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Abstract

Programming languages are an unique method to communicate with machines. Declarative
languages, such as logic programming languages, provide features like a high-level and
declarative syntax, simplifying the communication between man-and-machine. Arguably,
Prolog is the most famous and used logic programming language. Prolog uses SLD resolution
in order to provide good performance in the computation of complex real world problems.
Although SLD resolution proved to be very effective, in some cases, this procedure show

some restrictions when dealing with infinite loops and redundant sub-computations.

One of the most successful techniques proposed to overcome SLD’s susceptibility, is tabling.
The tabling mechanism consists in storing the subgoals and the respective answers of a
program in a table space in such a way that, in later stages of a program’s evaluation, repeated
subgoal calls use the answers stored in the tables, avoiding the subgoal re-evaluation. Tabling
success largely depends on the implementation of the table space, its data structures and
algorithms. Arguably, the most successful data structure for tabling is tries. Nevertheless,
when tabling is used in applications that have large quantities of data, it can lead to overgrown

tables and quickly fill up the system’s memory.

With this research, we try to provide alternative designs and structures, not only to the
table space organization but also to the tabled data representation. We do so, by proposing
a new design for the table space organization where all terms in tabled subgoal calls and
tabled answers are represented only once in a common global trie instead of being spread
over several different trie data structures, suggesting three different approaches. At tabled
data representation, we propose a new representation of list terms for tries that avoids the

recursive nature of the WAM representation of list terms in which tries are based.

The results obtained in our experiments when using the YapTab tabling system, show
significant reductions on memory usage, without compromising running time. Memory usage
is reduced when using any of the three different global trie designs and also in the new
representation of list terms, providing the necessary data to make it clear that our proposals
can provide more compact and efficient representations of the table space, when applying

tabling mechanisms to Prolog.






Resumo

As linguagens de programagcao sdo um modo tnico de se comunicar com méaquinas. Em
particular, as linguagens declarativas, como sao as linguagens de programacgao em ldgica,
oferecem uma sintaxe declarativa de alto nivel, facilitando assim a comunicacao entre
homem e méaquina. Indiscutivelmente, o Prolog é a linguagem de programacao em logica
mais famosa e amplamente utilizada, usando a resolugdo SLD para proporcionar um bom
desempenho no calculo de problemas complexos do mundo real. Apesar da resolucao SLD se
ter mostrado muito eficaz, em alguns casos, este procedimento demonstrou algumas restrigoes,

em particular quando se lida com ciclos infinitos e sub-computagoes redundantes.

Uma das técnicas propostas para superar as susceptibilidades da resolucao SLD, ¢ a
tabulagao. O mecanismo de tabulagdo consiste em guardar os subgolos de um programa
e as respectivas solugoes num espaco de tabelas de modo a que, durante a avaliacao de um
programa, quando acontece uma chamada repetida a um subgolo, sdo utilizadas as solugoes
j& tabeladas, evitando assim que o subgolo seja reavaliado. O sucesso da tabulacao depende
em grande medida da implementacao do espaco de tabelas, das suas estruturas de dados e
algoritmos. Possivelmente, a mais bem sucedida estrutura de dados para a tabulagao sao
as tries. No entanto, quando esta técnica é utilizada para tabelar solucdes em aplicagoes
com grande quantidade de dados, pode acontecer um crescimento desmesurado das tabelas,

saturando rapidamente a memoéria do sistema.

Neste trabalho, apresentamos novas estruturas de dados alternativas, nao s6 relacionadas
com a organizacao do espago de tabelas, mas também com a representacao dos dados nelas
representados. Fazémo-lo, propondo um novo modelo para a organizagdo do espago de
tabelas onde todos os subgolos tabelados e respectivas respostas sao representados apenas
uma vez numa trie global, em vez de serem distribuidos por varias tries diferentes, e para isso,
sugerimos trés abordagens distintas. Na representagdo dos dados tabelados, propomos uma
nova representacao dos termos lista nas ¢ries, evitando a natureza recursiva da representacao

WAM para termos lista em que estas se baseiam.

Os resultados obtidos utilizando o sistema de tabulagao YapTab, mostram uma reducao

significativa na utilizacao de memoria, sem comprometer o tempo de execucao. O uso de



memoria é reduzido, quer seja ao utilizar qualquer uma das trés abordagens com recurso a
uma trie global, quer seja na utilizacao da nova representacao dos termos lista, sugerindo que
as nossas propostas conseguem uma representagao mais compacta e eficiente do espago de

tabelas na utilizacao do mecanismo de tabulagao em Prolog.
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Chapter 1

Introduction

Logic programming languages, provide a high-level approach to programming. Noticeable,
Prolog is the most used logic programming language. In fact, Prolog has proved to be very
effective in application areas such as Artificial Intelligence, Natural Language Processing and
Database Management to site just a few. Most of Prolog’s success is in part due to David
H. D. Warren’s work, on the implementation of the WAM compiler to Prolog [1], providing

a very efficient abstract machine for the implementation of Prolog systems [2].

Logic programming languages, such as Prolog, are based on Horn Clauses [3|, a subset
of first order logic. In fact, logic programs consist of a set of clauses, that provide the
ground knowledge of programs. The execution of logic programs is reduced to query symbols
manipulation until a refutation is found. This refutation, in Prolog, is provided by the SLD
resolution [4] and done over Horn clauses for programs execution basis. Although, its proved
power and declarativeness, SLD resolution can suffer from some limitations when dealing
with infinite loops and redundant sub-computations. A proposal to solve those limitations
is tabling [5, 6] which proved its viability due to the XSB Prolog system’s work in the
implementation of the SLG-WAM engine [7]. As a result, several different implementations of
tabling mechanisms were developed and implemented in different Prolog systems. Examples
of the variety of implementations of tabling are available in systems like Yap Prolog, B-Prolog,

ALS-Prolog, Mercury and Ciao Prolog.

In a nutshell, tabling consists in storing intermediate answers for subgoals so that they can
be reused whenever a repeated call appears. The performance of tabled evaluation largely
depends on the implementation of the table space. In order to obtain an efficient response
to systematic calls, fast lookup and insertion capabilities are mandatory. Applications can
make millions of different calls, hence compactness is also required. Arguably, the most
successful data structure for tabling is #ries [8]. Tries are trees in which common prefixes are

represented only once. The trie data structure provides complete discrimination for terms

13



14 Introduction

and permits lookup and possibly insertion to be performed in a single pass through a term,
hence resulting in a very efficient and compact data structure for term representation. When
used in applications that pose many queries, possibly with a large number of answers, tabling
can build arbitrarily many and/or very large tables, quickly filling up memory. A possible
solution for this problem is to dynamically abolish some of the tables. This can be done
using explicit tabling primitives or using a memory management strategy that automatically
recovers space among the least recently used tables when memory runs out [9]. An alternative
approach is to store tables externally in a relational database management system and then
reload them back only when necessary [10]. A complementary approach to the previous
problem is to study how less redundant, more compact and more efficient data structures
can be used to better represent the table space. While tries are efficient for variant based
tabled evaluation, they are limited in their ability to recognize and represent repeated answers

for different calls. The development of our work takes in consideration this last approach.

When representing terms in the trie, most tabling engines, like XSB Prolog, Yap Prolog and
others, try to mimic the WAM [11] representation of these terms in the Prolog stacks in
order to avoid unnecessary transformations when storing/loading these terms to/from the
trie. Despite this idea seems straightforward for almost all type of terms, we found that this
is not the case for list terms (also known as pair terms) and that, for list terms, we can design
even more compact and efficient representations. In Prolog, a non-empty list term is formed
by two sub-terms, the head of the list, which can be any Prolog term, and the tail of the
list, which can be either a non-empty list (formed itself by a head and a tail) or the empty
list. WAM based implementations explore this recursive nature of list terms to design a very
simple representation at the engine level that allows for very robust implementations of key
features of the WAM, like the unification algorithm, when manipulating list terms. However,
when representing terms in the trie, the recursive nature of the WAM representation of list
terms is negligible as we are most interested in having a compact representation with fast

lookup and insertion capabilities.

1.1 Thesis Purpose

In this thesis, we present new proposals to the table space data structures and organization
in order to improve the compactness and efficiency of tabled logic programs. We propose
modifications, in a more comprehensive plan, to the table space representation and, in a

amplified plan, to the structure of list terms representation.

Regarding the table space representation, we propose a new design and we, introduce three
different approaches that are based in the usage of a common global trie. In all these

three approaches, the representation of all tabled subgoal calls and/or answers is stored
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in a common global trie instead of being spread over several different trie data structures.
Our approaches resemble the hash-consing technique [12], as they try to share data that
is structurally equal. An obvious goal is to save memory usage by reducing redundancy in
the representation of tabled calls/answers to a minimum. Our first approach consists on
storing subgoal call and answers in the global trie, thus reducing the number of nodes used
in the subgoal and answer tries, and providing the possibility of reusing calls and answers
already represented in the global trie. The second design maintains the use of a global trie,
but only individual terms are represented in it. This increases the number of nodes in the
original subgoal and answer tries but, on the other hand, also increases the reuse of the terms
represented in the global trie. In the last approach, we once more use a global trie to store
only terms, but as an alternative design we also try to maximize the reuse of individual terms
present in the table space, by representing subterms (compound term’s arguments) as unique

entries in the global trie.

We also propose a new representation of list terms for tabled data that avoids the recursive
nature of the WAM representation of list terms. In our new proposal, a list term is simply
represented as an ordered sequence of the term elements in the list, i.e., we only represent
the head terms in the sub-lists and avoid representing the sub-lists’ tails themselves. Our
experimental results show a significant reduction in the memory usage for the trie data
structures and considerable gains in the running time for storing and loading list terms with

and without compiled tries [13].

To implement these proposals, we will focus our work on a concrete implementation, the
YapTab system [14, 15], but our proposals can be easy generalized and applied to other
tabling systems.

1.2 Thesis Outline

The thesis is structured in seven chapters that can be seen as the representation of the

different stages of our work. We provide next, a brief description of each chapter.

Chapter 1: Introduction. Is this chapter.

Chapter 2: Logic Programming and Tabling. Provides a brief overview of Logic
Programming and the Tabling technique. Throughout, we discuss logic programming
languages and abstract machines, focusing in Prolog and in the WAM, and also the

mechanisms associated with the tabling technique, namely tabled evaluation and tries.

Chapter 3: List Terms Representation. First, it makes an introduction to
YapTab’s design for the representation of list terms and then, it presents our new

and alternative design for list term representation, which the main goal is to optimize
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YapTab’s memory usage in order to reduce possible drawbacks of the standard

mechanism.

Chapter 4: Global Trie. Presents the Global Trie (GT) design, specifying the three
developed approaches to an alternative table space representation. The GT table space
design emerges with the intent to surpass some of the disadvantages shown by YapTab
standard table space design when dealing with redundant data, namely by storing terms
in the same trie, thus preventing repeated representations of a term in different trie

data structures.

Chapter 5: Implementation. In this chapter, we focus on the implementation
details for the alternative table designs by describing the GT data structures and
algorithms in more detail. Throughout, we also describe how tries are structured,
specifying the main features of trie nodes, and present the main procedures which

interact with tries, preforming comparisons with YapTab’s original table design.

Chapter 6: Experimental Results. Presents experimental results comparing the
new table space against the YapTab standard representation and discusses the obtained

results.

Chapter 7: Conclusions and Further Work. Summarizes the work presented in
the previous chapters, the reasons for the obtained results, and provides some guidelines

for further work.



Chapter 2

Logic Programming and Tabling

This chapter provides a brief overview of the research areas comprehended in this thesis.
We introduce the path from the general ideas of Logic Programming to the specifics of
the Tabling technique. Throughout, we discuss logic programming languages and abstract
machines, focusing in Prolog and in the WAM, and also the mechanisms associated with the

tabling technique, namely tabled evaluation and tries.

2.1 Logic Programming

Programming languages are essential in making the communication between man-and-
machine possible. The evolution of programming languages led to human-inspired languages,
with syntaxes that appear more comprehensible and comparable to human writing. This
particular kind of programming languages are called high-level. The declarative languages
are a wide class of programming languages with the unique features of having a high-
level language syntax. This class of languages are more concerned with the aspects of the
problem that needs to be solved, instead of the actual method to solve it. Included in the
declarative programming languages class, one has also logic and the functional languages.
While the latter are based on A-calculus, the former are completely different, relying on a
subset of first-order logic and its procedural interpretation. Never the less by being based
on formalisation of human thought, logic programming languages are arguably the more

effective and straightforward way to allow programmers to easily express their reasoning.

Logic programming languages are based on a well known subset of first order logic, namely
the Horn Clause [3]. Horn clauses contain a basic rule: at most one disjunct in the conclusion
is required, meaning that at most one positive literal is needed. With this basic rule a Horn

clause can be defined in three different forms:

17



18 Logic Programming and Tabling

e Rule, a clause that contains a positive literal and one or more negated literals. The

most common form of a rule is
—qV ..V rV-oasVi
and can also be written as,
t—qgN..ANTN\s

e Fact, when there are no negations and the clause is composed only with the positive

literal, we have
t—
e Goal, occurs when there is no positive literal

—gN...ANTAS

Logic programming languages show a syntactic equivalency to Horn clauses with minor

changes. In logic programs the equivalent to a rule of the form
B— AN NA,_1NA,
is (in the Prolog syntax) given by
B: —Al, ceey Anfl, An
Additionally, one also finds other examples for Horn clauses, such as a fact
B.
and a goal
: —Al, ceey Anfl, An
In this syntax, B is the head of the clause and A; to A, are the body. Fach B defines or
is part of a predicate. Predicates exhibit the following form p(¢y, ..., t,), where the ¢’s can
be terms, and each term may have different representations. A simple term includes atoms
or variables, while compound terms are specifically functors or lists. A functor is defined as

f(t1, ..., t,), where f is the name of the functor and each ¢ represents different terms. A list

is represented as [t1, ..., t,], differing from functors by having no name associated.
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In fact, logic programs are a set of clauses that form the ground knowledge of programs.
To get results from logic programs, queries are executed against the program clauses, with
the intent of unifying or (simply) verifying equality, on every term (variable or atom) with
a possible match. The execution of a query over a program translates into a procedure of
query symbols manipulation until a refutation is found. The refutation procedure used by
Prolog was first mentioned by Kowalski [3| and later on named by Kowalski and Van Emden
as Selective Linear Definite resolution (SLD resolution) [4]. Furthermore, a consolidation of
the work was presented by Robinson [16], where a variant of the general refutation procedure
was only used on definite clauses. A brief demonstration of the SLD resolution procedure is

presented next.

Let us consider a query (goal), as a conjunction of subgoals, of the form
: —Al, veey Anfl, An

which we want to match against our program. First, and according to a selectjerq; rule, a

subgoal is selected for the initial unification with the program clauses.

Supposing that the subgoal chosen was A;, the second step is to search the program for
a clause that matches A;. If program contains clauses in such conditions, the procedure

continues by selecting the clause that will unify with A;, according to a select jqyuse rule.

Assuming that the selected clause to unify with A; has the form
A: —Bl, ceny Bm

and that substitution 6 represents the unification of both selected subgoal and clause, i.e.,
all the variables from the subgoal are bound with the variables from the selected clause. As

a result our query became
L (Al, ceey Ai—h Bl, ceey Bm, Ai+1, ceey An)a

This procedure is repeated until a refutation is obtained. It is possible to obtain a successful
SLD resolution when all subgoals are found to be true. The preformed substitutions will be
a (or the only) possible answer to our query. On the contrary, if the procedure fails, implying
an impossible unification between the query and the selected clause, the SLD resolution fails
and no refutation of the query is possible. In this case, Prolog uses a backtracking mechanism
to explore other possible unifications by, simply undoing the computations performed and
selecting a different unification clause to our selected literal A;. The specification of this
procedure emphasizes the crucial role of the select jquse and selectyjzerq rules. The application

of different selection rules can lead to distinct solutions or otherwise solutions are presented
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in a different order. Therefore, the specification of the selection rules is needed for real

implementations. In the next section we describe Prolog’s approach.

2.1.1 Prolog

Noticeable, Prolog is the most famous and used logic programming language. In 1972,
Allain Colmerauer and Philippe Roussel began to develop a software tool to implement a
man-machine system that would use natural language to communicate. The name Prolog
was chosen as an abbreviation for "PROgrammation en LOGique" as a result of, language

processing and automated theorem-proving mixing [17].

From Robinson’s breakthrough presented in the Resolution Principle [16], Colmerauer and
co-workers proceed their work by defining the semantics and the procedural method used by
Prolog. In 1973, the demonstration of resolution and unification in Horn clauses [4] open
new pathways to the definition of the fixed point semantics of Horn clause programming
thus providing the necessary basis to prove that Prolog could be read, both procedurally and
logically.

Being Prolog procedural semantics based on SLD resolution, the definition of the select jqyse
and selectyterqr rules was therefore necessary in order to possibilitate its implementation.
In Prolog, the select jquse Tule follows the clauses order defined in the program code and
the selectjjjerqr Tule chooses the leftmost subgoal in the query. In fact the first version of
Prolog was a kind of automated deductive system, allowing development of a communication
system in french. Additionally two other applications were also possible, such as a symbolic
computation system and a general problem-solving system called Sugiton. The Second
version of Prolog was more oriented towards actual programming language with the creation
of the syntax, basic primitives and also the interpreter’s computing method. The growth of
Prolog as a programming language was aided by David H. D. Warren with his implementation
of the first Prolog compiler in 1977 [18]. This development increased Prolog popularity
offering the possibility of its syntax (de facto Prolog) to became a standard. In 1983, a
new abstract machine was presented [1], able to execute compiled Prolog code, the Warren’s
Abstract Machine (WAM). Nowadays, the WAM is the most popular and efficient method

of implementing Prolog and is actually the base of almost all Prolog systems.

Logic programming has indeed become an important core of computer science when
Japan announced the Fifth Generation Project, with the intent to create a new Era for
computer hardware based on artificial intelligence. As a result, many different Prolog
models were created and literature for different levels of knowledge and audiences are
now available [19, 20, 21|. Furthermore, the advances achieved in the implementations of
Prolog and its compilation technology, brought the possibility to compare against imperative

programming languages such as C [2]. Also, the inherent parallelism that seems to be
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available in the logic programming paradigm became one of the ruling areas of interest

giving Prolog the major importance and consideration in the current days.

2.1.2 The Warren’s Abstract Machine

Some of Prolog’s success is in part due to the accomplishments obtain by David H. D. Warren
and his work on the efficient implementation of the WAM compiler to Prolog [1]. In fact,

most of the logic programming systems still rely on the achievements of WAM’s technology.

In a nutshell, the WAM consists basically, of a stack-based memory architecture allied to
an instruction set, with simple data structures. At any time, the computation state can be
obtained from WAM’s data structures, data areas and registers. Figure 2.1 illustrates the

composition of WAM’s data structures and respective organisation.

The WAM’s execution stack structure is composed by five different parts:

e Push Down List (PDL): also known as unification stack, is used for the unification

process;

e Trail: is organized as an array of addresses; used to store the address of (stack or heap)
variables which must be unbound upon backtracking. Because it works like a stack we

need to have a TR register that contains the reference to the top of the trail;

e Stack: also mentioned as the local stack is used to store the environment frames and

the choice point frames:

— Environments, store the information needed to continue execution after return-
ing from a successful intermediate call. An environment is pushed into the stack
whenever a clause contains more than one subgoal; an environment is popped out
when the last clause’s subgoal is executed. Each frame keeps the reference to the
previous environment, thus giving the possibility to get the correct environment
after the current one is popped out; and a set of cells, corresponding to the number
of permanent variables in the body of the invoked clause. A permanent variable
is a variable that appears in more than a subgoal in a clause’s body. A register E

is used to refer to the current active environment.

— Choice points: store the information about the state of the computation for a
procedure call, so that upon backtracking, the computation can be restored to
the point when the choice occurred. In order to do so, all the data necessary to
restore a computation is stored on a choice point. This includes the arguments of
the current subgoal call; the reference to the continuation environment; a pointer

to the next alternative clause; and pointers to the current values of the TR (¢rail)
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and H (heap) registers. A choice point is pushed onto the stack whenever there
is a point of choice and popped off when the last clause has no more alternatives.
In order to access the sequence of choice points, the register B markes the current

active choice point.

Memory Layout Environment Frame

/| continuation environment
/
PDL // continuation code
// 1st permanent variable
/ .
/
/ .
TR / last permanent variable
TRAIL / , _ _
/ / Choice Point Frame
// // / continuation environment
/
ﬁ // // // continuation code
/
E —> / : ice boi
- / previus choice point
enviroment 7y
// next clause
// trail point
B —» / heap pointer
choice point 1st goal argument
- .
N
STACK AN :
AN last goal argument
ﬁ Registers
H— TR Top of the Trail
HB —» HEAP E Current Environment
S —» B Current Choice Point
H Top of the Heap
ﬁ HB Heap Backtrack Pointer
S Structure Pointer
P CodeArea P Code Pointer
CP—s CP Continuation Code Pointer

Figure 2.1: WAM memory layout, frames and registers description.

Some WAM implementations use two different stacks to store this structures, namely
XSB [22] and SICStus Prolog [23]. As mentioned by H. Ait-Kaci [11], in such cases the
two different stacks are the OR-stack (for the choice points) and the AND-stack (for
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the environments).

e Heap: also referred as the global stack, is an array of data cells that is used to store
the internal representation of Prolog terms, such as variables, atoms, structures or list

terms. The register H contains the reference to the top of the heap.

e Code Area: an addressable array of data cells, consisting of op-codes followed by

operands used to store WAM instructions for the (already) compiled program code.

Other important features of the WAM are also shown in Fig. 2.1, such as the register HB,
that is used to contain the value of H, when a choice point is about to be created. All
bindings done over variables after creating a choice point are considered conditional bindings
meaning that they should be stored in the trail and therefore the value stored in HB is used
to make such decision in the proper way. Another register is S which is used to help in
the unification process by making reference to the point of the compound term where the
unification process is in. Other referenced register is P which is set to maintain the address
of the next instruction to execute in the Code Area (program counter). Finally, the register
CP is used to reference (in the code area) to the location of the next instruction in the goal

sequence, after successful return of a call.

The WAM structure and its components are handled by a simple set of instructions composed
by:

e Choice point instructions, responsible for all interactions with choice points such
as instructions to allocate/remove choice points and to recover the computation state

using the information stored in choice points;

e Control instructions which interact with environments (allocate/remove) and also

manage the call /return sequence of subgoals;

e Unification instructions, responsible for the implementation of specific versions of

the unification algorithm according to the position and type of the arguments;

e Indexing instructions, used to accelerate the process of selecting the clauses that
unify with a given subgoal call. The indexing procedure uses the first argument of a

call, to jump to specialized code that is responsible to select only the unifying clauses.

Although the WAM appears as a simple system with a few groups of instructions it is indeed
a very elaborated machine capable of executing all the complex mechanisms of Prolog. A
complete and detailed specification of the WAM can be found in [11].
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2.2 Tabling

Logic programming languages, like Prolog, use SLD resolution and Horn clauses for
execution basis but, despite their power and declarativeness, they can suffer from some
limitations. Those restrictions are the inability to deal with infinite loops and redundant
sub-computations. This compromise the usage of Prolog and similar programming languages
on important applications, such as Deductive Databases. Much work have been made to
overcome those limitations by implementing strategies that remember sub-computation and
its results, therefore avoiding re-computations and at the same time reusing the already
stored answers. These techniques are known by several names like memoizing, tabling or
tabulation [24].

Tabling [6] became a renowned technique thanks to the leading work in the XSB-Prolog
system and, in particular in the SLG-WAM engine [7]. As a result several implementations
of tabling mechanism were developed, having particular differences, namely in the execution
rules, in the data-structures used to implement tabling and also in the underlying changes
to the Prolog’s engine. Examples of those implementations are available in systems such as
YAP Prolog [25], B-Prolog [26] or ALS-Prolog [27]. The Tabling concept provides the basis
to a bottom-up evaluation approach that, together with its well-know advantages, enables

the combination with top-down evaluation, thus joining the better of both strategies.

2.2.1 Tabled Evaluation

The basic idea behind a tabled evaluation is, in fact, quite straightforward. The mechanism
basically consists in storing all the different subgoal calls and new answers founded when
evaluating a program in a proper data space called the table space. The subgoal calls stored
in this table space are then used to verify if a subgoal is being called for the first time or, on
the other hand, if it is a recall. Whenever such a repeated subgoal call occurs, the answers for
that subgoal (stored in the table space) are used instead of re-evaluating the subgoal against
the program clauses. Next we present a simple demonstration of a table evaluation that
emphasizes the tabling technique advantages. Consider the Prolog program shown in the top
of Fig. 2.2 representing a small directed graph. The predicate arc/2 represents the direct
connection between two different points and the path/2 predicate represents the possibility
of an indirect connection. Consider now the query goal path(1,Z). An direct application of
SLD evaluation to solve the given query leads to an infinite SLD tree, as shown in the bottom
of Fig. 2.2, due to the positive loop induced by the selection of the leftmost literal rule. On
the other hand, when resorting to tabling, the infinite search tree resulting from the positive
loop will not occur, and termination is ensured. The scheme presented in Fig. 2.3 shows the

evaluation sequence when using tabling (solving the same query in the same program).
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path(X, 2) :- path(X YY), path(Y,2Z2). )
path(X,Z) :- arc(X 2).
arc(1,2).
arc(2,3).
J
(" SLD eval uation )
( path(1,Y), path(Y,2) )
positive | oop
. J

Figure 2.2: An infinite SLD evaluation.

Figure 2.3 shows a small change on the Prolog code compared to the one presented in Fig. 2.2,
namely the declaration :- table path/2, indicating that the tabling procedure should be
applied to all the subgoal calls to path/2. Those subgoal calls can be seen in the top right
of Fig. 2.3 on the representation of the table space at the end of program’s evaluation. The
bottom of the figure shows the resulting trees created whenever a tabled subgoal call is made
for the first time (nodes 0, 5 and 11). The answers resulting from the evaluation of new trees
are store in the respective table entry, so those answers can be used when variant calls (such
as the nodes 1, 6 and 12) occur. When a variant call consumes all the answers stored in the
table space, or in case of their absence, the evaluation is suspended. In the meantime, if new
answers arise the suspended variant calls are resumed to properly consume the new answers.

In this way, the re-evaluation of variant calls is avoided.

During this process, the table space structure has a main role, not only because it is the core
of the tabling implementation but also because it will be involved in the most of the tabled
evaluations interactions. In fact, the performance of tabling depends on the implementation
of the table space itself, being critical for the success of the tabling implementation. Therefore
a well defined and efficient data structure is needed. Arguably, the most successful data

structure for tabling is ¢ries [28, 8].
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~
- table path/2. subgoal answer s
3. Z2=2
path(X,2) :- path(X YY), path(Y,2). 0. path(1,2) 10 7=3
path(X,2) :- arc(X 2). - —
5. path(2,2) 9. z=3
arc(1,2). 11. path(3,2)
2,3). ’ ’
arc(2,3) )
~
Tabl ed eval uation
0. path(1,2)
G.. path(1,Y), path(yY, Z)) 2. arc(1,2)
5. path(2,2) 18. path(3,2) 3. 2=2 4. fail
10. Z =c 19. fail
5. path(2,2)
CG. path(2,Y), path(y, Z)) 7. arc(2,2)
11. path(3,2) 8. fail 9. Z=3
17. fail
11. path(3,2)
@2. path(3,Y), path(yY, ZD 13. arc(3,2)
16. fail 14. fail 15. fail

Figure 2.3: A finite tabled evaluation example.

2.2.2 Tries

The table space can be accessed in many different ways. A well defined and efficient data
structure is supposed to give response to interactions such as; (i) finding a subgoal in a table
and, if not present, insert it; (ii) verify whether a founded answer is already stored in a table
and, if not, insert it; and (iii) loading answers from tables to variant calls. The YapTab
engine uses tries as proposed by I.V. Ramakrishnan et al. [28, 8] which is considered to be a

very effective way to implement the table space. A trie is a structure like a tree, where every
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different path connecting different trie nodes (the unit data for tries) corresponds to a single

term representation, that can be seen as a tokenized form of terms, as illustrated in Fig. 2.4.

Trie Structure Trie Structure Trie Structure

I nserting I nserting

I nserting

path(1, X) path(1, 2) [X VY]

(a) (b) (c)

Figure 2.4: Representing terms in a trie.

Figure 2.4a shows the representation of term path(1,X) in a trie as a sequence of three
tokens: the token path/2 to represent the functor’s name and arity, the token 1 to represent
the atom with the same name, and finally the token VARO to represent the variable X present
in the term. Variables are represented using the formalism proposed by Bachmair et al. [29]
where each variable in a term is represented as a distinct constant VAR;. If another term is
inserted in the same trie having a common prefix to the already inserted one, tries have the
property to not represent the equal part of the term. As shown in Fig. 2.4b, when inserting
the term path(1,2) with the token representation < path/2, 1, 2 > it only differs in token
2, from the previous term, thus adding it to the trie, corresponds to insert a trie node for
token 2 as a sibling of the trie node where the difference between both terms first occurs.
Finally, if a term differs in the very beginning of its tokenized form, a new entry is added to
the top of the trie as shown in Fig. 2.4¢ with the insertion of the term [X,Y] corresponding
to the tokenized form < Pair, X, Pair, Y, [] >!. With this example, it can be easily

seen the compactness propriety of term representation in tries.

To obtain the best performance from tries usage, the YapTab system applies two levels of
tries in the implementation of the table space, a top level for the subgoal calls and a second
level for computed answers. For every tabled predicate is created beforehand a subgoal trie

where the root node marks the entry point for insertion of the corresponding subgoal calls.

!Lists representation will be covered in more detail in a later chapter.
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At this level each path in the subgoal trie represents a distinct subgoal call where the leaf
node acts as a connection with second level of tries (the answer trie) through the use of an
auxiliary data structure, called subgoal frame. In the answer trie, all the computed answers

for the respective subgoal are stored, once again every path corresponding to a unique answer.

- table connect/2. (t able entry for connectlz)

connect (X,Y) :- point(X), point(Y). l Subgoal Trie
o 16 1). @D @
point (p(2)).
o
subgoal frane for subgoal frane for
connect ( VARO, VAR1) connect (p(1), VARO)

Answer Trie Answer Trie

@
- 3

first answer
| ast answer

@
o—
@

o
@
TRNY

Figure 2.5: YapTab table space organization.

The previous description can be observed in more detail in the YapTab table space structure
presented in Fig. 2.5. In this example we can see two different subgoal calls for a predicate
connect/2. The subgoal call connect(p(1),X), inserts nodes to represent the term p(1)
and the variable X (VARO), and also adds the respective subgoal frame. The subgoal call
connect (X,Y) as differs in the first element of the call, leads to inserting the nodes for VARO
and VAR1, representing respectively the variables X and Y, and once more a subgoal frame is
also created. Regarding the answer tries, for the subgoal call connect(p(1),X), the answer
trie has two different answers, corresponding to the possible values that can be instantiated
to X, p(1) and p(2). In this case three nodes are inserted to represent the two solutions: a
common node to represent p/1 and two more to represent the constants 1 and 2. On the
other hand, for the subgoal call connect (X,Y), the answer trie represents all the answers

obtained by combining all the values that can be instantiated to X and Y.
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Another feature, from YapTab’s table space organization, that is illustrated in Fig. 2.5 is
the connection between the leaf nodes existing in an answer trie. This linked list is used
to maintain a chronological order of the insertion of answers, and the respective subgoal
frame has a pointer to the first and last solutions inserted. This feature is of a major
importance because when a variant call is suspended, it only needs to keep a reference to the
last consumed answer, as afterwards, when the computation is resumed, answer consumption

can start from that reference if there are new solutions to consume.

2.2.3 Compiled Code on Tries

On completion of an answer trie, from a given subgoal trie, an optimization exists that avoids
answer recovery with a bottom-up strategy, i.e., with terms being loaded starting from the
leaf nodes. Instead, the answer tries are dynamically compiled into WAM-like instructions
from answer trie nodes, enabling a top-down traverse of the trie to consume answers. These
compiled instructions are called trie instructions and the restructured tries are called compiled
tries [8]. Compiled tries are shared during execution of the trie instructions, therefore when
backtracking from a certain term, the procedure continues by loading the term sibling node,
keeping the remaining structure of the term. In this manner, each node of the trie is traversed
only once, benefiting of the compactness of term representation in tries. In Fig. 2.6 we have

an example of a compiled trie for the subgoal call connect (X,Y) presented in Fig. 2.5.

do_struct p/ 1

try_struct 2 > [t rust _struct 1

do_struct p/1 do_struct p/1

try_struct 2 trust_struct 1 try_struct 2 trust_struct 1

Figure 2.6: Compiled trie for the subgoal call connect(X,Y) presented in Fig. 2.5.

In compiled tries each node is combined with an instruction, the selection of the instruction
is influenced by the term type represented in the trie node and by the position of the node
in the respective list of possible sibling nodes. Therefore trie instructions can be grouped
into four different types, since each trie node can appear as the first, intermediate, last
or the only sibling of a sequence. Namely, first position sibling nodes are compiled using

try_7 instructions, intermediate nodes using retry_7 instructions, last nodes using trust_?
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instructions and, if a node is the only sibling, using do_? instructions. Each instruction also
refers the term type in the trie node, for example with atom terms the possible instructions
are try_atom, retry_atom, trust_atom or do_atom. At the engine level, compiled trie
instructions act similarly to the generic try/retry/trust WAM instructions but, in this case,
they are responsible for interacting with choice points to correctly traverse top-down an
answer trie, in such way that, in case of failure, the procedure continues to the next sibling

node. The do instruction denotes no choice and thus no choice point allocation is preformed.
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List Terms Representation

In this section, we first introduce YapTab’s design for the representation of list terms, and
then we present our new and alternative design for list term representation [30] which the
main goal is to optimize YapTab’s memory usage in order to reduce possible drawbacks of the
standard table mechanisms. In what follows, we will refer to the original design as standard
lists and to the new design as compact lists. We start by briefly introducing how standard
lists are represented in YapTab and then we discuss in more detail the new design for the

representation of compact lists.

3.1 Standard Lists

YapTab follows the seminal WAM representation of list terms [11]. In YapTab, list terms are
recursive data structures implemented as functors of two elements, named pairs, where the
first pair element, the head of the list, represents a list element and the second pair element,
the tail of the list, represents the list continuation term or the end of the list. In YapTab,
the end of the list is represented by the empty list atom []1. At the engine level, a pair is
implemented as a pointer to two contiguous cells, the first cell representing the head of the
list and the second the tail of the list. In YapTab, the tail of a list (or the second element of
a pair) can be any term (and not only another pair or the empty list atom). Figure 3.1(a)

illustrates YapTab’s WAM representation for list terms in more detail.

Alternatively to the standard notation for list terms, we can use the pair notation [H|T],
where H denotes the head of the list and T denotes its tail. For example, the list term [1,2,3]
in Fig. 3.1 can be alternatively denoted as [1][2,3]1]1, [11[21[31]1] or [11[2|[31[11]1]. The
pair notation is also useful when the tail of a list is neither a continuation list nor the empty
list. This list term’s type representation can be seen for example in the list [1,2]3] shown in

Fig. 3.1(a) by its corresponding WAM representation. In what follows, we will refer to these

31
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lists as term-ending lists and to the most common lists ending with the empty list atom as

empty-ending lists.

Regarding the trie representation of lists, the original YapTab design, as most tabling engines,
including XSB Prolog, tries to mimic the corresponding WAM representation. This is done
by making a direct correspondence between each pair pointer at the engine level and a trie
node labelled with the special token PAIR. For example, the tokenized form of the list term
[1,2,3] is the sequence of seven tokens <PAIR,1,PAIR,2,PAIR,3,[]>. Figure 3.1(b) shows in
more detail YapTab’s original trie design for the list terms represented in Fig. 3.1(a).

(a) WAM Representation (b) Original Trie Design

'
'

800680

w

'

[1

50000660

List Term List Term List Term List Term
[1,2,3] [1,2]3] [1,23] [1,2]3]

Figure 3.1: YapTab’s WAM representation and original trie design for standard lists.

3.2 Compact Lists

In this section, we introduce the new design for the representation of list terms. The
discussion we present next tries to follow the different approaches that we have considered
until reaching our current final design. The key idea common to all these approaches
is to avoid the recursive nature of the WAM representation of list terms and have a
more compact representation where the unnecessary intermediate PAIR tokens are removed,

therefore reducing the system memory when storing lists.

Figure 3.2 illustrates how compact lists are represented in tries using our initial approach.
Comparing with Fig. 3.1, in this approach, all intermediate PAIR tokens are removed and a

compact list is simply represented by its term elements surrounded by a begin and a end
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list mark, respectively, the BLIST and ELIST tokens. Figure 3.2(a) shows the tokenized
form of the empty-ending list [1,2,3] which, with this design, is the sequence of six tokens
<BLIST,1,2,3,[1,ELIST>, and the tokenized form of the term-ending list [1,2]3] which,
with this design, is the sequence of five tokens <BLIST,1,2,3,ELIST>>. This approach clearly
outperforms the standard lists representation when representing individual lists, with a
unique exception happening when constructing the basic cases of list terms of size one to
three. When representing individual list terms with more than three elements it requires
about half the nodes required for standard lists. For an empty-ending list of S elements,
standard lists requires 25 + 1 trie nodes and compact lists requires S + 3 nodes. Regarding
term-ending lists of S elements, standard lists representation requires 25 — 1 trie nodes, and

yet when using compact lists it requires .S + 2 nodes.

Next, in Fig. 3.2(b) we try to illustrate how this approach behaves when we represent more
than a list in the same trie. It presents three different situations: the first situation, shows
two lists with the first element different and it illustrates a kind of worst case scenario when
representing list terms in a trie; the second and third situations show, respectively, two
empty-ending and two term-ending lists with only the last element different, that can be
seen as a kind of best case scenario when representing list terms in a trie, which means that

only the last element of the second list representation is added to the trie.

o

(a) (b)

o

88606

TIIIL

TILL
TIIT:

80008
860008
866

ELI ST ELI ST ELI ST
ELI ST ELI ST ELI ST ELI ST ELI ST
List Term List Term Li st Terns Li st Terns Li st Terns
[1,2,3] [1,2]3] [1,2,3] [1,2,3] [1,2]3]
[2,3,4] [1,2,4] [1,2]4]

Figure 3.2: Trie design for compact lists: initial approach.

Now consider that we generalize these situations and represent in the same trie N lists of S
elements each. For the first situation (when lists differ in the first element) our first approach
is always better than standard lists, but this may not be the case when it regards the second

and third situations. For the second situation (empty-ending lists with last element different),



34 List Terms Representation

standard lists representation requires 2N +25 —1 trie nodes and compact lists requires 3N+ S
nodes and thus, if N > § — 1, i.e., if the number of distinct lists are greater than the size
of the list represented, then standard lists representation has better results, requiring less
nodes to represent lists in such conditions. Regarding the third situation (term-ending lists
with last element different), standard lists requires N + 25 — 2 trie nodes to represent lists
in these conditions and compact lists requires 2N + S nodes, and once again if N > S — 2,

then standard lists representation spend less nodes when representing list terms.

When analysing the representation of compact lists in this approach, the main problem is
the introduction of the extra token ELIST in the end of each different list, the cost of this
extra token is more evident when representing lists with the last element different, because

instead of adding only one node (the different one), for each different list, we add two nodes.

To avoid this problem, we have redesigned our compact lists representation in such a way
that the ELIST token appears only once for lists with the last element different. Figure 3.3
illustrates our second approach for the compact lists representation, using the same lists

presented previously in Fig. 3.2.

In this second approach, a compact list still contains the begin and end list tokens, BLIST
and ELIST, but now the ELIST token plays the same role of the last PAIR token in standard
lists, i.e., it marks the last pair of terms in the list. Figure 3.3(a) shows the new compact
list tokenized form obtained when using this change. The empty-ending list [1,2,3] is now
represented as <BLIST,1,2,ELIST,3,[] > and the new tokenized form of the term-ending list
[1,213] is now represented by <BLIST,1,ELIST,2,3>. To verify how this second approach
behaves when we represent more than a list in the same trie, in Fig. 3.3(b) we illustrate
the same three situations of Fig. 3.2(b). For the first situation (lists with the first element
different), the second approach is identical to the initial approach. This is straightforward
since the changes made simply move the ELIST token from the end of the list, therefore
the repetition of the ELIST token still occurs. For the second and third situations, the
second approach is not only better than the initial approach, since it avoids the repetition
of the ELIST token in the end of list representation, but also better than the standard lists

representation, reducing the exceptions to the base cases of list terms of sizes 1 and 2.

Consider again the generalization to represent in the same trie IV lists of S elements each.
Since no changes occurred in the first situation, this second approach has the same results as
the first approach. On the other hand, for the second situation (empty-ending lists with last
element different), compact lists now requires 2N + S + 1 trie nodes (the initial approach for
compact lists required 3N + S nodes and standard lists required 2N + 25 — 1 nodes) and for
the third situation (term-ending lists with last element different), compact lists now requires
N + S + 1 trie nodes (the initial approach for compact lists required 2N + S nodes and
standard lists required N + 25 — 2 nodes). Despite these better results, this second approach
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still contains some drawbacks that can be improved.

List Term List Term Li st Terms Li st Terms
[1,2,3] [1,2]3] , 2, [1,2,3] [1,2]3]

[1,2,4] [1,2]4]

Figure 3.3: Trie design for compact lists: second approach.

Figure 3.4 illustrates our final approach for the representation of compact lists. In this
final approach, we have redesigned our previous approach in such a way that the empty
list token [] was avoided in the representation of empty-ending lists. Note that, in our
previous approaches, the empty list token is what allows us to distinguish between empty-
ending lists and term-ending lists. So, in order to maintain this distinction, we did not simply
removed the empty list token from the representation of compact lists. To provide the needed
distinction between lists, we added a different end list token, EPAIR, for term-ending lists,
maintaining the ELIST token to represent empty-ending lists. Furthermore, we changed the
behavior of the token representing the end of a list, instead of marking the last two elements
of a list element, tokens ELIST and EPAIR are used to mark the last element in an empty-
ending list and in an term-ending list, respectively. Figure 3.4(a) shows the new tokenized
form of the empty-ending list [1,2,3], which is now represented as <BLIST,1,2,ELIST,3>,
and the new tokenized form of the term-ending list [1,2]3], which is now represented
as <BLIST,1,2,EPAIR,3>. Figure 3.4(b) shows how this final approach behaves when we
represent more than a list in the same trie, using the same three previous situations for
representing lists (different in the first element or different in the last element). For the three
examples, this final approach clearly outperforms all the other representations for standard
lists and previous approaches of compact lists. Regarding lists with the first element different
(first situation), our final approach requires N + NS + 1 trie nodes for both empty-ending
and term-ending lists, thus reducing the cost for the empty-ending lists representation, since

the modifications were mainly made over the empty list token.
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(a)

TIITR

List Term List Term Li st Terns Li st Terns Li st Terns
[1,2,3] [1,2]3] [1,2,3] [1,2,3] [1,2]3]
[2,3,4] [1,2,4] [1,2]4]

Figure 3.4: Trie design for compact lists: final approach.

Toward lists with the last element different (second and third situations), it requires
N + S + 1 trie nodes for both empty-ending and term-ending lists, once again this change
only takes effect on empty-ending lists. Table 3.1 summarizes the comparison between all
the approaches regarding the number of trie nodes required to represent in the same trie N

list terms of S elements each.

Standard Compact Lists

List Terms . .. .
Lists Inatzal Second Final

First element different
N [E1y..., Es_1,Eg]|2N +2NS+ 12N+ NS+ 12N+ NS+ 1|N+ NS +1

N [E1,y...,Es_1 | Eg] 2NS+1| N+ NS+1| N+ NS+ 1[N+ NS+1
Last element different

N [E1y...,Es_1,Eg]| 2N +25—-1 BN+S| 2N+S5+1] N+S+1
N [Eq,...,Es_1 | Eg]|] N+25-2 2N+S| N+S+1 N+S+1

Table 3.1: Number of trie nodes to represent in the same trie N list terms of S elements each,

using the standard lists representation and the three compact lists approaches.

3.3 Compiled Tries for Compact Lists

In this section, we discuss the implications of the new design in the completed table
optimization and describe how we have extended YapTab to support compiled tries for
compact lists. First we illustrate in Fig. 3.5(a) the compiled trie code for the standard

list [1,2,3]. When using standard lists, each PAIR token is compiled using one of the
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try/retry/trust/do_list trie instructions. At the engine level, these instructions create a
new pair term in the heap stack to be bound to the term being constructed. In Fig. 3.5(b), we
show the compiled trie code for the last compact lists approach. As mentioned, the initial step
for compact list consisted in the removal of the PAIR tokens. Hence, we need to include the
pair terms creation step in the trie instructions associated with the elements in the list, except
for the last list element. To do that, we have extended the set of trie instructions for each
term type with four new specialized trie instructions: try_7_in_list, retry_7_in_list,
trust_7_in_list and do_7_in_list. As an example, for atom terms, the new set of
trie instructions is: try_atom_in_list, retry_atom_in_list, trust_atom_in_list and
do_atom_in_list. At the engine level, these instructions create a new pair term in the
heap stack to be bound to the term being constructed and then they bind the head of the
new pair to the sub-term corresponding to the ?_in_list instruction at hand. Last list
elements are treated as before and ELIST tokens are compiled using a new ?_ending_list
trie instruction. At the engine level, the ?_ending_list instructions also create a new pair
term in the heap stack to be bound to the term being constructed and, in order to denote the
end of the list, they bind the tail of the new pair to the empty list atom []. Finally, the BLIST
and EPAIR tokens are compiled using ?_void trie instructions. This type of instructions do

nothing since the construction of the heap terms is done by the ?_in_list instructions.

(a) (b

=

do_list PAI R do_void BLI ST do_void

BLI ST

do_at om 1 do_atom.in_list 1 do atomin list 1

do_list do_atom.in_list 2 do atomin list 2

do_at om do_endi ng_l i st MSHEYE do void

EPAI R

do_list do_at om 3 do_at om 3

do_at om

do_at om

Figure 3.5: Comparison between the compiled trie code for standard and compact lists.

Note however that the trie nodes for the tokens BLIST and EPAIR cannot be avoided because
they are necessary to distinguish between a term t and the list term whose first element is t,
and to mark the beginning and the end of list terms when traversing the answer tries nodes

bottom-up.
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Next, we present in Fig. 3.6, two more examples showing how list terms including compound
terms, the empty list term and sub-lists are compiled using the compact lists representation.
In the left side of Fig. 3.6, we illustrate the tokenized form of the list term [£(1,2),[],g(a)]
with the sequence of eight tokens <BLIST,f/2,1,2,[],ELIST,g/1,a> and, on the right side
of the figure, we illustrate the tokenized form of the list term [1,[2,3],[1] with the
sequence of eight tokens <BLIST,1BLIST,2,ELIST,3,ELIST,[]1>. To see how the new trie
instructions for compact lists are associated with the tokens representing list elements, we
next present the previous tokenized forms, but with the tokens representing common list

elements explicitly aggregated:

[(£(1, 2),0,g(a)]: <BLIST,<f/2,1,2> [],ELIST,<g/l,a> >
[1,[2, 31,[1]: <BLIST,1,< BLIST,2,ELIST,3> ELIST,[] >.
The tokens that correspond to first tokens in each list element, except for the last list element,

are the ones that need to be compiled with the new ?_in_list trie instructions (please see
Fig. 3.6 for full details).

do_voi d do_voi d

do_struct _in_list

do_at om p Cdo_voi d_in_list

do_at om

do_atom.in_list

il
!

()

8

do_atom.in_list

do_atom.in_list do_endi ng_l i st

u
i

do_endi ng_li st ELI ST do_at om 3

do_struct g/1 do_ending_li st ELI ST

do_at om do_at om

1
1

List Term List Term

[f(1,2),[1,9(a)] [1.12,3],[1]

Figure 3.6: Compiled trie code for compact lists including compound terms and sub-lists.

In more detail, in list [£(1,2),[1,g(a)], the tokens to be compiled with the new ?_in_list

trie instructions are the tokens £/2 and []. Token f/2 because it is the first token in the
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aggregated representation <f£/2,1,2> of the first list element and token [] because it is the
single token representing the second list element. In the second example, list [1,[2,3],[1],
as the second list element is itself a list, the same idea is applied not only to the tokens
in the aggregated representation of the main list but also to the tokens in the aggregated
representation, <BLIST,2,ELIST,3>, of the sub-list. Therefore, the tokens 1 (first element of
the second element of the main list), BLIST (first token of the second element of the main

list), 2 (first element of the sub-list) are compiled with the ?_in_list instruction.
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Chapter 4

Global Trie

The tabling technique was developed to overcame particular limitations of Prolog. Never-
theless, when used to solve real world problems, tabling can show some drawbacks. One
of the most common limitations of tabling, is the overload of system’s memory. The
Global Trie (GT) design stands as an alternative method to YapTab’s standard table
space representation. The GT table space design emerges with the intent to surpass
those disadvantages, namely by storing terms in the same trie, thus preventing repeated
representations of a term in different trie data structures. In this chapter, we describe the

implementation of distinct GT’s strategies.

4.1 Global Trie for Calls and Answers

As proposed by Costa and Rocha [31, 32|, in the Global Trie for Calls and Answer (GT-CA)
design, the main idea is to avoid term repetitions, which could take place in different trie
data structures as shown in Fig. 4.1. Here, the representation of the terms f(1) and £(2)
occurs several times each. The first approach to prevent these repetitions resorted to group
all tabled subgoal calls and/or answers, by storing them in a common global trie, instead
of being spread over several different tries. This conceptual change is achieved without
removing the gains obtained by the use of tries. Therefore, the GT-CA data structure is still
a tree structure, where each different path through the GT nodes corresponds to a subgoal
call and/or answer. In spite of the new organization for the table space, the hierarchical
structure of the table space still follows by the existence of a subgoal trie and an answer trie
data structures (see Fig. 4.2). However, in this particular design, both are represented by a
unique level of trie nodes that point to the corresponding terms in the GT-CA (see the callN
nodes for the subgoal trie and the answerN nodes for the answer trie in Fig. 4.2). Henceforth,

coexisting terms on calls and /or answers, are represented only once in GT-CA, thus avoiding
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Figure 4.1: YapTab’s standard table design.

repetition of terms once stored in the GT.

The role for the several tries is of simple assimilation. For the subgoal tries, each node now
represents a different subgoal call. The node’s token is the pointer to the node in the GT-
CA corresponding to the path representation for the subgoal call, i.e., all argument terms
represented in the original subgoal trie (Fig. 4.1) are now represented and inserted in the
GT-CA. However, the organization used in the subgoal tries allows one to maintain the list

of sibling nodes and the access to the corresponding subgoal frames unaltered.

In a similar way, for the answer tries, each node now represents a different answer for the
respective subgoal. Instead of having the complete answer term represented in the answer
tries, with this design the answer trie node’s token is simply a pointer to the corresponding
path in the GT-CA representation. Once again, the organization used in the answer tries to
maintain the list of sibling nodes and to enable answer recovery in insertion order, remains
unaltered. With this organization, answers are now loaded by following the pointer in the

node’s token and then by traversing the corresponding GT-CA’s nodes bottom-up.

Figure 4.2 uses the example from Fig. 4.1 to illustrate how the GT-CA design works. Initially,
the subgoal trie and the GT-CA are empty. Then, the subgoal t(£(1),X) is called. When
this occurs, three nodes are inserted in the GT-CA to represent the call: one represents
the functor £/1, a second refers to the constant 1 and the last representing the variable X.

Next, a node representing the path inserted in the GT-CA is stored in the subgoal trie (node
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Figure 4.2: YapTab’s table organization using the GT-CA design.

calll in Fig. 4.2). The calll node serves two purposes: its token’s field is used to store
the reference to the leaf node of the GT-CA’s inserted path and its child field is used to
store the reference to the corresponding subgoal frame. Afterwards, for the second subgoal
call £(X,Y), we start by inserting the call in the GT-CA and for that we represent the free
variables X and Y by the nodes VARO and VAR1, respectively. Next, we store a node in the
subgoal trie (node call2) to represent the path inserted in the GT-CA.

For each answer, its term representation is inserted first in the GT-CA and then we stored a
node in the corresponding answer trie, to represent the path inserted in the GT-CA (nodes
labeled answerl, answer?2, answer3, answer4 in Fig. 4.2). Notice that in some situations,
only part (or possibly none) of the term construction in the GT-CA is required, if part or
the complete term representation already exists, thus emphasizing the contributions of a GT

to store all term representations.

With this example, we can also see that with the GT-CA we cannot share the representation

of common terms appearing at different arguments or substitution positions. An example is
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the representation of the terms f(1), £(2) and VARO, which appear more than once in the
GT. In fact, a subgoal call is represented by a sequence of argument terms while an answer
is represented by a sequence of substitution terms. Moreover, when the number of argument
or substitution terms is greater than one, the representation of a subgoal call or answer can
end at internal nodes of other subgoal calls and/or answers, and not necessarily at a leaf
node. This specific situation raises difficulties when supporting table abolish operations,
since individual nodes can be part of different subgoal calls and/or answers representation.
In this case the removal process of a individual node can not be done while it belongs to
other different term representations. This problem can be solved by introducing an extra
field in each trie node to count the number of paths it belongs to and only allowing deletion
when it reaches zero, but this solution is contradictory with the GT goal of saving memory

usage.

Another drawback of the GT-CA design occurs when a subgoal is completed. As mentioned
previously, a strategy exists to avoid answer recovery using bottom-up unification and
performing instead what is called a completed table optimization [8]. This optimization
implements answer recovery by top-down traversing the completed answer trie and by
executing specific WAM-like code from the answer trie nodes. However, when traversing the
GT-CA with a top-down approach, traversed nodes can belong to several different subgoal

and/or answer tries. So, with the GT-CA approach this optimization is no longer possible.

4.2 Global Trie for Terms

The Global Trie for Terms (GT-T) design can be seen as an extension of the previous
approach [33]. The GT-T was designed to optimize the GT structure organization by
maximizing the sharing of tabled data which is structurally equal. In the GT-T design,
all argument and substitution terms appearing in tabled subgoal calls and/or answers are
represented only once in the common GT, this allows to prevent situations where argument

and substitution terms are represented more than once as in the example of Fig. 4.2.

As an extension of the previous GT-CA design, the GT-T data structure is still a tree
structure. However, in this organization, each different path through the trie nodes represents
a unique argument and /or substitution term, in contrast to the previous strategy where a path
could represent more than an argument or substitution term. Therefore, the representation
of terms always end at leaf trie nodes. In this table organization, the subgoal and answer tries
data structure are no longer represented as a unique level of trie nodes. In both tries, each
path is now composed of a fixed number of trie nodes, representing in the subgoal trie the
arguments for the tabled subgoal call, or representing the substitution terms in the answer

trie. More specifically, for the subgoal tries, each node now represents an argument term
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in which the node’s token is used to store the reference to the unique path in the GT-T
where the actual argument term is represented. Similarly for the answer tries, each node
now represents a substitution term, where the node’s token stores the reference to the path’s
leaf node in the GT-T. The features used in tries to maintain the list of sibling nodes and
to enable answer recovery in insertion order, introduced by YapTab’s original subgoal and

answer tries representation, remains unaltered.

Figure 4.3 illustrates how the GT-T design works, by stressing its most important features,
and for that we use again the example from Fig. 4.1. Initially, the subgoal trie and the GT-T
are empty. Then, the first subgoal t(£f(1),X) is called and the two argument terms, f(1)
(represented by the tokens £/1 and 1) and X (token VARO), are first inserted in the GT-T.
Afterwards, the argument terms are represented in the subgoal trie by two nodes (nodes argi
and arg2), and each node’s token stores the reference to the leaf node of the corresponding
term representation inserted in the GT-T. For the second subgoal call t(X,Y), the argument
terms VARO and VAR1, representing respectively X and Y, are also first inserted in the GT-T,
followed by the insertion of two nodes in the subgoal trie to represent them. In each token’s

node we store the reference to the corresponding representation in the GT-T.

When processing answers, the procedure is similar to the one executed for subgoal calls. For
each substitution term, we also insert first its representation in the GT-T and then we insert
a node in the corresponding answer trie, in order to store the reference to its path in the
GT-T (nodes labeled subs1 and subs2 in Fig. 4.3). As shown in Fig. 4.3, the substitution
terms for the complete set of answers for the two subgoal calls only include the terms f (1)
and f (2). Moreover, as £ (1) was inserted in the global trie at the time of the first subgoal
call, we only need to insert £(2) (represented by the nodes £/1 and 2), meaning that in fact
we only need to insert the token 2, in order to represent the full set of answers. So, we are
maximizing the sharing of common terms appearing at different arguments or substitution
positions. For this particular example, the result is a very compact representation of the GT,

as most subgoal calls and/or answers share the same term representations.

Regarding space reclamation, as each different path in the GT-T always ends at a leaf node,
we can use the child field (that is always NULL in a leaf node) to count the number of
references to the path it represents. This feature is of uttermost importance for the deletion
process of a path, which can only be performed when there is no reference to it, this is
true when the leaf node’s child field reaches zero. With this feature, the previous GT-CA’s
problem of supporting table abolish operations without introducing extra memory overheads,

is solved.

Another GT-CA’s problem was related with compiled tries, i.e., the technique used on
completion of a subgoal. With GT-T such problem no longer exists and in order to enable the

necessary topdown traversing, we keep the GT only with the term representations and store
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Figure 4.3: YapTab’s table organization using the GT-T design.

the WAM-like instructions in the answer tries, as in the original design [8]. The difference
caused by the existence of the GT is a new set of high-level WAM-like instructions, i.e.,
instead of working at the level of atoms/terms/functors/lists as in [8], each instruction works
at the level of the substitution terms. For example, considering again the loading of four
answers for the call t(X,Y), one has two choices for the variable X and, to each variable
X, we have two choices for variable Y (combination between two variables). In the GT-T
design, the answer trie nodes representing the choices for X and for Y (nodes subsl and
subs2 respectively) are compiled with a WAM-like sequence of trie instructions, such as
try_subs_term (for first choices) and trust_subs_term (for second/last choices). GT-T’s
compiled tries also include a retry_subs_term instruction (for intermediate choices) and a

do_subs_term instruction (for single choices).
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4.3 Global Trie for Subterms

In this design, we optimize the GT-T in order to obtain higher efficiency at the memory level.
The Global Trie for Subterms (GT-ST) maintains most of the GT-T features, such as the
sharing of the tabled data that is structurally equal. Yet, in this last design, we take into
account the use of tabling mechanisms in real world problems, which require extensive search
and where redundant data commonly occur. Therefore, we maximize the representation of
the structural equal data at a second level, by avoiding the representation of equal subterms,
and thus preventing situations where the representation of those subterms occurs more than

once.

Although GT-ST uses the same tree structure for data structures, every different path can
now represent a complete term or a subterm of another term, but still being an unique term.
This particularity is evidenced in GT’s compound term construction, such as lists or functors,
that also have compound terms as arguments. In what follows, we will refer to compound
terms arguments which are compound terms too, as subterms. In this case, we change the
structure of the term in the GT by creating singular structures for each subterm, i.e., when
inserting a term such as £(p(1)), after the construction of the functor £/1 the insertion is
stopped, and the construction of the subterm p(1) is inserted as a individual term in the GT.
After the complete insertion of subterm p(1), the construction of the main term is resumed

by inserting a node pointing to the respective subterm representation previously made.

Although the structural differences in the GT-ST table space design, GT-T’s structure
for subgoal and answer tries, where each path is composed by a fixed number of nodes
representing, respectively, the arguments for table subgoal calls or the substitution terms, is
used without changes. Thus the subgoal trie and answer trie nodes store the pointers to the
respective representation in the GT. Features regarding the subgoal frame structure, such as
to maintain the chronological order of answer’s insertion and correct recovery, also remain

unaltered.

One last optimization is provided in GT-ST design, which can be also applied to the previous
GT-CA and GT-T designs. The goal is to prevent the single node term representation in
the GT, such as when representing atoms, integers and variables, by inserting them in the
respective subgoal or answer trie, thus preventing unnecessary memory usage. The procedure
consists in inserting directly the subgoal call arguments or substitution terms, which have
a single node representation, in the respective subgoal or answer trie, thus avoiding its
representation in the global trie. This optimization is straightforward. Since, by default, we
are inserting a node in the subgoal trie or answer trie to point to the respective representation
in the GT, for atomic terms we now avoid this and use the node to store the respective term.
Figure 4.4 shows an example of how the previous GT-T design stores subterms by illustrating

the resulting table data structures for the program described in the top of the figure.
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Figure 4.4: YapTab’s table organization for compound terms using the GT-T design.

Figure 4.5 illustrates GT-ST design behavior, using the same example from Fig. 4.4. Initially,
the subgoal trie and GT-ST are empty. Next the first subgoal t (£ (p(1),p(1)),X) is called
and the two argument terms are inserted in the global trie. Regarding the insertion of the
first argument, £ (p(1),p(1)), we emphasize the differences between this and the previous
GT-T design.
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Figure 4.5: YapTab’s table organization for compound terms using GT-ST.

Primarily, the node to represent the functor £/2 is inserted, but then the insertion of functor
p/1is stopped and the term p(1) is inserted as a distinct term in the GT-ST, i.e., as a sibling
of the already stored node £/2. The nodes for p/1 and 1 are then inserted in the GT-ST.
Next, a node is inserted, in the place where we have previously stopped the term construction
(as a child node of node £/2), to store the reference to the leaf node of the subterm p(1)
representation. The construction of the main term then continues, applying an analogous
procedure to the second argument of £/2. However the subterm p(1) is already stored in
the GT, therefore it is only required the insertion of a node to store the reference to p(1)
representation’s leaf node. Afterwards, the respective argument node (node argl in Fig. 4.5)
is inserted in the subgoal trie storing the GT-ST reference representing f(p(1),p(1)). For
the second subgoal call, t(X,Y), we do not interact with the GT-ST. Therefore for each

argument term, X and Y, we simply store in the subgoal trie the respective nodes with VARO
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and VAR1 labels, as shown in the Fig. 4.5.

The procedure used when processing answers is equivalent to the one used when storing the
subgoal call arguments. For each substitution term (if not an atomic term), we first insert
the term in the GT-ST and then we store a node in the corresponding answer trie to store the
reference to its path in the GT-ST (nodes labeled subs1 and subs2 in Fig. 4.5). In Fig. 4.5
the substitution terms for the complete set of answers for all subgoal calls are £ (p(1),p(1))
and £ (p(2),p(2)). Thus, as £ (p(1),p(1)) is already stored in the global trie (inserted when
storing the first subgoal call), we only need to store the second term in order to represent
the whole set of answer. With this approach we increase the sharing of common subterms

between terms and reduce the complexity when storing atomic terms.

Regarding space retrieval, the GT-ST design has the same features of the GT-T, where every
path representing a singular term always ends at a leaf node. We also use the child field
(that is always NULL in a leaf node) to count the number of references to it. This procedure
works in any situation, even in what concerns to subterm’s referencing. As mentioned in
the previous section, regarding the support of table abolish operations, this feature is of
uttermost importance in the deletion of a path, which occurs when the child’s node field
is zero. As provided in the GT-T design, the GT-ST also supports the techniques used on
completion of a subgoal, keeping the global trie only with the term representation and storing
the WAM-like instructions in the answer tries. Although, in this design we use an hybrid
set of WAM-like instructions, ones that work at the level of the substitution terms and other
that work at level of the atomic terms. Therefore, taking into consideration the position
of the node in the answer trie and if it is a compound term or an atomic term. Hence,
answer trie nodes are compiled with the instructions: try_subs_term/atom for first choices,
retry_subs_term/atom for intermediate choices, trust_subs_term/atom for last choices and

do_subs_term/atom for single choices.



Chapter 5
Implementation

In this chapter, we focus on the implementation details for YapTab’s alternative table designs
and we describe the GT data structures and algorithms in more detail. Throughout, we also
describe how tries are structured, specifying the main features of trie nodes, and present the
main procedures which interact with tries, preforming comparisons with YapTab’s original
table design. In what follows, we describe the three previously presented alternatives,

detailing them separately.

5.1 Global Trie for Calls and Answers

We next describe the first presented alternative to YapTab’s table design. We start
with Fig. 5.1 describing in more detail the table organization previously presented in
Fig. 4.2 for the subgoal call t(£(1),X). Internally, all tries are represented by a top root
node, acting as the entry point for the corresponding subgoal, answer or global trie data
structure. For the subgoal tries, the root node is stored in the corresponding table entry’s
subgoal_trie_root_node data field. For the answer tries, the root node is stored in the
corresponding subgoal frame’s answer_trie_root_node data field. For the global trie,
the root node is stored in the GT_ROOT_NODE global variable. Regarding the trie nodes,
remember that they are internally implemented as 4-field data structures. The first field
(entry) stores the token for the node and the second (child), third (parent) and fourth
(sibling) fields store pointers, respectively, to the first child node, to the parent node, and
to the sibling node. Traversing a trie to check/insert for new calls or for new answers is
implemented by repeatedly invoking a trie_node_check_insert () procedure for each token
that represents the call /answer being checked. Given a trie node parent and a token t, the
trie_node_check_insert () procedure returns the child node of parent that represents the

given token t. Figure 5.2 shows the pseudo-code for this procedure.

o1
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Figure 5.1: Implementation details for the GT-CA design.

Initially, the procedure checks if the list of sibling nodes is empty. If this is the case, a new
trie node representing the given token t is initialized and inserted as the first child of the
given parent node. To initialize new trie nodes, we use a new_trie_node () procedure with
four arguments, each one corresponding to the initial values to be stored respectively in the

token, child, parent and sibling fields of the new trie node.

Otherwise, if the list of sibling nodes is not empty, the procedure checks if they are being
indexed through a hash table. Searching through a list of sibling nodes is initially done
sequentially. This could be too expensive if we have hundreds of siblings. A threshold
value (MAX_SIBLING_NODES_PER_LEVEL) controls whether to dynamically index the nodes
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trie_node_check_insert(TRI E_NODE parent, TOKEN t) {
child = parent->child
if (child == NULL) { /1 the list of sibling nodes is enpty
child = new_trie_node(t, NULL, parent, NULL)
parent->child = child
} if (is_not_a_hash_table(child)) { /1 sibling nodes wi thout hashing
si bling_nodes = 0 /1 to count the nunber of sibling nodes
do { /'l check if tokent is already in the list of siblings
if (child->token ==1)
return child
si bl i ng_nodes++
child = child->sibling
} while (child)
child = new_trie_node(t, NULL, parent, parent->child)
if (sibling_nodes > MAX_SIBLI NG NODES PER LEVEL) { // alloc new hash
hash = new_hash_t abl e(chil d)
parent->child = hash

} else
parent->child = child
} else { /1 sibling nodes wi th hashing
hash = child
bucket = hash_function(hash, t) /1 get the hash bucket for token t

child = bucket -> child
sibling_nodes = 0
while (child) { /'l check if token t is already in the hash bucket
if (child->token == 1)
return child
si bl i ng_nodes++
child = child->sibling

}
child = new_trie_node(t, NULL, parent, bucket)

bucket -> child = child
if (sibling_nodes > MAX_SI BLI NG NODES_PER BUCKET) /'l expand hash
expand_hash_t abl e( hash)

}

return child

Figure 5.2: Pseudo-code for the trie_node_check_insert() procedure.

through a hash table, hence providing direct node access and optimizing search. Further
hash collisions are reduced by dynamically expanding the hash tables when a second threshold
value (MAX_SIBLING_NODES_PER_BUCKET) is reached for a particular hash bucket. If not using
hashing, the procedure then traverses sequentially the list of sibling nodes and checks for one
representing the given token t. If such a node is found then execution is stopped and the node
returned. Otherwise, a new trie node is initialized and inserted in the beginning of the list. If
reaching the threshold value MAX_SIBLING_NODES_PER_LEVEL, a new hash table is initialized
and inserted as the first child of the given parent node. If using hashing, the procedure

first calculates the hash bucket for the given token t and then, it traverses sequentially the
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list of sibling nodes in the bucket checking for one representing t. Again, if such a node
is found then execution is stopped and the node returned. Otherwise, a new trie node is
initialized and inserted in the beginning of the bucket list. If reaching the threshold value
MAX_SIBLING_NODES_PER_BUCKET, the current hash table is expanded.

To manipulate tries we use two interface procedures. For traversing a trie to check /insert for

new calls or for new answers we use the
trie_check_insert(TRIE_NODE root, TERM t)

procedure, where root is the root node of the trie to be used and t is the call/answer
term to be inserted. The trie_check_insert() procedure invokes repeatedly the previous
trie_node_check_insert () procedure for each token that represents the given term and
returns the reference to the leaf node representing its path. Note that inserting a term
requires in the worst case allocating as many nodes as necessary to represent its complete
path. On the other hand, inserting repeated terms requires traversing the trie structure until

reaching the corresponding leaf node, without allocating any new node.

To load a term from a trie back to the Prolog engine we use the
trie_load (TRIE_NODE leaf)

procedure, where leaf is the reference to the leaf node of the term to be returned. When
loading a term, the trie nodes are traversed in bottom-up order. When inserting terms in
the table space we need to distinguish two situations: (i) inserting tabled calls in a subgoal
trie structure; and (ii) inserting answers in a particular answer trie structure. The former
situation is handled by the subgoal_check_insert () procedure as shown in Fig. 5.3 and the

latter situation is handled by the answer_check_insert () procedure as shown in Fig. 5.4.

subgoal _check_i nsert (TABLE_ENTRY te, SUBGOAL_CALL call) {
st _root _node = te->subgoal _trie_root_node
i f (GT_ROOT_NODE) ({ /1 GT-CA tabl e design
| eaf _gt_node = trie_check_insert(GI_ROOT_NODE, call)
| eaf _st_node = trie_node_check_insert(st_root_node, |eaf_gt_node)
} else { /1 original table design
| eaf _st_node = trie_check_insert(st_root_node, call)

}

return | eaf _st_node

}

Figure 5.3: Pseudo-code for the GT-CA’s subgoal_check_insert () procedure.

In the original table design, the subgoal_check_insert() procedure simply uses the
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trie_check_insert() procedure to check/insert the given call in the subgoal trie cor-
responding to the given table entry te. In the new design based on the GT-CA, the
subgoal_check_insert () procedure now first checks/inserts the given call in the GT. Then,
it uses the reference to the GT’s leaf node representing call (leaf_gt_node in Fig. 5.3) as
the token to be checked/inserted in the subgoal trie corresponding to the given table entry
te. Note that this is done by calling the trie_node_check_insert () procedure, thus if the
list of sibling nodes in the subgoal trie exceeds the MAX_SIBLING_NODES_PER_LEVEL threshold

value, then a new hash table is still initialized as described before.

The answer_check_insert() procedure works similarly. In the original table design, it
checks/inserts the given answer in the answer trie corresponding to the given subgoal frame
sf. In the new design based on the GT-CA, it first checks/inserts the given answer in the GT
and, then, it uses the reference to the GT’s leaf node representing answer (leaf_at_node
in Fig. 5.4) as the token to be checked/inserted in the answer trie corresponding to the
given subgoal frame sf. Again, if the list of sibling nodes in the answer trie exceeds the
MAX_SIBLING_NODES_PER_LEVEL threshold value, a new hash table is initialized.

answer _check_i nsert ( SUBGOAL_FRAME sf, ANSWER answer) {
at _root_node = sf->answer _trie_root_node
i f (GT_ROOT_NCDE) { /1 GTI-CA table design
| eaf _gt_node = trie_check_insert(GI_ROOT_NODE, answer)
| eaf _at _node trie_node_check_insert(at_root_node, |eaf_gt_node)
} else { /1 original table design
| eaf _at_node = trie_check_insert(at_root_node, answer)

}

return | eaf _at_node

}

Figure 5.4: Pseudo-code for the GT-CA’s answer_check_insert () procedure.

Finally, the answer_load() procedure is used to consume answers. Figure 5.4 shows the
pseudo-code for it. In the original table design, it simply uses the trie_load() procedure
to load from the answer trie the answer given by the trie node leaf_at_node. In the new
design based on the GT-CA, the answer_load() procedure first accesses the GT’s leaf node
(leaf_gt_node in Fig 5.5) represented in the token field of the given trie node (leaf _at_node
in 5.5). Then, it uses the trie_load() procedure to load from the GT back to the Prolog

engine the answer represented by the obtained GT’s leaf node.

5.2 Global Trie for Terms

We now describe in more detail the GT-T data structures and algorithms. We start with

Fig. 5.6 showing in more detail the table organization previously presented in Fig. 4.3
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answer _| oad( ANSVER_TRI E_NCDE | eaf _at _node) {

if (GT_ROOT_NODE) { /1 GI-CA tabl e design
| eaf _gt _node = | eaf _at _node- >t oken
answer = trie_| oad(l eaf_gt_node)

} else /] original table design

answer = trie_|l oad(l eaf _at_node)
return answer

}

Figure 5.5: Pseudo-code for the GT-CA’s answer_load() procedure.

for the subgoal call t(X,Y). As mentioned previously, tries are represented by a top root
node, acting as the entry point for the corresponding subgoal, answer or global trie data
structure. For the subgoal tries, the root node is stored in the corresponding table entry’s
subgoal_trie_root_node data field. For the answer tries, the root node is stored in the
corresponding subgoal frame’s answer_trie_root_node data field. For the global trie, the
root node is stored in the GT_ROOT_NODE global variable.

In this table organization, the trie nodes have the same structure as in the previous design,
being internally implemented as 4-field data structures. The first field (token) stores the
token for the node and the second (child), third (parent) and fourth (sibling) fields store
pointers, respectively, to the first child node, to the parent node, and to the next sibling node.
Remember that for the global trie, the leaf node’s child field is used to count the number of
references to the path it represents. For the answer tries, an additional field (code) is used to
support compiled tries. As mentioned before, traversing a trie to check/insert for new calls
or for new answers is implemented by repeatedly invoking a trie_node_check_insert()
procedure for each token that represents the call/answer being checked. Given a trie node
parent and a token t, the trie_node_check_insert () procedure returns the child node of

parent that represents the given token t.

Initially, the procedure checks if the list of sibling nodes is empty. If this is the case, a new
trie node representing the given token t is initialized and inserted as the first child of the
given parent node. To initialize new trie nodes, we use a new_trie_node() procedure with
four arguments, each one corresponding to the initial values to be stored respectively in the
token, child, parent and sibling fields of the new trie node. For answer trie nodes, the code
field is computed later when completion takes place. Otherwise, if the list of sibling nodes is

not empty, the procedure checks if they are being indexed through a hash table.

As in the previous design, two threshold values, MAX_SIBLING_NODES_PER_LEVEL and
MAX_SIBLING_NODES_PER_BUCKET, control whether to dynamically index/expand the nodes
through a hash table. If not using hashing, the procedure then traverses sequentially the

list of sibling nodes and checks for one representing the given token t. If such a node
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Figure 5.6: Implementation details for GT-T design.

is found then execution is stopped and the node returned. Otherwise, a new trie node
is initialized and inserted in the beginning of the list. If reaching the threshold value
MAX_SIBLING_NODES_PER_LEVEL, a new hash table is initialized and inserted as the first child
of the given parent node. If using hashing, the procedure first calculates the hash bucket for
the given token t and then, it traverses sequentially the list of sibling nodes in the bucket
checking for one representing t. Again, if such a node is found then execution is stopped and
the node returned. Otherwise, a new trie node is initialized and inserted in the beginning of
the bucket list. If reaching the threshold value MAX_SIBLING_NODES_PER_BUCKET, the current

hash table is expanded.
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To manipulate tries we still use two interface procedures:

trie_check_insert(TRIE_NODE root, TERM t)
trie_load(TRIE_NODE leaf)

Once more, the trie_load() is used to load a term from a trie back to the Prolog
engine, where leaf is the reference to the leaf node of the term to be loaded. The
trie_check_insert () is used for traversing a trie to check/insert for new terms, where root
is the root node of the trie to be used and t is the term to be inserted. It invokes repeatedly
the previous trie_node_check_insert () procedure for each token that represents the given
term t and returns the reference to the leaf node representing its path. Inserting tabled calls
in a subgoal trie structure is now handled by the subgoal_check_insert() procedure as
shown in Fig. 5.7 and inserting answers in a particular answer trie structure is now handled

by the answer_check_insert () procedure as shown in Fig. 5.8.

subgoal _check_i nsert (TABLE_ENTRY te, SUBGOAL_CALL call, SUBGCAL_ARITY a) {

if (GT_ROOT_NODE) { /1 GI-T table design
st _node = te->subgoal _trie_root_node
for (i =1; i <= a; i++) {
t = get_argunment_term(call, i)
| eaf _gt_node = trie_check_insert(GI_ROOT_NCDE, t)
| eaf _gt _node->chi |l d++ /1 increase nunber of paths it represents
st_node = trie_node_check_insert(st_node, |eaf_gt_node)
}
| eaf _st_node = st_node
} else /1 original table design

| eaf _st_node = trie_check_insert(te->subgoal _trie_root_node, call)
return | eaf st _node

}

Figure 5.7: Pseudo-code for the GT-T’s subgoal_check_insert () procedure.

In the GT-T design, for each argument term t, the subgoal_check_insert() first
checks/inserts the term t in the GT-T and, then, it uses the reference to the leaf node
representing t in the GT-T (leaf_gt_node in Fig. 5.7) as the token to be checked/inserted
in the subgoal trie corresponding to the given table entry te. Note that this is done by calling
the trie_node_check_insert () procedure, thus if the list of sibling nodes in the subgoal
trie exceeds the MAX_SIBLING_NODES_PER_LEVEL threshold value, then a new hash table is

initialized as described before.

The answer_check_insert() procedure works similarly. In the GT-T design, for each
substitution term t, it first checks/inserts the term t in the GT-T and, then, it uses the
reference to the leaf node representing t in the GT-T (leaf_gt_node in Fig. 5.8) as the token

to be checked /inserted in the answer trie corresponding to the given subgoal frame sf. Again,
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if the list of sibling nodes in the answer trie exceeds the MAX_SIBLING_NODES_PER_LEVEL

threshold value, a new hash table is initialized.

answer _check_i nsert ( SUBGOAL_FRAME sf, ANSWER answer, SUBSTI TUTI ON_ARITY a) {

if (GI_ROOT_NODE) { /1 GI-T tabl e design
at _node = sf->answer _trie_root_node
for (i =1; i <=a; i++) {

t = get_substitution_tern{answer, i)
| eaf _gt_node = trie_check_insert(GI_ROOT_NCDE, t)

| eaf _gt _node->chil d++ /1 increase nunber of paths it represents
at_node = trie_node_check_insert(at_node, |eaf_gt_node)
}
| eaf _at _node = at_node
} else /1 original table design

|l eaf _at_node = trie_check_insert(sf->answer_trie_root_node, answer)
return | eaf _at_node

}

Figure 5.8: Pseudo-code for the GT-T’s answer_check_insert () procedure.

Finally, Fig. 5.9 shows the pseudo-code for the new answer_load() procedure. In the new
GT-T design, for each answer trie node at_node, now the answer_load () procedure uses the
trie_load() procedure to load from the GT-T back to the Prolog engine the substitution
term given by the reference (leaf_gt_node in Fig. 5.9) stored in the corresponding token
field.

answer _| oad( ANSWER _TRI E_NODE | eaf _at _node, SUBSTI TUTI ON_ARI TY a) {

if (GI_ROOT_NODE) { /1l GT-T table design
at_node = | eaf _at_node
for (i =a; i >=1; i--) {

| eaf _gt _node = at_node- >t oken

t =trie_load(leaf_gt_node)

put _substitution_term(t, answer)
at _node = at_node- >parent

}

} else /1 original table design
answer = trie_|load(leaf_at_node)
return answer

Figure 5.9: Pseudo-code for the GT-T’s answer_load() procedure.

5.3 Global Trie for Subterms

Finally, we then describe the data structures and algorithms for the GT-ST table design.

Figure 5.10 shows in more detail the table organization previously presented in Fig. 4.5 for



60 Implementation

the subgoal call t (X,Y). As mentioned in the previous sections, tries are represented by a top
root node, acting as the entry point for the corresponding trie data structure, and trie nodes
are internally implemented as 4-field data structures. The first field (entry) stores the token
for the node and the second (child), third (parent) and fourth (sibling) fields store pointers,
respectively, to the first child node, to the parent node, and to the sibling node. Traversing a
trie to check/insert for new calls or new answers is also implemented by repeatedly invoking a
trie_node_check_insert () procedure for each token that represents the call /answer being
checked. The same algorithm is applied on this design, i.e., given a trie node parent and a
token t, the trie_node_check_insert() procedure returns the child node of parent that

represents the given token t.

Initially, the procedure checks if the list of sibling nodes is empty. If this is the case, a
new trie node representing the given token t is initialized and inserted as the first child
of the given parent node.Otherwise, if the list of sibling nodes is not empty, the procedure
checks if they are being indexed through a hash table. The usage of the threshold values
MAX_SIBLING_NODES_PER_LEVEL and MAX_SIBLING_NODES_PER_BUCKET remains unaltered.
When using hashing, the procedure first calculates the hash bucket for the given token t
and then, it traverses sequentially the list of sibling nodes in the bucket checking for one rep-
resenting t. Again, if such a node is found then execution is stopped and the node returned.
Otherwise, a new trie node is initialized and inserted in the beginning of corresponding the
bucket list. If reaching the threshold value MAX_SIBLING_NODES_PER_BUCKET the current hash
table is expanded. If not using hashing, the list of sibling nodes is sequentially traversed to
be checked for one representation of the given token t. The procedure is stopped when such
representation is found, returning the respective node. Otherwise, a new trie node inserted
in the list of siblings. When the threshold value MAX_SIBLING_NODES_PER_LEVEL is reached,
during a new node’s insertion, a new hash table is initialized, inserting the new node in the

new hash table.

As for the previous designs, in the GT-ST we also use two interface procedures to manipulate

tries.

trie_check_insert(TRIE_NODE root, TERM t)
trie_load (TRIE_NODE leaf)

The trie_load() procedure is used to load a term from a trie back to the Prolog
engine, where leaf is the reference to the leaf node of the term to be loaded. The
trie_check_insert() is used for traversing a trie to check/insert for new terms, where
root is the root node of the trie to be used and t is the term to be inserted. As described
in the previous sections, the two distinct situations of inserting tabled calls in a subgoal trie
structure and inserting answers in a particular answer trie structure are handled respectively

by the subgoal_check_insert() and answer_check_insert() procedures. In the GT-ST
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Figure 5.10: Implementation details for the GT-ST design.

design these procedures are analogues to the ones presented for the GT-T design, as shown
respectively in Fig. 5.7 and Fig. 5.8. Both procedures start by first checking/inserting the
term t in the GT, in order to use the reference to the leaf node representing t in the GT-T, as
the token to be checked/inserted in the corresponding subgoal or answer trie. In the GT-ST,
both procedures behave in same way in what regards to the subgoal and answer check /insert

procedure.

The difference relies in the insertion of terms in the GT, and for that we have changed the
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trie_check_insert () procedure in such a way that when a compound term has a compound
term as an argument, the procedure calls itself. In what remains we will refer to a term
argument as a subterm. Figure 5.11 shows the pseudo-code for the changes made to the

trie_check_insert () procedure in order to support the new algorithm.

trie_check _insert(TRI E_NODE root, TERM1t) {
current _node = root
if (is_atomc_ternm(t)) {
current _node = trie_node_check_insert(current_node, t)
} else if (is_conmpound_term(t)) { /1 GT-ST table design
if (current_node == GI_ROOT_NODE) {
st = conpound_t erm name(t)
a = conpound_termarity(t)
current _node = trie_node_check_insert(current_node, st)

for (i =0; i <a; i ++) {

st = get_argunent _tern(t, i)
current_node = trie_check_insert(current_node, st)

}

} else { /1 conmpound subterm of a conpound term
ref = trie_check_insert(GI_ROOT_NCDE, t)
current _node = trie_node_check_insert(current_node, ref)

}
}

return current_node

Figure 5.11: Pseudo-code for the GT-ST’s trie_check_insert() procedure for the GT-ST

design.

Remember that, with the GT enabled, the trie_check_insert () procedure for a call or
answer is called with the GT_ROOT_NODE as the root argument. For the given term t,
we initially verify its type in order to preform the respective action of insertion in the
trie. When t is a compound term, two situations can occur: (i) if the current_node is
the GT_ROOT_NODE then the insertion proceeds by first inserting the term’s name with the
trie_node_check_insert () and then, for each element of t (subterm), by invoking the
trie_check_insert() procedure; (ii) on the other hand, if the current_node is not the
GT_ROOT_NODE, which means that t is an argument from a compound term, then we first call
the trie_check_insert () procedure with the GT_ROOT_NODE and the term t as arguments.
By doing that, t is inserted as a simple term in the GT and when the trie_check_insert ()
procedure returns, the reference ref to the leaf node of the subterm’s path representation of
t in the GT is inserted after the current_node by calling the trie_node_check_insert()

procedure.

The answer_load() procedure in this design is used as in the GT-T design, i.e., it uses
the trie_load() procedure to load from the GT back to the Prolog engine the substitution

term given by the reference stored in the corresponding token field. In the case of subterm
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references in the GT, the trie_load () procedure calls itself to first load the subterm reference
from the GT.

Finally, in what regards the optimization mentioned in the previous chapter for the
representation of atomic terms (integers, atoms and variables), Fig. 5.10 presents the changes
made to the table space when using this optimization. Remember that in the previous
GT design, when inserting an atomic term, being it part of an answer or subgoal, the
algorithm first checks/inserts the term in the GT and only then inserts the reference to
its representation in the respective subgoal or answer trie. To implement this optimization,
the subgoal/answer_check_insert() procedures were slightly changed. Before we insert a
term t in the GT, now we first verify if it is an atomic term, and if so, instead of inserting it
in the GT we represent the term in its respective subgoal /answer trie. Figure 5.12 shows the
pseudo-code for this optimization applied to the subgoal_check_insert() procedure. It is

applied similarly to the answer_check_insert () procedure.

subgoal _check_i nsert (TABLE_ENTRY te, SUBGOAL_CALL call, SUBGOAL_ARITY a) {
i f (GT_ROOT_NODE) { /| GI-ST tabl e design
st _node = te->subgoal _trie_root_node
for (i =1; i <= a; i++) {
t = get_argunent _term(call, i)
if (is_atomc_term(t)) /] atom c termoptinization
st_node = trie_node_check_insert(st_node, t)
el se {
| eaf _gt_node = trie_check_insert(GI_ROOT_NODE, t)
| eaf _gt _node->chil d++ /1 increase nunber of paths it represents
st_node = trie_node_check_i nsert(st_node, |eaf_gt_node)
}
}
| eaf _st _node = st_node
} else /1 original table design
| eaf _st _node = trie_check_insert(te->subgoal _trie_root_node, call)
return | eaf _st_node

}

Figure 5.12: Pseudo-code for the GT’ST subgoal_check_insert () procedure optimized for

atomic terms.
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Chapter 6

Experimental Results

In this chapter we present the experimental results obtained for the optimizations previously
described, and for that we compare the running times and system’s memory spent by each.
Initially, we present results for the new compact list terms representation, making comparison
with the YapTab system. Afterwords, we discuss the results obtained by testing the GT
table designs, once more comparing then with the YapTab system. The environment for our
experiments was an Intel(R) Core(TM)2 Quad 2.66GHz with 3.2 GBytes of main memory
and running the Linux kernel 2.6.24-28-generic with YapTab 6.2.0.

6.1 Compact List Terms

We next present some experimental results comparing YapTab with and without support for
compact lists. To put the performance results in perspective, we have defined a top query
goal that calls recursively a tabled predicate 1ist_terms/1 that simply stores in the table
space list terms facts. We experimented the list_terms/1 predicate using 50,000, 100,000
and 200,000 list terms of sizes 60, 80 and 100 for empty-ending and term-ending lists with
the first and with the last element different. Tables 6.1 and 6.2 show the table memory
usage (columns Memory), in KBytes, and the running times, in milliseconds, to store
(columns Store) the tables (first execution) and to load from the tables (second execution)
the complete set of answers without (columns Load) and with (columns Comp) compiled
tries for YapTab using standard lists (column YapTab) and using the final design for compact
lists (column YapTab+CL/YapTab). For compact lists, we only show the memory and
running time ratios over YapTab using standard lists. The running times are the average of

five runs.

The results in Tables 6.1 and 6.2 clearly confirm that the new trie design based on

compact lists can decrease significantly memory usage when compared with standard lists.
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YapTab YapTab+CL/YapTab

Empty-Ending List
Mpy-Enaing Lusts Memory Store Load Comp|Memory Store Load Comp

First element different
50,000 [E4,...,Eqo] 117,187 327 48 48 0.51 0.50 0.72 0.73
50,000 [Eq,...,Es] 156,250 486 62 62 0.51 0.50 0.66 0.65
50,000 [Eq,...,E1q0] 195,312 641 75 75 0.51 0.47 0.65 0.65
100,000 [E,...,Eg] 234,375 775 93 93 0.51 0.47 0.74 0.74
100,000 [Eq,...,Eg] 312,500 1,135 122 122 0.51 0.45 0.67 0.68
100,000 [E,...,E10] | 390,625 1,531 150 149 0.51 0.46 0.65 0.66
200,000 [E,...,Eg] 468,750 1,868 187 186 0.51 0.48 0.74 0.75
200,000 [E,...,Eg] 625,000 2,544 250 247 0.51 0.48 0.66 0.66
200,000 [E,...,Eq0] | 781,250 3,161 300 302 0.51 0.54 0.66 0.68

last element different

50,000 [E1,...,Eq] 1,955 58 22 21 0.50 0.77 0.70 0.73
50,000 [E1,...,Eq] 1,956 82 20 28 0.50 0.73 0.67 0.69
50,000 [E1,...,E1q] 1,957 94 35 35 0.50 0.78 0.68 0.68
100,000 [E,,...,Eq] 3,009 122 43 43 0.50 0.76 0.75 0.72
100,000 [E1,...,Eg] 3910 156 57 57 0.50 0.77 0.72 0.70
100,000 [E1,...,Eiq] 3910 191 70 70 0.50 0.79 0.69 0.67
200,000 [E,...,Eg] 7815 255 87 92 0.50 0.73 0.72 0.68
200,000 [Ej,...,Eg] 7816 318 118 118 0.50 0.76 0.65 0.66
200,000 [E1,...,Eq] 7817 377 141 140 0.50 0.78 0.67 0.67

Table 6.1: Table memory usage (in KBytes) and store/load times (in milliseconds) for YapTab
with and without support for compact lists for empty-ending lists with different first or last

elements.

In particular, for empty-ending lists, with the first and with the last element different, and
for term-ending lists with the first element different, the results show an average reduction
of 50%. For term-ending lists with the last element different, memory usage is almost the
same. This happens because the memory reduction obtained in the representation of the
common list elements (respectively 59, 79 and 99 elements in these experiments) is residual
when compared with the number of different last elements (50,000, 100,000 and 200,000 in

these experiments).

Regarding running time, the results in Tables 6.1 and 6.2 indicate that compact lists
can achieve impressive gains for storing and loading list terms. In these experiments, the
storing time using compact lists is around 2 times faster for list terms with the first element
different, and around 1.3 (0.79 ratio) to 1.4 (0.73 ratio) times faster for list terms with
the last element different. Note that this is the case even for term-ending lists, where
there is no significant memory reduction. This happens because the number of nodes to be

traversed when navigating the trie data structures for compact lists is considerably smaller
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YapTab YapTab+CL/YapTab

Term-Ending List
erm-naing Lusts Memory Store Load Comp|Memory Store Load Comp

1st element different
50,000 [E1,...,E59|Ego] 115,235 320 48 47 0.52 0.51 0.72 0.73
50,000 [E1,...,E79|Eso] 154,297 471 62 62 0.51 0.53 0.67 0.66
50,000 [E1,...,Eq|E100] 193,360 657 74 73.6 0.51 0.47 0.66 0.65
100,000 [Ey,...,E59|Fso] | 230,469 732 97 96 0.52 0.50 0.72 0.72
100,000 [E4,...,E79|Eso] | 308,594 1149 124 122 0.51 0.46 0.66 0.67
100,000 [Ei,...,Eq|F100]| 386,719 1516 149 146 0.51 0.49 0.66 0.67
200,000 [Ey,...,E59|Ego] | 460,937 1853 187 190 0.52 0.52 0.77 0.74
200,000 [Ei,...,E79|Ego] | 617,188 2417 244 248 0.51 0.51 0.69 0.69
200,000 [E,,...,Eqo| E100]| 773,438 3152 296 299 0.51 0.53 0.67 0.66

last element different

50,000 [E1,...,Es9|Eco] 979 57 22 22 1.00 0.82 0.70 0.74
50,000 [E1,...,E7|Eso] 980 74 28 28 1.00 0.89 0.69 0.69
50,000 [E1,...,Eq9|F100] 981 94 43 39 1.00 0.79 0.54 0.59
100,000 [E1,...,Es9|Eo] 1,956 113 42 42 1.00 0.84 0.74 0.74
100,000 [E1,...,Ez9|Eso] 1,956 146 56 60 1.00 0.81 0.64 0.69
100,000 [Ey,...,Eg|F100] 1,957 190 74 70 1.00 0.77 0.62 0.68
200,000 [E1,...,Es|Ego] 3,009 238 85 904 1.00 0.77 0.78 0.69
200,000 [E1,...,E9|Exo] 3,010 294 113 113 1.00 0.85 0.73 0.67
200,000 [E1,...,Eg|E100] 3,010 364 140 140 1.00 0.81 0.70 0.67

Table 6.2: Table memory usage (in KBytes) and store/load times (in milliseconds) for YapTab

with and without support for compact lists for lists with different first or last elements.

than the number of nodes for standard lists. These results also indicate that compact lists
can outperform standard lists for loading terms, both with and without compiled tries, and
that the reduction on the running time seems to decrease as the size of the list terms being

considered increases.

6.2 Global Trie

We next present some experimental results comparing YapTab with and without support for
the common global trie data structure. To put the performance results in perspective and
have a well-defined starting point comparing the GT-T and GT-ST approaches, first we have
defined a tabled predicate t/5 that simply stores in the table space terms defined by term/1
facts, and then we used a top query goal test/0 to recursively call t/5 with all combinations
of one and two free variables in the arguments. An example of such code for functor terms

of arity 1 (1000 terms in total) is shown next.
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:- table t/5.
t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).

test :- t(A,f(1),f(1),f(1),£f(1)), fail.
test :- t(£(1),f(1),f(1),£f(1),A), fail.
test :- t(A,B,f(1),f(1),f(1)), fail.

test :- t(£(1),f(1),f(1),A,B), fail.
test.

term(£(1)).
term(£(2)).
term(£(3)).

term(£(998)) .
term(£(999)).
term(£(1000)).

We experimented the test/0 predicate with 10 different kinds of 1000 term/1 facts: integers,
atoms, functor (with arity 1, 2, 4 and 6) and list (with length 1, 2 and 4) terms. Table 6.3
shows the table memory usage (column Memory), in MBytes, and the running times, in
milliseconds, to store (column Store) the tables (first execution) and to load from the tables
(second execution) the complete set of subgoals/answers without (column Load) and with

(column Comp) compiled tries for YapTab’s original table design.

Table 6.4 shows the same figures presented in Table 6.3, memory in MBytes and running
times spent to store tables and to load answer from tables, with and without compiled tries,
in milliseconds, but when using the GT-T (column GT-T/YapTab) or the GT-ST (column
GT-ST/YapTab) designs. For this table, we only show the ratios over YapTab’s original
table design using the results presented in Table 6.3.

Notice, that the results obtained for the first GT design, the GT-CA, are not shown here,
since this design is no longer supported and the changes made at YapTab’s latest version
did not include this design. Therefore, a fair comparison between all the GT designs is not
possible. For reference, in Appendix A, we show the results obtained and published in [33]
for a preliminary version of the GT-CA design.

The results in Table 6.4 suggest that both GT designs are a very good approach to reduce
memory usage and that this reduction increases proportionally to the length and redundancy
of the terms stored in the global trie. In particular, for functor and list terms, the results
show an increasing and very significant reduction on memory usage, for both GT-T and
GT-ST approaches. The results for the special cases of integer and atoms terms are also very
interesting as they show that the cost of representing only atomic terms in the respective
tries. Note that, although, integers and atoms terms are only represented in the respective
tries, it is necessary to check for these type of term, in order to proceed with the respective

store/load algorithm.
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YapTab

Terms

Memory Store Load Comp
1000 ints 191 1,270 345 344
1000 atoms 191 1,423 343 406
1000 f/1 191 1,680 542 361
1000 f/2 382 2,295 657 450
1000 f/4 764 3,843 973 631
1000 f/6 1,146 5,181 1,514 798
1000 [ ]/1 382 2,215 507 466
1000 [ ]/2 764 3,832 818 604
1000 [ ]/4 1,528 6,566 1,841 1,066

Table 6.3: Table memory usage (in MBytes) and store/load times (in milliseconds) for the
test/0 predicate using YapTab’s original table design.

Terms GT-T/YapTab GT-ST/YapTab
Memory Store Load Comp|Memory Store Load Comp
1000 ints 1.00 1.05 1.00 1.00 1.00 1.09 1.11 1.07
1000 atoms 1.00 1.04 1.01 1.02 1.00 1.04 1.03 1.08
1000 f/1 1.00 1.32 1.16 2.10 1.00 1.34 1.17 2.13
1000 f/2 0.50 1.10 1.14 1.84 0.50 1.06 1.11 1.88
1000 f/4 0.25 0.81 0.98 1.44 0.25 0.78 1.04 1.53
1000 f/6 0.17 0.72 0.72 1.38 0.17 0.66 0.71 1.36
1000 [ ]/1 0.50 1.08 1.05 1.61 0.50 1.10 1.02 1.58
1000 [ ]/2 0.25 0.80 0.94 1.38 0.25 1.00 1.05 1.48
1000 [ ]/4 0.13 0.63 0.54 0.96 0.13 0.89 0.66 1.14
Average 0.53 0.95 0.95 1.42 0.53 0.99 0.99 1.47

Table 6.4: Table memory usage (in MBytes) and store/load times (in milliseconds) for the

test/0 predicate using YapTab with support for the common global trie data structure.

Regarding running time the results suggest that, in general, GT-ST, spends more time in the
store and load term procedures. Such behaviour can be easily explained by the fact that, the
GT-ST’s storing and loading algorithms have more sub-cases to process in order to support
subterms. These results also seem to indicate that memory reduction for small sized terms,
generally comes at a price in storing time (between 4% and 32% more for GT-T and between
4% and 34% more for GT-ST in these experiments). The opposite occurs in the tests where
term’s length are higher (between 19% and 37% less for GT-T and 11% and 34% less for
GT-ST). Note that with GT-T and GT-ST support, we pay the cost of navigating in two
tries when checking/storing/loading a term. Moreover, in some situations, the cost of storing
a new term in an empty/small trie can be less than the cost of navigating in the global trie,

even when the term is already stored in the global trie. However, our results seem to suggest
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that this cost decreases proportionally to the length and redundancy of the terms stored in
the global trie. In particular, for functor and list terms and functor terms, GT-T and GT-ST
support showed to outperform the original YapTab design and, in particular, the reduction

seems to decrease also proportionally to the length of the terms stored in the global trie.

The results obtained for loading terms also show some gains without compiled tries (around
5% for GT-T and 1% for GT-ST on average) but, when using compiled tries the results
show some significant costs on running time (around 42% for GT-T and 47% for GT-ST
on average). We believe that this cost is smaller for GT-T as a result of having less sub-
cases in the storing/loading algorithms. On the other hand, we also believe that some cache
behaviour effects, reduce the costs on running times, for both GT designs. As we need to
navigate in the global trie for each substitution term, we kept accessing the same global trie
nodes, thus reducing eventual cache misses. This seems to be the reason why for list terms
of length 4, GT-T clearly outperforms the original YapTab design, both without and with
compiled tries. Note that, for this particular case, the GT-T support only consumes 13% of

the memory used in the original YapTab.

Next, we tested our approach with two well-known Inductive Logic Programming (ILP) [34]
benchmarks: the carcinogenesis (Carc) and the mutagenesis (Muta) data sets. We used
these data sets in a Prolog program that simulates the test phase of an ILP system. For
that, first we ran the April ILP system [35] for the two data sets, each with two different
configurations, in order to collect the set of clauses generated for each configuration. The
simulator program then uses the corresponding set of generated clauses to run the positive
and negative examples defined for each data set against them. To evaluate clauses, we used
two different strategies: Pred denotes the tabling of individual predicates and Conyg denotes
the tabling of literal conjunctions (as described in [36]). By tabling conjunctions, we only
need to compute them once. The strategy is then recursively applied as the ILP system

generates more specific clauses, but this can increase the table memory usage arbitrarily.

Tables 6.6 and 6.5 show the table memory usage (columns Memory), in MBytes, and
the running times, in seconds, to store (columns Store) the tables (first execution) and
to load from the tables (second execution) the complete set of subgoals/answers without
(columns Load) and with (columns Comp) compiled tries for YapTab using the original
table organization (column YapTab), using the GT-T approach (column GT-T/YapTab)
and using the GT-ST design (column GT-ST/YapTab). Again, for the GT-T and GT-ST
approaches we only show the memory and running time ratios over YapTab’s original table

organization.

In general, the results in Table 6.6 confirm the results obtained in Table 6.4 for memory usage
with both GT-T and GT-ST designs showing equivalent memory usage ratios. In particular,
for the Pred strategy, memory usage showed to be, on average, 2% less for the GT-ST
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YapTab

Data Sets

Memory Store Load Comp
Pred
Carc_ vl 1,669.0 68,524 72,088 84,658
Carc_v2 2.1 50,151 54,391 68,832
Muta vl 0.6 96,578 5,072 5,456
Muta v2 0.6 95,181 2,109 2,604
Cong
Carc vl 18.5 652 588 536
Carc_v2 a.m. am. am. a.m.
Muta vl 84.8 102,214 6,792 7,309
Muta v2 675.6 95,846 1,724 2,152

Table 6.5: Table memory usage (in MBytes) and store/load times (in seconds) for the ICLP
benchmarks using YapTab’s original table design.

Data Sets GT-T/YapTab GT-ST/YapTab
Memory Store Load Comp|Memory Store Load Comp
Pred
Carc_vl 0.62 1.15 1.13 1.12 0.60 1.07 1.02 0.97
Carc_v2 0.53 1.00 1.06 1.02 0.53 1.04 1.16 1.09
Muta vl 0.62 1.09 1.07 1.04 0.60 1.06 1.08 1.06
Muta v2 0.62 0.99 1.05 1.01 0.60 1.00 1.29 1.29
Average 0.59 1.09 1.08 1.06 0.57 1.11 1.18 1.18
Conj
Carc_vl 0.39 0.97 0.97 1.00 0.39 1.04 1.10
Carc_v2 - - - - - - - -
Muta vl 0.53 1.00 1.06 1.02 0.53 1.04 1.16 1.09
Muta_v2 0.16 1.07 0.86 0.57 0.16 1.04 0.95 0.71
Average 0.36 1.01 0.96 0.86 0.36 1.05 1.05 0.96

Table 6.6: Table memory usage (in MBytes) and store/load times (in seconds) for the ILP

benchmarks using YapTab with the support for the common global trie data structure.

design than GT-T. Since the Pred strategy tables individual predicates, the existence of
complex compound terms reduces the memory spend when using GT-ST, although, these
gains are residual. For the Conj strategy, both designs outperform the YapTab standard
table organization. This happens because after a certain time, the Conjy strategy will not
table new terms, but only answers that are combinations of previous terms, therefore making
the GT approach more feasible as it can share the representation of common terms appearing

at different argument or substitution positions.

Regarding running time, the results in Table 6.6 also confirm and reinforce the results



72 Experimental Results

obtained in Table 6.4. GT-T support outperforms the GT-ST design for storing and loading
times and, for some configurations, it also outperforms the original YapTab design. This is

the case for configurations either with or without compiled tries.

Finally, in Table 6.7, we present a new set of tests specially designed to provide more
expressive results regarding the comparison between the GT-ST and the GT-T designs. In
this tests, we have defined a tabled predicate t/1 that simply stores in the table space terms
defined by term/1 facts and then we used a test/0 predicate to call t/1 with a free variable.
We experimented test/0 predicate with 9 different sets of 500,000 term facts of compound
terms (with arity 1, 2, 3) where its arguments were also compound subterms (with arity 1,
3, 5). An example of such code for a compound term f with arity 2 containing arguments

subterms with arity 3 (500,000 terms in total) is shown next.

:- table t/1.
t(A) :- term(A).

test :- t(A), fail.
test.

term(f(g(1,1,1), g(1,1,1))).
term(f(g(2,2,2), g(2,2,2))).
term(f(g(3,3,3), g(3,3,3)))

term(f (g(499998,499998,499998) , £(499998,499998,499998))) .
term (£ (g(499999,499999,499999), g(499999,499999,499999))) .
term (£ (g(500000,500000,500000), g(500000,500000,500000))) .

Opposed to the previous experiments, here we just used one free variable for the tabled
predicate t/1. This difference is necessary, because when we have more than one free variable
and, we produce different combinations between those free variables, we are raising the
number of nodes represented in the local tries. More precisely, different combinations of free
variables raises the number of answers and therefore the number of nodes in the local answer
tries. Moreover, since these experiments serve the purpose to show the differences between
the GT-T and GT-ST at memory level, we did not include the YapTab original table design

in these experiments.

Table 6.7 shows the table memory usage (columns Tab.Memory) composed by two
columns one for total memory (columns Total) and the other for GT’s memory (columns
GT), in MBytes, and the running times, in milliseconds, to store (columns Store) the
tables (first execution) and to load from the tables (second execution) the complete set of
subgoals/answers without (columns Load) and with (columns Comp) compiled tries using
the GT-T table design (column GT-T'), and using the GT-ST design (column GT-ST/GT-
T). For the values referring the GT-ST we only show the memory and running times ratios

over the GT-T design. The running times are the average of five runs.

Table 6.7 suggests that the GT-ST outperforms the GT-T design in some special cases, the
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500,000 GT-T GT-ST/GT-T
Terms |Tab. Memory Tab. Memory
Total GT Store Load Comp|Total GT Store Load Comp

1/1
g/1 17.17 7.63 126 28 51| 1.44 2.00 1.55 1.14 1.00
g/3 3243 2289 198 34 61 1.24 1.33 329 1.12 1.25
g/5 47.68 38.15 293 47 83| 1.16 1.2 1.46 1.00 0.99

1/2
g/1 32.43 2289 203 38 71 1.00 1.00 1.28 1.13 1.09
g/3 62.94 53.41 45 60 103| 0.76 0.71 1.18 0.84 0.95
g/5 93.46 83.92 438 111 146| 0.67 0.64 1.10 0.67 0.8

1/3
g/1 47.68 38.15 296 50 89| 0.84 0.80 2.87 1.02 1.03
g/3 93.46 83.92 616 142 164 0.59 0.55 1.25 0.8 0.85
g/5 |139.24 129.7 832 197  224| 0.51 0.47 0.96 0.67 0.74

Average 0.96 0.97 0.93 0.97 0.91

Table 6.7: Table memory usage (in MBytes) and store/load times (in seconds) for subterm

representation using YapTab with support for the common global trie data structure.

results show three different situations, that can be distinguished by the arity of the functor
term f. For f/1 terms, it clearly shows that the costs are higher for GT-ST, since it needs to
store one extra node for every distinct subterm representation and there is no redundancy in
the subterms. We can also see that the memory cost seems to be reduced when the subterm’s
arity increases from g/1 to g/5. This occurs because the cost of the extra node for each

subterm is diluted in the number of nodes represented in the GT.

The results on table 6.7 also show that, in some cases, the storing process can be a very
expensive procedure. Remember that with the GT-ST support, we pay the cost of recreating
the local tries/global trie interactions when checking/storing/loading a term inside the GT.
A particular situation occurs for the case of f/2 with subterms g/1 where the memory
spend is the same for both designs. This happens because the extra node used by GT-ST, to
represent the reference to the subterm representation, is balanced by the arity of the functor
term f. From this point on, the GT-ST always outperforms the GT-T, not only for the
system’s memory, but also for the running times with and without compiled tries. These
results suggest that, at least for some class of applications, GT-ST support has potential to

achieve significant reductions on memory usage without compromising running time.
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Chapter 7

Conclusions and Further Work

In this final chapter, we summarize the achievements of the work presented in this thesis,

providing our conclusions and some directions for further work.

We have presented a new and more compact representation of list terms for tabled data that
avoids the recursive nature of the WAM representation by removing unnecessary intermediate
pair tokens. Our presentation followed the different approaches that we have considered until
reaching our current final design. We focused our discussion on a concrete implementation,
the YapTab system, but our proposals can be easy generalized and applied to other tabling
systems. Our experimental results are quite interesting, they clearly show that with compact
lists, it is possible not only to reduce the memory usage overhead, but also the running time

of the execution for storing and loading list terms, both with and without compiled tries.

We also have presented three new designs for the table space organization, that have the
common feature of representing all tabled subgoals and tabled answers only once in a common
global trie instead of being spread over several different trie data structures. The goal of
the GT designs starts by reducing to a minimum the nodes present in the subgoal and
answer tries by moving the respective representation to the GT. Continues in the reduction
of the redundancy in term representation by maximizing the sharing of tabled data that is
structurally equal. And ends in the reduction of the redundancy of subterm representation
in compound terms also maximizing the sharing of tabled data. Our experiments using the
YapTab tabling system showed that our approaches have potential to achieve significant

reductions on memory usage without compromising running time.

Further work will include, for the list term representation, exploring the impact of our
proposal in real-world applications, such as, the works on Inductive Logic Programming and
Probabilistic Logic Learning with the ProbLog language [37], that heavily uses list terms to
represent, respectively, hypotheses and proofs in trie data structures. For the GT designs,

further work include, exploring the impact of applying our proposal to other real-world
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applications, that pose many subgoal queries, possibly with a large number of redundant
answers, seeking real-world experimental results allowing us to improve and expand the

current implementations.



Appendix A

Experimental Results for GT-CA

This appendix contains the results for the tabled predicate t/5 and the ILP benchmark tests
used in Chapter 6, obtained and published in [33] for a preliminary implementation of the
GT-CA design. The environment for these experiments was an Intel(R) Core(TM)2 Quad
2.66GHz with 2 GBytes of main memory and running the Linux kernel 2.6.24.23 with YapTab
5.1.4.

YapTab GT-CA/YapTab GT-T/YapTab
Mem Str Load Cmp|Mem Str Load Cmp|Mem Str Load Cmp
1000 ints 1911009 358 207 1.08 1.56 1.30 mn.a.| 1.00 1.32 1.18 1.69
1000 atoms| 1911040 337 231] 1.08 1.54 1.41 n.a.] 1.00 1.26 1.24 1.54

Terms

1000 f/1 1911474 548 239| 1.08 1.35 1.33 n.a| 1.00 1.28 1.11 1.88
1000 f/2 3821840 632 353 0.58 1.25 1.37 n.a.| 0.50 1.11 1.18 1.58
1000 f/4 7642581 786 631 0.33 1.21 1.35 n.a.| 0.25 1.07 1.16 1.14

1000 £/6 | 11463379 1032 765 0.25 1.12 1.29 n.a.| 0.17 1.01 1.05 1.08
1000 [ ]/1 | 3821727 466 365 0.58 1.32 1.44 na.| 0.50 1.17 1.21 1.29
1000 [ ]/2 | 7642663 648 459| 0.33 1.06 1.55 n.a.| 0.250.93 1.20 1.48
1000 [ ]/4 | 15284461 1064 720 0.20 1.10 1.57 n.a.| 0.130.81 1.01 1.28
1000 []/6 | 22936439 2386 1636 0.16 1.02 1.05 n.a| 0.080.71 0.58 0.68
Average 0.571.25 1.37 n.a.| 0.491.07 1.09 1.36

Table A.1: Table memory usage (in MBytes) and store/load times (in milliseconds) for the
test/0 predicate using YapTab with and without support for the common global trie data

structure.
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YapTab GT-CA/YapTab GT-T/YapTab

Data Set
ara sets Mem Str Load Cmp|Mem Str Load Cmp|Mem Str Load Cmp

Pred
Carc_P1 1.670.72 71.26 72.95| 0.82 1.35 1.34 n.a.| 0.62 1.07 1.05 1.03
Carc_ P2 2.151.19 50.44 55.97| 0.87 1.42 1.44 n.a.| 0.51 1.23 1.30 1.22
Muta P1 0.698.93 5.57 5.86| 0.73 1.20 1.19 n.a.| 0.630.91 1.00 0.94
Muta P2 0.693.01 2.01 2.40| 0.73 1.26 1.47 n.a.| 0.630.96 1.22 1.10
Average 0.791.31 1.36 n.a.| 0.601.04 1.14 1.07

Conj
Carc_C1 18.5 0.56 0.51 0.48| 0.53 1.57 1.63 n.a.| 0.39 1.20 1.22 1.08
Carc_ C2 |2802.893.85 70.16 36.44| 0.50 1.50 1.50 n.a.| 0.14 1.11 1.09 0.82
Muta C1| 84.797.02 7.36 6.14] 0.66 1.30 1.65 n.a.| 0.530.99 1.22 1.35
Muta C2| 675.692.76 1.36 1.53| 0.16 1.25 1.42 n.a.| 0.160.98 1.10 0.78
Average 0.461.41 1.55 n.a.| 0.311.07 1.16 1.01

Table A.2: Table memory usage (in MBytes) and store/load times (in seconds) for the
ICLP benchmarks using YapTab with and without support for the common global trie data

structure.



Bibliography

1]

2]

3]

4]

[5]

6]

7]

8]

9]

[10]

D. H. D. Warren, “An Abstract Prolog Instruction Set”, Technical Note 309, SRI
International, 1983.

P. Van Roy, Can Logic Programming Ezxecute as Fast as Imperative Programming?, PhD
thesis, University of California at Berkeley, 1990.

R. Kowalski, “Predicate Logic as a Programming Language”, in Information Processing.
1974, pp. 569-574, North-Holland.

K. Apt and M. van Emden, “Contributions to the Theory of Logic Programming”,
Journal of the ACM, vol. 29, no. 3, pp. 841-862, 1982.

H. Tamaki and T. Sato, “OLDT Resolution with Tabulation”, in International
Conference on Logic Programming. 1986, number 225 in LNCS, pp. 84-98, Springer-
Verlag.

W. Chen and D. S. Warren, “Tabled Evaluation with Delaying for General Logic
Programs”, Journal of the ACM, vol. 43, no. 1, pp. 20-74, 1996.

K. Sagonas and T. Swift, “An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs”, ACM Transactions on Programming Languages and Systems,
vol. 20, no. 3, pp. 586—634, 1998.

I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren, “Efficient Access
Mechanisms for Tabled Logic Programs”, Journal of Logic Programming, vol. 38, no. 1,
pp- 31-54, 1999.

R. Rocha, “On Improving the Efficiency and Robustness of Table Storage Mechanisms
for Tabled Evaluation”, in International Symposium on Practical Aspects of Declarative
Languages. 2007, number 4354 in LNCS, pp. 155-169, Springer-Verlag.

P. Costa, R. Rocha, and M. Ferreira, “Tabling Logic Programs in a Database”, in
Workshop on (Constraint) Logic Programming, 2007, pp. 125-135.

79



80

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

H. Ait-Kaci, Warren’s Abstract Machine — A Tutorial Reconstruction, The MIT Press,
1991.

E. Goto, “Monocopy and Associative Algorithms in Extended Lisp”, Tech. Rep. TR
74-03, University of Tokyo, 1974.

J. Raimundo and R. Rocha, “A Very Compact and Efficient Representation of List
Terms for Tabled Logic Program”, in Local Proceedings of the International Conference
on Applications of Declarative Programming and Knowledge Management, INAP’2009,
S. Abreu and D. Seipel, Eds., Evora, Portugal, November 2009, pp. 157-170.

R. Rocha, F. Silva, and V. Santos Costa, “YapTab: A Tabling Engine Designed to
Support Parallelism”, in Conference on Tabulation in Parsing and Deduction, 2000, pp.
T7-87.

R. Rocha, F. Silva, and V. Santos Costa, “On applying or-parallelism and tabling to
logic programs”, Theory and Practice of Logic Programming, vol. 5, no. 1 & 2, pp.
161-205, 2005.

J. A. Robinson, “A Machine Oriented Logic Based on the Resolution Principle”, Journal
of the ACM, vol. 12, no. 1, pp. 23-41, 1965.

A. Colmerauer, H. Kanoui, R. Pasero, and P. Roussel, “Un systéme de communication
homme—machine en francais”, Technical report cri 72-18, Groupe Intelligence Artificielle,
Université Aix-Marseille 1T, 1973.

D. H. D. Warren, Applied Logic — Its Use and Implementation as a Programming Tool,
PhD thesis, Edinburgh University, 1977.

J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1987.

W. Clocksin and C. Mellish, Programmaing in Prolog, Springer-Verlag, fourth edition,
1994.

L. Sterling and E. Shapiro, The Art of Prolog, The MIT Press, 1994.

K. Sagonas, D. S. Warren, T. Swift, P. Rao, S. Dawson, J. Freire, E. Johnson, B. Cui,
M. Kifer, B. Demoen, and L. F. Castro, XSB Programmers’ Manual, Available from
http://xsb.sourceforge.net.

M. Carlsson and J. Widen, “SICStus Prolog User’s Manual”, SICS Research Report
R88007B, Swedish Institute of Computer Science, 1988.

D. Michie, “Memo Functions and Machine Learning”, Nature, vol. 218, pp. 19-22, 1968.

R. Rocha, F. Silva, and V. Santos Costa, “A Tabling Engine for the Yap Prolog System”,
in APPIA-GULP-PRODE Joint Conference on Declarative Programming, 2000.



BIBLIOGRAPHY 81

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You, “Implementation of a
Linear Tabling Mechanism”, in Practical Aspects of Declarative Languages. 2000, number
1753 in LNCS, pp. 109-123, Springer-Verlag.

Hai-Feng Guo and G. Gupta, “A Simple Scheme for Implementing Tabling based on
Dynamic Reordering of Alternatives”, in Conference on Tabulation in Parsing and
Deduction, 2000, pp. 141-154.

[. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S. Warren, “Efficient Tabling
Mechanisms for Logic Programs”, in International Conference on Logic Programming.

1995, pp. 687-711, The MIT Press.

L. Bachmair, T. Chen, and I. V. Ramakrishnan, “Associative Commutative Discrim-
ination Nets”, in International Joint Conference on Theory and Practice of Software
Development. 1993, number 668 in LNCS, pp. 61-74, Springer-Verlag.

J. Raimundo and R. Rocha, “Compact Lists for Tabled Evaluation”, in Proceedings
of the 12th International Symposium on Practical Aspects of Declarative Languages,
PADL’2010, M. Carro and R. Pena, Eds., Madrid, Spain, January 2010, number 5937
in LNCS, pp. 249-263, Springer-Verlag.

J. Costa and R. Rocha, “Global Storing Mechanisms for Tabled Evaluation”, in
Proceedings of the 2/th International Conference on Logic Programming, ICLP’2008,
M. Garcia de la Banda and E. Pontelli, Eds., Udine, Italy, December 2008, number 5366
in LNCS, pp. 708-712, Springer-Verlag.

J. Costa and R. Rocha, “One Table Fits All”, in Proceedings of the 11th International
Symposium on Practical Aspects of Declarative Languages, PADL’2009, A. Gill and
T. Swift, Eds., Savannah, Georgia, USA, January 2009, number 5418 in LNCS, pp.
195-208, Springer-Verlag.

J. Costa, J. Raimundo, and R. Rocha, “A Term-Based Global Trie for Tabled Logic
Programs”, in Proceedings of the 25th International Conference on Logic Programming,
ICLP’2009, P. Hill and D. S. Warren, Eds., Pasadena, California, USA, July 2009,
number 5649 in LNCS, pp. 205-219, Springer-Verlag.

S. Muggleton, “Inductive Logic Programming”, in Conference on Algorithmic Learning
Theory. 1990, pp. 43-62, Ohmsma.

N. A. Fonseca, F. Silva, and R. Camacho, “April - An Inductive Logic Programming
System”, in Furopean Conference on Logics in Artificial Intelligence. 2006, number 4160
in LNAI, pp. 481-484, Springer-Verlag.



82 BIBLIOGRAPHY

[36] R. Rocha, Nuno A. Fonseca, and V. Santos Costa, “On Applying Tabling to Inductive
Logic Programming”, in European Conference on Machine Learning. 2005, number 3720
in LNAI, pp. 707-714, Springer-Verlag.

[37] A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen, and L. De Raedt, “On the Efficient
Execution of ProbLog Programs”, in Proceedings of the 24th International Conference
on Logic Programming, ICLP’2008, M. Garcia de la Banda and E. Pontelli, Eds., Udine,
Italy, December 2008, number 5366 in LNCS, pp. 175-189, Springer-Verlag.



