, while Ta-

bles 6.7 and 6.8 show the detailed results, with execution time in milliseconds and

overheads, for YapTab. By analyzing the results we can see that, on average, YapTab

with RCS performs worse than YapTab with subsumptive-based tabling in most cases,

and only the programs right first and right last show better results, while the

left first and left last programs have very comparable execution times. In theory,

these benchmarks should not run faster, but cache effects and other conditions could

affect positively the execution time of these programs.

Regarding the total average results, RCS is about 5% slower than traditional call

subsumption, which shows that RCS adds a very small overhead when executing

programs that do not benefit from the new evaluation model. Compared to variant-

based tabling, RCS is about 10% slower for these benchmarks, and it is only in the

right first program that RCS performs better.

Program
YapTab

Retro / Var Retro / Sub

left first 1.06 1.01

left last 1.07 1.03

right first 0.97 0.95

right last 1.25 0.94

double first 1.01 1.16

double last 1.04 1.16

samegen 1.19 1.14

reach first 1.11 1.04

reach last 1.17 1.04

Total Average 1.10 1.05

Table 6.6: Average overhead for programs not taking advantage of RCS.

CHAPTER 6. EXPERIMENTAL RESULTS 176

Data
YapTab

Retro Retro / Var Retro / Sub

left first

chain (4096) 2560 0.96 1.02
cycle (4096) 6357 0.93 1.05

grid (64) 12074 1.13 1.04
pyramid (4096) 13037 1.02 0.92

tree (32768) 149 1.26 1.02

left last

chain (4096) 2577 0.97 1.05
cycle (4096) 6696 0.98 1.07

grid (64) 12072 1.12 0.98
pyramid (2048) 2792 0.97 0.96

tree (32768) 153 1.30 1.09

right first

chain (4096) 3109 0.95 0.92
cycle (4096) 6894 0.97 1.03

grid (64) 14720 0.89 0.88
pyramid (4096) 11578 0.96 1.00

tree (32768) 212 1.07 0.92

right last

chain (4096) 3144 0.80 0.84
cycle (4096) 6225 0.79 0.95

grid (64) 12265 0.63 0.88
pyramid (4096) 11085 0.83 0.97

tree (65536) 1376 3.19 1.04

double first

chain (512) 2925 0.81 1.08
cycle (512) 20513 0.57 1.36
grid (16) 2112 0.76 1.15

pyramid (512) 12990 0.69 1.13
tree (32768) 1606 2.24 1.07

double last

chain (512) 2976 0.81 1.09
cycle (512) 20963 0.67 1.29
grid (16) 2116 0.84 1.13

pyramid (512) 12062 0.66 1.14
tree (32768) 1564 2.22 1.13

Table 6.7: Times, in milliseconds, and overheads for RCS in YapTab: path programs.

6.3.2 Performance Evaluation

In this section, we present experimental results using retroactive-based tabling on

programs that can benefit from it, i.e., programs where general subgoals are called

CHAPTER 6. EXPERIMENTAL RESULTS 177

Data
YapTab

Retro Retro / Var Retro / Sub

samegen

chain (32768) 65 1.33 1.12
cycle (16384) 36 0.97 1.24

grid (32) 1162 0.81 0.97
pyramid (4096) 30 1.43 1.43

tree (8192) 6970 1.42 0.92

reach first
iproto 1570 1.19 1.10
leader 2514 1.09 1.04
sieve 14644 1.04 0.98

reach last
iproto 1585 1.35 1.11
leader 2560 1.18 1.02
sieve 14648 0.98 0.99

Table 6.8: Times, in milliseconds, and overheads for RCS in YapTab: samegen and

model checking programs.

after more specific subgoals. The programs we used for these experiments are the

following:

• The programs left first, left last, double first and double last with all data

sets and the query goal ‘path(X,1)’. Note that by calling the subgoal path(X,1),

the subgoal path(X,Y) is called in the continuation, which prunes the first

subgoal.

• The genome/1 program with all data sets and the query goal ‘genome(X)’.

• The two versions of the reach/2 program with the following queries for each

relation graphs:

– iproto: ‘reach(iproto 0(, ,end),imain 7 0(A, B, C, D, E))’.

– leader: ‘reach(systemLeader 0(5,end), par(D, E, A, B))’.

– sieve: ‘reach(sieve 0(5,4,27,end), par(A, B, C, D))’.

• The flora program with the query goal ‘´ $ $ flora isa rhs(́ ,direct)’.

• The fib program with the parameters 30, 32, 35, and 36 and the query goal

‘a(X), p(Y, Z)’.

CHAPTER 6. EXPERIMENTAL RESULTS 178

• The big program with the parameters (number of subgoals to prune) 5, 10, and

20 and the query goal ‘a(X)’.

We next present the results with the average execution time of the retroactive-based

engine and compare it with both variant and subsumptive YapTab tabling engines

using the formula Tengine/TRCS. All execution times are an average of 3 runs. Table 6.9

summarizes the average values of each program, while the detailed results are presented

in Tables 6.10 and 6.11.

Program
YapTab

Var / Retro Sub / Retro

left first 0.89 0.95

left last 0.88 0.90

double first 1.07 1.09

double last 1.05 1.10

genome 450.33 0.74

reach first 2.54 1.76

reach last 3.22 1.87

flora 3.17 1.17

fib 1.95 2.02

big 13.26 13.66

Table 6.9: Average speedups for RCS in YapTab.

For the path/2 we should distinguish between the versions where the recursive clause

is the first clause (left first and double first) and the versions where the recursive

clause is the second clause (left last and double last). In the first versions, the

specific subgoal generates answers before reaching the general subgoal, while in the

last versions, the general subgoal is reached first. Therefore, the first versions should,

in principle, obtain better results than the last versions, because they waste less time

executing the subsumed subgoal. The results for the left versions of the path/2

program confirm this, with speedups of 0.95 and 0.90 for the left first and left last

versions, respectively. Surprisingly, the double versions show the opposite behavior.

Another important observation we can make from these results is that RCS not always

shows performance gains, when programs takes advantage of it. In our experiments,

only the programs left first, left last and genome show, in average, worse perfor-

mance.

CHAPTER 6. EXPERIMENTAL RESULTS 179

Data
YapTab

Retro Var / Retro Sub / Retro

left first

chain (4096) 2976 0.95 0.91
cycle (4096) 7020 0.77 0.75

grid (64) 13444 0.94 1.00
pyramid (4096) 16562 0.87 0.93

tree (32768) 174 0.93 1.16

left last

chain (4096) 2930 0.95 0.91
cycle (4096) 6917 0.77 0.77

grid (64) 14496 0.83 0.90
pyramid (2048) 3253 0.98 0.91

tree (32768) 178 0.89 1.00

double first

chain (512) 2952 1.18 0.95
cycle (512) 17367 1.11 1.01
grid (16) 2110 1.15 0.93

pyramid (512) 12284 1.32 0.96
tree (32768) 1372 0.58 1.61

double last

chain (512) 2934 1.19 1.11
cycle (512) 17741 1.14 0.94
grid (16) 2112 1.12 0.94

pyramid (512) 12444 1.23 0.92
tree (32768) 1420 0.56 1.61

Table 6.10: Times, in milliseconds, and speedups for RCS in YapTab: path programs.

We argue that the speedup of using RCS is highly dependent on the nature of the

program. The left version of the path/2 program, for example, does not show

improvements because what we gain from pruning the execution of simple edge/2

facts does not pay the cost of using the STST to retrieve relevant answers for the

subsumed subgoal and the cost of pruning the computation itself. In other words,

using subsumptive-based tabling for this program seems advantageous because the

cost of executing more predicate clauses is less than maintaining the time stamp

index.

Even if the path/2 programs, in average, do not show considerable improvements, for

some data sets these programs can obtain good speedups, for example, the binary tree

configuration can reach a speedup of 1.61.

CHAPTER 6. EXPERIMENTAL RESULTS 180

Data
YapTab

Retro Var / Retro Sub / Retro

genome

chain (16384) 24 799.96 0.50
cycle (8192) 13 400.00 0.62

grid (64) 12 127.08 1.08
pyramid (4096) 12 194.00 0.67

tree (32768) 60 730.60 0.83

reach first
iproto 1920 1.57 1.49
leader 2644 4.70 1.82
sieve 16191 1.36 1.97

reach last
iproto 1957 1.54 1.46
leader 2570 6.04 1.98
sieve 15001 2.08 2.16

flora 72 3.17 1.17

fib

30 248 1.82 1.87
32 578 2.00 2.05
35 2502 1.96 1.94
36 3936 2.02 2.24

big
5 577 6.57 6.20
10 581 11.63 12.79
20 581 21.58 21.98

Table 6.11: Times, in milliseconds, and speedups for RCS in YapTab: genome, model

checking, flora, fib, and big programs.

Regarding the model checking programs, reach left and reach last, as they are much

more complex than the path data sets, they show larger improvements. In particular,

for the reach last program with the leader model, we obtain a good speedup of

2.16. The flora program also shows an interesting improvement with a speedup of

1.17 over traditional call subsumption. These complex benchmarks show that RCS

has the potential to speedup the execution on this type of programs.

For the fib program, RCS shows a considerable average speedup of 2.02 over call

subsumption and an identical speedup of 1.95 against variant-based tabling. Because

the execution time of the pruned subsumed subgoal is more or less equal to that of

the subsuming subgoal the speedup is maintained for the different parameters (see

Table 6.11). For the big program, where multiple subsumed subgoals are pruned,

we can see that as the number of pruned subsumed subgoals increases proportionally,

the speedup also increases, reaching a maximum of 21.98. An interesting observation

CHAPTER 6. EXPERIMENTAL RESULTS 181

for the big program is that the execution time for retroactive-tabling stays constant

(around 580 milliseconds), when we increase the number of subsumed subgoals to

prune.

6.4 Single Time Stamped Trie

In the STST table space organization, the answers for all the subgoals of a predicate

are stored in a single answer trie. While advantageous, all arguments of the answers

must be stored in the trie. In this section, we experiment with programs where this

property is stressed to measure the overhead in terms of space and time, when the

load operation is more expensive and the store operation needs to insert more terms

in the trie than what is needed to complete the computation.

For this, we used the path/2 program. We transformed, both the program and

data sets, to use a functor term in each argument, instead of simple integers. For

example, an edge(3,4) fact is transformed into edge(f(3),f(4)). The updated

version of the left first program is illustrated in Figure 6.1. We experimented the

query goal ‘path(f(X),f(Y))’ with different graph sizes with three different versions

of the path/2 program.

path(f(X),f(Y)) :- path(f(X),f(Z)), edge(f(Z),f(Y)).

path(f(X),f(Y)) :- edge(f(X),f(Y)).

Figure 6.1: Transformed path/2 predicate to use functor term arguments.

6.4.1 Execution Time

The average results are presented in Table 6.12 and compare the STST to tabling with

variant and subsumptive checks. Table 6.13 present the detailed results concerning

execution time for each benchmark. Note that each execution time is the average of

3 runs. From these results, we see that, on average, the transformed path/2 program

has an overhead of 28%, which is considerable when compared to the overhead of 5%

found early on this chapter.

The consumption of answers by consumers and the insertion of new answers by gener-

ators into the table space are the primary causes for the overhead in these benchmarks.

The programs with the worst overhead are double first and double last, with 48%

CHAPTER 6. EXPERIMENTAL RESULTS 182

and 49% of overhead against traditional call subsumption. These programs also create

the higher number of consumers, both variant consumers and subsumed consumers

than any other benchmark in these experiments. The right first and right last only

create subsumed consumers, and they have an overhead of 14% and 12%, respectively,

which are the lowest overhead values. In the programs left first and left last, only

one variant consumer is allocated, however they perform worse than the right versions.

We thus argue that the number of consumer nodes can greatly reduce the applicability

and performance of the STST table space organization when the operation of loading

an answer from the trie is more expensive. While this situation seems disadvantageous,

execution time can be reduced if another subgoal call appears (for example path(X,Y))

where its possible to reuse the answers from the table before executing the predicate

clauses, thus providing an elegant solution to the problem of incomplete tables.

Program
YapTab

Retro / Var Retro / Sub

left first 1.22 1.20

left last 1.27 1.27

right first 1.18 1.14

right last 1.15 1.12

double first 2.56 1.48

double last 2.50 1.49

Total Average 1.65 1.28

Table 6.12: Average overheads for the query goal ‘path(f(X),f(Y))’ in YapTab.

6.4.2 Memory Usage

We executed the previous benchmarks and measured the number of answer trie nodes

for each program. Table 6.14 presents the average results of RCS against variant

and subsumptive-based engines in YapTab. The detailed results are presented in

Table 6.15. In this table, we show the number of answer trie nodes allocated for

the RCS execution and then the relative number of trie nodes for the variant and

subsumptive-based executions. The programs left, right and double are the left,

right and double versions of the path/2 program. Note that we could use a single

path/2 program version, but we used different versions to distinguish between different

graph sizes.

CHAPTER 6. EXPERIMENTAL RESULTS 183

Data
YapTab

Retro Retro / Var Retro / Sub

left first

chain (2048) 812 1.21 1.30
cycle (2048) 1722 1.08 1.14

grid (64) 17261 1.38 1.17
pyramid (1024) 869 1.18 1.23

tree (65536) 573 1.23 1.17

left last

chain (2048) 894 1.35 1.42
cycle (2048) 1794 1.13 1.29

grid (64) 18187 1.47 1.23
pyramid (1024) 862 1.14 1.24

tree (65536) 582 1.27 1.19

right first

chain (4096) 4004 1.21 1.21
cycle (4096) 7324 1.09 1.04

grid (32) 1130 1.27 1.29
pyramid (2048) 3172 1.17 1.10

tree (32768) 300 1.15 1.04

right last

chain (4096) 3642 0.95 1.08
cycle (4096) 7965 0.98 1.12

grid (32) 997 0.96 1.22
pyramid (2048) 3170 1.09 1.12

tree (32768) 528 1.76 1.05

double first

chain (256) 1708 3.94 1.58
cycle (256) 2945 1.11 1.51
grid (16) 3936 1.53 1.53

pyramid (256) 7480 4.04 1.44
tree (16384) 766 2.19 1.35

double last

chain (256) 1778 4.08 1.69
cycle (256) 2932 1.10 1.64
grid (16) 3956 1.57 1.54

pyramid (256) 6829 3.70 1.30
tree (16384) 720 2.04 1.29

Table 6.13: Times, in milliseconds, and overheads for the query goal

‘path(f(X),f(Y))’ in YapTab.

From these results we can see that the STST table space is 89% more efficient than

the variant table space. In particular, for the double program, these differences are

higher because in the variant engine there are more generator subgoal calls and thus

CHAPTER 6. EXPERIMENTAL RESULTS 184

Program
YapTab

Var / Retro Sub / Retro

left 0.99258 0.99258

right 1.95122 0.97906

double 2.72892 0.90149

Total Average 1.89091 0.95771

Table 6.14: Average number of stored answer trie nodes for the query goal

‘path(f(X),f(Y))’ in YapTab.

more answer tries are created.

Data
YapTab

Retro Var / Retro Sub / Retro

left

chain (2048) 2100233 0.99902 0.99902
cycle (2048) 4200450 0.99902 0.99902

grid (64) 16789506 0.99951 0.99951
pyramid (1024) 1576457 0.99870 0.99870

tree (65536) 983056 0.96665 0.96665

right

chain (4096) 8398847 1.99756 0.99902
cycle (4096) 16789506 1.99902 0.99951

grid (32) 1051650 1.99610 0.99805
pyramid (2048) 6302719 1.99675 0.99870

tree (32768) 491520 1.76667 0.90000

double

chain (256) 26387 2.48365 0.87490
cycle (256) 36844 3.57141 0.89333
grid (16) 59028 2.22920 0.82586

pyramid (256) 56638 3.47583 0.95187
tree (16384) 213008 1.88449 0.96148

Table 6.15: Detailed number of stored answer trie nodes for the query goal

‘path(f(X),f(Y))’ in YapTab.

When comparing RCS to the subsumptive-based engine, the subsumptive-based engine

only stores 4.2% less trie nodes than the RCS engine, even if the f/1 functor terms

need to be stored. This is easily understandable because the first f/1 functor term is

only represented once, at the top of the STST, and then there is one second f/1 functor

for each source node in the graph, therefore, the total number of functors stored is

insignificant when compared to the total number of terms stored in the trie. Also note

CHAPTER 6. EXPERIMENTAL RESULTS 185

that, for the double benchmarks, the data sets used are small if compared to the data

sets used for the other benchmarks, but the space overhead is more significant (18%

in the worst case). We thus argue that the cost of the extra space needed to store

terms in the STST is less significant as more terms are stored in the trie.

186

Chapter 7

Conclusions and Further Work

In this chapter we summarize the work developed in this thesis. First, we list the

various contributions presented in the thesis and then we suggest open problems for

future research involving the work developed in this thesis.

7.1 Main Contributions

We can identify two main contributions of this thesis. The first main contribution is

the integration of the TST approach for call subsumption into YapTab’s engine. The

second main contribution is the design and implementation of a new tabling execution

mechanism called Retroactive Call Subsumption, that maximizes the sharing of an-

swers between subsumed/subsuming subgoals. In order to implement the subsumption

algorithms and data structures for these two mechanisms we took advantage of the

Time Stamped Tries original proposal from XSB Prolog. This process also helped us

understand the differences and similarities between the YapTab and the SLG-WAM

tabling engines.

We next detail the most important aspects of the work developed during this thesis:

Subsumption-based tabling engine. Tabled evaluation with subsumptive checks

is now supported in Yap Prolog. While we integrated the TST algorithms and

data structures from SLG-WAM into YapTab, the modifications made to YapTab

were minimal and thus show that it is possible to add support for subsumption-

based tabling to a delaying-based tabling engine that already supports variant

187

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 188

checks by preserving its own tabling operations and main algorithms. In addi-

tion, YapTab is now also able to mix variant and subsumption-based tabling in

the same program by defining the evaluation model for each predicate.

Mechanisms to control retroactive-based execution. This thesis innovates by

presenting a novel execution model that is able to prune the execution of specific

subgoals when a more general subgoal appears. We developed rules for pruning

a range of choice points and presented the issues that arise and can lead to

completion problems when transforming consumer nodes into generators. We

also developed an efficient mechanism to detect if a subgoal is internal to the

execution of another subgoal by building a subgoal dependency tree.

Algorithm to find subsumed subgoals in the table space. We designed a novel

and efficient algorithm that can detect the instances of a subgoal that are

currently being evaluated. Our design takes advantage of the existing WAM

machinery and data areas. In order to prune the search space, we extended the

subgoal trie data structure with information about the status of the subgoals

under a subgoal trie node.

Single Time Stamped Trie table space organization. In the STST table space

organization we have a single time stamped answer trie for each predicate. This

permits greater reuse of answers between the subgoals of the same predicate,

as answers are represented only once. The design facilitates the pruning of

subsumed subgoals because the subgoals can easily identify which answers have

already been consumed or generated. We also designed a new optimization,

where we throw away the subgoal trie when the most general subgoal completes,

therefore saving more memory.

Enhanced answer reuse. The STST table space organization also allows subgoals

to immediately reuse answers added by other subgoals. This means that when

more general subgoal appears, we can first load the answers already stored by

the subsumed subgoals and only then execute the predicate clauses. This is also

a very efficient way of handling incomplete tables [Roc07], because we are not

only restricted to an incomplete or complete answer set from a single subgoal

but we can reuse answers from other subgoals, which can be useful if the subgoal

stops execution by the cut operator and is called again later.

Support for mixed tabling checks. Our final system is able to mix variant, sub-

sumption and retroactive-based tabling in the same program. This enables the

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 189

programmer to choose the best evaluation strategy per predicate, which arguably

can augment the power of tabling for real world programming.

Performance Evaluation. We evaluated the performance of our subsumption-based

tabling engine against SLG-WAM with very comparable results, which validates

our integration efforts. We also observed that by using call subsumption we can

potentially cut down on execution time and waste less memory. For retroactive-

based tabling, we evaluated the overhead of using the new evaluation mechanism

with programs that do not benefit from retroactive evaluation. For programs

were retroactive reuse occurs, we validated our approach with good speedups

over traditional call subsumption.

7.2 Further Work

Despite the contributions enumerated above, still much work is left to be done in the

future. We next summarize further work that can and should be done:

More efficient algorithms in the table space. While the algorithms we used for

the STST table space work pretty well for the majority of applications, there are

programs were the overhead of various subgoals inserting on the same answer trie

can be considerable. Newer algorithms should be developed in order to, while

preserving the good results for the majority of the cases, solve these deficiencies.

Moreover, the current implementation cannot benefit from a compiled answer

trie until the most general subgoal completes. Novel mechanisms must be

developed in order to take advantage of the compiled tries optimization while

allowing answer insertion at the same time.

Experimentation in real world applications. Our retroactive-based tabling en-

gine still needs more experimentation and testing with real world data and

applications in order to refine the implementation. More intensive experimen-

tation may provide a deep analysis on the algorithms implemented and many

opportunities to make each algorithm more efficient and/or robust will certainly

arise.

Exploration of other execution models. When using retroactive-based tabling,

there are some cases where the engine needs to call multiple subgoals of the

same predicate in order to calculate the answers for the top subgoal. Sometimes,

CHAPTER 7. CONCLUSIONS AND FURTHER WORK 190

it would be advantageous to abstract the running subgoals into a more general

subgoal and then call it. After that, the top subgoal would use the answers

generated by the more general subgoal. This mechanism called call abstraction

was proposed by Johnson et al. [JRRR99] and is based on the idea that it may

be useful for some programs to lose goal directness and generate the full set

of answers and then select relevant answers from that set. Retroactive-based

tabling already includes all the machinery necessary to do that, which makes it

a good framework to further support call abstraction by devising various analysis

techniques of call patterns.

Appendix A

Benchmark Programs

This appendix describes the programs used to benchmark the tabling engines explored

in this thesis. The program rules will be fully presented here and the facts will be

shortly described, as they are too big to fit here. The author may be contacted for

the full benchmark set.

A.1 Programs

left first

:- table path/2.

path(X, Z) :- path(X, Y), edge(Y, Z).

path(X, Z) :- edge(X, Z).

left last

:- table path/2.

path(X, Z) :- edge(X, Z).

path(X, Z) :- path(X, Y), edge(Y, Z).

right first

:- table path/2.

191

APPENDIX A. BENCHMARK PROGRAMS 192

path(X, Z) :- edge(X, Y), path(Y, Z).

path(X, Z) :- edge(X, Z).

right last

:- table path/2.

path(X, Z) :- edge(X, Z).

path(X, Z) :- edge(X, Y), path(Y, Z).

double last

:- table path/2.

path(X, Z) :- edge(X, Z).

path(X, Z) :- path(X, Y), path(Y, Z).

samegen

:- table samegen/2.

samegen(X,X).

samegen(X,Y) :- edge(W, X), samegen(W,Z), edge(Z, Y).

genome

:- table genome/1.

:- table path/2.

path(X, Z) :- edge(X, Z).

path(X, Z) :- path(X, Y), edge(Y, Z).

genome(X) :- path(1, X), path(2, X).

reach first

:- table reach/2.

reach(X, Z) :- reach(X, Y), trans(Y, _, Z).

reach(X, Z) :- trans(X, _, Z).

APPENDIX A. BENCHMARK PROGRAMS 193

reach last

:- table reach/2.

reach(X, Z) :- trans(X, _, Z).

reach(X, Z) :- reach(X, Y), trans(Y, _, Z).

flora

:- table ’_$_$_flora_fd’/3.

:- table ’_$_$_flora_mvd’/3.

:- table ’_$_$_flora_ifd’/3.

:- table ’_$_$_flora_imvd’/3.

:- table ’_$_$_flora_isa’/2.

:- table ’_$_$_flora_sub’/2.

:- table ’_$_$_flora_fs’/3.

:- table ’_$_$_flora_mvs’/3.

:- table ’_$_$_flora_exists’/1.

:- table ’_$_$_flora_mvd’/2.

:- table ’_$_$_flora_imvd’/2.

:- table ’_$_$_flora_fd_dyn’/3.

:- table ’_$_$_flora_mvd_dyn’/3.

:- table ’_$_$_flora_ifd_dyn’/3.

:- table ’_$_$_flora_imvd_dyn’/3.

:- table ’_$_$_flora_isa_dyn’/2.

:- table ’_$_$_flora_sub_dyn’/2.

:- table ’_$_$_flora_fs_dyn’/3.

:- table ’_$_$_flora_mvs_dyn’/3.

:- table ’_$_$_flora_exists_dyn’/1.

:- table ’_$_$_flora_mvd_dyn’/2.

:- table ’_$_$_flora_imvd_dyn’/2.

’_$_$_flora_fd’(O,M,R) :- ’_$_$_flora_fd_dyn’(O,M,R).

’_$_$_flora_mvd’(O,M,R) :- ’_$_$_flora_mvd_dyn’(O,M,R).

’_$_$_flora_ifd’(O,M,R) :- ’_$_$_flora_ifd_dyn’(O,M,R).

’_$_$_flora_imvd’(O,M,R) :- ’_$_$_flora_imvd_dyn’(O,M,R).

’_$_$_flora_isa’(O1,O2) :- ’_$_$_flora_isa_dyn’(O1,O2).

’_$_$_flora_sub’(O1,O2) :- ’_$_$_flora_sub_dyn’(O1,O2).

’_$_$_flora_fs’(O,M,R) :- ’_$_$_flora_fs_dyn’(O,M,R).

’_$_$_flora_mvs’(O,M,R) :- ’_$_$_flora_mvs_dyn’(O,M,R).

’_$_$_flora_exists’(O) :- ’_$_$_flora_exists_dyn’(O).

’_$_$_flora_mvd’(O,M) :- ’_$_$_flora_mvd_dyn’(O,M).

’_$_$_flora_imvd’(O,M) :- ’_$_$_flora_imvd_dyn’(O,M).

...

% other predicates

....

fib

fib(0, 1) :- !.

fib(1, 1) :- !.

APPENDIX A. BENCHMARK PROGRAMS 194

fib(X, V) :-

X > 1,

X1 is X - 1,

X2 is X - 2,

fib(X1, V1),

fib(X2, V2),

V is V1 + V2.

% input parameter

% fib_fact(Number).

do_fib(X) :- fib_fact(T), fib(T, X).

:- table p/2.

a(X) :- p(1,X).

p(1,2).

p(1,X) :- do_fib(X).

big

fib(0, 1) :- !.

fib(1, 1) :- !.

fib(X, V) :-

X > 1,

X1 is X - 1,

X2 is X - 2,

fib(X1, V1),

fib(X2, V2),

V is V1 + V2.

between_num(Num, Num, Num) :- !.

between_num(Num, Num, Max).

between_num(Num, Min, Max) :-

Min1 is Min + 1,

between_num(Num, Min1, Max).

% input parameter:

% big_fact(Number).

b(X) :- big_fact(Max), between_num(X, 1, Max).

:- table p/1.

:- table a/1.

a(0) :- b(X), p(X).

a(0).

a(0) :- p(_).

p(_) :- a(_), fib(32, X).

APPENDIX A. BENCHMARK PROGRAMS 195

A.2 Facts

chain

A set of graph nodes in a chain configuration. An example with 4 nodes is:

edge(1, 2).

edge(2, 3).

edge(3, 4).

cycle

A set of graph nodes in a chain configuration, but the last node connects to the first

node. An example with four nodes is:

edge(1, 2).

edge(2, 3).

edge(3, 4).

edge(4, 1).

pyramid

A set of graph nodes forming a pyramid-like configuration. An example with four

nodes (depth 2) is:

edge(1,2).

edge(1,3).

edge(2,4).

edge(3,4).

tree

A set of graph nodes forming a binary tree configuration. An example with seven

nodes (depth 3) is:

edge(1,2).

edge(1,3).

edge(2,4).

edge(2,5).

edge(3,6).

edge(3,7).

APPENDIX A. BENCHMARK PROGRAMS 196

grid

A set of graph nodes forming a grid configuration. An example with two nodes is:

edge(1,2).

edge(2,1).

edge(3,4).

edge(4,3).

edge(1,3).

edge(3,1).

edge(2,4).

edge(4,2).

leader

Leader election specification defined for 5 processes.

% the transition relation graph trans(par(A,end,end,B),nop,B).

trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)).

trans(medium_0(A,B,C,D),

in(A,E),medium_0(A,B,[E|C],D)).

...

% auxiliary predicates

...

sieve

Sieve specification defined for 5 processes and 4 overflow prime numbers.

% the transition relation graph trans(par(A,end,end,B),nop,B).

trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)).

trans(generator_0(A,B,C,D),out(A,B),D) :-

E is B+1, not B=<C.

...

% auxiliary predicates

...

iproto

Specification for the i-protocol defined for a correct version with a huge window size.

fixed(fix).

APPENDIX A. BENCHMARK PROGRAMS 197

% the transition relation graph trans(par(A,end,end,B),nop,B).

trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)).

trans(iproto_0(A,B,C),nop,imain_0(C)).

...

% auxiliary predicates

...

198

References

[AK91] H. Aı̈t-Kaci. Warren’s Abstract Machine – A Tutorial Reconstruction. The

MIT Press, 1991.

[BCR93] L. Bachmair, T. Chen, and I. V. Ramakrishnan. Associative Commutative

Discrimination Nets. In International Joint Conference on Theory and

Practice of Software Development, number 668 in LNCS, pages 61–74.

Springer-Verlag, 1993.

[Car90] M. Carlsson. Design and Implementation of an OR-Parallel Prolog Engine.

PhD thesis, The Royal Institute of Technology, 1990.

[CR08] J. Costa and R. Rocha. Global Storing Mechanisms for Tabled Evaluation.

In International Conference on Logic Programming, number 5366 in LNCS,

pages 708–712. Springer-Verlag, 2008.

[CW96] W. Chen and D. S. Warren. Tabled Evaluation with Delaying for General

Logic Programs. Journal of the ACM, 43(1):20–74, 1996.

[DRR+95] S. Dawson, C. R. Ramakrishnan, I. V. Ramakrishnan, K. Sagonas,

S. Skiena, T. Swift, and D. S. Warren. Unification factoring for efficient

execution of logic programs. In POPL ’95: Proceedings of the 22nd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 247–258, New York, NY, USA, 1995. ACM.

[DS99] B. Demoen and K. Sagonas. CHAT: The Copy-Hybrid Approach to

Tabling. In International Workshop on Practical Aspects of Declarative

Languages, number 1551 in LNCS, pages 106–121. Springer-Verlag, 1999.

[Fre62] E. Fredkin. Trie Memory. Communications of the ACM, 3:490–499, 1962.

[FSW96] J. Freire, T. Swift, and D. S. Warren. Beyond Depth-First: Improving

Tabled Logic Programs through Alternative Scheduling Strategies. In

199

REFERENCES 200

International Symposium on Programming Language Implementation and

Logic Programming, number 1140 in LNCS, pages 243–258. Springer-

Verlag, 1996.

[GG01] Hai-Feng Guo and G. Gupta. A Simple Scheme for Implementing

Tabled Logic Programming Systems Based on Dynamic Reordering of

Alternatives. In International Conference on Logic Programming, number

2237 in LNCS, pages 181–196. Springer-Verlag, 2001.

[GRS91] A. Van Gelder, K. Ross, and J. Schlipf. The Well-Founded Semantics for

General Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

[Joh00] Ernie Johnson. Interfacing a Tabled-WAM Engine to a Tabling Subsystem

Supporting Both Variant and Subsumption Checks. In Conference on

Tabulation in Parsing and Deduction, 2000.

[JRRR99] E. Johnson, C. R. Ramakrishnan, I. V. Ramakrishnan, and P. Rao. A

Space Efficient Engine for Subsumption-Based Tabled Evaluation of Logic

Programs. In Fuji International Symposium on Functional and Logic

Programming, number 1722 in LNCS, pages 284–300. Springer-Verlag,

1999.

[Kow74] R. Kowalski. Predicate Logic as a Programming Language. In Information

Processing, pages 569–574. North-Holland, 1974.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[Mic68] D. Michie. Memo Functions and Machine Learning. Nature, 218:19–22,

1968.

[RFS05] R. Rocha, Nuno A. Fonseca, and V. Santos Costa. On Applying Tabling

to Inductive Logic Programming. In European Conference on Machine

Learning, number 3720 in LNAI, pages 707–714. Springer-Verlag, 2005.

[Roc01] R. Rocha. On Applying Or-Parallelism and Tabling to Logic Programs.

PhD thesis, Department of Computer Science, University of Porto, 2001.

[Roc06a] R. Rocha. Efficient Support for Incomplete and Complete Tables in the

YapTab Tabling System. In Colloquium on Implementation of Constraint

and LOgic Programming Systems, pages 2–17, 2006.

REFERENCES 201

[Roc06b] R. Rocha. Handling Incomplete and Complete Tables in Tabled Logic

Programs. In International Conference on Logic Programming, number

4079 in LNCS, pages 427–428. Springer-Verlag, 2006.

[Roc07] R. Rocha. On Improving the Efficiency and Robustness of Table Storage

Mechanisms for Tabled Evaluation. In International Symposium on

Practical Aspects of Declarative Languages, number 4354 in LNCS, pages

155–169. Springer-Verlag, 2007.

[RRR96] P. Rao, C. R. Ramakrishnan, and I. V. Ramakrishnan. A Thread in Time

Saves Tabling Time. In Joint International Conference and Symposium on

Logic Programming, pages 112–126. The MIT Press, 1996.

[RRS+95] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren.

Efficient Tabling Mechanisms for Logic Programs. In International

Conference on Logic Programming, pages 687–711. The MIT Press, 1995.

[RRS+99] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren.

Efficient Access Mechanisms for Tabled Logic Programs. Journal of Logic

Programming, 38(1):31–54, 1999.

[RRS+00] C. R. Ramakrishnan, I. V. Ramakrishnan, S. Smolka, Y. Dong, X. Du,

A. Roychoudhury, and V. Venkatakrishnan. XMC: A Logic-Programming-

Based Verification Toolset. In International Conference on Computer Aided

Verification, number 1855 in LNCS, pages 576–580. Springer-Verlag, 2000.

[RSS00] R. Rocha, F. Silva, and V. Santos Costa. YapTab: A Tabling Engine

Designed to Support Parallelism. In Conference on Tabulation in Parsing

and Deduction, pages 77–87, 2000.

[RSS05a] R. Rocha, F. Silva, and V. Santos Costa. Dynamic Mixed-Strategy

Evaluation of Tabled Logic Programs. In International Conference on Logic

Programming, number 3668 in LNCS, pages 250–264. Springer-Verlag,

2005.

[RSS05b] R. Rocha, F. Silva, and V. Santos Costa. On applying or-parallelism and

tabling to logic programs. Theory and Practice of Logic Programming, 5(1

& 2):161–205, 2005.

[SDRA] V. Santos Costa, L. Damas, R. Reis, and R. Azevedo. YAP User’s Manual.

Available from http://www.dcc.fc.up.pt/~vsc/Yap.

REFERENCES 202

[SS94] L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1994.

[SS98] K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of

Fixed-Order Stratified Logic Programs. ACM Transactions on Program-

ming Languages and Systems, 20(3):586–634, 1998.

[SSW94] K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive

Database Engine. In ACM SIGMOD International Conference on the

Management of Data, pages 442–453. ACM Press, 1994.

[SSW96] K. Sagonas, T. Swift, and D. S. Warren. An Abstract Machine for

Computing the Well-Founded Semantics. In Joint International Conference

and Symposium on Logic Programming, pages 274–288. The MIT Press,

1996.

[SWS+] K. Sagonas, D. S. Warren, T. Swift, P. Rao, S. Dawson, J. Freire,

E. Johnson, B. Cui, M. Kifer, B. Demoen, and L. F. Castro. XSB

Programmers’ Manual. Available from http://xsb.sourceforge.net.

[Tar72] R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM

Journal on Computing, 1(2):146–160, 1972.

[TS86] H. Tamaki and T. Sato. OLDT Resolution with Tabulation. In

International Conference on Logic Programming, number 225 in LNCS,

pages 84–98. Springer-Verlag, 1986.

[War83] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309,

SRI International, 1983.

[WPP77] D. H. D. Warren, L. M. Pereira, and F. Pereira. Prolog – The Language

and its Implementation Compared with Lisp. ACM SIGPLAN Notices,

12(8):109–115, 1977.

[YK00] G. Yang and M. Kifer. Flora: Implementing an Efficient Dood System

using a Tabling Logic Engine. In Computational Logic, number 1861 in

LNCS, pages 1078–1093. Springer-Verlag, 2000.

[ZSYY00] Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You. Implemen-

tation of a Linear Tabling Mechanism. In Practical Aspects of Declarative

Languages, number 1753 in LNCS, pages 109–123. Springer-Verlag, 2000.

