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Abstra
t
Programming languages are an unique method to 
ommuni
ate with ma
hines. De
larativelanguages, su
h as logi
 programming languages, provide features like a high-level andde
larative syntax, simplifying the 
ommuni
ation between man-and-ma
hine. Arguably,Prolog is the most famous and used logi
 programming language. Prolog uses SLD resolutionin order to provide good performan
e in the 
omputation of 
omplex real world problems.Although SLD resolution proved to be very e�e
tive, in some 
ases, this pro
edure showsome restri
tions when dealing with in�nite loops and redundant sub-
omputations.One of the most su

essful te
hniques proposed to over
ome SLD's sus
eptibility, is tabling.The tabling me
hanism 
onsists in storing the subgoals and the respe
tive answers of aprogram in a table spa
e in su
h a way that, in later stages of a program's evaluation, repeatedsubgoal 
alls use the answers stored in the tables, avoiding the subgoal re-evaluation. Tablingsu

ess largely depends on the implementation of the table spa
e, its data stru
tures andalgorithms. Arguably, the most su

essful data stru
ture for tabling is tries. Nevertheless,when tabling is used in appli
ations that have large quantities of data, it 
an lead to overgrowntables and qui
kly �ll up the system's memory.With this resear
h, we try to provide alternative designs and stru
tures, not only to thetable spa
e organization but also to the tabled data representation. We do so, by proposinga new design for the table spa
e organization where all terms in tabled subgoal 
alls andtabled answers are represented only on
e in a 
ommon global trie instead of being spreadover several di�erent trie data stru
tures, suggesting three di�erent approa
hes. At tableddata representation, we propose a new representation of list terms for tries that avoids there
ursive nature of the WAM representation of list terms in whi
h tries are based.The results obtained in our experiments when using the YapTab tabling system, showsigni�
ant redu
tions on memory usage, without 
ompromising running time. Memory usageis redu
ed when using any of the three di�erent global trie designs and also in the newrepresentation of list terms, providing the ne
essary data to make it 
lear that our proposals
an provide more 
ompa
t and e�
ient representations of the table spa
e, when applyingtabling me
hanisms to Prolog. 3
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Resumo
As linguagens de programação são um modo úni
o de se 
omuni
ar 
om máquinas. Emparti
ular, as linguagens de
larativas, 
omo são as linguagens de programação em lógi
a,ofere
em uma sintaxe de
larativa de alto nível, fa
ilitando assim a 
omuni
ação entrehomem e máquina. Indis
utivelmente, o Prolog é a linguagem de programação em lógi
amais famosa e amplamente utilizada, usando a resolução SLD para propor
ionar um bomdesempenho no 
ál
ulo de problemas 
omplexos do mundo real. Apesar da resolução SLD seter mostrado muito e�
az, em alguns 
asos, este pro
edimento demonstrou algumas restrições,em parti
ular quando se lida 
om 
i
los in�nitos e sub-
omputações redundantes.Uma das té
ni
as propostas para superar as sus
eptibilidades da resolução SLD, é atabulação. O me
anismo de tabulação 
onsiste em guardar os subgolos de um programae as respe
tivas soluções num espaço de tabelas de modo a que, durante a avaliação de umprograma, quando a
onte
e uma 
hamada repetida a um subgolo, são utilizadas as soluçõesjá tabeladas, evitando assim que o subgolo seja reavaliado. O su
esso da tabulação dependeem grande medida da implementação do espaço de tabelas, das suas estruturas de dados ealgoritmos. Possivelmente, a mais bem su
edida estrutura de dados para a tabulação sãoas tries. No entanto, quando esta té
ni
a é utilizada para tabelar soluções em apli
ações
om grande quantidade de dados, pode a
onte
er um 
res
imento desmesurado das tabelas,saturando rapidamente a memória do sistema.Neste trabalho, apresentamos novas estruturas de dados alternativas, não só rela
ionadas
om a organização do espaço de tabelas, mas também 
om a representação dos dados nelasrepresentados. Fazêmo-lo, propondo um novo modelo para a organização do espaço detabelas onde todos os subgolos tabelados e respe
tivas respostas são representados apenasuma vez numa trie global, em vez de serem distribuídos por várias tries diferentes, e para isso,sugerimos três abordagens distintas. Na representação dos dados tabelados, propomos umanova representação dos termos lista nas tries, evitando a natureza re
ursiva da representaçãoWAM para termos lista em que estas se baseiam.Os resultados obtidos utilizando o sistema de tabulação YapTab, mostram uma reduçãosigni�
ativa na utilização de memória, sem 
omprometer o tempo de exe
ução. O uso de5



memória é reduzido, quer seja ao utilizar qualquer uma das três abordagens 
om re
urso auma trie global, quer seja na utilização da nova representação dos termos lista, sugerindo queas nossas propostas 
onseguem uma representação mais 
ompa
ta e e�
iente do espaço detabelas na utilização do me
anismo de tabulação em Prolog.
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Chapter 1
Introdu
tion
Logi
 programming languages, provide a high-level approa
h to programming. Noti
eable,Prolog is the most used logi
 programming language. In fa
t, Prolog has proved to be verye�e
tive in appli
ation areas su
h as Arti�
ial Intelligen
e, Natural Language Pro
essing andDatabase Management to site just a few. Most of Prolog's su

ess is in part due to DavidH. D. Warren's work, on the implementation of the WAM 
ompiler to Prolog [1℄, providinga very e�
ient abstra
t ma
hine for the implementation of Prolog systems [2℄.Logi
 programming languages, su
h as Prolog, are based on Horn Clauses [3℄, a subsetof �rst order logi
. In fa
t, logi
 programs 
onsist of a set of 
lauses, that provide theground knowledge of programs. The exe
ution of logi
 programs is redu
ed to query symbolsmanipulation until a refutation is found. This refutation, in Prolog, is provided by the SLDresolution [4℄ and done over Horn 
lauses for programs exe
ution basis. Although, its provedpower and de
larativeness, SLD resolution 
an su�er from some limitations when dealingwith in�nite loops and redundant sub-
omputations. A proposal to solve those limitationsis tabling [5, 6℄ whi
h proved its viability due to the XSB Prolog system's work in theimplementation of the SLG-WAM engine [7℄. As a result, several di�erent implementations oftabling me
hanisms were developed and implemented in di�erent Prolog systems. Examplesof the variety of implementations of tabling are available in systems like Yap Prolog, B-Prolog,ALS-Prolog, Mer
ury and Ciao Prolog.In a nutshell, tabling 
onsists in storing intermediate answers for subgoals so that they 
anbe reused whenever a repeated 
all appears. The performan
e of tabled evaluation largelydepends on the implementation of the table spa
e. In order to obtain an e�
ient responseto systemati
 
alls, fast lookup and insertion 
apabilities are mandatory. Appli
ations 
anmake millions of di�erent 
alls, hen
e 
ompa
tness is also required. Arguably, the mostsu

essful data stru
ture for tabling is tries [8℄. Tries are trees in whi
h 
ommon pre�xes arerepresented only on
e. The trie data stru
ture provides 
omplete dis
rimination for terms13



14 Introdu
tionand permits lookup and possibly insertion to be performed in a single pass through a term,hen
e resulting in a very e�
ient and 
ompa
t data stru
ture for term representation. Whenused in appli
ations that pose many queries, possibly with a large number of answers, tabling
an build arbitrarily many and/or very large tables, qui
kly �lling up memory. A possiblesolution for this problem is to dynami
ally abolish some of the tables. This 
an be doneusing expli
it tabling primitives or using a memory management strategy that automati
allyre
overs spa
e among the least re
ently used tables when memory runs out [9℄. An alternativeapproa
h is to store tables externally in a relational database management system and thenreload them ba
k only when ne
essary [10℄. A 
omplementary approa
h to the previousproblem is to study how less redundant, more 
ompa
t and more e�
ient data stru
tures
an be used to better represent the table spa
e. While tries are e�
ient for variant basedtabled evaluation, they are limited in their ability to re
ognize and represent repeated answersfor di�erent 
alls. The development of our work takes in 
onsideration this last approa
h.When representing terms in the trie, most tabling engines, like XSB Prolog, Yap Prolog andothers, try to mimi
 the WAM [11℄ representation of these terms in the Prolog sta
ks inorder to avoid unne
essary transformations when storing/loading these terms to/from thetrie. Despite this idea seems straightforward for almost all type of terms, we found that thisis not the 
ase for list terms (also known as pair terms) and that, for list terms, we 
an designeven more 
ompa
t and e�
ient representations. In Prolog, a non-empty list term is formedby two sub-terms, the head of the list, whi
h 
an be any Prolog term, and the tail of thelist, whi
h 
an be either a non-empty list (formed itself by a head and a tail) or the emptylist. WAM based implementations explore this re
ursive nature of list terms to design a verysimple representation at the engine level that allows for very robust implementations of keyfeatures of the WAM, like the uni�
ation algorithm, when manipulating list terms. However,when representing terms in the trie, the re
ursive nature of the WAM representation of listterms is negligible as we are most interested in having a 
ompa
t representation with fastlookup and insertion 
apabilities.1.1 Thesis PurposeIn this thesis, we present new proposals to the table spa
e data stru
tures and organizationin order to improve the 
ompa
tness and e�
ien
y of tabled logi
 programs. We proposemodi�
ations, in a more 
omprehensive plan, to the table spa
e representation and, in aampli�ed plan, to the stru
ture of list terms representation.Regarding the table spa
e representation, we propose a new design and we, introdu
e threedi�erent approa
hes that are based in the usage of a 
ommon global trie. In all thesethree approa
hes, the representation of all tabled subgoal 
alls and/or answers is stored



1.2 Thesis Outline 15in a 
ommon global trie instead of being spread over several di�erent trie data stru
tures.Our approa
hes resemble the hash-
onsing te
hnique [12℄, as they try to share data thatis stru
turally equal. An obvious goal is to save memory usage by redu
ing redundan
y inthe representation of tabled 
alls/answers to a minimum. Our �rst approa
h 
onsists onstoring subgoal 
all and answers in the global trie, thus redu
ing the number of nodes usedin the subgoal and answer tries, and providing the possibility of reusing 
alls and answersalready represented in the global trie. The se
ond design maintains the use of a global trie,but only individual terms are represented in it. This in
reases the number of nodes in theoriginal subgoal and answer tries but, on the other hand, also in
reases the reuse of the termsrepresented in the global trie. In the last approa
h, we on
e more use a global trie to storeonly terms, but as an alternative design we also try to maximize the reuse of individual termspresent in the table spa
e, by representing subterms (
ompound term's arguments) as uniqueentries in the global trie.We also propose a new representation of list terms for tabled data that avoids the re
ursivenature of the WAM representation of list terms. In our new proposal, a list term is simplyrepresented as an ordered sequen
e of the term elements in the list, i.e., we only representthe head terms in the sub-lists and avoid representing the sub-lists' tails themselves. Ourexperimental results show a signi�
ant redu
tion in the memory usage for the trie datastru
tures and 
onsiderable gains in the running time for storing and loading list terms withand without 
ompiled tries [13℄.To implement these proposals, we will fo
us our work on a 
on
rete implementation, theYapTab system [14, 15℄, but our proposals 
an be easy generalized and applied to othertabling systems.1.2 Thesis OutlineThe thesis is stru
tured in seven 
hapters that 
an be seen as the representation of thedi�erent stages of our work. We provide next, a brief des
ription of ea
h 
hapter.Chapter 1: Introdu
tion. Is this 
hapter.Chapter 2: Logi
 Programming and Tabling. Provides a brief overview of Logi
Programming and the Tabling te
hnique. Throughout, we dis
uss logi
 programminglanguages and abstra
t ma
hines, fo
using in Prolog and in the WAM, and also theme
hanisms asso
iated with the tabling te
hnique, namely tabled evaluation and tries.Chapter 3: List Terms Representation. First, it makes an introdu
tion toYapTab's design for the representation of list terms and then, it presents our newand alternative design for list term representation, whi
h the main goal is to optimize



16 Introdu
tionYapTab's memory usage in order to redu
e possible drawba
ks of the standardme
hanism.Chapter 4: Global Trie. Presents the Global Trie (GT) design, spe
ifying the threedeveloped approa
hes to an alternative table spa
e representation. The GT table spa
edesign emerges with the intent to surpass some of the disadvantages shown by YapTabstandard table spa
e design when dealing with redundant data, namely by storing termsin the same trie, thus preventing repeated representations of a term in di�erent triedata stru
tures.Chapter 5: Implementation. In this 
hapter, we fo
us on the implementationdetails for the alternative table designs by des
ribing the GT data stru
tures andalgorithms in more detail. Throughout, we also des
ribe how tries are stru
tured,spe
ifying the main features of trie nodes, and present the main pro
edures whi
hintera
t with tries, preforming 
omparisons with YapTab's original table design.Chapter 6: Experimental Results. Presents experimental results 
omparing thenew table spa
e against the YapTab standard representation and dis
usses the obtainedresults.Chapter 7: Con
lusions and Further Work. Summarizes the work presented inthe previous 
hapters, the reasons for the obtained results, and provides some guidelinesfor further work.



Chapter 2
Logi
 Programming and Tabling
This 
hapter provides a brief overview of the resear
h areas 
omprehended in this thesis.We introdu
e the path from the general ideas of Logi
 Programming to the spe
i�
s ofthe Tabling te
hnique. Throughout, we dis
uss logi
 programming languages and abstra
tma
hines, fo
using in Prolog and in the WAM, and also the me
hanisms asso
iated with thetabling te
hnique, namely tabled evaluation and tries.
2.1 Logi
 ProgrammingProgramming languages are essential in making the 
ommuni
ation between man-and-ma
hine possible. The evolution of programming languages led to human-inspired languages,with syntaxes that appear more 
omprehensible and 
omparable to human writing. Thisparti
ular kind of programming languages are 
alled high-level. The de
larative languagesare a wide 
lass of programming languages with the unique features of having a high-level language syntax. This 
lass of languages are more 
on
erned with the aspe
ts of theproblem that needs to be solved, instead of the a
tual method to solve it. In
luded in thede
larative programming languages 
lass, one has also logi
 and the fun
tional languages.While the latter are based on λ-
al
ulus, the former are 
ompletely di�erent, relying on asubset of �rst-order logi
 and its pro
edural interpretation. Never the less by being basedon formalisation of human thought, logi
 programming languages are arguably the moree�e
tive and straightforward way to allow programmers to easily express their reasoning.Logi
 programming languages are based on a well known subset of �rst order logi
, namelythe Horn Clause [3℄. Horn 
lauses 
ontain a basi
 rule: at most one disjun
t in the 
on
lusionis required, meaning that at most one positive literal is needed. With this basi
 rule a Horn
lause 
an be de�ned in three di�erent forms:17



18 Logi
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• Rule, a 
lause that 
ontains a positive literal and one or more negated literals. Themost 
ommon form of a rule is

¬q ∨ ... ∨ ¬r ∨ ¬s ∨ tand 
an also be written as,
t← q ∧ ... ∧ r ∧ s

• Fa
t, when there are no negations and the 
lause is 
omposed only with the positiveliteral, we have
t←

• Goal, o

urs when there is no positive literal
← q ∧ ... ∧ r ∧ sLogi
 programming languages show a synta
ti
 equivalen
y to Horn 
lauses with minor
hanges. In logi
 programs the equivalent to a rule of the form

B ← A1 ∧ ... ∧An−1 ∧Anis (in the Prolog syntax) given by
B : −A1, ..., An−1, An.Additionally, one also �nds other examples for Horn 
lauses, su
h as a fa
t

B.and a goal
: −A1, ..., An−1, An.In this syntax, B is the head of the 
lause and A1 to An are the body. Ea
h B de�nes oris part of a predi
ate. Predi
ates exhibit the following form p(t1, ..., tn), where the t's 
anbe terms, and ea
h term may have di�erent representations. A simple term in
ludes atomsor variables, while 
ompound terms are spe
i�
ally fun
tors or lists. A fun
tor is de�ned as

f(t1, ..., tn), where f is the name of the fun
tor and ea
h t represents di�erent terms. A listis represented as [t1, ..., tn], di�ering from fun
tors by having no name asso
iated.
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t, logi
 programs are a set of 
lauses that form the ground knowledge of programs.To get results from logi
 programs, queries are exe
uted against the program 
lauses, withthe intent of unifying or (simply) verifying equality, on every term (variable or atom) witha possible mat
h. The exe
ution of a query over a program translates into a pro
edure ofquery symbols manipulation until a refutation is found. The refutation pro
edure used byProlog was �rst mentioned by Kowalski [3℄ and later on named by Kowalski and Van Emdenas Sele
tive Linear De�nite resolution (SLD resolution) [4℄. Furthermore, a 
onsolidation ofthe work was presented by Robinson [16℄, where a variant of the general refutation pro
edurewas only used on de�nite 
lauses. A brief demonstration of the SLD resolution pro
edure ispresented next.Let us 
onsider a query (goal), as a 
onjun
tion of subgoals, of the form
: −A1, ..., An−1, An.whi
h we want to mat
h against our program. First, and a

ording to a sele
tliteral rule, asubgoal is sele
ted for the initial uni�
ation with the program 
lauses.Supposing that the subgoal 
hosen was Ai, the se
ond step is to sear
h the program fora 
lause that mat
hes Ai. If program 
ontains 
lauses in su
h 
onditions, the pro
edure
ontinues by sele
ting the 
lause that will unify with Ai, a

ording to a sele
tclause rule.Assuming that the sele
ted 
lause to unify with Ai has the form

A : −B1, ..., Bm.and that substitution θ represents the uni�
ation of both sele
ted subgoal and 
lause, i.e.,all the variables from the subgoal are bound with the variables from the sele
ted 
lause. Asa result our query be
ame
: − (A1, ..., Ai−1, B1, ..., Bm, Ai+1, ..., An)θ.This pro
edure is repeated until a refutation is obtained. It is possible to obtain a su

essfulSLD resolution when all subgoals are found to be true. The preformed substitutions will bea (or the only) possible answer to our query. On the 
ontrary, if the pro
edure fails, implyingan impossible uni�
ation between the query and the sele
ted 
lause, the SLD resolution failsand no refutation of the query is possible. In this 
ase, Prolog uses a ba
ktra
king me
hanismto explore other possible uni�
ations by, simply undoing the 
omputations performed andsele
ting a di�erent uni�
ation 
lause to our sele
ted literal Ai. The spe
i�
ation of thispro
edure emphasizes the 
ru
ial role of the sele
tclause and sele
tliteral rules. The appli
ationof di�erent sele
tion rules 
an lead to distin
t solutions or otherwise solutions are presented
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i�
ation of the sele
tion rules is needed for realimplementations. In the next se
tion we des
ribe Prolog's approa
h.2.1.1 PrologNoti
eable, Prolog is the most famous and used logi
 programming language. In 1972,Allain Colmerauer and Philippe Roussel began to develop a software tool to implement aman-ma
hine system that would use natural language to 
ommuni
ate. The name Prologwas 
hosen as an abbreviation for "PROgrammation en LOGique" as a result of, languagepro
essing and automated theorem-proving mixing [17℄.From Robinson's breakthrough presented in the Resolution Prin
iple [16℄, Colmerauer and
o-workers pro
eed their work by de�ning the semanti
s and the pro
edural method used byProlog. In 1973, the demonstration of resolution and uni�
ation in Horn 
lauses [4℄ opennew pathways to the de�nition of the �xed point semanti
s of Horn 
lause programmingthus providing the ne
essary basis to prove that Prolog 
ould be read, both pro
edurally andlogi
ally.Being Prolog pro
edural semanti
s based on SLD resolution, the de�nition of the sele
tclauseand sele
tliteral rules was therefore ne
essary in order to possibilitate its implementation.In Prolog, the sele
tclause rule follows the 
lauses order de�ned in the program 
ode andthe sele
tliteral rule 
hooses the leftmost subgoal in the query. In fa
t the �rst version ofProlog was a kind of automated dedu
tive system, allowing development of a 
ommuni
ationsystem in fren
h. Additionally two other appli
ations were also possible, su
h as a symboli

omputation system and a general problem-solving system 
alled Sugiton. The Se
ondversion of Prolog was more oriented towards a
tual programming language with the 
reationof the syntax, basi
 primitives and also the interpreter's 
omputing method. The growth ofProlog as a programming language was aided by David H. D. Warren with his implementationof the �rst Prolog 
ompiler in 1977 [18℄. This development in
reased Prolog popularityo�ering the possibility of its syntax (de fa
to Prolog) to be
ame a standard. In 1983, anew abstra
t ma
hine was presented [1℄, able to exe
ute 
ompiled Prolog 
ode, the Warren'sAbstra
t Ma
hine (WAM). Nowadays, the WAM is the most popular and e�
ient methodof implementing Prolog and is a
tually the base of almost all Prolog systems.Logi
 programming has indeed be
ome an important 
ore of 
omputer s
ien
e whenJapan announ
ed the Fifth Generation Proje
t, with the intent to 
reate a new Era for
omputer hardware based on arti�
ial intelligen
e. As a result, many di�erent Prologmodels were 
reated and literature for di�erent levels of knowledge and audien
es arenow available [19, 20, 21℄. Furthermore, the advan
es a
hieved in the implementations ofProlog and its 
ompilation te
hnology, brought the possibility to 
ompare against imperativeprogramming languages su
h as C [2℄. Also, the inherent parallelism that seems to be
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 programming paradigm be
ame one of the ruling areas of interestgiving Prolog the major importan
e and 
onsideration in the 
urrent days.2.1.2 The Warren's Abstra
t Ma
hineSome of Prolog's su

ess is in part due to the a

omplishments obtain by David H. D. Warrenand his work on the e�
ient implementation of the WAM 
ompiler to Prolog [1℄. In fa
t,most of the logi
 programming systems still rely on the a
hievements of WAM's te
hnology.In a nutshell, the WAM 
onsists basi
ally, of a sta
k-based memory ar
hite
ture allied toan instru
tion set, with simple data stru
tures. At any time, the 
omputation state 
an beobtained from WAM's data stru
tures, data areas and registers. Figure 2.1 illustrates the
omposition of WAM's data stru
tures and respe
tive organisation.The WAM's exe
ution sta
k stru
ture is 
omposed by �ve di�erent parts:
• Push Down List (PDL): also known as uni�
ation sta
k, is used for the uni�
ationpro
ess;
• Trail: is organized as an array of addresses; used to store the address of (sta
k or heap)variables whi
h must be unbound upon ba
ktra
king. Be
ause it works like a sta
k weneed to have a TR register that 
ontains the referen
e to the top of the trail;
• Sta
k: also mentioned as the lo
al sta
k is used to store the environment frames andthe 
hoi
e point frames:� Environments, store the information needed to 
ontinue exe
ution after return-ing from a su

essful intermediate 
all. An environment is pushed into the sta
kwhenever a 
lause 
ontains more than one subgoal; an environment is popped outwhen the last 
lause's subgoal is exe
uted. Ea
h frame keeps the referen
e to theprevious environment, thus giving the possibility to get the 
orre
t environmentafter the 
urrent one is popped out; and a set of 
ells, 
orresponding to the numberof permanent variables in the body of the invoked 
lause. A permanent variableis a variable that appears in more than a subgoal in a 
lause's body. A register Eis used to refer to the 
urrent a
tive environment.� Choi
e points: store the information about the state of the 
omputation for apro
edure 
all, so that upon ba
ktra
king, the 
omputation 
an be restored tothe point when the 
hoi
e o

urred. In order to do so, all the data ne
essary torestore a 
omputation is stored on a 
hoi
e point. This in
ludes the arguments ofthe 
urrent subgoal 
all; the referen
e to the 
ontinuation environment; a pointerto the next alternative 
lause; and pointers to the 
urrent values of the TR (trail)
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hoi
e point is pushed onto the sta
k whenever thereis a point of 
hoi
e and popped o� when the last 
lause has no more alternatives.In order to a

ess the sequen
e of 
hoi
e points, the register B markes the 
urrenta
tive 
hoi
e point.
PDL

TRAIL

enviroment

choice point

STACK

HEAP

Code Area

TR

E

B

H
HB

S

P

CP

Environment Frame

continuation environment

continuation code

1st permanent variable

last permanent variable

.

.

.

Choice Point Frame

continuation environment

continuation code

previus choice point

next clause

trail point

heap pointer

Registers

Memory Layout

1st goal argument

last goal argument

.

.

.

Top of the Trail

Current Environment

Current Choice Point

Top of the Heap

Heap Backtrack Pointer

Structure Pointer

Code Pointer

Continuation Code Pointer

TR

E

B

H

HB

S

P

CPFigure 2.1: WAM memory layout, frames and registers des
ription.Some WAM implementations use two di�erent sta
ks to store this stru
tures, namelyXSB [22℄ and SICStus Prolog [23℄. As mentioned by H. Aït-Ka
i [11℄, in su
h 
ases thetwo di�erent sta
ks are the OR-sta
k (for the 
hoi
e points) and the AND-sta
k (for
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• Heap: also referred as the global sta
k, is an array of data 
ells that is used to storethe internal representation of Prolog terms, su
h as variables, atoms, stru
tures or listterms. The register H 
ontains the referen
e to the top of the heap.
• Code Area: an addressable array of data 
ells, 
onsisting of op-
odes followed byoperands used to store WAM instru
tions for the (already) 
ompiled program 
ode.Other important features of the WAM are also shown in Fig. 2.1, su
h as the register HB,that is used to 
ontain the value of H, when a 
hoi
e point is about to be 
reated. Allbindings done over variables after 
reating a 
hoi
e point are 
onsidered 
onditional bindingsmeaning that they should be stored in the trail and therefore the value stored in HB is usedto make su
h de
ision in the proper way. Another register is S whi
h is used to help inthe uni�
ation pro
ess by making referen
e to the point of the 
ompound term where theuni�
ation pro
ess is in. Other referen
ed register is P whi
h is set to maintain the addressof the next instru
tion to exe
ute in the Code Area (program 
ounter). Finally, the registerCP is used to referen
e (in the 
ode area) to the lo
ation of the next instru
tion in the goalsequen
e, after su

essful return of a 
all.The WAM stru
ture and its 
omponents are handled by a simple set of instru
tions 
omposedby:
• Choi
e point instru
tions, responsible for all intera
tions with 
hoi
e points su
has instru
tions to allo
ate/remove 
hoi
e points and to re
over the 
omputation stateusing the information stored in 
hoi
e points;
• Control instru
tions whi
h intera
t with environments (allo
ate/remove) and alsomanage the 
all/return sequen
e of subgoals;
• Uni�
ation instru
tions, responsible for the implementation of spe
i�
 versions ofthe uni�
ation algorithm a

ording to the position and type of the arguments;
• Indexing instru
tions, used to a

elerate the pro
ess of sele
ting the 
lauses thatunify with a given subgoal 
all. The indexing pro
edure uses the �rst argument of a
all, to jump to spe
ialized 
ode that is responsible to sele
t only the unifying 
lauses.Although the WAM appears as a simple system with a few groups of instru
tions it is indeeda very elaborated ma
hine 
apable of exe
uting all the 
omplex me
hanisms of Prolog. A
omplete and detailed spe
i�
ation of the WAM 
an be found in [11℄.
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 programming languages, like Prolog, use SLD resolution and Horn 
lauses forexe
ution basis but, despite their power and de
larativeness, they 
an su�er from somelimitations. Those restri
tions are the inability to deal with in�nite loops and redundantsub-
omputations. This 
ompromise the usage of Prolog and similar programming languageson important appli
ations, su
h as Dedu
tive Databases. Mu
h work have been made toover
ome those limitations by implementing strategies that remember sub-
omputation andits results, therefore avoiding re-
omputations and at the same time reusing the alreadystored answers. These te
hniques are known by several names like memoizing, tabling ortabulation [24℄.Tabling [6℄ be
ame a renowned te
hnique thanks to the leading work in the XSB-Prologsystem and, in parti
ular in the SLG-WAM engine [7℄. As a result several implementationsof tabling me
hanism were developed, having parti
ular di�eren
es, namely in the exe
utionrules, in the data-stru
tures used to implement tabling and also in the underlying 
hangesto the Prolog's engine. Examples of those implementations are available in systems su
h asYAP Prolog [25℄, B-Prolog [26℄ or ALS-Prolog [27℄. The Tabling 
on
ept provides the basisto a bottom-up evaluation approa
h that, together with its well-know advantages, enablesthe 
ombination with top-down evaluation, thus joining the better of both strategies.2.2.1 Tabled EvaluationThe basi
 idea behind a tabled evaluation is, in fa
t, quite straightforward. The me
hanismbasi
ally 
onsists in storing all the di�erent subgoal 
alls and new answers founded whenevaluating a program in a proper data spa
e 
alled the table spa
e. The subgoal 
alls storedin this table spa
e are then used to verify if a subgoal is being 
alled for the �rst time or, onthe other hand, if it is a re
all. Whenever su
h a repeated subgoal 
all o

urs, the answers forthat subgoal (stored in the table spa
e) are used instead of re-evaluating the subgoal againstthe program 
lauses. Next we present a simple demonstration of a table evaluation thatemphasizes the tabling te
hnique advantages. Consider the Prolog program shown in the topof Fig. 2.2 representing a small dire
ted graph. The predi
ate ar
/2 represents the dire
t
onne
tion between two di�erent points and the path/2 predi
ate represents the possibilityof an indire
t 
onne
tion. Consider now the query goal path(1,Z). An dire
t appli
ation ofSLD evaluation to solve the given query leads to an in�nite SLD tree, as shown in the bottomof Fig. 2.2, due to the positive loop indu
ed by the sele
tion of the leftmost literal rule. Onthe other hand, when resorting to tabling, the in�nite sear
h tree resulting from the positiveloop will not o

ur, and termination is ensured. The s
heme presented in Fig. 2.3 shows theevaluation sequen
e when using tabling (solving the same query in the same program).
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path(X,Z) :- path(X,Y), path(Y,Z).

path(X,Z) :- arc(X,Z).

arc(1,2).

arc(2,3).

path(1,Z)

path(1,Y), path(Y,Z)

positive loop

SLD evaluation

Figure 2.2: An in�nite SLD evaluation.
Figure 2.3 shows a small 
hange on the Prolog 
ode 
ompared to the one presented in Fig. 2.2,namely the de
laration :- table path/2, indi
ating that the tabling pro
edure should beapplied to all the subgoal 
alls to path/2. Those subgoal 
alls 
an be seen in the top rightof Fig. 2.3 on the representation of the table spa
e at the end of program's evaluation. Thebottom of the �gure shows the resulting trees 
reated whenever a tabled subgoal 
all is madefor the �rst time (nodes 0, 5 and 11). The answers resulting from the evaluation of new treesare store in the respe
tive table entry, so those answers 
an be used when variant 
alls (su
has the nodes 1, 6 and 12) o

ur. When a variant 
all 
onsumes all the answers stored in thetable spa
e, or in 
ase of their absen
e, the evaluation is suspended. In the meantime, if newanswers arise the suspended variant 
alls are resumed to properly 
onsume the new answers.In this way, the re-evaluation of variant 
alls is avoided.During this pro
ess, the table spa
e stru
ture has a main role, not only be
ause it is the 
oreof the tabling implementation but also be
ause it will be involved in the most of the tabledevaluations intera
tions. In fa
t, the performan
e of tabling depends on the implementationof the table spa
e itself, being 
riti
al for the su

ess of the tabling implementation. Thereforea well de�ned and e�
ient data stru
ture is needed. Arguably, the most su

essful datastru
ture for tabling is tries [28, 8℄.
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:- table path/2.

path(X,Z) :- path(X,Y), path(Y,Z).

path(X,Z) :- arc(X,Z).

arc(1,2).

arc(2,3).

subgoal answers

0. path(1,Z)

5. path(2,Z)

11. path(3,Z)

 3. Z = 2

10. Z = 3

9. Z = 3

5. path(2,Z)

6. path(2,Y), path(Y,Z)

11. path(3,Z)

17. fail

7. arc(2,Z)

8. fail 9. Z = 3

0. path(1,Z)

1. path(1,Y), path(Y,Z)

5. path(2,Z)

10. Z = c

18. path(3,Z)

19. fail

2. arc(1,Z)

3. Z = 2 4. fail

11. path(3,Z)

12. path(3,Y), path(Y,Z)

16. fail

13. arc(3,Z)

14. fail 15. fail

Tabled evaluation

Figure 2.3: A �nite tabled evaluation example.2.2.2 TriesThe table spa
e 
an be a

essed in many di�erent ways. A well de�ned and e�
ient datastru
ture is supposed to give response to intera
tions su
h as; (i) �nding a subgoal in a tableand, if not present, insert it; (ii) verify whether a founded answer is already stored in a tableand, if not, insert it; and (iii) loading answers from tables to variant 
alls. The YapTabengine uses tries as proposed by I.V. Ramakrishnan et al. [28, 8℄ whi
h is 
onsidered to be avery e�e
tive way to implement the table spa
e. A trie is a stru
ture like a tree, where every
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onne
ting di�erent trie nodes (the unit data for tries) 
orresponds to a singleterm representation, that 
an be seen as a tokenized form of terms, as illustrated in Fig. 2.4.
root
node

Trie Structure

path/2

1

VAR0

Inserting

path(1,X)(a)

root
node

Trie Structure

path/2

1

2

Inserting

path(1,2)

VAR0

(b)

root
node

Trie Structure

PAIR

VAR0

PAIR

Inserting

[X,Y]

VAR1

[]

path/2

1

2 VAR0

(
)Figure 2.4: Representing terms in a trie.Figure 2.4a shows the representation of term path(1,X) in a trie as a sequen
e of threetokens: the token path/2 to represent the fun
tor's name and arity, the token 1 to representthe atom with the same name, and �nally the token VAR0 to represent the variable X presentin the term. Variables are represented using the formalism proposed by Ba
hmair et al. [29℄where ea
h variable in a term is represented as a distin
t 
onstant V ARi. If another term isinserted in the same trie having a 
ommon pre�x to the already inserted one, tries have theproperty to not represent the equal part of the term. As shown in Fig. 2.4b, when insertingthe term path(1,2) with the token representation < path/2, 1, 2 > it only di�ers in token2, from the previous term, thus adding it to the trie, 
orresponds to insert a trie node fortoken 2 as a sibling of the trie node where the di�eren
e between both terms �rst o

urs.Finally, if a term di�ers in the very beginning of its tokenized form, a new entry is added tothe top of the trie as shown in Fig. 2.4
 with the insertion of the term [X,Y℄ 
orrespondingto the tokenized form < Pair, X, Pair, Y, [℄ >1. With this example, it 
an be easilyseen the 
ompa
tness propriety of term representation in tries.To obtain the best performan
e from tries usage, the YapTab system applies two levels oftries in the implementation of the table spa
e, a top level for the subgoal 
alls and a se
ondlevel for 
omputed answers. For every tabled predi
ate is 
reated beforehand a subgoal triewhere the root node marks the entry point for insertion of the 
orresponding subgoal 
alls.1Lists representation will be 
overed in more detail in a later 
hapter.
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 Programming and TablingAt this level ea
h path in the subgoal trie represents a distin
t subgoal 
all where the leafnode a
ts as a 
onne
tion with se
ond level of tries (the answer trie) through the use of anauxiliary data stru
ture, 
alled subgoal frame. In the answer trie, all the 
omputed answersfor the respe
tive subgoal are stored, on
e again every path 
orresponding to a unique answer.
:- table connect/2.

connect(X,Y) :- point(X), point(Y).

point(p(1)).

point(p(2)).

VAR0

VAR1 1

VAR0

Subgoal Trie

table entry for connect/2

subgoal frame for
connect(VAR0,VAR1)

subgoal frame for
connect(p(1),VAR0)

Answer Trie Answer Trie

p/1

f
i
r
s
t
 
a
n
s
w
e
r

l
a
s
t
 
a
n
s
w
e
r

2 1

p/1

2 1

p/1

2 1

p/1

2 1

p/1

Figure 2.5: YapTab table spa
e organization.The previous des
ription 
an be observed in more detail in the YapTab table spa
e stru
turepresented in Fig. 2.5. In this example we 
an see two di�erent subgoal 
alls for a predi
ate
onne
t/2. The subgoal 
all 
onne
t(p(1),X), inserts nodes to represent the term p(1)and the variable X (VAR0), and also adds the respe
tive subgoal frame. The subgoal 
all
onne
t(X,Y) as di�ers in the �rst element of the 
all, leads to inserting the nodes for VAR0and VAR1, representing respe
tively the variables X and Y, and on
e more a subgoal frame isalso 
reated. Regarding the answer tries, for the subgoal 
all 
onne
t(p(1),X), the answertrie has two di�erent answers, 
orresponding to the possible values that 
an be instantiatedto X, p(1) and p(2). In this 
ase three nodes are inserted to represent the two solutions: a
ommon node to represent p/1 and two more to represent the 
onstants 1 and 2. On theother hand, for the subgoal 
all 
onne
t(X,Y), the answer trie represents all the answersobtained by 
ombining all the values that 
an be instantiated to X and Y.
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e organization, that is illustrated in Fig. 2.5 isthe 
onne
tion between the leaf nodes existing in an answer trie. This linked list is usedto maintain a 
hronologi
al order of the insertion of answers, and the respe
tive subgoalframe has a pointer to the �rst and last solutions inserted. This feature is of a majorimportan
e be
ause when a variant 
all is suspended, it only needs to keep a referen
e to thelast 
onsumed answer, as afterwards, when the 
omputation is resumed, answer 
onsumption
an start from that referen
e if there are new solutions to 
onsume.2.2.3 Compiled Code on TriesOn 
ompletion of an answer trie, from a given subgoal trie, an optimization exists that avoidsanswer re
overy with a bottom-up strategy, i.e., with terms being loaded starting from theleaf nodes. Instead, the answer tries are dynami
ally 
ompiled into WAM-like instru
tionsfrom answer trie nodes, enabling a top-down traverse of the trie to 
onsume answers. These
ompiled instru
tions are 
alled trie instru
tions and the restru
tured tries are 
alled 
ompiledtries [8℄. Compiled tries are shared during exe
ution of the trie instru
tions, therefore whenba
ktra
king from a 
ertain term, the pro
edure 
ontinues by loading the term sibling node,keeping the remaining stru
ture of the term. In this manner, ea
h node of the trie is traversedonly on
e, bene�ting of the 
ompa
tness of term representation in tries. In Fig. 2.6 we havean example of a 
ompiled trie for the subgoal 
all 
onne
t(X,Y) presented in Fig. 2.5.
p/1

2 1

p/1

2 1

p/1

2 1

do_struct

try_struct

do_struct

try_struct trust_struct

trust_struct

do_struct

try_struct trust_structFigure 2.6: Compiled trie for the subgoal 
all 
onne
t(X,Y) presented in Fig. 2.5.In 
ompiled tries ea
h node is 
ombined with an instru
tion, the sele
tion of the instru
tionis in�uen
ed by the term type represented in the trie node and by the position of the nodein the respe
tive list of possible sibling nodes. Therefore trie instru
tions 
an be groupedinto four di�erent types, sin
e ea
h trie node 
an appear as the �rst, intermediate, lastor the only sibling of a sequen
e. Namely, �rst position sibling nodes are 
ompiled usingtry_? instru
tions, intermediate nodes using retry_? instru
tions, last nodes using trust_?
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tions and, if a node is the only sibling, using do_? instru
tions. Ea
h instru
tion alsorefers the term type in the trie node, for example with atom terms the possible instru
tionsare try_atom, retry_atom, trust_atom or do_atom. At the engine level, 
ompiled trieinstru
tions a
t similarly to the generi
 try/retry/trust WAM instru
tions but, in this 
ase,they are responsible for intera
ting with 
hoi
e points to 
orre
tly traverse top-down ananswer trie, in su
h way that, in 
ase of failure, the pro
edure 
ontinues to the next siblingnode. The do instru
tion denotes no 
hoi
e and thus no 
hoi
e point allo
ation is preformed.



Chapter 3
List Terms Representation
In this se
tion, we �rst introdu
e YapTab's design for the representation of list terms, andthen we present our new and alternative design for list term representation [30℄ whi
h themain goal is to optimize YapTab's memory usage in order to redu
e possible drawba
ks of thestandard table me
hanisms. In what follows, we will refer to the original design as standardlists and to the new design as 
ompa
t lists. We start by brie�y introdu
ing how standardlists are represented in YapTab and then we dis
uss in more detail the new design for therepresentation of 
ompa
t lists.3.1 Standard ListsYapTab follows the seminal WAM representation of list terms [11℄. In YapTab, list terms arere
ursive data stru
tures implemented as fun
tors of two elements, named pairs, where the�rst pair element, the head of the list, represents a list element and the se
ond pair element,the tail of the list, represents the list 
ontinuation term or the end of the list. In YapTab,the end of the list is represented by the empty list atom [℄. At the engine level, a pair isimplemented as a pointer to two 
ontiguous 
ells, the �rst 
ell representing the head of thelist and the se
ond the tail of the list. In YapTab, the tail of a list (or the se
ond element ofa pair) 
an be any term (and not only another pair or the empty list atom). Figure 3.1(a)illustrates YapTab's WAM representation for list terms in more detail.Alternatively to the standard notation for list terms, we 
an use the pair notation [H|T℄,where H denotes the head of the list and T denotes its tail. For example, the list term [1,2,3℄in Fig. 3.1 
an be alternatively denoted as [1|[2,3℄℄, [1|[2|[3℄℄℄ or [1|[2|[3|[℄℄℄℄. Thepair notation is also useful when the tail of a list is neither a 
ontinuation list nor the emptylist. This list term's type representation 
an be seen for example in the list [1,2|3℄ shown inFig. 3.1(a) by its 
orresponding WAM representation. In what follows, we will refer to these31



32 List Terms Representationlists as term-ending lists and to the most 
ommon lists ending with the empty list atom asempty-ending lists.Regarding the trie representation of lists, the original YapTab design, as most tabling engines,in
luding XSB Prolog, tries to mimi
 the 
orresponding WAM representation. This is doneby making a dire
t 
orresponden
e between ea
h pair pointer at the engine level and a trienode labelled with the spe
ial token PAIR. For example, the tokenized form of the list term[1,2,3℄ is the sequen
e of seven tokens <PAIR,1,PAIR,2,PAIR,3,[℄>. Figure 3.1(b) shows inmore detail YapTab's original trie design for the list terms represented in Fig. 3.1(a).
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Figure 3.1: YapTab's WAM representation and original trie design for standard lists.
3.2 Compa
t ListsIn this se
tion, we introdu
e the new design for the representation of list terms. Thedis
ussion we present next tries to follow the di�erent approa
hes that we have 
onsidereduntil rea
hing our 
urrent �nal design. The key idea 
ommon to all these approa
hesis to avoid the re
ursive nature of the WAM representation of list terms and have amore 
ompa
t representation where the unne
essary intermediate PAIR tokens are removed,therefore redu
ing the system memory when storing lists.Figure 3.2 illustrates how 
ompa
t lists are represented in tries using our initial approa
h.Comparing with Fig. 3.1, in this approa
h, all intermediate PAIR tokens are removed and a
ompa
t list is simply represented by its term elements surrounded by a begin and a end



3.2 Compa
t Lists 33list mark, respe
tively, the BLIST and ELIST tokens. Figure 3.2(a) shows the tokenizedform of the empty-ending list [1,2,3℄ whi
h, with this design, is the sequen
e of six tokens<BLIST,1,2,3,[℄,ELIST>, and the tokenized form of the term-ending list [1,2|3℄ whi
h,with this design, is the sequen
e of �ve tokens <BLIST,1,2,3,ELIST>. This approa
h 
learlyoutperforms the standard lists representation when representing individual lists, with aunique ex
eption happening when 
onstru
ting the basi
 
ases of list terms of size one tothree. When representing individual list terms with more than three elements it requiresabout half the nodes required for standard lists. For an empty-ending list of S elements,standard lists requires 2S + 1 trie nodes and 
ompa
t lists requires S + 3 nodes. Regardingterm-ending lists of S elements, standard lists representation requires 2S − 1 trie nodes, andyet when using 
ompa
t lists it requires S + 2 nodes.Next, in Fig. 3.2(b) we try to illustrate how this approa
h behaves when we represent morethan a list in the same trie. It presents three di�erent situations: the �rst situation, showstwo lists with the �rst element di�erent and it illustrates a kind of worst 
ase s
enario whenrepresenting list terms in a trie; the se
ond and third situations show, respe
tively, twoempty-ending and two term-ending lists with only the last element di�erent, that 
an beseen as a kind of best 
ase s
enario when representing list terms in a trie, whi
h means thatonly the last element of the se
ond list representation is added to the trie.
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Figure 3.2: Trie design for 
ompa
t lists: initial approa
h.Now 
onsider that we generalize these situations and represent in the same trie N lists of Selements ea
h. For the �rst situation (when lists di�er in the �rst element) our �rst approa
his always better than standard lists, but this may not be the 
ase when it regards the se
ondand third situations. For the se
ond situation (empty-ending lists with last element di�erent),



34 List Terms Representationstandard lists representation requires 2N+2S−1 trie nodes and 
ompa
t lists requires 3N+Snodes and thus, if N > S − 1, i.e., if the number of distin
t lists are greater than the sizeof the list represented, then standard lists representation has better results, requiring lessnodes to represent lists in su
h 
onditions. Regarding the third situation (term-ending listswith last element di�erent), standard lists requires N + 2S − 2 trie nodes to represent listsin these 
onditions and 
ompa
t lists requires 2N + S nodes, and on
e again if N > S − 2,then standard lists representation spend less nodes when representing list terms.When analysing the representation of 
ompa
t lists in this approa
h, the main problem isthe introdu
tion of the extra token ELIST in the end of ea
h di�erent list, the 
ost of thisextra token is more evident when representing lists with the last element di�erent, be
auseinstead of adding only one node (the di�erent one), for ea
h di�erent list, we add two nodes.To avoid this problem, we have redesigned our 
ompa
t lists representation in su
h a waythat the ELIST token appears only on
e for lists with the last element di�erent. Figure 3.3illustrates our se
ond approa
h for the 
ompa
t lists representation, using the same listspresented previously in Fig. 3.2.In this se
ond approa
h, a 
ompa
t list still 
ontains the begin and end list tokens, BLISTand ELIST, but now the ELIST token plays the same role of the last PAIR token in standardlists, i.e., it marks the last pair of terms in the list. Figure 3.3(a) shows the new 
ompa
tlist tokenized form obtained when using this 
hange. The empty-ending list [1,2,3℄ is nowrepresented as <BLIST,1,2,ELIST,3,[℄ > and the new tokenized form of the term-ending list[1,2|3℄ is now represented by <BLIST,1,ELIST,2,3>. To verify how this se
ond approa
hbehaves when we represent more than a list in the same trie, in Fig. 3.3(b) we illustratethe same three situations of Fig. 3.2(b). For the �rst situation (lists with the �rst elementdi�erent), the se
ond approa
h is identi
al to the initial approa
h. This is straightforwardsin
e the 
hanges made simply move the ELIST token from the end of the list, thereforethe repetition of the ELIST token still o

urs. For the se
ond and third situations, these
ond approa
h is not only better than the initial approa
h, sin
e it avoids the repetitionof the ELIST token in the end of list representation, but also better than the standard listsrepresentation, redu
ing the ex
eptions to the base 
ases of list terms of sizes 1 and 2.Consider again the generalization to represent in the same trie N lists of S elements ea
h.Sin
e no 
hanges o

urred in the �rst situation, this se
ond approa
h has the same results asthe �rst approa
h. On the other hand, for the se
ond situation (empty-ending lists with lastelement di�erent), 
ompa
t lists now requires 2N + S + 1 trie nodes (the initial approa
h for
ompa
t lists required 3N + S nodes and standard lists required 2N + 2S − 1 nodes) and forthe third situation (term-ending lists with last element di�erent), 
ompa
t lists now requires
N + S + 1 trie nodes (the initial approa
h for 
ompa
t lists required 2N + S nodes andstandard lists required N +2S−2 nodes). Despite these better results, this se
ond approa
h



3.2 Compa
t Lists 35still 
ontains some drawba
ks that 
an be improved.
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Figure 3.3: Trie design for 
ompa
t lists: se
ond approa
h.
Figure 3.4 illustrates our �nal approa
h for the representation of 
ompa
t lists. In this�nal approa
h, we have redesigned our previous approa
h in su
h a way that the emptylist token [℄ was avoided in the representation of empty-ending lists. Note that, in ourprevious approa
hes, the empty list token is what allows us to distinguish between empty-ending lists and term-ending lists. So, in order to maintain this distin
tion, we did not simplyremoved the empty list token from the representation of 
ompa
t lists. To provide the neededdistin
tion between lists, we added a di�erent end list token, EPAIR, for term-ending lists,maintaining the ELIST token to represent empty-ending lists. Furthermore, we 
hanged thebehavior of the token representing the end of a list, instead of marking the last two elementsof a list element, tokens ELIST and EPAIR are used to mark the last element in an empty-ending list and in an term-ending list, respe
tively. Figure 3.4(a) shows the new tokenizedform of the empty-ending list [1,2,3℄, whi
h is now represented as <BLIST,1,2,ELIST,3>,and the new tokenized form of the term-ending list [1,2|3℄, whi
h is now representedas <BLIST,1,2,EPAIR,3>. Figure 3.4(b) shows how this �nal approa
h behaves when werepresent more than a list in the same trie, using the same three previous situations forrepresenting lists (di�erent in the �rst element or di�erent in the last element). For the threeexamples, this �nal approa
h 
learly outperforms all the other representations for standardlists and previous approa
hes of 
ompa
t lists. Regarding lists with the �rst element di�erent(�rst situation), our �nal approa
h requires N + NS + 1 trie nodes for both empty-endingand term-ending lists, thus redu
ing the 
ost for the empty-ending lists representation, sin
ethe modi�
ations were mainly made over the empty list token.
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Figure 3.4: Trie design for 
ompa
t lists: �nal approa
h.Toward lists with the last element di�erent (se
ond and third situations), it requires
N + S + 1 trie nodes for both empty-ending and term-ending lists, on
e again this 
hangeonly takes e�e
t on empty-ending lists. Table 3.1 summarizes the 
omparison between allthe approa
hes regarding the number of trie nodes required to represent in the same trie Nlist terms of S elements ea
h.List Terms Standard Compa
t ListsLists Initial Se
ond FinalFirst element di�erent

N [E1, ..., ES−1, ES] 2N + 2NS + 1 2N + NS + 1 2N + NS + 1 N + NS + 1

N [E1, ..., ES−1 | ES] 2NS + 1 N + NS + 1 N + NS + 1 N + NS + 1Last element di�erent
N [E1, ..., ES−1, ES] 2N + 2S − 1 3N + S 2N + S + 1 N + S + 1

N [E1, ..., ES−1 | ES] N + 2S − 2 2N + S N + S + 1 N + S + 1Table 3.1: Number of trie nodes to represent in the same trie N list terms of S elements ea
h,using the standard lists representation and the three 
ompa
t lists approa
hes.3.3 Compiled Tries for Compa
t ListsIn this se
tion, we dis
uss the impli
ations of the new design in the 
ompleted tableoptimization and des
ribe how we have extended YapTab to support 
ompiled tries for
ompa
t lists. First we illustrate in Fig. 3.5(a) the 
ompiled trie 
ode for the standardlist [1,2,3℄. When using standard lists, ea
h PAIR token is 
ompiled using one of the



3.3 Compiled Tries for Compa
t Lists 37try/retry/trust/do_list trie instru
tions. At the engine level, these instru
tions 
reate anew pair term in the heap sta
k to be bound to the term being 
onstru
ted. In Fig. 3.5(b), weshow the 
ompiled trie 
ode for the last 
ompa
t lists approa
h. As mentioned, the initial stepfor 
ompa
t list 
onsisted in the removal of the PAIR tokens. Hen
e, we need to in
lude thepair terms 
reation step in the trie instru
tions asso
iated with the elements in the list, ex
eptfor the last list element. To do that, we have extended the set of trie instru
tions for ea
hterm type with four new spe
ialized trie instru
tions: try_?_in_list, retry_?_in_list,trust_?_in_list and do_?_in_list. As an example, for atom terms, the new set oftrie instru
tions is: try_atom_in_list, retry_atom_in_list, trust_atom_in_list anddo_atom_in_list. At the engine level, these instru
tions 
reate a new pair term in theheap sta
k to be bound to the term being 
onstru
ted and then they bind the head of thenew pair to the sub-term 
orresponding to the ?_in_list instru
tion at hand. Last listelements are treated as before and ELIST tokens are 
ompiled using a new ?_ending_listtrie instru
tion. At the engine level, the ?_ending_list instru
tions also 
reate a new pairterm in the heap sta
k to be bound to the term being 
onstru
ted and, in order to denote theend of the list, they bind the tail of the new pair to the empty list atom [℄. Finally, the BLISTand EPAIR tokens are 
ompiled using ?_void trie instru
tions. This type of instru
tions donothing sin
e the 
onstru
tion of the heap terms is done by the ?_in_list instru
tions.
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Figure 3.5: Comparison between the 
ompiled trie 
ode for standard and 
ompa
t lists.Note however that the trie nodes for the tokens BLIST and EPAIR 
annot be avoided be
ausethey are ne
essary to distinguish between a term t and the list term whose �rst element is t,and to mark the beginning and the end of list terms when traversing the answer tries nodesbottom-up.



38 List Terms RepresentationNext, we present in Fig. 3.6, two more examples showing how list terms in
luding 
ompoundterms, the empty list term and sub-lists are 
ompiled using the 
ompa
t lists representation.In the left side of Fig. 3.6, we illustrate the tokenized form of the list term [f(1,2),[℄,g(a)℄with the sequen
e of eight tokens <BLIST,f/2,1,2,[℄,ELIST,g/1,a> and, on the right sideof the �gure, we illustrate the tokenized form of the list term [1,[2,3℄,[℄℄ with thesequen
e of eight tokens <BLIST,1,BLIST,2,ELIST,3,ELIST,[℄>. To see how the new trieinstru
tions for 
ompa
t lists are asso
iated with the tokens representing list elements, wenext present the previous tokenized forms, but with the tokens representing 
ommon listelements expli
itly aggregated:[f(1, 2),[℄,g(a)℄: <BLIST,<f/2,1,2>,[℄,ELIST,<g/1,a> >[1,[2, 3℄,[℄℄: <BLIST,1,< BLIST,2,ELIST,3>,ELIST,[℄>.The tokens that 
orrespond to �rst tokens in ea
h list element, ex
ept for the last list element,are the ones that need to be 
ompiled with the new ?_in_list trie instru
tions (please seeFig. 3.6 for full details).
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Figure 3.6: Compiled trie 
ode for 
ompa
t lists in
luding 
ompound terms and sub-lists.In more detail, in list [f(1,2),[℄,g(a)℄, the tokens to be 
ompiled with the new ?_in_listtrie instru
tions are the tokens f/2 and [℄. Token f/2 be
ause it is the �rst token in the



3.3 Compiled Tries for Compa
t Lists 39aggregated representation <f/2,1,2> of the �rst list element and token [℄ be
ause it is thesingle token representing the se
ond list element. In the se
ond example, list [1,[2,3℄,[℄℄,as the se
ond list element is itself a list, the same idea is applied not only to the tokensin the aggregated representation of the main list but also to the tokens in the aggregatedrepresentation, <BLIST,2,ELIST,3>, of the sub-list. Therefore, the tokens 1 (�rst element ofthe se
ond element of the main list), BLIST (�rst token of the se
ond element of the mainlist), 2 (�rst element of the sub-list) are 
ompiled with the ?_in_list instru
tion.
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Chapter 4
Global Trie
The tabling te
hnique was developed to over
ame parti
ular limitations of Prolog. Never-theless, when used to solve real world problems, tabling 
an show some drawba
ks. Oneof the most 
ommon limitations of tabling, is the overload of system's memory. TheGlobal Trie (GT) design stands as an alternative method to YapTab's standard tablespa
e representation. The GT table spa
e design emerges with the intent to surpassthose disadvantages, namely by storing terms in the same trie, thus preventing repeatedrepresentations of a term in di�erent trie data stru
tures. In this 
hapter, we des
ribe theimplementation of distin
t GT's strategies.4.1 Global Trie for Calls and AnswersAs proposed by Costa and Ro
ha [31, 32℄, in the Global Trie for Calls and Answer (GT-CA)design, the main idea is to avoid term repetitions, whi
h 
ould take pla
e in di�erent triedata stru
tures as shown in Fig. 4.1. Here, the representation of the terms f(1) and f(2)o

urs several times ea
h. The �rst approa
h to prevent these repetitions resorted to groupall tabled subgoal 
alls and/or answers, by storing them in a 
ommon global trie, insteadof being spread over several di�erent tries. This 
on
eptual 
hange is a
hieved withoutremoving the gains obtained by the use of tries. Therefore, the GT-CA data stru
ture is stilla tree stru
ture, where ea
h di�erent path through the GT nodes 
orresponds to a subgoal
all and/or answer. In spite of the new organization for the table spa
e, the hierar
hi
alstru
ture of the table spa
e still follows by the existen
e of a subgoal trie and an answer triedata stru
tures (see Fig. 4.2). However, in this parti
ular design, both are represented by aunique level of trie nodes that point to the 
orresponding terms in the GT-CA (see the 
allNnodes for the subgoal trie and the answerN nodes for the answer trie in Fig. 4.2). Hen
eforth,
oexisting terms on 
alls and/or answers, are represented only on
e in GT-CA, thus avoiding41
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:- table t/2.

t(X,Y) :- term(X), term(Y).

term(f(1)).
term(f(2)).
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table entry for t/2
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t(VAR0,VAR1)
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t(f(1),VAR0)

Answer Trie

f/1

2 1

f/1

2 1

f/1

2 1

f/1

2 1

f/1

Answer Trie

Figure 4.1: YapTab's standard table design.repetition of terms on
e stored in the GT.The role for the several tries is of simple assimilation. For the subgoal tries, ea
h node nowrepresents a di�erent subgoal 
all. The node's token is the pointer to the node in the GT-CA 
orresponding to the path representation for the subgoal 
all, i.e., all argument termsrepresented in the original subgoal trie (Fig. 4.1) are now represented and inserted in theGT-CA. However, the organization used in the subgoal tries allows one to maintain the listof sibling nodes and the a

ess to the 
orresponding subgoal frames unaltered.In a similar way, for the answer tries, ea
h node now represents a di�erent answer for therespe
tive subgoal. Instead of having the 
omplete answer term represented in the answertries, with this design the answer trie node's token is simply a pointer to the 
orrespondingpath in the GT-CA representation. On
e again, the organization used in the answer tries tomaintain the list of sibling nodes and to enable answer re
overy in insertion order, remainsunaltered. With this organization, answers are now loaded by following the pointer in thenode's token and then by traversing the 
orresponding GT-CA's nodes bottom-up.Figure 4.2 uses the example from Fig. 4.1 to illustrate how the GT-CA design works. Initially,the subgoal trie and the GT-CA are empty. Then, the subgoal t(f(1),X) is 
alled. Whenthis o

urs, three nodes are inserted in the GT-CA to represent the 
all: one representsthe fun
tor f/1, a se
ond refers to the 
onstant 1 and the last representing the variable X.Next, a node representing the path inserted in the GT-CA is stored in the subgoal trie (node
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Figure 4.2: YapTab's table organization using the GT-CA design.

all1 in Fig. 4.2). The 
all1 node serves two purposes: its token's �eld is used to storethe referen
e to the leaf node of the GT-CA's inserted path and its 
hild �eld is used tostore the referen
e to the 
orresponding subgoal frame. Afterwards, for the se
ond subgoal
all t(X,Y), we start by inserting the 
all in the GT-CA and for that we represent the freevariables X and Y by the nodes VAR0 and VAR1, respe
tively. Next, we store a node in thesubgoal trie (node 
all2) to represent the path inserted in the GT-CA.For ea
h answer, its term representation is inserted �rst in the GT-CA and then we stored anode in the 
orresponding answer trie, to represent the path inserted in the GT-CA (nodeslabeled answer1, answer2, answer3, answer4 in Fig. 4.2). Noti
e that in some situations,only part (or possibly none) of the term 
onstru
tion in the GT-CA is required, if part orthe 
omplete term representation already exists, thus emphasizing the 
ontributions of a GTto store all term representations.With this example, we 
an also see that with the GT-CA we 
annot share the representationof 
ommon terms appearing at di�erent arguments or substitution positions. An example is



44 Global Triethe representation of the terms f(1), f(2) and VAR0, whi
h appear more than on
e in theGT. In fa
t, a subgoal 
all is represented by a sequen
e of argument terms while an answeris represented by a sequen
e of substitution terms. Moreover, when the number of argumentor substitution terms is greater than one, the representation of a subgoal 
all or answer 
anend at internal nodes of other subgoal 
alls and/or answers, and not ne
essarily at a leafnode. This spe
i�
 situation raises di�
ulties when supporting table abolish operations,sin
e individual nodes 
an be part of di�erent subgoal 
alls and/or answers representation.In this 
ase the removal pro
ess of a individual node 
an not be done while it belongs toother di�erent term representations. This problem 
an be solved by introdu
ing an extra�eld in ea
h trie node to 
ount the number of paths it belongs to and only allowing deletionwhen it rea
hes zero, but this solution is 
ontradi
tory with the GT goal of saving memoryusage.Another drawba
k of the GT-CA design o

urs when a subgoal is 
ompleted. As mentionedpreviously, a strategy exists to avoid answer re
overy using bottom-up uni�
ation andperforming instead what is 
alled a 
ompleted table optimization [8℄. This optimizationimplements answer re
overy by top-down traversing the 
ompleted answer trie and byexe
uting spe
i�
 WAM-like 
ode from the answer trie nodes. However, when traversing theGT-CA with a top-down approa
h, traversed nodes 
an belong to several di�erent subgoaland/or answer tries. So, with the GT-CA approa
h this optimization is no longer possible.4.2 Global Trie for TermsThe Global Trie for Terms (GT-T) design 
an be seen as an extension of the previousapproa
h [33℄. The GT-T was designed to optimize the GT stru
ture organization bymaximizing the sharing of tabled data whi
h is stru
turally equal. In the GT-T design,all argument and substitution terms appearing in tabled subgoal 
alls and/or answers arerepresented only on
e in the 
ommon GT, this allows to prevent situations where argumentand substitution terms are represented more than on
e as in the example of Fig. 4.2.As an extension of the previous GT-CA design, the GT-T data stru
ture is still a treestru
ture. However, in this organization, ea
h di�erent path through the trie nodes representsa unique argument and/or substitution term, in 
ontrast to the previous strategy where a path
ould represent more than an argument or substitution term. Therefore, the representationof terms always end at leaf trie nodes. In this table organization, the subgoal and answer triesdata stru
ture are no longer represented as a unique level of trie nodes. In both tries, ea
hpath is now 
omposed of a �xed number of trie nodes, representing in the subgoal trie thearguments for the tabled subgoal 
all, or representing the substitution terms in the answertrie. More spe
i�
ally, for the subgoal tries, ea
h node now represents an argument term
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h the node's token is used to store the referen
e to the unique path in the GT-Twhere the a
tual argument term is represented. Similarly for the answer tries, ea
h nodenow represents a substitution term, where the node's token stores the referen
e to the path'sleaf node in the GT-T. The features used in tries to maintain the list of sibling nodes andto enable answer re
overy in insertion order, introdu
ed by YapTab's original subgoal andanswer tries representation, remains unaltered.Figure 4.3 illustrates how the GT-T design works, by stressing its most important features,and for that we use again the example from Fig. 4.1. Initially, the subgoal trie and the GT-Tare empty. Then, the �rst subgoal t(f(1),X) is 
alled and the two argument terms, f(1)(represented by the tokens f/1 and 1) and X (token VAR0), are �rst inserted in the GT-T.Afterwards, the argument terms are represented in the subgoal trie by two nodes (nodes arg1and arg2), and ea
h node's token stores the referen
e to the leaf node of the 
orrespondingterm representation inserted in the GT-T. For the se
ond subgoal 
all t(X,Y), the argumentterms VAR0 and VAR1, representing respe
tively X and Y, are also �rst inserted in the GT-T,followed by the insertion of two nodes in the subgoal trie to represent them. In ea
h token'snode we store the referen
e to the 
orresponding representation in the GT-T.When pro
essing answers, the pro
edure is similar to the one exe
uted for subgoal 
alls. Forea
h substitution term, we also insert �rst its representation in the GT-T and then we inserta node in the 
orresponding answer trie, in order to store the referen
e to its path in theGT-T (nodes labeled subs1 and subs2 in Fig. 4.3). As shown in Fig. 4.3, the substitutionterms for the 
omplete set of answers for the two subgoal 
alls only in
lude the terms f(1)and f(2). Moreover, as f(1) was inserted in the global trie at the time of the �rst subgoal
all, we only need to insert f(2) (represented by the nodes f/1 and 2), meaning that in fa
twe only need to insert the token 2, in order to represent the full set of answers. So, we aremaximizing the sharing of 
ommon terms appearing at di�erent arguments or substitutionpositions. For this parti
ular example, the result is a very 
ompa
t representation of the GT,as most subgoal 
alls and/or answers share the same term representations.Regarding spa
e re
lamation, as ea
h di�erent path in the GT-T always ends at a leaf node,we 
an use the 
hild �eld (that is always NULL in a leaf node) to 
ount the number ofreferen
es to the path it represents. This feature is of uttermost importan
e for the deletionpro
ess of a path, whi
h 
an only be performed when there is no referen
e to it, this istrue when the leaf node's 
hild �eld rea
hes zero. With this feature, the previous GT-CA'sproblem of supporting table abolish operations without introdu
ing extra memory overheads,is solved.Another GT-CA's problem was related with 
ompiled tries, i.e., the te
hnique used on
ompletion of a subgoal. With GT-T su
h problem no longer exists and in order to enable thene
essary topdown traversing, we keep the GT only with the term representations and store
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Subgoal Trie
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Figure 4.3: YapTab's table organization using the GT-T design.
the WAM-like instru
tions in the answer tries, as in the original design [8℄. The di�eren
e
aused by the existen
e of the GT is a new set of high-level WAM-like instru
tions, i.e.,instead of working at the level of atoms/terms/fun
tors/lists as in [8℄, ea
h instru
tion worksat the level of the substitution terms. For example, 
onsidering again the loading of fouranswers for the 
all t(X,Y), one has two 
hoi
es for the variable X and, to ea
h variableX, we have two 
hoi
es for variable Y (
ombination between two variables). In the GT-Tdesign, the answer trie nodes representing the 
hoi
es for X and for Y (nodes subs1 andsubs2 respe
tively) are 
ompiled with a WAM-like sequen
e of trie instru
tions, su
h astry_subs_term (for �rst 
hoi
es) and trust_subs_term (for se
ond/last 
hoi
es). GT-T's
ompiled tries also in
lude a retry_subs_term instru
tion (for intermediate 
hoi
es) and ado_subs_term instru
tion (for single 
hoi
es).



4.3 Global Trie for Subterms 474.3 Global Trie for SubtermsIn this design, we optimize the GT-T in order to obtain higher e�
ien
y at the memory level.The Global Trie for Subterms (GT-ST) maintains most of the GT-T features, su
h as thesharing of the tabled data that is stru
turally equal. Yet, in this last design, we take intoa

ount the use of tabling me
hanisms in real world problems, whi
h require extensive sear
hand where redundant data 
ommonly o

ur. Therefore, we maximize the representation ofthe stru
tural equal data at a se
ond level, by avoiding the representation of equal subterms,and thus preventing situations where the representation of those subterms o

urs more thanon
e.Although GT-ST uses the same tree stru
ture for data stru
tures, every di�erent path 
annow represent a 
omplete term or a subterm of another term, but still being an unique term.This parti
ularity is eviden
ed in GT's 
ompound term 
onstru
tion, su
h as lists or fun
tors,that also have 
ompound terms as arguments. In what follows, we will refer to 
ompoundterms arguments whi
h are 
ompound terms too, as subterms. In this 
ase, we 
hange thestru
ture of the term in the GT by 
reating singular stru
tures for ea
h subterm, i.e., wheninserting a term su
h as f(p(1)), after the 
onstru
tion of the fun
tor f/1 the insertion isstopped, and the 
onstru
tion of the subterm p(1) is inserted as a individual term in the GT.After the 
omplete insertion of subterm p(1), the 
onstru
tion of the main term is resumedby inserting a node pointing to the respe
tive subterm representation previously made.Although the stru
tural di�eren
es in the GT-ST table spa
e design, GT-T's stru
turefor subgoal and answer tries, where ea
h path is 
omposed by a �xed number of nodesrepresenting, respe
tively, the arguments for table subgoal 
alls or the substitution terms, isused without 
hanges. Thus the subgoal trie and answer trie nodes store the pointers to therespe
tive representation in the GT. Features regarding the subgoal frame stru
ture, su
h asto maintain the 
hronologi
al order of answer's insertion and 
orre
t re
overy, also remainunaltered.One last optimization is provided in GT-ST design, whi
h 
an be also applied to the previousGT-CA and GT-T designs. The goal is to prevent the single node term representation inthe GT, su
h as when representing atoms, integers and variables, by inserting them in therespe
tive subgoal or answer trie, thus preventing unne
essary memory usage. The pro
edure
onsists in inserting dire
tly the subgoal 
all arguments or substitution terms, whi
h havea single node representation, in the respe
tive subgoal or answer trie, thus avoiding itsrepresentation in the global trie. This optimization is straightforward. Sin
e, by default, weare inserting a node in the subgoal trie or answer trie to point to the respe
tive representationin the GT, for atomi
 terms we now avoid this and use the node to store the respe
tive term.Figure 4.4 shows an example of how the previous GT-T design stores subterms by illustratingthe resulting table data stru
tures for the program des
ribed in the top of the �gure.
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:- table t/2.

t(X,Y) :- term(X), term(Y).

term(f(p(1),p(1))).
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Figure 4.4: YapTab's table organization for 
ompound terms using the GT-T design.
Figure 4.5 illustrates GT-ST design behavior, using the same example from Fig. 4.4. Initially,the subgoal trie and GT-ST are empty. Next the �rst subgoal t(f(p(1),p(1)),X) is 
alledand the two argument terms are inserted in the global trie. Regarding the insertion of the�rst argument, f(p(1),p(1)), we emphasize the di�eren
es between this and the previousGT-T design.



4.3 Global Trie for Subterms 49
Subgoal Trie

table entry for t/2
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subgoal frame for
t(f(p(1),p(1)),VAR0)
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Figure 4.5: YapTab's table organization for 
ompound terms using GT-ST.Primarily, the node to represent the fun
tor f/2 is inserted, but then the insertion of fun
torp/1 is stopped and the term p(1) is inserted as a distin
t term in the GT-ST, i.e., as a siblingof the already stored node f/2. The nodes for p/1 and 1 are then inserted in the GT-ST.Next, a node is inserted, in the pla
e where we have previously stopped the term 
onstru
tion(as a 
hild node of node f/2), to store the referen
e to the leaf node of the subterm p(1)representation. The 
onstru
tion of the main term then 
ontinues, applying an analogouspro
edure to the se
ond argument of f/2. However the subterm p(1) is already stored inthe GT, therefore it is only required the insertion of a node to store the referen
e to p(1)representation's leaf node. Afterwards, the respe
tive argument node (node arg1 in Fig. 4.5)is inserted in the subgoal trie storing the GT-ST referen
e representing f(p(1),p(1)). Forthe se
ond subgoal 
all, t(X,Y), we do not intera
t with the GT-ST. Therefore for ea
hargument term, X and Y, we simply store in the subgoal trie the respe
tive nodes with VAR0



50 Global Trieand VAR1 labels, as shown in the Fig. 4.5.The pro
edure used when pro
essing answers is equivalent to the one used when storing thesubgoal 
all arguments. For ea
h substitution term (if not an atomi
 term), we �rst insertthe term in the GT-ST and then we store a node in the 
orresponding answer trie to store thereferen
e to its path in the GT-ST (nodes labeled subs1 and subs2 in Fig. 4.5). In Fig. 4.5the substitution terms for the 
omplete set of answers for all subgoal 
alls are f(p(1),p(1))and f(p(2),p(2)). Thus, as f(p(1),p(1)) is already stored in the global trie (inserted whenstoring the �rst subgoal 
all), we only need to store the se
ond term in order to representthe whole set of answer. With this approa
h we in
rease the sharing of 
ommon subtermsbetween terms and redu
e the 
omplexity when storing atomi
 terms.Regarding spa
e retrieval, the GT-ST design has the same features of the GT-T, where everypath representing a singular term always ends at a leaf node. We also use the 
hild �eld(that is always NULL in a leaf node) to 
ount the number of referen
es to it. This pro
edureworks in any situation, even in what 
on
erns to subterm's referen
ing. As mentioned inthe previous se
tion, regarding the support of table abolish operations, this feature is ofuttermost importan
e in the deletion of a path, whi
h o

urs when the 
hild's node �eldis zero. As provided in the GT-T design, the GT-ST also supports the te
hniques used on
ompletion of a subgoal, keeping the global trie only with the term representation and storingthe WAM-like instru
tions in the answer tries. Although, in this design we use an hybridset of WAM-like instru
tions, ones that work at the level of the substitution terms and otherthat work at level of the atomi
 terms. Therefore, taking into 
onsideration the positionof the node in the answer trie and if it is a 
ompound term or an atomi
 term. Hen
e,answer trie nodes are 
ompiled with the instru
tions: try_subs_term/atom for �rst 
hoi
es,retry_subs_term/atom for intermediate 
hoi
es, trust_subs_term/atom for last 
hoi
es anddo_subs_term/atom for single 
hoi
es.



Chapter 5
Implementation
In this 
hapter, we fo
us on the implementation details for YapTab's alternative table designsand we des
ribe the GT data stru
tures and algorithms in more detail. Throughout, we alsodes
ribe how tries are stru
tured, spe
ifying the main features of trie nodes, and present themain pro
edures whi
h intera
t with tries, preforming 
omparisons with YapTab's originaltable design. In what follows, we des
ribe the three previously presented alternatives,detailing them separately.5.1 Global Trie for Calls and AnswersWe next des
ribe the �rst presented alternative to YapTab's table design. We startwith Fig. 5.1 des
ribing in more detail the table organization previously presented inFig. 4.2 for the subgoal 
all t(f(1),X). Internally, all tries are represented by a top rootnode, a
ting as the entry point for the 
orresponding subgoal, answer or global trie datastru
ture. For the subgoal tries, the root node is stored in the 
orresponding table entry'ssubgoal_trie_root_node data �eld. For the answer tries, the root node is stored in the
orresponding subgoal frame's answer_trie_root_node data �eld. For the global trie,the root node is stored in the GT_ROOT_NODE global variable. Regarding the trie nodes,remember that they are internally implemented as 4-�eld data stru
tures. The �rst �eld(entry) stores the token for the node and the se
ond (
hild), third (parent) and fourth(sibling) �elds store pointers, respe
tively, to the �rst 
hild node, to the parent node, andto the sibling node. Traversing a trie to 
he
k/insert for new 
alls or for new answers isimplemented by repeatedly invoking a trie_node_
he
k_insert() pro
edure for ea
h tokenthat represents the 
all/answer being 
he
ked. Given a trie node parent and a token t, thetrie_node_
he
k_insert() pro
edure returns the 
hild node of parent that represents thegiven token t. Figure 5.2 shows the pseudo-
ode for this pro
edure.51
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Subgoal Trie

subgoal_trie_root_node
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root
node

Answer Trie

table entry for t/2

call1

answer_trie_root_node

subgoal frame for t(f(1),VAR0)

root
node

answer2 answer1

2

f/1

1

GT_ROOT_NODE

root
node

VAR0Figure 5.1: Implementation details for the GT-CA design.Initially, the pro
edure 
he
ks if the list of sibling nodes is empty. If this is the 
ase, a newtrie node representing the given token t is initialized and inserted as the �rst 
hild of thegiven parent node. To initialize new trie nodes, we use a new_trie_node() pro
edure withfour arguments, ea
h one 
orresponding to the initial values to be stored respe
tively in thetoken, 
hild, parent and sibling �elds of the new trie node.Otherwise, if the list of sibling nodes is not empty, the pro
edure 
he
ks if they are beingindexed through a hash table. Sear
hing through a list of sibling nodes is initially donesequentially. This 
ould be too expensive if we have hundreds of siblings. A thresholdvalue (MAX_SIBLING_NODES_PER_LEVEL) 
ontrols whether to dynami
ally index the nodes
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trie_node_check_insert(TRIE_NODE parent, TOKEN t) {
  child = parent->child
  if (child == NULL) {              // the list of sibling nodes is empty
    child = new_trie_node(t, NULL, parent, NULL)
    parent->child = child
  } if (is_not_a_hash_table(child)) {    // sibling nodes without hashing
    sibling_nodes = 0             // to count the number of sibling nodes
    do {           // check if token t is already in the list of siblings
      if (child->token == t)
        return child
      sibling_nodes++
      child = child->sibling
    } while (child)
    child = new_trie_node(t, NULL, parent, parent->child)
    if (sibling_nodes > MAX_SIBLING_NODES_PER_LEVEL) {  // alloc new hash
      hash = new_hash_table(child)
      parent->child = hash
    } else
      parent->child = child
  } else {                                  // sibling nodes with hashing
    hash = child
    bucket = hash_function(hash, t)    // get the hash bucket for token t
    child = bucket -> child
    sibling_nodes = 0
    while (child) {     // check if token t is already in the hash bucket
      if (child->token == t)
        return child
      sibling_nodes++
      child = child->sibling
    }
    child = new_trie_node(t, NULL, parent, bucket)
    bucket -> child = child
    if (sibling_nodes > MAX_SIBLING_NODES_PER_BUCKET)      // expand hash
      expand_hash_table(hash)
  }
  return child
} Figure 5.2: Pseudo-
ode for the trie_node_
he
k_insert() pro
edure.

through a hash table, hen
e providing dire
t node a

ess and optimizing sear
h. Furtherhash 
ollisions are redu
ed by dynami
ally expanding the hash tables when a se
ond thresholdvalue (MAX_SIBLING_NODES_PER_BUCKET) is rea
hed for a parti
ular hash bu
ket. If not usinghashing, the pro
edure then traverses sequentially the list of sibling nodes and 
he
ks for onerepresenting the given token t. If su
h a node is found then exe
ution is stopped and the nodereturned. Otherwise, a new trie node is initialized and inserted in the beginning of the list. Ifrea
hing the threshold value MAX_SIBLING_NODES_PER_LEVEL, a new hash table is initializedand inserted as the �rst 
hild of the given parent node. If using hashing, the pro
edure�rst 
al
ulates the hash bu
ket for the given token t and then, it traverses sequentially the



54 Implementationlist of sibling nodes in the bu
ket 
he
king for one representing t. Again, if su
h a nodeis found then exe
ution is stopped and the node returned. Otherwise, a new trie node isinitialized and inserted in the beginning of the bu
ket list. If rea
hing the threshold valueMAX_SIBLING_NODES_PER_BUCKET, the 
urrent hash table is expanded.To manipulate tries we use two interfa
e pro
edures. For traversing a trie to 
he
k/insert fornew 
alls or for new answers we use thetrie_
he
k_insert(TRIE_NODE root, TERM t)pro
edure, where root is the root node of the trie to be used and t is the 
all/answerterm to be inserted. The trie_
he
k_insert() pro
edure invokes repeatedly the previoustrie_node_
he
k_insert() pro
edure for ea
h token that represents the given term andreturns the referen
e to the leaf node representing its path. Note that inserting a termrequires in the worst 
ase allo
ating as many nodes as ne
essary to represent its 
ompletepath. On the other hand, inserting repeated terms requires traversing the trie stru
ture untilrea
hing the 
orresponding leaf node, without allo
ating any new node.To load a term from a trie ba
k to the Prolog engine we use thetrie_load(TRIE_NODE leaf)pro
edure, where leaf is the referen
e to the leaf node of the term to be returned. Whenloading a term, the trie nodes are traversed in bottom-up order. When inserting terms inthe table spa
e we need to distinguish two situations: (i) inserting tabled 
alls in a subgoaltrie stru
ture; and (ii) inserting answers in a parti
ular answer trie stru
ture. The formersituation is handled by the subgoal_
he
k_insert() pro
edure as shown in Fig. 5.3 and thelatter situation is handled by the answer_
he
k_insert() pro
edure as shown in Fig. 5.4.
subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call) {
  st_root_node = te->subgoal_trie_root_node
  if (GT_ROOT_NODE) {                               // GT-CA table design
    leaf_gt_node = trie_check_insert(GT_ROOT_NODE, call)
    leaf_st_node = trie_node_check_insert(st_root_node, leaf_gt_node)
  } else {                                       // original table design
    leaf_st_node = trie_check_insert(st_root_node, call)
  }
  return leaf_st_node
}Figure 5.3: Pseudo-
ode for the GT-CA's subgoal_
he
k_insert() pro
edure.In the original table design, the subgoal_
he
k_insert() pro
edure simply uses the
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he
k_insert() pro
edure to 
he
k/insert the given 
all in the subgoal trie 
or-responding to the given table entry te. In the new design based on the GT-CA, thesubgoal_
he
k_insert() pro
edure now �rst 
he
ks/inserts the given 
all in the GT. Then,it uses the referen
e to the GT's leaf node representing 
all (leaf_gt_node in Fig. 5.3) asthe token to be 
he
ked/inserted in the subgoal trie 
orresponding to the given table entryte. Note that this is done by 
alling the trie_node_
he
k_insert() pro
edure, thus if thelist of sibling nodes in the subgoal trie ex
eeds the MAX_SIBLING_NODES_PER_LEVEL thresholdvalue, then a new hash table is still initialized as des
ribed before.The answer_
he
k_insert() pro
edure works similarly. In the original table design, it
he
ks/inserts the given answer in the answer trie 
orresponding to the given subgoal framesf. In the new design based on the GT-CA, it �rst 
he
ks/inserts the given answer in the GTand, then, it uses the referen
e to the GT's leaf node representing answer (leaf_at_nodein Fig. 5.4) as the token to be 
he
ked/inserted in the answer trie 
orresponding to thegiven subgoal frame sf. Again, if the list of sibling nodes in the answer trie ex
eeds theMAX_SIBLING_NODES_PER_LEVEL threshold value, a new hash table is initialized.
answer_check_insert(SUBGOAL_FRAME sf, ANSWER answer) {
  at_root_node = sf->answer_trie_root_node
  if (GT_ROOT_NODE) {                                 // GT-CA table design
    leaf_gt_node = trie_check_insert(GT_ROOT_NODE, answer)
    leaf_at_node = trie_node_check_insert(at_root_node, leaf_gt_node)
  } else {                                         // original table design
    leaf_at_node = trie_check_insert(at_root_node, answer)
  }
  return leaf_at_node
}Figure 5.4: Pseudo-
ode for the GT-CA's answer_
he
k_insert() pro
edure.Finally, the answer_load() pro
edure is used to 
onsume answers. Figure 5.4 shows thepseudo-
ode for it. In the original table design, it simply uses the trie_load() pro
edureto load from the answer trie the answer given by the trie node leaf_at_node. In the newdesign based on the GT-CA, the answer_load() pro
edure �rst a

esses the GT's leaf node(leaf_gt_node in Fig 5.5) represented in the token �eld of the given trie node (leaf_at_nodein 5.5). Then, it uses the trie_load() pro
edure to load from the GT ba
k to the Prologengine the answer represented by the obtained GT's leaf node.5.2 Global Trie for TermsWe now des
ribe in more detail the GT-T data stru
tures and algorithms. We start withFig. 5.6 showing in more detail the table organization previously presented in Fig. 4.3
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answer_load(ANSWER_TRIE_NODE leaf_at_node) {
  if (GT_ROOT_NODE) {                                 // GT-CA table design
    leaf_gt_node = leaf_at_node->token
    answer = trie_load(leaf_gt_node)
  } else                                           // original table design
    answer = trie_load(leaf_at_node)
  return answer
} Figure 5.5: Pseudo-
ode for the GT-CA's answer_load() pro
edure.

for the subgoal 
all t(X,Y). As mentioned previously, tries are represented by a top rootnode, a
ting as the entry point for the 
orresponding subgoal, answer or global trie datastru
ture. For the subgoal tries, the root node is stored in the 
orresponding table entry'ssubgoal_trie_root_node data �eld. For the answer tries, the root node is stored in the
orresponding subgoal frame's answer_trie_root_node data �eld. For the global trie, theroot node is stored in the GT_ROOT_NODE global variable.In this table organization, the trie nodes have the same stru
ture as in the previous design,being internally implemented as 4-�eld data stru
tures. The �rst �eld (token) stores thetoken for the node and the se
ond (
hild), third (parent) and fourth (sibling) �elds storepointers, respe
tively, to the �rst 
hild node, to the parent node, and to the next sibling node.Remember that for the global trie, the leaf node's 
hild �eld is used to 
ount the number ofreferen
es to the path it represents. For the answer tries, an additional �eld (
ode) is used tosupport 
ompiled tries. As mentioned before, traversing a trie to 
he
k/insert for new 
allsor for new answers is implemented by repeatedly invoking a trie_node_
he
k_insert()pro
edure for ea
h token that represents the 
all/answer being 
he
ked. Given a trie nodeparent and a token t, the trie_node_
he
k_insert() pro
edure returns the 
hild node ofparent that represents the given token t.Initially, the pro
edure 
he
ks if the list of sibling nodes is empty. If this is the 
ase, a newtrie node representing the given token t is initialized and inserted as the �rst 
hild of thegiven parent node. To initialize new trie nodes, we use a new_trie_node() pro
edure withfour arguments, ea
h one 
orresponding to the initial values to be stored respe
tively in thetoken, 
hild, parent and sibling �elds of the new trie node. For answer trie nodes, the 
ode�eld is 
omputed later when 
ompletion takes pla
e. Otherwise, if the list of sibling nodes isnot empty, the pro
edure 
he
ks if they are being indexed through a hash table.As in the previous design, two threshold values, MAX_SIBLING_NODES_PER_LEVEL andMAX_SIBLING_NODES_PER_BUCKET, 
ontrol whether to dynami
ally index/expand the nodesthrough a hash table. If not using hashing, the pro
edure then traverses sequentially thelist of sibling nodes and 
he
ks for one representing the given token t. If su
h a node
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Figure 5.6: Implementation details for GT-T design.is found then exe
ution is stopped and the node returned. Otherwise, a new trie nodeis initialized and inserted in the beginning of the list. If rea
hing the threshold valueMAX_SIBLING_NODES_PER_LEVEL, a new hash table is initialized and inserted as the �rst 
hildof the given parent node. If using hashing, the pro
edure �rst 
al
ulates the hash bu
ket forthe given token t and then, it traverses sequentially the list of sibling nodes in the bu
ket
he
king for one representing t. Again, if su
h a node is found then exe
ution is stopped andthe node returned. Otherwise, a new trie node is initialized and inserted in the beginning ofthe bu
ket list. If rea
hing the threshold value MAX_SIBLING_NODES_PER_BUCKET, the 
urrenthash table is expanded.



58 ImplementationTo manipulate tries we still use two interfa
e pro
edures:trie_
he
k_insert(TRIE_NODE root, TERM t)trie_load(TRIE_NODE leaf)On
e more, the trie_load() is used to load a term from a trie ba
k to the Prologengine, where leaf is the referen
e to the leaf node of the term to be loaded. Thetrie_
he
k_insert() is used for traversing a trie to 
he
k/insert for new terms, where rootis the root node of the trie to be used and t is the term to be inserted. It invokes repeatedlythe previous trie_node_
he
k_insert() pro
edure for ea
h token that represents the giventerm t and returns the referen
e to the leaf node representing its path. Inserting tabled 
allsin a subgoal trie stru
ture is now handled by the subgoal_
he
k_insert() pro
edure asshown in Fig. 5.7 and inserting answers in a parti
ular answer trie stru
ture is now handledby the answer_
he
k_insert() pro
edure as shown in Fig. 5.8.
subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call, SUBGOAL_ARITY a) {
  if (GT_ROOT_NODE) {                                  // GT-T table design
    st_node = te->subgoal_trie_root_node
    for (i = 1; i <= a; i++) {
      t = get_argument_term(call, i)
      leaf_gt_node = trie_check_insert(GT_ROOT_NODE, t)
      leaf_gt_node->child++       // increase number of paths it represents
      st_node = trie_node_check_insert(st_node, leaf_gt_node)
    }
    leaf_st_node = st_node
  } else                                           // original table design
    leaf_st_node = trie_check_insert(te->subgoal_trie_root_node, call)
  return leaf_st_node
} Figure 5.7: Pseudo-
ode for the GT-T's subgoal_
he
k_insert() pro
edure.In the GT-T design, for ea
h argument term t, the subgoal_
he
k_insert() �rst
he
ks/inserts the term t in the GT-T and, then, it uses the referen
e to the leaf noderepresenting t in the GT-T (leaf_gt_node in Fig. 5.7) as the token to be 
he
ked/insertedin the subgoal trie 
orresponding to the given table entry te. Note that this is done by 
allingthe trie_node_
he
k_insert() pro
edure, thus if the list of sibling nodes in the subgoaltrie ex
eeds the MAX_SIBLING_NODES_PER_LEVEL threshold value, then a new hash table isinitialized as des
ribed before.The answer_
he
k_insert() pro
edure works similarly. In the GT-T design, for ea
hsubstitution term t, it �rst 
he
ks/inserts the term t in the GT-T and, then, it uses thereferen
e to the leaf node representing t in the GT-T (leaf_gt_node in Fig. 5.8) as the tokento be 
he
ked/inserted in the answer trie 
orresponding to the given subgoal frame sf. Again,



5.3 Global Trie for Subterms 59if the list of sibling nodes in the answer trie ex
eeds the MAX_SIBLING_NODES_PER_LEVELthreshold value, a new hash table is initialized.
answer_check_insert(SUBGOAL_FRAME sf, ANSWER answer, SUBSTITUTION_ARITY a) {
  if (GT_ROOT_NODE) {                                     // GT-T table design
    at_node = sf->answer_trie_root_node
    for (i = 1; i <= a; i++) {
      t = get_substitution_term(answer, i)
      leaf_gt_node = trie_check_insert(GT_ROOT_NODE, t)
      leaf_gt_node->child++          // increase number of paths it represents
      at_node = trie_node_check_insert(at_node, leaf_gt_node)
    }
    leaf_at_node = at_node
  } else                                              // original table design
      leaf_at_node = trie_check_insert(sf->answer_trie_root_node, answer)
  return leaf_at_node
} Figure 5.8: Pseudo-
ode for the GT-T's answer_
he
k_insert() pro
edure.Finally, Fig. 5.9 shows the pseudo-
ode for the new answer_load() pro
edure. In the newGT-T design, for ea
h answer trie node at_node, now the answer_load() pro
edure uses thetrie_load() pro
edure to load from the GT-T ba
k to the Prolog engine the substitutionterm given by the referen
e (leaf_gt_node in Fig. 5.9) stored in the 
orresponding token�eld.
answer_load(ANSWER_TRIE_NODE leaf_at_node, SUBSTITUTION_ARITY a) {
  if (GT_ROOT_NODE) {                                // GT-T table design
    at_node = leaf_at_node
    for (i = a; i >= 1; i--) {
      leaf_gt_node = at_node->token
      t = trie_load(leaf_gt_node)
      put_substitution_term(t, answer)
      at_node = at_node->parent
    }
  } else                                         // original table design
    answer = trie_load(leaf_at_node)
  return answer
} Figure 5.9: Pseudo-
ode for the GT-T's answer_load() pro
edure.

5.3 Global Trie for SubtermsFinally, we then des
ribe the data stru
tures and algorithms for the GT-ST table design.Figure 5.10 shows in more detail the table organization previously presented in Fig. 4.5 for



60 Implementationthe subgoal 
all t(X,Y). As mentioned in the previous se
tions, tries are represented by a toproot node, a
ting as the entry point for the 
orresponding trie data stru
ture, and trie nodesare internally implemented as 4-�eld data stru
tures. The �rst �eld (entry) stores the tokenfor the node and the se
ond (
hild), third (parent) and fourth (sibling) �elds store pointers,respe
tively, to the �rst 
hild node, to the parent node, and to the sibling node. Traversing atrie to 
he
k/insert for new 
alls or new answers is also implemented by repeatedly invoking atrie_node_
he
k_insert() pro
edure for ea
h token that represents the 
all/answer being
he
ked. The same algorithm is applied on this design, i.e., given a trie node parent and atoken t, the trie_node_
he
k_insert() pro
edure returns the 
hild node of parent thatrepresents the given token t.Initially, the pro
edure 
he
ks if the list of sibling nodes is empty. If this is the 
ase, anew trie node representing the given token t is initialized and inserted as the �rst 
hildof the given parent node.Otherwise, if the list of sibling nodes is not empty, the pro
edure
he
ks if they are being indexed through a hash table. The usage of the threshold valuesMAX_SIBLING_NODES_PER_LEVEL and MAX_SIBLING_NODES_PER_BUCKET remains unaltered.When using hashing, the pro
edure �rst 
al
ulates the hash bu
ket for the given token tand then, it traverses sequentially the list of sibling nodes in the bu
ket 
he
king for one rep-resenting t. Again, if su
h a node is found then exe
ution is stopped and the node returned.Otherwise, a new trie node is initialized and inserted in the beginning of 
orresponding thebu
ket list. If rea
hing the threshold value MAX_SIBLING_NODES_PER_BUCKET the 
urrent hashtable is expanded. If not using hashing, the list of sibling nodes is sequentially traversed tobe 
he
ked for one representation of the given token t. The pro
edure is stopped when su
hrepresentation is found, returning the respe
tive node. Otherwise, a new trie node insertedin the list of siblings. When the threshold value MAX_SIBLING_NODES_PER_LEVEL is rea
hed,during a new node's insertion, a new hash table is initialized, inserting the new node in thenew hash table.As for the previous designs, in the GT-ST we also use two interfa
e pro
edures to manipulatetries. trie_
he
k_insert(TRIE_NODE root, TERM t)trie_load(TRIE_NODE leaf)The trie_load() pro
edure is used to load a term from a trie ba
k to the Prologengine, where leaf is the referen
e to the leaf node of the term to be loaded. Thetrie_
he
k_insert() is used for traversing a trie to 
he
k/insert for new terms, whereroot is the root node of the trie to be used and t is the term to be inserted. As des
ribedin the previous se
tions, the two distin
t situations of inserting tabled 
alls in a subgoal triestru
ture and inserting answers in a parti
ular answer trie stru
ture are handled respe
tivelyby the subgoal_
he
k_insert() and answer_
he
k_insert() pro
edures. In the GT-ST



5.3 Global Trie for Subterms 61
Subgoal Trie

subgoal_trie_root_node

Global Trie

root
node

Answer Trie

VAR1

table entry for t/2

VAR0

answer_trie_root_node

subgoal frame for t(VAR0,VAR1)

root
node

subs2

subs1

try

try

subs2

trust

subs2

subs1

trust

try

subs2

trust

GT_ROOT_NODE

root
node

subt2 subt2

subt1 subt1

f/2

2 1

p/1

Figure 5.10: Implementation details for the GT-ST design.design these pro
edures are analogues to the ones presented for the GT-T design, as shownrespe
tively in Fig. 5.7 and Fig. 5.8. Both pro
edures start by �rst 
he
king/inserting theterm t in the GT, in order to use the referen
e to the leaf node representing t in the GT-T, asthe token to be 
he
ked/inserted in the 
orresponding subgoal or answer trie. In the GT-ST,both pro
edures behave in same way in what regards to the subgoal and answer 
he
k/insertpro
edure.The di�eren
e relies in the insertion of terms in the GT, and for that we have 
hanged the



62 Implementationtrie_
he
k_insert() pro
edure in su
h a way that when a 
ompound term has a 
ompoundterm as an argument, the pro
edure 
alls itself. In what remains we will refer to a termargument as a subterm. Figure 5.11 shows the pseudo-
ode for the 
hanges made to thetrie_
he
k_insert() pro
edure in order to support the new algorithm.
trie_check_insert(TRIE_NODE root, TERM t) {
  current_node = root
  if (is_atomic_term(t)) {
    current_node = trie_node_check_insert(current_node, t)
  } else if (is_compound_term(t)) {                      // GT-ST table design
    if (current_node == GT_ROOT_NODE) {
      st = compound_term_name(t)
      a = compound_term_arity(t)
      current_node = trie_node_check_insert(current_node, st)
      for (i = 0; i < a; i ++) {
        st = get_argument_term(t, i)
        current_node = trie_check_insert(current_node, st)
      }
    } else {                            // compound subterm of a compound term
      ref = trie_check_insert(GT_ROOT_NODE, t)
      current_node = trie_node_check_insert(current_node, ref)
    }
  }
  ...
  return current_node
}Figure 5.11: Pseudo-
ode for the GT-ST's trie_
he
k_insert() pro
edure for the GT-STdesign.Remember that, with the GT enabled, the trie_
he
k_insert() pro
edure for a 
all oranswer is 
alled with the GT_ROOT_NODE as the root argument. For the given term t,we initially verify its type in order to preform the respe
tive a
tion of insertion in thetrie. When t is a 
ompound term, two situations 
an o

ur: (i) if the 
urrent_node isthe GT_ROOT_NODE then the insertion pro
eeds by �rst inserting the term's name with thetrie_node_
he
k_insert() and then, for ea
h element of t (subterm), by invoking thetrie_
he
k_insert() pro
edure; (ii) on the other hand, if the 
urrent_node is not theGT_ROOT_NODE, whi
h means that t is an argument from a 
ompound term, then we �rst 
allthe trie_
he
k_insert() pro
edure with the GT_ROOT_NODE and the term t as arguments.By doing that, t is inserted as a simple term in the GT and when the trie_
he
k_insert()pro
edure returns, the referen
e ref to the leaf node of the subterm's path representation oft in the GT is inserted after the 
urrent_node by 
alling the trie_node_
he
k_insert()pro
edure.The answer_load() pro
edure in this design is used as in the GT-T design, i.e., it usesthe trie_load() pro
edure to load from the GT ba
k to the Prolog engine the substitutionterm given by the referen
e stored in the 
orresponding token �eld. In the 
ase of subterm
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es in the GT, the trie_load() pro
edure 
alls itself to �rst load the subterm referen
efrom the GT.Finally, in what regards the optimization mentioned in the previous 
hapter for therepresentation of atomi
 terms (integers, atoms and variables), Fig. 5.10 presents the 
hangesmade to the table spa
e when using this optimization. Remember that in the previousGT design, when inserting an atomi
 term, being it part of an answer or subgoal, thealgorithm �rst 
he
ks/inserts the term in the GT and only then inserts the referen
e toits representation in the respe
tive subgoal or answer trie. To implement this optimization,the subgoal/answer_
he
k_insert() pro
edures were slightly 
hanged. Before we insert aterm t in the GT, now we �rst verify if it is an atomi
 term, and if so, instead of inserting itin the GT we represent the term in its respe
tive subgoal/answer trie. Figure 5.12 shows thepseudo-
ode for this optimization applied to the subgoal_
he
k_insert() pro
edure. It isapplied similarly to the answer_
he
k_insert() pro
edure.
subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call, SUBGOAL_ARITY a) {
  if (GT_ROOT_NODE) {                                        // GT-ST table design
    st_node = te->subgoal_trie_root_node
    for (i = 1; i <= a; i++) {
      t = get_argument_term(call, i)
      if (is_atomic_term(t))                          // atomic term optimization
        st_node = trie_node_check_insert(st_node, t)
      else {
        leaf_gt_node = trie_check_insert(GT_ROOT_NODE, t)
        leaf_gt_node->child++           // increase number of paths it represents
        st_node = trie_node_check_insert(st_node, leaf_gt_node)
      }    
    }
    leaf_st_node = st_node
  } else                                                 // original table design
    leaf_st_node = trie_check_insert(te->subgoal_trie_root_node, call)
  return leaf_st_node
}Figure 5.12: Pseudo-
ode for the GT'ST subgoal_
he
k_insert() pro
edure optimized foratomi
 terms.
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Chapter 6
Experimental Results
In this 
hapter we present the experimental results obtained for the optimizations previouslydes
ribed, and for that we 
ompare the running times and system's memory spent by ea
h.Initially, we present results for the new 
ompa
t list terms representation, making 
omparisonwith the YapTab system. Afterwords, we dis
uss the results obtained by testing the GTtable designs, on
e more 
omparing then with the YapTab system. The environment for ourexperiments was an Intel(R) Core(TM)2 Quad 2.66GHz with 3.2 GBytes of main memoryand running the Linux kernel 2.6.24-28-generi
 with YapTab 6.2.0.6.1 Compa
t List TermsWe next present some experimental results 
omparing YapTab with and without support for
ompa
t lists. To put the performan
e results in perspe
tive, we have de�ned a top querygoal that 
alls re
ursively a tabled predi
ate list_terms/1 that simply stores in the tablespa
e list terms fa
ts. We experimented the list_terms/1 predi
ate using 50,000, 100,000and 200,000 list terms of sizes 60, 80 and 100 for empty-ending and term-ending lists withthe �rst and with the last element di�erent. Tables 6.1 and 6.2 show the table memoryusage (
olumns Memory), in KBytes, and the running times, in millise
onds, to store(
olumns Store) the tables (�rst exe
ution) and to load from the tables (se
ond exe
ution)the 
omplete set of answers without (
olumns Load) and with (
olumns Comp) 
ompiledtries for YapTab using standard lists (
olumnYapTab) and using the �nal design for 
ompa
tlists (
olumn YapTab+CL/YapTab). For 
ompa
t lists, we only show the memory andrunning time ratios over YapTab using standard lists. The running times are the average of�ve runs.The results in Tables 6.1 and 6.2 
learly 
on�rm that the new trie design based on
ompa
t lists 
an de
rease signi�
antly memory usage when 
ompared with standard lists.65



66 Experimental ResultsEmpty-Ending Lists YapTab YapTab+CL/YapTabMemory Store Load Comp Memory Store Load CompFirst element di�erent50,000 [E1,...,E60℄ 117,187 327 48 48 0.51 0.50 0.72 0.7350,000 [E1,...,E80℄ 156,250 486 62 62 0.51 0.50 0.66 0.6550,000 [E1,...,E100℄ 195,312 641 75 75 0.51 0.47 0.65 0.65100,000 [E1,...,E60℄ 234,375 775 93 93 0.51 0.47 0.74 0.74100,000 [E1,...,E80℄ 312,500 1,135 122 122 0.51 0.45 0.67 0.68100,000 [E1,...,E100℄ 390,625 1,531 150 149 0.51 0.46 0.65 0.66200,000 [E1,...,E60℄ 468,750 1,868 187 186 0.51 0.48 0.74 0.75200,000 [E1,...,E80℄ 625,000 2,544 250 247 0.51 0.48 0.66 0.66200,000 [E1,...,E100℄ 781,250 3,161 300 302 0.51 0.54 0.66 0.68last element di�erent50,000 [E1,...,E60℄ 1,955 58 22 21 0.50 0.77 0.70 0.7350,000 [E1,...,E80℄ 1,956 82 29 28 0.50 0.73 0.67 0.6950,000 [E1,...,E100℄ 1,957 94 35 35 0.50 0.78 0.68 0.68100,000 [E1,...,E60℄ 3,909 122 43 43 0.50 0.76 0.75 0.72100,000 [E1,...,E80℄ 3,910 156 57 57 0.50 0.77 0.72 0.70100,000 [E1,...,E100℄ 3,910 191 70 70 0.50 0.79 0.69 0.67200,000 [E1,...,E60℄ 7,815 255 87 92 0.50 0.73 0.72 0.68200,000 [E1,...,E80℄ 7,816 318 118 118 0.50 0.76 0.65 0.66200,000 [E1,...,E100℄ 7,817 377 141 140 0.50 0.78 0.67 0.67Table 6.1: Table memory usage (in KBytes) and store/load times (in millise
onds) for YapTabwith and without support for 
ompa
t lists for empty-ending lists with di�erent �rst or lastelements.In parti
ular, for empty-ending lists, with the �rst and with the last element di�erent, andfor term-ending lists with the �rst element di�erent, the results show an average redu
tionof 50%. For term-ending lists with the last element di�erent, memory usage is almost thesame. This happens be
ause the memory redu
tion obtained in the representation of the
ommon list elements (respe
tively 59, 79 and 99 elements in these experiments) is residualwhen 
ompared with the number of di�erent last elements (50,000, 100,000 and 200,000 inthese experiments).Regarding running time, the results in Tables 6.1 and 6.2 indi
ate that 
ompa
t lists
an a
hieve impressive gains for storing and loading list terms. In these experiments, thestoring time using 
ompa
t lists is around 2 times faster for list terms with the �rst elementdi�erent, and around 1.3 (0.79 ratio) to 1.4 (0.73 ratio) times faster for list terms withthe last element di�erent. Note that this is the 
ase even for term-ending lists, wherethere is no signi�
ant memory redu
tion. This happens be
ause the number of nodes to betraversed when navigating the trie data stru
tures for 
ompa
t lists is 
onsiderably smaller



6.2 Global Trie 67Term-Ending Lists YapTab YapTab+CL/YapTabMemory Store Load Comp Memory Store Load Comp1st element di�erent50,000 [E1,...,E59|E60℄ 115,235 320 48 47 0.52 0.51 0.72 0.7350,000 [E1,...,E79|E80℄ 154,297 471 62 62 0.51 0.53 0.67 0.6650,000 [E1,...,E99|E100℄ 193,360 657 74 73.6 0.51 0.47 0.66 0.65100,000 [E1,...,E59|E60℄ 230,469 732 97 96 0.52 0.50 0.72 0.72100,000 [E1,...,E79|E80℄ 308,594 1149 124 122 0.51 0.46 0.66 0.67100,000 [E1,...,E99|E100℄ 386,719 1516 149 146 0.51 0.49 0.66 0.67200,000 [E1,...,E59|E60℄ 460,937 1853 187 190 0.52 0.52 0.77 0.74200,000 [E1,...,E79|E80℄ 617,188 2417 244 248 0.51 0.51 0.69 0.69200,000 [E1,...,E99|E100℄ 773,438 3152 296 299 0.51 0.53 0.67 0.66last element di�erent50,000 [E1,...,E59|E60℄ 979 57 22 22 1.00 0.82 0.70 0.7450,000 [E1,...,E79|E80℄ 980 74 28 28 1.00 0.89 0.69 0.6950,000 [E1,...,E99|E100℄ 981 94 43 39 1.00 0.79 0.54 0.59100,000 [E1,...,E59|E60℄ 1,956 113 42 42 1.00 0.84 0.74 0.74100,000 [E1,...,E79|E80℄ 1,956 146 56 60 1.00 0.81 0.64 0.69100,000 [E1,...,E99|E100℄ 1,957 190 74 70 1.00 0.77 0.62 0.68200,000 [E1,...,E59|E60℄ 3,909 238 85 90.4 1.00 0.77 0.78 0.69200,000 [E1,...,E79|E80℄ 3,910 294 113 113 1.00 0.85 0.73 0.67200,000 [E1,...,E99|E100℄ 3,910 364 140 140 1.00 0.81 0.70 0.67Table 6.2: Table memory usage (in KBytes) and store/load times (in millise
onds) for YapTabwith and without support for 
ompa
t lists for lists with di�erent �rst or last elements.than the number of nodes for standard lists. These results also indi
ate that 
ompa
t lists
an outperform standard lists for loading terms, both with and without 
ompiled tries, andthat the redu
tion on the running time seems to de
rease as the size of the list terms being
onsidered in
reases.6.2 Global TrieWe next present some experimental results 
omparing YapTab with and without support forthe 
ommon global trie data stru
ture. To put the performan
e results in perspe
tive andhave a well-de�ned starting point 
omparing the GT-T and GT-ST approa
hes, �rst we havede�ned a tabled predi
ate t/5 that simply stores in the table spa
e terms de�ned by term/1fa
ts, and then we used a top query goal test/0 to re
ursively 
all t/5 with all 
ombinationsof one and two free variables in the arguments. An example of su
h 
ode for fun
tor termsof arity 1 (1000 terms in total) is shown next.



68 Experimental Results:- table t/5.t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).test :- t(A,f(1),f(1),f(1),f(1)), fail.test :- t(f(1),f(1),f(1),f(1),A), fail.test :- t(A,B,f(1),f(1),f(1)), fail....test :- t(f(1),f(1),f(1),A,B), fail.test.term(f(1)).term(f(2)).term(f(3))....term(f(998)).term(f(999)).term(f(1000)).We experimented the test/0 predi
ate with 10 di�erent kinds of 1000 term/1 fa
ts: integers,atoms, fun
tor (with arity 1, 2, 4 and 6) and list (with length 1, 2 and 4) terms. Table 6.3shows the table memory usage (
olumn Memory), in MBytes, and the running times, inmillise
onds, to store (
olumn Store) the tables (�rst exe
ution) and to load from the tables(se
ond exe
ution) the 
omplete set of subgoals/answers without (
olumn Load) and with(
olumn Comp) 
ompiled tries for YapTab's original table design.Table 6.4 shows the same �gures presented in Table 6.3, memory in MBytes and runningtimes spent to store tables and to load answer from tables, with and without 
ompiled tries,in millise
onds, but when using the GT-T (
olumn GT-T/YapTab) or the GT-ST (
olumnGT-ST/YapTab) designs. For this table, we only show the ratios over YapTab's originaltable design using the results presented in Table 6.3.Noti
e, that the results obtained for the �rst GT design, the GT-CA, are not shown here,sin
e this design is no longer supported and the 
hanges made at YapTab's latest versiondid not in
lude this design. Therefore, a fair 
omparison between all the GT designs is notpossible. For referen
e, in Appendix A, we show the results obtained and published in [33℄for a preliminary version of the GT-CA design.The results in Table 6.4 suggest that both GT designs are a very good approa
h to redu
ememory usage and that this redu
tion in
reases proportionally to the length and redundan
yof the terms stored in the global trie. In parti
ular, for fun
tor and list terms, the resultsshow an in
reasing and very signi�
ant redu
tion on memory usage, for both GT-T andGT-ST approa
hes. The results for the spe
ial 
ases of integer and atoms terms are also veryinteresting as they show that the 
ost of representing only atomi
 terms in the respe
tivetries. Note that, although, integers and atoms terms are only represented in the respe
tivetries, it is ne
essary to 
he
k for these type of term, in order to pro
eed with the respe
tivestore/load algorithm.



6.2 Global Trie 69Terms YapTabMemory Store Load Comp1000 ints 191 1,270 345 3441000 atoms 191 1,423 343 4061000 f/1 191 1,680 542 3611000 f/2 382 2,295 657 4501000 f/4 764 3,843 973 6311000 f/6 1,146 5,181 1,514 7981000 [ ℄/1 382 2,215 507 4661000 [ ℄/2 764 3,832 818 6041000 [ ℄/4 1,528 6,566 1,841 1,066Table 6.3: Table memory usage (in MBytes) and store/load times (in millise
onds) for thetest/0 predi
ate using YapTab's original table design.Terms GT-T/YapTab GT-ST/YapTabMemory Store Load Comp Memory Store Load Comp1000 ints 1.00 1.05 1.00 1.00 1.00 1.09 1.11 1.071000 atoms 1.00 1.04 1.01 1.02 1.00 1.04 1.03 1.081000 f/1 1.00 1.32 1.16 2.10 1.00 1.34 1.17 2.131000 f/2 0.50 1.10 1.14 1.84 0.50 1.06 1.11 1.881000 f/4 0.25 0.81 0.98 1.44 0.25 0.78 1.04 1.531000 f/6 0.17 0.72 0.72 1.38 0.17 0.66 0.71 1.361000 [ ℄/1 0.50 1.08 1.05 1.61 0.50 1.10 1.02 1.581000 [ ℄/2 0.25 0.80 0.94 1.38 0.25 1.00 1.05 1.481000 [ ℄/4 0.13 0.63 0.54 0.96 0.13 0.89 0.66 1.14Average 0.53 0.95 0.95 1.42 0.53 0.99 0.99 1.47Table 6.4: Table memory usage (in MBytes) and store/load times (in millise
onds) for thetest/0 predi
ate using YapTab with support for the 
ommon global trie data stru
ture.Regarding running time the results suggest that, in general, GT-ST, spends more time in thestore and load term pro
edures. Su
h behaviour 
an be easily explained by the fa
t that, theGT-ST's storing and loading algorithms have more sub-
ases to pro
ess in order to supportsubterms. These results also seem to indi
ate that memory redu
tion for small sized terms,generally 
omes at a pri
e in storing time (between 4% and 32% more for GT-T and between4% and 34% more for GT-ST in these experiments). The opposite o

urs in the tests whereterm's length are higher (between 19% and 37% less for GT-T and 11% and 34% less forGT-ST). Note that with GT-T and GT-ST support, we pay the 
ost of navigating in twotries when 
he
king/storing/loading a term. Moreover, in some situations, the 
ost of storinga new term in an empty/small trie 
an be less than the 
ost of navigating in the global trie,even when the term is already stored in the global trie. However, our results seem to suggest



70 Experimental Resultsthat this 
ost de
reases proportionally to the length and redundan
y of the terms stored inthe global trie. In parti
ular, for fun
tor and list terms and fun
tor terms, GT-T and GT-STsupport showed to outperform the original YapTab design and, in parti
ular, the redu
tionseems to de
rease also proportionally to the length of the terms stored in the global trie.The results obtained for loading terms also show some gains without 
ompiled tries (around5% for GT-T and 1% for GT-ST on average) but, when using 
ompiled tries the resultsshow some signi�
ant 
osts on running time (around 42% for GT-T and 47% for GT-STon average). We believe that this 
ost is smaller for GT-T as a result of having less sub-
ases in the storing/loading algorithms. On the other hand, we also believe that some 
a
hebehaviour e�e
ts, redu
e the 
osts on running times, for both GT designs. As we need tonavigate in the global trie for ea
h substitution term, we kept a

essing the same global trienodes, thus redu
ing eventual 
a
he misses. This seems to be the reason why for list termsof length 4, GT-T 
learly outperforms the original YapTab design, both without and with
ompiled tries. Note that, for this parti
ular 
ase, the GT-T support only 
onsumes 13% ofthe memory used in the original YapTab.Next, we tested our approa
h with two well-known Indu
tive Logi
 Programming (ILP) [34℄ben
hmarks: the 
ar
inogenesis (Car
) and the mutagenesis (Muta) data sets. We usedthese data sets in a Prolog program that simulates the test phase of an ILP system. Forthat, �rst we ran the April ILP system [35℄ for the two data sets, ea
h with two di�erent
on�gurations, in order to 
olle
t the set of 
lauses generated for ea
h 
on�guration. Thesimulator program then uses the 
orresponding set of generated 
lauses to run the positiveand negative examples de�ned for ea
h data set against them. To evaluate 
lauses, we usedtwo di�erent strategies: Pred denotes the tabling of individual predi
ates and Conj denotesthe tabling of literal 
onjun
tions (as des
ribed in [36℄). By tabling 
onjun
tions, we onlyneed to 
ompute them on
e. The strategy is then re
ursively applied as the ILP systemgenerates more spe
i�
 
lauses, but this 
an in
rease the table memory usage arbitrarily.Tables 6.6 and 6.5 show the table memory usage (
olumns Memory), in MBytes, andthe running times, in se
onds, to store (
olumns Store) the tables (�rst exe
ution) andto load from the tables (se
ond exe
ution) the 
omplete set of subgoals/answers without(
olumns Load) and with (
olumns Comp) 
ompiled tries for YapTab using the originaltable organization (
olumn YapTab), using the GT-T approa
h (
olumn GT-T/YapTab)and using the GT-ST design (
olumn GT-ST/YapTab). Again, for the GT-T and GT-STapproa
hes we only show the memory and running time ratios over YapTab's original tableorganization.In general, the results in Table 6.6 
on�rm the results obtained in Table 6.4 for memory usagewith both GT-T and GT-ST designs showing equivalent memory usage ratios. In parti
ular,for the Pred strategy, memory usage showed to be, on average, 2% less for the GT-ST



6.2 Global Trie 71Data Sets YapTabMemory Store Load CompPredCar
_v1 1,669.0 68,524 72,088 84,658Car
_v2 2.1 50,151 54,391 68,832Muta_v1 0.6 96,578 5,072 5,456Muta_v2 0.6 95,181 2,109 2,604ConjCar
_v1 18.5 652 588 536Car
_v2 a.m. a.m. a.m. a.m.Muta_v1 84.8 102,214 6,792 7,309Muta_v2 675.6 95,846 1,724 2,152Table 6.5: Table memory usage (in MBytes) and store/load times (in se
onds) for the ICLPben
hmarks using YapTab's original table design.Data Sets GT-T/YapTab GT-ST/YapTabMemory Store Load Comp Memory Store Load CompPredCar
_v1 0.62 1.15 1.13 1.12 0.60 1.07 1.02 0.97Car
_v2 0.53 1.00 1.06 1.02 0.53 1.04 1.16 1.09Muta_v1 0.62 1.09 1.07 1.04 0.60 1.06 1.08 1.06Muta_v2 0.62 0.99 1.05 1.01 0.60 1.00 1.29 1.29Average 0.59 1.09 1.08 1.06 0.57 1.11 1.18 1.18ConjCar
_v1 0.39 0.97 0.97 1.00 0.39 1.04 1.10Car
_v2 - - - - - - - -Muta_v1 0.53 1.00 1.06 1.02 0.53 1.04 1.16 1.09Muta_v2 0.16 1.07 0.86 0.57 0.16 1.04 0.95 0.71Average 0.36 1.01 0.96 0.86 0.36 1.05 1.05 0.96Table 6.6: Table memory usage (in MBytes) and store/load times (in se
onds) for the ILPben
hmarks using YapTab with the support for the 
ommon global trie data stru
ture.design than GT-T. Sin
e the Pred strategy tables individual predi
ates, the existen
e of
omplex 
ompound terms redu
es the memory spend when using GT-ST, although, thesegains are residual. For the Conj strategy, both designs outperform the YapTab standardtable organization. This happens be
ause after a 
ertain time, the Conj strategy will nottable new terms, but only answers that are 
ombinations of previous terms, therefore makingthe GT approa
h more feasible as it 
an share the representation of 
ommon terms appearingat di�erent argument or substitution positions.Regarding running time, the results in Table 6.6 also 
on�rm and reinfor
e the results



72 Experimental Resultsobtained in Table 6.4. GT-T support outperforms the GT-ST design for storing and loadingtimes and, for some 
on�gurations, it also outperforms the original YapTab design. This isthe 
ase for 
on�gurations either with or without 
ompiled tries.Finally, in Table 6.7, we present a new set of tests spe
ially designed to provide moreexpressive results regarding the 
omparison between the GT-ST and the GT-T designs. Inthis tests, we have de�ned a tabled predi
ate t/1 that simply stores in the table spa
e termsde�ned by term/1 fa
ts and then we used a test/0 predi
ate to 
all t/1 with a free variable.We experimented test/0 predi
ate with 9 di�erent sets of 500,000 term fa
ts of 
ompoundterms (with arity 1, 2, 3) where its arguments were also 
ompound subterms (with arity 1,3, 5). An example of su
h 
ode for a 
ompound term f with arity 2 
ontaining argumentssubterms with arity 3 (500,000 terms in total) is shown next.:- table t/1.t(A) :- term(A).test :- t(A), fail.test.term(f(g(1,1,1), g(1,1,1))).term(f(g(2,2,2), g(2,2,2))).term(f(g(3,3,3), g(3,3,3)))....term(f(g(499998,499998,499998), g(499998,499998,499998))).term(f(g(499999,499999,499999), g(499999,499999,499999))).term(f(g(500000,500000,500000), g(500000,500000,500000))).Opposed to the previous experiments, here we just used one free variable for the tabledpredi
ate t/1. This di�eren
e is ne
essary, be
ause when we have more than one free variableand, we produ
e di�erent 
ombinations between those free variables, we are raising thenumber of nodes represented in the lo
al tries. More pre
isely, di�erent 
ombinations of freevariables raises the number of answers and therefore the number of nodes in the lo
al answertries. Moreover, sin
e these experiments serve the purpose to show the di�eren
es betweenthe GT-T and GT-ST at memory level, we did not in
lude the YapTab original table designin these experiments.Table 6.7 shows the table memory usage (
olumns Tab.Memory) 
omposed by two
olumns one for total memory (
olumns Total) and the other for GT's memory (
olumnsGT ), in MBytes, and the running times, in millise
onds, to store (
olumns Store) thetables (�rst exe
ution) and to load from the tables (se
ond exe
ution) the 
omplete set ofsubgoals/answers without (
olumns Load) and with (
olumns Comp) 
ompiled tries usingthe GT-T table design (
olumn GT-T ), and using the GT-ST design (
olumn GT-ST/GT-T ). For the values referring the GT-ST we only show the memory and running times ratiosover the GT-T design. The running times are the average of �ve runs.Table 6.7 suggests that the GT-ST outperforms the GT-T design in some spe
ial 
ases, the



6.2 Global Trie 73500,000 GT-T GT-ST/GT-TTerms Tab.Memory Tab.MemoryTotal GT Store Load Comp Total GT Store Load Compf/1g/1 17.17 7.63 126 28 51 1.44 2.00 1.55 1.14 1.00g/3 32.43 22.89 198 34 61 1.24 1.33 3.29 1.12 1.25g/5 47.68 38.15 293 47 83 1.16 1.2 1.46 1.00 0.99f/2g/1 32.43 22.89 203 38 71 1.00 1.00 1.28 1.13 1.09g/3 62.94 53.41 45 60 103 0.76 0.71 1.18 0.84 0.95g/5 93.46 83.92 438 111 146 0.67 0.64 1.10 0.67 0.8f/3g/1 47.68 38.15 296 50 89 0.84 0.80 2.87 1.02 1.03g/3 93.46 83.92 616 142 164 0.59 0.55 1.25 0.8 0.85g/5 139.24 129.7 832 197 224 0.51 0.47 0.96 0.67 0.74Average 0.96 0.97 0.93 0.97 0.91Table 6.7: Table memory usage (in MBytes) and store/load times (in se
onds) for subtermrepresentation using YapTab with support for the 
ommon global trie data stru
ture.results show three di�erent situations, that 
an be distinguished by the arity of the fun
torterm f . For f/1 terms, it 
learly shows that the 
osts are higher for GT-ST, sin
e it needs tostore one extra node for every distin
t subterm representation and there is no redundan
y inthe subterms. We 
an also see that the memory 
ost seems to be redu
ed when the subterm'sarity in
reases from g/1 to g/5. This o

urs be
ause the 
ost of the extra node for ea
hsubterm is diluted in the number of nodes represented in the GT.The results on table 6.7 also show that, in some 
ases, the storing pro
ess 
an be a veryexpensive pro
edure. Remember that with the GT-ST support, we pay the 
ost of re
reatingthe lo
al tries/global trie intera
tions when 
he
king/storing/loading a term inside the GT.A parti
ular situation o

urs for the 
ase of f/2 with subterms g/1 where the memoryspend is the same for both designs. This happens be
ause the extra node used by GT-ST, torepresent the referen
e to the subterm representation, is balan
ed by the arity of the fun
torterm f . From this point on, the GT-ST always outperforms the GT-T, not only for thesystem's memory, but also for the running times with and without 
ompiled tries. Theseresults suggest that, at least for some 
lass of appli
ations, GT-ST support has potential toa
hieve signi�
ant redu
tions on memory usage without 
ompromising running time.
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Chapter 7
Con
lusions and Further Work
In this �nal 
hapter, we summarize the a
hievements of the work presented in this thesis,providing our 
on
lusions and some dire
tions for further work.We have presented a new and more 
ompa
t representation of list terms for tabled data thatavoids the re
ursive nature of the WAM representation by removing unne
essary intermediatepair tokens. Our presentation followed the di�erent approa
hes that we have 
onsidered untilrea
hing our 
urrent �nal design. We fo
used our dis
ussion on a 
on
rete implementation,the YapTab system, but our proposals 
an be easy generalized and applied to other tablingsystems. Our experimental results are quite interesting, they 
learly show that with 
ompa
tlists, it is possible not only to redu
e the memory usage overhead, but also the running timeof the exe
ution for storing and loading list terms, both with and without 
ompiled tries.We also have presented three new designs for the table spa
e organization, that have the
ommon feature of representing all tabled subgoals and tabled answers only on
e in a 
ommonglobal trie instead of being spread over several di�erent trie data stru
tures. The goal ofthe GT designs starts by redu
ing to a minimum the nodes present in the subgoal andanswer tries by moving the respe
tive representation to the GT. Continues in the redu
tionof the redundan
y in term representation by maximizing the sharing of tabled data that isstru
turally equal. And ends in the redu
tion of the redundan
y of subterm representationin 
ompound terms also maximizing the sharing of tabled data. Our experiments using theYapTab tabling system showed that our approa
hes have potential to a
hieve signi�
antredu
tions on memory usage without 
ompromising running time.Further work will in
lude, for the list term representation, exploring the impa
t of ourproposal in real-world appli
ations, su
h as, the works on Indu
tive Logi
 Programming andProbabilisti
 Logi
 Learning with the ProbLog language [37℄, that heavily uses list terms torepresent, respe
tively, hypotheses and proofs in trie data stru
tures. For the GT designs,further work in
lude, exploring the impa
t of applying our proposal to other real-world75



76 Con
lusions and Further Workappli
ations, that pose many subgoal queries, possibly with a large number of redundantanswers, seeking real-world experimental results allowing us to improve and expand the
urrent implementations.



Appendix A
Experimental Results for GT-CA
This appendix 
ontains the results for the tabled predi
ate t/5 and the ILP ben
hmark testsused in Chapter 6, obtained and published in [33℄ for a preliminary implementation of theGT-CA design. The environment for these experiments was an Intel(R) Core(TM)2 Quad2.66GHz with 2 GBytes of main memory and running the Linux kernel 2.6.24.23 with YapTab5.1.4.

Terms YapTab GT-CA/YapTab GT-T/YapTabMem Str Load Cmp Mem Str Load Cmp Mem Str Load Cmp1000 ints 191 1009 358 207 1.08 1.56 1.30 n.a. 1.00 1.32 1.18 1.691000 atoms 191 1040 337 231 1.08 1.54 1.41 n.a. 1.00 1.26 1.24 1.541000 f/1 191 1474 548 239 1.08 1.35 1.33 n.a. 1.00 1.28 1.11 1.881000 f/2 382 1840 632 353 0.58 1.25 1.37 n.a. 0.50 1.11 1.18 1.581000 f/4 764 2581 786 631 0.33 1.21 1.35 n.a. 0.25 1.07 1.16 1.141000 f/6 1146 3379 1032 765 0.25 1.12 1.29 n.a. 0.17 1.01 1.05 1.081000 [ ℄/1 382 1727 466 365 0.58 1.32 1.44 n.a. 0.50 1.17 1.21 1.291000 [ ℄/2 764 2663 648 459 0.33 1.06 1.55 n.a. 0.25 0.93 1.20 1.481000 [ ℄/4 1528 4461 1064 720 0.20 1.10 1.57 n.a. 0.13 0.81 1.01 1.281000 [ ℄/6 2293 6439 2386 1636 0.16 1.02 1.05 n.a. 0.08 0.71 0.58 0.68Average 0.57 1.25 1.37 n.a. 0.49 1.07 1.09 1.36Table A.1: Table memory usage (in MBytes) and store/load times (in millise
onds) for thetest/0 predi
ate using YapTab with and without support for the 
ommon global trie datastru
ture.
77



78 Experimental Results for GT-CAData Sets YapTab GT-CA/YapTab GT-T/YapTabMem Str Load Cmp Mem Str Load Cmp Mem Str Load CmpPredCar
_P1 1.6 70.72 71.26 72.95 0.82 1.35 1.34 n.a. 0.62 1.07 1.05 1.03Car
_P2 2.1 51.19 50.44 55.97 0.87 1.42 1.44 n.a. 0.51 1.23 1.30 1.22Muta_P1 0.6 98.93 5.57 5.86 0.73 1.20 1.19 n.a. 0.63 0.91 1.00 0.94Muta_P2 0.6 93.01 2.01 2.40 0.73 1.26 1.47 n.a. 0.63 0.96 1.22 1.10Average 0.79 1.31 1.36 n.a. 0.60 1.04 1.14 1.07ConjCar
_C1 18.5 0.56 0.51 0.48 0.53 1.57 1.63 n.a. 0.39 1.20 1.22 1.08Car
_C2 2802.8 93.85 70.16 36.44 0.50 1.50 1.50 n.a. 0.14 1.11 1.09 0.82Muta_C1 84.7 97.02 7.36 6.14 0.66 1.30 1.65 n.a. 0.53 0.99 1.22 1.35Muta_C2 675.6 92.76 1.36 1.53 0.16 1.25 1.42 n.a. 0.16 0.98 1.10 0.78Average 0.46 1.41 1.55 n.a. 0.31 1.07 1.16 1.01Table A.2: Table memory usage (in MBytes) and store/load times (in se
onds) for theICLP ben
hmarks using YapTab with and without support for the 
ommon global trie datastru
ture.
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