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Abstrat
Programming languages are an unique method to ommuniate with mahines. Delarativelanguages, suh as logi programming languages, provide features like a high-level anddelarative syntax, simplifying the ommuniation between man-and-mahine. Arguably,Prolog is the most famous and used logi programming language. Prolog uses SLD resolutionin order to provide good performane in the omputation of omplex real world problems.Although SLD resolution proved to be very e�etive, in some ases, this proedure showsome restritions when dealing with in�nite loops and redundant sub-omputations.One of the most suessful tehniques proposed to overome SLD's suseptibility, is tabling.The tabling mehanism onsists in storing the subgoals and the respetive answers of aprogram in a table spae in suh a way that, in later stages of a program's evaluation, repeatedsubgoal alls use the answers stored in the tables, avoiding the subgoal re-evaluation. Tablingsuess largely depends on the implementation of the table spae, its data strutures andalgorithms. Arguably, the most suessful data struture for tabling is tries. Nevertheless,when tabling is used in appliations that have large quantities of data, it an lead to overgrowntables and quikly �ll up the system's memory.With this researh, we try to provide alternative designs and strutures, not only to thetable spae organization but also to the tabled data representation. We do so, by proposinga new design for the table spae organization where all terms in tabled subgoal alls andtabled answers are represented only one in a ommon global trie instead of being spreadover several di�erent trie data strutures, suggesting three di�erent approahes. At tableddata representation, we propose a new representation of list terms for tries that avoids thereursive nature of the WAM representation of list terms in whih tries are based.The results obtained in our experiments when using the YapTab tabling system, showsigni�ant redutions on memory usage, without ompromising running time. Memory usageis redued when using any of the three di�erent global trie designs and also in the newrepresentation of list terms, providing the neessary data to make it lear that our proposalsan provide more ompat and e�ient representations of the table spae, when applyingtabling mehanisms to Prolog. 3
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Resumo
As linguagens de programação são um modo únio de se omuniar om máquinas. Empartiular, as linguagens delarativas, omo são as linguagens de programação em lógia,ofereem uma sintaxe delarativa de alto nível, failitando assim a omuniação entrehomem e máquina. Indisutivelmente, o Prolog é a linguagem de programação em lógiamais famosa e amplamente utilizada, usando a resolução SLD para proporionar um bomdesempenho no álulo de problemas omplexos do mundo real. Apesar da resolução SLD seter mostrado muito e�az, em alguns asos, este proedimento demonstrou algumas restrições,em partiular quando se lida om ilos in�nitos e sub-omputações redundantes.Uma das ténias propostas para superar as suseptibilidades da resolução SLD, é atabulação. O meanismo de tabulação onsiste em guardar os subgolos de um programae as respetivas soluções num espaço de tabelas de modo a que, durante a avaliação de umprograma, quando aontee uma hamada repetida a um subgolo, são utilizadas as soluçõesjá tabeladas, evitando assim que o subgolo seja reavaliado. O suesso da tabulação dependeem grande medida da implementação do espaço de tabelas, das suas estruturas de dados ealgoritmos. Possivelmente, a mais bem suedida estrutura de dados para a tabulação sãoas tries. No entanto, quando esta ténia é utilizada para tabelar soluções em apliaçõesom grande quantidade de dados, pode aonteer um resimento desmesurado das tabelas,saturando rapidamente a memória do sistema.Neste trabalho, apresentamos novas estruturas de dados alternativas, não só relaionadasom a organização do espaço de tabelas, mas também om a representação dos dados nelasrepresentados. Fazêmo-lo, propondo um novo modelo para a organização do espaço detabelas onde todos os subgolos tabelados e respetivas respostas são representados apenasuma vez numa trie global, em vez de serem distribuídos por várias tries diferentes, e para isso,sugerimos três abordagens distintas. Na representação dos dados tabelados, propomos umanova representação dos termos lista nas tries, evitando a natureza reursiva da representaçãoWAM para termos lista em que estas se baseiam.Os resultados obtidos utilizando o sistema de tabulação YapTab, mostram uma reduçãosigni�ativa na utilização de memória, sem omprometer o tempo de exeução. O uso de5



memória é reduzido, quer seja ao utilizar qualquer uma das três abordagens om reurso auma trie global, quer seja na utilização da nova representação dos termos lista, sugerindo queas nossas propostas onseguem uma representação mais ompata e e�iente do espaço detabelas na utilização do meanismo de tabulação em Prolog.
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Chapter 1
Introdution
Logi programming languages, provide a high-level approah to programming. Notieable,Prolog is the most used logi programming language. In fat, Prolog has proved to be verye�etive in appliation areas suh as Arti�ial Intelligene, Natural Language Proessing andDatabase Management to site just a few. Most of Prolog's suess is in part due to DavidH. D. Warren's work, on the implementation of the WAM ompiler to Prolog [1℄, providinga very e�ient abstrat mahine for the implementation of Prolog systems [2℄.Logi programming languages, suh as Prolog, are based on Horn Clauses [3℄, a subsetof �rst order logi. In fat, logi programs onsist of a set of lauses, that provide theground knowledge of programs. The exeution of logi programs is redued to query symbolsmanipulation until a refutation is found. This refutation, in Prolog, is provided by the SLDresolution [4℄ and done over Horn lauses for programs exeution basis. Although, its provedpower and delarativeness, SLD resolution an su�er from some limitations when dealingwith in�nite loops and redundant sub-omputations. A proposal to solve those limitationsis tabling [5, 6℄ whih proved its viability due to the XSB Prolog system's work in theimplementation of the SLG-WAM engine [7℄. As a result, several di�erent implementations oftabling mehanisms were developed and implemented in di�erent Prolog systems. Examplesof the variety of implementations of tabling are available in systems like Yap Prolog, B-Prolog,ALS-Prolog, Merury and Ciao Prolog.In a nutshell, tabling onsists in storing intermediate answers for subgoals so that they anbe reused whenever a repeated all appears. The performane of tabled evaluation largelydepends on the implementation of the table spae. In order to obtain an e�ient responseto systemati alls, fast lookup and insertion apabilities are mandatory. Appliations anmake millions of di�erent alls, hene ompatness is also required. Arguably, the mostsuessful data struture for tabling is tries [8℄. Tries are trees in whih ommon pre�xes arerepresented only one. The trie data struture provides omplete disrimination for terms13



14 Introdutionand permits lookup and possibly insertion to be performed in a single pass through a term,hene resulting in a very e�ient and ompat data struture for term representation. Whenused in appliations that pose many queries, possibly with a large number of answers, tablingan build arbitrarily many and/or very large tables, quikly �lling up memory. A possiblesolution for this problem is to dynamially abolish some of the tables. This an be doneusing expliit tabling primitives or using a memory management strategy that automatiallyreovers spae among the least reently used tables when memory runs out [9℄. An alternativeapproah is to store tables externally in a relational database management system and thenreload them bak only when neessary [10℄. A omplementary approah to the previousproblem is to study how less redundant, more ompat and more e�ient data struturesan be used to better represent the table spae. While tries are e�ient for variant basedtabled evaluation, they are limited in their ability to reognize and represent repeated answersfor di�erent alls. The development of our work takes in onsideration this last approah.When representing terms in the trie, most tabling engines, like XSB Prolog, Yap Prolog andothers, try to mimi the WAM [11℄ representation of these terms in the Prolog staks inorder to avoid unneessary transformations when storing/loading these terms to/from thetrie. Despite this idea seems straightforward for almost all type of terms, we found that thisis not the ase for list terms (also known as pair terms) and that, for list terms, we an designeven more ompat and e�ient representations. In Prolog, a non-empty list term is formedby two sub-terms, the head of the list, whih an be any Prolog term, and the tail of thelist, whih an be either a non-empty list (formed itself by a head and a tail) or the emptylist. WAM based implementations explore this reursive nature of list terms to design a verysimple representation at the engine level that allows for very robust implementations of keyfeatures of the WAM, like the uni�ation algorithm, when manipulating list terms. However,when representing terms in the trie, the reursive nature of the WAM representation of listterms is negligible as we are most interested in having a ompat representation with fastlookup and insertion apabilities.1.1 Thesis PurposeIn this thesis, we present new proposals to the table spae data strutures and organizationin order to improve the ompatness and e�ieny of tabled logi programs. We proposemodi�ations, in a more omprehensive plan, to the table spae representation and, in aampli�ed plan, to the struture of list terms representation.Regarding the table spae representation, we propose a new design and we, introdue threedi�erent approahes that are based in the usage of a ommon global trie. In all thesethree approahes, the representation of all tabled subgoal alls and/or answers is stored



1.2 Thesis Outline 15in a ommon global trie instead of being spread over several di�erent trie data strutures.Our approahes resemble the hash-onsing tehnique [12℄, as they try to share data thatis struturally equal. An obvious goal is to save memory usage by reduing redundany inthe representation of tabled alls/answers to a minimum. Our �rst approah onsists onstoring subgoal all and answers in the global trie, thus reduing the number of nodes usedin the subgoal and answer tries, and providing the possibility of reusing alls and answersalready represented in the global trie. The seond design maintains the use of a global trie,but only individual terms are represented in it. This inreases the number of nodes in theoriginal subgoal and answer tries but, on the other hand, also inreases the reuse of the termsrepresented in the global trie. In the last approah, we one more use a global trie to storeonly terms, but as an alternative design we also try to maximize the reuse of individual termspresent in the table spae, by representing subterms (ompound term's arguments) as uniqueentries in the global trie.We also propose a new representation of list terms for tabled data that avoids the reursivenature of the WAM representation of list terms. In our new proposal, a list term is simplyrepresented as an ordered sequene of the term elements in the list, i.e., we only representthe head terms in the sub-lists and avoid representing the sub-lists' tails themselves. Ourexperimental results show a signi�ant redution in the memory usage for the trie datastrutures and onsiderable gains in the running time for storing and loading list terms withand without ompiled tries [13℄.To implement these proposals, we will fous our work on a onrete implementation, theYapTab system [14, 15℄, but our proposals an be easy generalized and applied to othertabling systems.1.2 Thesis OutlineThe thesis is strutured in seven hapters that an be seen as the representation of thedi�erent stages of our work. We provide next, a brief desription of eah hapter.Chapter 1: Introdution. Is this hapter.Chapter 2: Logi Programming and Tabling. Provides a brief overview of LogiProgramming and the Tabling tehnique. Throughout, we disuss logi programminglanguages and abstrat mahines, fousing in Prolog and in the WAM, and also themehanisms assoiated with the tabling tehnique, namely tabled evaluation and tries.Chapter 3: List Terms Representation. First, it makes an introdution toYapTab's design for the representation of list terms and then, it presents our newand alternative design for list term representation, whih the main goal is to optimize



16 IntrodutionYapTab's memory usage in order to redue possible drawbaks of the standardmehanism.Chapter 4: Global Trie. Presents the Global Trie (GT) design, speifying the threedeveloped approahes to an alternative table spae representation. The GT table spaedesign emerges with the intent to surpass some of the disadvantages shown by YapTabstandard table spae design when dealing with redundant data, namely by storing termsin the same trie, thus preventing repeated representations of a term in di�erent triedata strutures.Chapter 5: Implementation. In this hapter, we fous on the implementationdetails for the alternative table designs by desribing the GT data strutures andalgorithms in more detail. Throughout, we also desribe how tries are strutured,speifying the main features of trie nodes, and present the main proedures whihinterat with tries, preforming omparisons with YapTab's original table design.Chapter 6: Experimental Results. Presents experimental results omparing thenew table spae against the YapTab standard representation and disusses the obtainedresults.Chapter 7: Conlusions and Further Work. Summarizes the work presented inthe previous hapters, the reasons for the obtained results, and provides some guidelinesfor further work.



Chapter 2
Logi Programming and Tabling
This hapter provides a brief overview of the researh areas omprehended in this thesis.We introdue the path from the general ideas of Logi Programming to the spei�s ofthe Tabling tehnique. Throughout, we disuss logi programming languages and abstratmahines, fousing in Prolog and in the WAM, and also the mehanisms assoiated with thetabling tehnique, namely tabled evaluation and tries.
2.1 Logi ProgrammingProgramming languages are essential in making the ommuniation between man-and-mahine possible. The evolution of programming languages led to human-inspired languages,with syntaxes that appear more omprehensible and omparable to human writing. Thispartiular kind of programming languages are alled high-level. The delarative languagesare a wide lass of programming languages with the unique features of having a high-level language syntax. This lass of languages are more onerned with the aspets of theproblem that needs to be solved, instead of the atual method to solve it. Inluded in thedelarative programming languages lass, one has also logi and the funtional languages.While the latter are based on λ-alulus, the former are ompletely di�erent, relying on asubset of �rst-order logi and its proedural interpretation. Never the less by being basedon formalisation of human thought, logi programming languages are arguably the moree�etive and straightforward way to allow programmers to easily express their reasoning.Logi programming languages are based on a well known subset of �rst order logi, namelythe Horn Clause [3℄. Horn lauses ontain a basi rule: at most one disjunt in the onlusionis required, meaning that at most one positive literal is needed. With this basi rule a Hornlause an be de�ned in three di�erent forms:17



18 Logi Programming and Tabling
• Rule, a lause that ontains a positive literal and one or more negated literals. Themost ommon form of a rule is

¬q ∨ ... ∨ ¬r ∨ ¬s ∨ tand an also be written as,
t← q ∧ ... ∧ r ∧ s

• Fat, when there are no negations and the lause is omposed only with the positiveliteral, we have
t←

• Goal, ours when there is no positive literal
← q ∧ ... ∧ r ∧ sLogi programming languages show a syntati equivaleny to Horn lauses with minorhanges. In logi programs the equivalent to a rule of the form

B ← A1 ∧ ... ∧An−1 ∧Anis (in the Prolog syntax) given by
B : −A1, ..., An−1, An.Additionally, one also �nds other examples for Horn lauses, suh as a fat

B.and a goal
: −A1, ..., An−1, An.In this syntax, B is the head of the lause and A1 to An are the body. Eah B de�nes oris part of a prediate. Prediates exhibit the following form p(t1, ..., tn), where the t's anbe terms, and eah term may have di�erent representations. A simple term inludes atomsor variables, while ompound terms are spei�ally funtors or lists. A funtor is de�ned as

f(t1, ..., tn), where f is the name of the funtor and eah t represents di�erent terms. A listis represented as [t1, ..., tn], di�ering from funtors by having no name assoiated.



2.1 Logi Programming 19In fat, logi programs are a set of lauses that form the ground knowledge of programs.To get results from logi programs, queries are exeuted against the program lauses, withthe intent of unifying or (simply) verifying equality, on every term (variable or atom) witha possible math. The exeution of a query over a program translates into a proedure ofquery symbols manipulation until a refutation is found. The refutation proedure used byProlog was �rst mentioned by Kowalski [3℄ and later on named by Kowalski and Van Emdenas Seletive Linear De�nite resolution (SLD resolution) [4℄. Furthermore, a onsolidation ofthe work was presented by Robinson [16℄, where a variant of the general refutation proedurewas only used on de�nite lauses. A brief demonstration of the SLD resolution proedure ispresented next.Let us onsider a query (goal), as a onjuntion of subgoals, of the form
: −A1, ..., An−1, An.whih we want to math against our program. First, and aording to a seletliteral rule, asubgoal is seleted for the initial uni�ation with the program lauses.Supposing that the subgoal hosen was Ai, the seond step is to searh the program fora lause that mathes Ai. If program ontains lauses in suh onditions, the proedureontinues by seleting the lause that will unify with Ai, aording to a seletclause rule.Assuming that the seleted lause to unify with Ai has the form

A : −B1, ..., Bm.and that substitution θ represents the uni�ation of both seleted subgoal and lause, i.e.,all the variables from the subgoal are bound with the variables from the seleted lause. Asa result our query beame
: − (A1, ..., Ai−1, B1, ..., Bm, Ai+1, ..., An)θ.This proedure is repeated until a refutation is obtained. It is possible to obtain a suessfulSLD resolution when all subgoals are found to be true. The preformed substitutions will bea (or the only) possible answer to our query. On the ontrary, if the proedure fails, implyingan impossible uni�ation between the query and the seleted lause, the SLD resolution failsand no refutation of the query is possible. In this ase, Prolog uses a baktraking mehanismto explore other possible uni�ations by, simply undoing the omputations performed andseleting a di�erent uni�ation lause to our seleted literal Ai. The spei�ation of thisproedure emphasizes the ruial role of the seletclause and seletliteral rules. The appliationof di�erent seletion rules an lead to distint solutions or otherwise solutions are presented



20 Logi Programming and Tablingin a di�erent order. Therefore, the spei�ation of the seletion rules is needed for realimplementations. In the next setion we desribe Prolog's approah.2.1.1 PrologNotieable, Prolog is the most famous and used logi programming language. In 1972,Allain Colmerauer and Philippe Roussel began to develop a software tool to implement aman-mahine system that would use natural language to ommuniate. The name Prologwas hosen as an abbreviation for "PROgrammation en LOGique" as a result of, languageproessing and automated theorem-proving mixing [17℄.From Robinson's breakthrough presented in the Resolution Priniple [16℄, Colmerauer ando-workers proeed their work by de�ning the semantis and the proedural method used byProlog. In 1973, the demonstration of resolution and uni�ation in Horn lauses [4℄ opennew pathways to the de�nition of the �xed point semantis of Horn lause programmingthus providing the neessary basis to prove that Prolog ould be read, both proedurally andlogially.Being Prolog proedural semantis based on SLD resolution, the de�nition of the seletclauseand seletliteral rules was therefore neessary in order to possibilitate its implementation.In Prolog, the seletclause rule follows the lauses order de�ned in the program ode andthe seletliteral rule hooses the leftmost subgoal in the query. In fat the �rst version ofProlog was a kind of automated dedutive system, allowing development of a ommuniationsystem in frenh. Additionally two other appliations were also possible, suh as a symboliomputation system and a general problem-solving system alled Sugiton. The Seondversion of Prolog was more oriented towards atual programming language with the reationof the syntax, basi primitives and also the interpreter's omputing method. The growth ofProlog as a programming language was aided by David H. D. Warren with his implementationof the �rst Prolog ompiler in 1977 [18℄. This development inreased Prolog popularityo�ering the possibility of its syntax (de fato Prolog) to beame a standard. In 1983, anew abstrat mahine was presented [1℄, able to exeute ompiled Prolog ode, the Warren'sAbstrat Mahine (WAM). Nowadays, the WAM is the most popular and e�ient methodof implementing Prolog and is atually the base of almost all Prolog systems.Logi programming has indeed beome an important ore of omputer siene whenJapan announed the Fifth Generation Projet, with the intent to reate a new Era foromputer hardware based on arti�ial intelligene. As a result, many di�erent Prologmodels were reated and literature for di�erent levels of knowledge and audienes arenow available [19, 20, 21℄. Furthermore, the advanes ahieved in the implementations ofProlog and its ompilation tehnology, brought the possibility to ompare against imperativeprogramming languages suh as C [2℄. Also, the inherent parallelism that seems to be



2.1 Logi Programming 21available in the logi programming paradigm beame one of the ruling areas of interestgiving Prolog the major importane and onsideration in the urrent days.2.1.2 The Warren's Abstrat MahineSome of Prolog's suess is in part due to the aomplishments obtain by David H. D. Warrenand his work on the e�ient implementation of the WAM ompiler to Prolog [1℄. In fat,most of the logi programming systems still rely on the ahievements of WAM's tehnology.In a nutshell, the WAM onsists basially, of a stak-based memory arhiteture allied toan instrution set, with simple data strutures. At any time, the omputation state an beobtained from WAM's data strutures, data areas and registers. Figure 2.1 illustrates theomposition of WAM's data strutures and respetive organisation.The WAM's exeution stak struture is omposed by �ve di�erent parts:
• Push Down List (PDL): also known as uni�ation stak, is used for the uni�ationproess;
• Trail: is organized as an array of addresses; used to store the address of (stak or heap)variables whih must be unbound upon baktraking. Beause it works like a stak weneed to have a TR register that ontains the referene to the top of the trail;
• Stak: also mentioned as the loal stak is used to store the environment frames andthe hoie point frames:� Environments, store the information needed to ontinue exeution after return-ing from a suessful intermediate all. An environment is pushed into the stakwhenever a lause ontains more than one subgoal; an environment is popped outwhen the last lause's subgoal is exeuted. Eah frame keeps the referene to theprevious environment, thus giving the possibility to get the orret environmentafter the urrent one is popped out; and a set of ells, orresponding to the numberof permanent variables in the body of the invoked lause. A permanent variableis a variable that appears in more than a subgoal in a lause's body. A register Eis used to refer to the urrent ative environment.� Choie points: store the information about the state of the omputation for aproedure all, so that upon baktraking, the omputation an be restored tothe point when the hoie ourred. In order to do so, all the data neessary torestore a omputation is stored on a hoie point. This inludes the arguments ofthe urrent subgoal all; the referene to the ontinuation environment; a pointerto the next alternative lause; and pointers to the urrent values of the TR (trail)



22 Logi Programming and Tablingand H (heap) registers. A hoie point is pushed onto the stak whenever thereis a point of hoie and popped o� when the last lause has no more alternatives.In order to aess the sequene of hoie points, the register B markes the urrentative hoie point.
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CPFigure 2.1: WAM memory layout, frames and registers desription.Some WAM implementations use two di�erent staks to store this strutures, namelyXSB [22℄ and SICStus Prolog [23℄. As mentioned by H. Aït-Kai [11℄, in suh ases thetwo di�erent staks are the OR-stak (for the hoie points) and the AND-stak (for



2.1 Logi Programming 23the environments).
• Heap: also referred as the global stak, is an array of data ells that is used to storethe internal representation of Prolog terms, suh as variables, atoms, strutures or listterms. The register H ontains the referene to the top of the heap.
• Code Area: an addressable array of data ells, onsisting of op-odes followed byoperands used to store WAM instrutions for the (already) ompiled program ode.Other important features of the WAM are also shown in Fig. 2.1, suh as the register HB,that is used to ontain the value of H, when a hoie point is about to be reated. Allbindings done over variables after reating a hoie point are onsidered onditional bindingsmeaning that they should be stored in the trail and therefore the value stored in HB is usedto make suh deision in the proper way. Another register is S whih is used to help inthe uni�ation proess by making referene to the point of the ompound term where theuni�ation proess is in. Other referened register is P whih is set to maintain the addressof the next instrution to exeute in the Code Area (program ounter). Finally, the registerCP is used to referene (in the ode area) to the loation of the next instrution in the goalsequene, after suessful return of a all.The WAM struture and its omponents are handled by a simple set of instrutions omposedby:
• Choie point instrutions, responsible for all interations with hoie points suhas instrutions to alloate/remove hoie points and to reover the omputation stateusing the information stored in hoie points;
• Control instrutions whih interat with environments (alloate/remove) and alsomanage the all/return sequene of subgoals;
• Uni�ation instrutions, responsible for the implementation of spei� versions ofthe uni�ation algorithm aording to the position and type of the arguments;
• Indexing instrutions, used to aelerate the proess of seleting the lauses thatunify with a given subgoal all. The indexing proedure uses the �rst argument of aall, to jump to speialized ode that is responsible to selet only the unifying lauses.Although the WAM appears as a simple system with a few groups of instrutions it is indeeda very elaborated mahine apable of exeuting all the omplex mehanisms of Prolog. Aomplete and detailed spei�ation of the WAM an be found in [11℄.



24 Logi Programming and Tabling2.2 TablingLogi programming languages, like Prolog, use SLD resolution and Horn lauses forexeution basis but, despite their power and delarativeness, they an su�er from somelimitations. Those restritions are the inability to deal with in�nite loops and redundantsub-omputations. This ompromise the usage of Prolog and similar programming languageson important appliations, suh as Dedutive Databases. Muh work have been made tooverome those limitations by implementing strategies that remember sub-omputation andits results, therefore avoiding re-omputations and at the same time reusing the alreadystored answers. These tehniques are known by several names like memoizing, tabling ortabulation [24℄.Tabling [6℄ beame a renowned tehnique thanks to the leading work in the XSB-Prologsystem and, in partiular in the SLG-WAM engine [7℄. As a result several implementationsof tabling mehanism were developed, having partiular di�erenes, namely in the exeutionrules, in the data-strutures used to implement tabling and also in the underlying hangesto the Prolog's engine. Examples of those implementations are available in systems suh asYAP Prolog [25℄, B-Prolog [26℄ or ALS-Prolog [27℄. The Tabling onept provides the basisto a bottom-up evaluation approah that, together with its well-know advantages, enablesthe ombination with top-down evaluation, thus joining the better of both strategies.2.2.1 Tabled EvaluationThe basi idea behind a tabled evaluation is, in fat, quite straightforward. The mehanismbasially onsists in storing all the di�erent subgoal alls and new answers founded whenevaluating a program in a proper data spae alled the table spae. The subgoal alls storedin this table spae are then used to verify if a subgoal is being alled for the �rst time or, onthe other hand, if it is a reall. Whenever suh a repeated subgoal all ours, the answers forthat subgoal (stored in the table spae) are used instead of re-evaluating the subgoal againstthe program lauses. Next we present a simple demonstration of a table evaluation thatemphasizes the tabling tehnique advantages. Consider the Prolog program shown in the topof Fig. 2.2 representing a small direted graph. The prediate ar/2 represents the diretonnetion between two di�erent points and the path/2 prediate represents the possibilityof an indiret onnetion. Consider now the query goal path(1,Z). An diret appliation ofSLD evaluation to solve the given query leads to an in�nite SLD tree, as shown in the bottomof Fig. 2.2, due to the positive loop indued by the seletion of the leftmost literal rule. Onthe other hand, when resorting to tabling, the in�nite searh tree resulting from the positiveloop will not our, and termination is ensured. The sheme presented in Fig. 2.3 shows theevaluation sequene when using tabling (solving the same query in the same program).
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path(X,Z) :- path(X,Y), path(Y,Z).

path(X,Z) :- arc(X,Z).

arc(1,2).

arc(2,3).

path(1,Z)

path(1,Y), path(Y,Z)

positive loop

SLD evaluation

Figure 2.2: An in�nite SLD evaluation.
Figure 2.3 shows a small hange on the Prolog ode ompared to the one presented in Fig. 2.2,namely the delaration :- table path/2, indiating that the tabling proedure should beapplied to all the subgoal alls to path/2. Those subgoal alls an be seen in the top rightof Fig. 2.3 on the representation of the table spae at the end of program's evaluation. Thebottom of the �gure shows the resulting trees reated whenever a tabled subgoal all is madefor the �rst time (nodes 0, 5 and 11). The answers resulting from the evaluation of new treesare store in the respetive table entry, so those answers an be used when variant alls (suhas the nodes 1, 6 and 12) our. When a variant all onsumes all the answers stored in thetable spae, or in ase of their absene, the evaluation is suspended. In the meantime, if newanswers arise the suspended variant alls are resumed to properly onsume the new answers.In this way, the re-evaluation of variant alls is avoided.During this proess, the table spae struture has a main role, not only beause it is the oreof the tabling implementation but also beause it will be involved in the most of the tabledevaluations interations. In fat, the performane of tabling depends on the implementationof the table spae itself, being ritial for the suess of the tabling implementation. Thereforea well de�ned and e�ient data struture is needed. Arguably, the most suessful datastruture for tabling is tries [28, 8℄.
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:- table path/2.

path(X,Z) :- path(X,Y), path(Y,Z).

path(X,Z) :- arc(X,Z).

arc(1,2).

arc(2,3).

subgoal answers

0. path(1,Z)

5. path(2,Z)

11. path(3,Z)

 3. Z = 2

10. Z = 3

9. Z = 3

5. path(2,Z)

6. path(2,Y), path(Y,Z)

11. path(3,Z)

17. fail

7. arc(2,Z)

8. fail 9. Z = 3

0. path(1,Z)

1. path(1,Y), path(Y,Z)

5. path(2,Z)

10. Z = c

18. path(3,Z)

19. fail

2. arc(1,Z)

3. Z = 2 4. fail

11. path(3,Z)

12. path(3,Y), path(Y,Z)

16. fail

13. arc(3,Z)

14. fail 15. fail

Tabled evaluation

Figure 2.3: A �nite tabled evaluation example.2.2.2 TriesThe table spae an be aessed in many di�erent ways. A well de�ned and e�ient datastruture is supposed to give response to interations suh as; (i) �nding a subgoal in a tableand, if not present, insert it; (ii) verify whether a founded answer is already stored in a tableand, if not, insert it; and (iii) loading answers from tables to variant alls. The YapTabengine uses tries as proposed by I.V. Ramakrishnan et al. [28, 8℄ whih is onsidered to be avery e�etive way to implement the table spae. A trie is a struture like a tree, where every



2.2 Tabling 27di�erent path onneting di�erent trie nodes (the unit data for tries) orresponds to a singleterm representation, that an be seen as a tokenized form of terms, as illustrated in Fig. 2.4.
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()Figure 2.4: Representing terms in a trie.Figure 2.4a shows the representation of term path(1,X) in a trie as a sequene of threetokens: the token path/2 to represent the funtor's name and arity, the token 1 to representthe atom with the same name, and �nally the token VAR0 to represent the variable X presentin the term. Variables are represented using the formalism proposed by Bahmair et al. [29℄where eah variable in a term is represented as a distint onstant V ARi. If another term isinserted in the same trie having a ommon pre�x to the already inserted one, tries have theproperty to not represent the equal part of the term. As shown in Fig. 2.4b, when insertingthe term path(1,2) with the token representation < path/2, 1, 2 > it only di�ers in token2, from the previous term, thus adding it to the trie, orresponds to insert a trie node fortoken 2 as a sibling of the trie node where the di�erene between both terms �rst ours.Finally, if a term di�ers in the very beginning of its tokenized form, a new entry is added tothe top of the trie as shown in Fig. 2.4 with the insertion of the term [X,Y℄ orrespondingto the tokenized form < Pair, X, Pair, Y, [℄ >1. With this example, it an be easilyseen the ompatness propriety of term representation in tries.To obtain the best performane from tries usage, the YapTab system applies two levels oftries in the implementation of the table spae, a top level for the subgoal alls and a seondlevel for omputed answers. For every tabled prediate is reated beforehand a subgoal triewhere the root node marks the entry point for insertion of the orresponding subgoal alls.1Lists representation will be overed in more detail in a later hapter.



28 Logi Programming and TablingAt this level eah path in the subgoal trie represents a distint subgoal all where the leafnode ats as a onnetion with seond level of tries (the answer trie) through the use of anauxiliary data struture, alled subgoal frame. In the answer trie, all the omputed answersfor the respetive subgoal are stored, one again every path orresponding to a unique answer.
:- table connect/2.

connect(X,Y) :- point(X), point(Y).

point(p(1)).

point(p(2)).

VAR0

VAR1 1

VAR0

Subgoal Trie

table entry for connect/2

subgoal frame for
connect(VAR0,VAR1)

subgoal frame for
connect(p(1),VAR0)

Answer Trie Answer Trie

p/1

f
i
r
s
t
 
a
n
s
w
e
r

l
a
s
t
 
a
n
s
w
e
r

2 1

p/1

2 1

p/1

2 1

p/1

2 1

p/1

Figure 2.5: YapTab table spae organization.The previous desription an be observed in more detail in the YapTab table spae struturepresented in Fig. 2.5. In this example we an see two di�erent subgoal alls for a prediateonnet/2. The subgoal all onnet(p(1),X), inserts nodes to represent the term p(1)and the variable X (VAR0), and also adds the respetive subgoal frame. The subgoal allonnet(X,Y) as di�ers in the �rst element of the all, leads to inserting the nodes for VAR0and VAR1, representing respetively the variables X and Y, and one more a subgoal frame isalso reated. Regarding the answer tries, for the subgoal all onnet(p(1),X), the answertrie has two di�erent answers, orresponding to the possible values that an be instantiatedto X, p(1) and p(2). In this ase three nodes are inserted to represent the two solutions: aommon node to represent p/1 and two more to represent the onstants 1 and 2. On theother hand, for the subgoal all onnet(X,Y), the answer trie represents all the answersobtained by ombining all the values that an be instantiated to X and Y.



2.2 Tabling 29Another feature, from YapTab's table spae organization, that is illustrated in Fig. 2.5 isthe onnetion between the leaf nodes existing in an answer trie. This linked list is usedto maintain a hronologial order of the insertion of answers, and the respetive subgoalframe has a pointer to the �rst and last solutions inserted. This feature is of a majorimportane beause when a variant all is suspended, it only needs to keep a referene to thelast onsumed answer, as afterwards, when the omputation is resumed, answer onsumptionan start from that referene if there are new solutions to onsume.2.2.3 Compiled Code on TriesOn ompletion of an answer trie, from a given subgoal trie, an optimization exists that avoidsanswer reovery with a bottom-up strategy, i.e., with terms being loaded starting from theleaf nodes. Instead, the answer tries are dynamially ompiled into WAM-like instrutionsfrom answer trie nodes, enabling a top-down traverse of the trie to onsume answers. Theseompiled instrutions are alled trie instrutions and the restrutured tries are alled ompiledtries [8℄. Compiled tries are shared during exeution of the trie instrutions, therefore whenbaktraking from a ertain term, the proedure ontinues by loading the term sibling node,keeping the remaining struture of the term. In this manner, eah node of the trie is traversedonly one, bene�ting of the ompatness of term representation in tries. In Fig. 2.6 we havean example of a ompiled trie for the subgoal all onnet(X,Y) presented in Fig. 2.5.
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try_struct trust_structFigure 2.6: Compiled trie for the subgoal all onnet(X,Y) presented in Fig. 2.5.In ompiled tries eah node is ombined with an instrution, the seletion of the instrutionis in�uened by the term type represented in the trie node and by the position of the nodein the respetive list of possible sibling nodes. Therefore trie instrutions an be groupedinto four di�erent types, sine eah trie node an appear as the �rst, intermediate, lastor the only sibling of a sequene. Namely, �rst position sibling nodes are ompiled usingtry_? instrutions, intermediate nodes using retry_? instrutions, last nodes using trust_?



30 Logi Programming and Tablinginstrutions and, if a node is the only sibling, using do_? instrutions. Eah instrution alsorefers the term type in the trie node, for example with atom terms the possible instrutionsare try_atom, retry_atom, trust_atom or do_atom. At the engine level, ompiled trieinstrutions at similarly to the generi try/retry/trust WAM instrutions but, in this ase,they are responsible for interating with hoie points to orretly traverse top-down ananswer trie, in suh way that, in ase of failure, the proedure ontinues to the next siblingnode. The do instrution denotes no hoie and thus no hoie point alloation is preformed.



Chapter 3
List Terms Representation
In this setion, we �rst introdue YapTab's design for the representation of list terms, andthen we present our new and alternative design for list term representation [30℄ whih themain goal is to optimize YapTab's memory usage in order to redue possible drawbaks of thestandard table mehanisms. In what follows, we will refer to the original design as standardlists and to the new design as ompat lists. We start by brie�y introduing how standardlists are represented in YapTab and then we disuss in more detail the new design for therepresentation of ompat lists.3.1 Standard ListsYapTab follows the seminal WAM representation of list terms [11℄. In YapTab, list terms arereursive data strutures implemented as funtors of two elements, named pairs, where the�rst pair element, the head of the list, represents a list element and the seond pair element,the tail of the list, represents the list ontinuation term or the end of the list. In YapTab,the end of the list is represented by the empty list atom [℄. At the engine level, a pair isimplemented as a pointer to two ontiguous ells, the �rst ell representing the head of thelist and the seond the tail of the list. In YapTab, the tail of a list (or the seond element ofa pair) an be any term (and not only another pair or the empty list atom). Figure 3.1(a)illustrates YapTab's WAM representation for list terms in more detail.Alternatively to the standard notation for list terms, we an use the pair notation [H|T℄,where H denotes the head of the list and T denotes its tail. For example, the list term [1,2,3℄in Fig. 3.1 an be alternatively denoted as [1|[2,3℄℄, [1|[2|[3℄℄℄ or [1|[2|[3|[℄℄℄℄. Thepair notation is also useful when the tail of a list is neither a ontinuation list nor the emptylist. This list term's type representation an be seen for example in the list [1,2|3℄ shown inFig. 3.1(a) by its orresponding WAM representation. In what follows, we will refer to these31



32 List Terms Representationlists as term-ending lists and to the most ommon lists ending with the empty list atom asempty-ending lists.Regarding the trie representation of lists, the original YapTab design, as most tabling engines,inluding XSB Prolog, tries to mimi the orresponding WAM representation. This is doneby making a diret orrespondene between eah pair pointer at the engine level and a trienode labelled with the speial token PAIR. For example, the tokenized form of the list term[1,2,3℄ is the sequene of seven tokens <PAIR,1,PAIR,2,PAIR,3,[℄>. Figure 3.1(b) shows inmore detail YapTab's original trie design for the list terms represented in Fig. 3.1(a).
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Figure 3.1: YapTab's WAM representation and original trie design for standard lists.
3.2 Compat ListsIn this setion, we introdue the new design for the representation of list terms. Thedisussion we present next tries to follow the di�erent approahes that we have onsidereduntil reahing our urrent �nal design. The key idea ommon to all these approahesis to avoid the reursive nature of the WAM representation of list terms and have amore ompat representation where the unneessary intermediate PAIR tokens are removed,therefore reduing the system memory when storing lists.Figure 3.2 illustrates how ompat lists are represented in tries using our initial approah.Comparing with Fig. 3.1, in this approah, all intermediate PAIR tokens are removed and aompat list is simply represented by its term elements surrounded by a begin and a end



3.2 Compat Lists 33list mark, respetively, the BLIST and ELIST tokens. Figure 3.2(a) shows the tokenizedform of the empty-ending list [1,2,3℄ whih, with this design, is the sequene of six tokens<BLIST,1,2,3,[℄,ELIST>, and the tokenized form of the term-ending list [1,2|3℄ whih,with this design, is the sequene of �ve tokens <BLIST,1,2,3,ELIST>. This approah learlyoutperforms the standard lists representation when representing individual lists, with aunique exeption happening when onstruting the basi ases of list terms of size one tothree. When representing individual list terms with more than three elements it requiresabout half the nodes required for standard lists. For an empty-ending list of S elements,standard lists requires 2S + 1 trie nodes and ompat lists requires S + 3 nodes. Regardingterm-ending lists of S elements, standard lists representation requires 2S − 1 trie nodes, andyet when using ompat lists it requires S + 2 nodes.Next, in Fig. 3.2(b) we try to illustrate how this approah behaves when we represent morethan a list in the same trie. It presents three di�erent situations: the �rst situation, showstwo lists with the �rst element di�erent and it illustrates a kind of worst ase senario whenrepresenting list terms in a trie; the seond and third situations show, respetively, twoempty-ending and two term-ending lists with only the last element di�erent, that an beseen as a kind of best ase senario when representing list terms in a trie, whih means thatonly the last element of the seond list representation is added to the trie.
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Figure 3.2: Trie design for ompat lists: initial approah.Now onsider that we generalize these situations and represent in the same trie N lists of Selements eah. For the �rst situation (when lists di�er in the �rst element) our �rst approahis always better than standard lists, but this may not be the ase when it regards the seondand third situations. For the seond situation (empty-ending lists with last element di�erent),



34 List Terms Representationstandard lists representation requires 2N+2S−1 trie nodes and ompat lists requires 3N+Snodes and thus, if N > S − 1, i.e., if the number of distint lists are greater than the sizeof the list represented, then standard lists representation has better results, requiring lessnodes to represent lists in suh onditions. Regarding the third situation (term-ending listswith last element di�erent), standard lists requires N + 2S − 2 trie nodes to represent listsin these onditions and ompat lists requires 2N + S nodes, and one again if N > S − 2,then standard lists representation spend less nodes when representing list terms.When analysing the representation of ompat lists in this approah, the main problem isthe introdution of the extra token ELIST in the end of eah di�erent list, the ost of thisextra token is more evident when representing lists with the last element di�erent, beauseinstead of adding only one node (the di�erent one), for eah di�erent list, we add two nodes.To avoid this problem, we have redesigned our ompat lists representation in suh a waythat the ELIST token appears only one for lists with the last element di�erent. Figure 3.3illustrates our seond approah for the ompat lists representation, using the same listspresented previously in Fig. 3.2.In this seond approah, a ompat list still ontains the begin and end list tokens, BLISTand ELIST, but now the ELIST token plays the same role of the last PAIR token in standardlists, i.e., it marks the last pair of terms in the list. Figure 3.3(a) shows the new ompatlist tokenized form obtained when using this hange. The empty-ending list [1,2,3℄ is nowrepresented as <BLIST,1,2,ELIST,3,[℄ > and the new tokenized form of the term-ending list[1,2|3℄ is now represented by <BLIST,1,ELIST,2,3>. To verify how this seond approahbehaves when we represent more than a list in the same trie, in Fig. 3.3(b) we illustratethe same three situations of Fig. 3.2(b). For the �rst situation (lists with the �rst elementdi�erent), the seond approah is idential to the initial approah. This is straightforwardsine the hanges made simply move the ELIST token from the end of the list, thereforethe repetition of the ELIST token still ours. For the seond and third situations, theseond approah is not only better than the initial approah, sine it avoids the repetitionof the ELIST token in the end of list representation, but also better than the standard listsrepresentation, reduing the exeptions to the base ases of list terms of sizes 1 and 2.Consider again the generalization to represent in the same trie N lists of S elements eah.Sine no hanges ourred in the �rst situation, this seond approah has the same results asthe �rst approah. On the other hand, for the seond situation (empty-ending lists with lastelement di�erent), ompat lists now requires 2N + S + 1 trie nodes (the initial approah forompat lists required 3N + S nodes and standard lists required 2N + 2S − 1 nodes) and forthe third situation (term-ending lists with last element di�erent), ompat lists now requires
N + S + 1 trie nodes (the initial approah for ompat lists required 2N + S nodes andstandard lists required N +2S−2 nodes). Despite these better results, this seond approah



3.2 Compat Lists 35still ontains some drawbaks that an be improved.
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Figure 3.3: Trie design for ompat lists: seond approah.
Figure 3.4 illustrates our �nal approah for the representation of ompat lists. In this�nal approah, we have redesigned our previous approah in suh a way that the emptylist token [℄ was avoided in the representation of empty-ending lists. Note that, in ourprevious approahes, the empty list token is what allows us to distinguish between empty-ending lists and term-ending lists. So, in order to maintain this distintion, we did not simplyremoved the empty list token from the representation of ompat lists. To provide the neededdistintion between lists, we added a di�erent end list token, EPAIR, for term-ending lists,maintaining the ELIST token to represent empty-ending lists. Furthermore, we hanged thebehavior of the token representing the end of a list, instead of marking the last two elementsof a list element, tokens ELIST and EPAIR are used to mark the last element in an empty-ending list and in an term-ending list, respetively. Figure 3.4(a) shows the new tokenizedform of the empty-ending list [1,2,3℄, whih is now represented as <BLIST,1,2,ELIST,3>,and the new tokenized form of the term-ending list [1,2|3℄, whih is now representedas <BLIST,1,2,EPAIR,3>. Figure 3.4(b) shows how this �nal approah behaves when werepresent more than a list in the same trie, using the same three previous situations forrepresenting lists (di�erent in the �rst element or di�erent in the last element). For the threeexamples, this �nal approah learly outperforms all the other representations for standardlists and previous approahes of ompat lists. Regarding lists with the �rst element di�erent(�rst situation), our �nal approah requires N + NS + 1 trie nodes for both empty-endingand term-ending lists, thus reduing the ost for the empty-ending lists representation, sinethe modi�ations were mainly made over the empty list token.
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Figure 3.4: Trie design for ompat lists: �nal approah.Toward lists with the last element di�erent (seond and third situations), it requires
N + S + 1 trie nodes for both empty-ending and term-ending lists, one again this hangeonly takes e�et on empty-ending lists. Table 3.1 summarizes the omparison between allthe approahes regarding the number of trie nodes required to represent in the same trie Nlist terms of S elements eah.List Terms Standard Compat ListsLists Initial Seond FinalFirst element di�erent

N [E1, ..., ES−1, ES] 2N + 2NS + 1 2N + NS + 1 2N + NS + 1 N + NS + 1

N [E1, ..., ES−1 | ES] 2NS + 1 N + NS + 1 N + NS + 1 N + NS + 1Last element di�erent
N [E1, ..., ES−1, ES] 2N + 2S − 1 3N + S 2N + S + 1 N + S + 1

N [E1, ..., ES−1 | ES] N + 2S − 2 2N + S N + S + 1 N + S + 1Table 3.1: Number of trie nodes to represent in the same trie N list terms of S elements eah,using the standard lists representation and the three ompat lists approahes.3.3 Compiled Tries for Compat ListsIn this setion, we disuss the impliations of the new design in the ompleted tableoptimization and desribe how we have extended YapTab to support ompiled tries forompat lists. First we illustrate in Fig. 3.5(a) the ompiled trie ode for the standardlist [1,2,3℄. When using standard lists, eah PAIR token is ompiled using one of the



3.3 Compiled Tries for Compat Lists 37try/retry/trust/do_list trie instrutions. At the engine level, these instrutions reate anew pair term in the heap stak to be bound to the term being onstruted. In Fig. 3.5(b), weshow the ompiled trie ode for the last ompat lists approah. As mentioned, the initial stepfor ompat list onsisted in the removal of the PAIR tokens. Hene, we need to inlude thepair terms reation step in the trie instrutions assoiated with the elements in the list, exeptfor the last list element. To do that, we have extended the set of trie instrutions for eahterm type with four new speialized trie instrutions: try_?_in_list, retry_?_in_list,trust_?_in_list and do_?_in_list. As an example, for atom terms, the new set oftrie instrutions is: try_atom_in_list, retry_atom_in_list, trust_atom_in_list anddo_atom_in_list. At the engine level, these instrutions reate a new pair term in theheap stak to be bound to the term being onstruted and then they bind the head of thenew pair to the sub-term orresponding to the ?_in_list instrution at hand. Last listelements are treated as before and ELIST tokens are ompiled using a new ?_ending_listtrie instrution. At the engine level, the ?_ending_list instrutions also reate a new pairterm in the heap stak to be bound to the term being onstruted and, in order to denote theend of the list, they bind the tail of the new pair to the empty list atom [℄. Finally, the BLISTand EPAIR tokens are ompiled using ?_void trie instrutions. This type of instrutions donothing sine the onstrution of the heap terms is done by the ?_in_list instrutions.
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Figure 3.5: Comparison between the ompiled trie ode for standard and ompat lists.Note however that the trie nodes for the tokens BLIST and EPAIR annot be avoided beausethey are neessary to distinguish between a term t and the list term whose �rst element is t,and to mark the beginning and the end of list terms when traversing the answer tries nodesbottom-up.



38 List Terms RepresentationNext, we present in Fig. 3.6, two more examples showing how list terms inluding ompoundterms, the empty list term and sub-lists are ompiled using the ompat lists representation.In the left side of Fig. 3.6, we illustrate the tokenized form of the list term [f(1,2),[℄,g(a)℄with the sequene of eight tokens <BLIST,f/2,1,2,[℄,ELIST,g/1,a> and, on the right sideof the �gure, we illustrate the tokenized form of the list term [1,[2,3℄,[℄℄ with thesequene of eight tokens <BLIST,1,BLIST,2,ELIST,3,ELIST,[℄>. To see how the new trieinstrutions for ompat lists are assoiated with the tokens representing list elements, wenext present the previous tokenized forms, but with the tokens representing ommon listelements expliitly aggregated:[f(1, 2),[℄,g(a)℄: <BLIST,<f/2,1,2>,[℄,ELIST,<g/1,a> >[1,[2, 3℄,[℄℄: <BLIST,1,< BLIST,2,ELIST,3>,ELIST,[℄>.The tokens that orrespond to �rst tokens in eah list element, exept for the last list element,are the ones that need to be ompiled with the new ?_in_list trie instrutions (please seeFig. 3.6 for full details).
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Figure 3.6: Compiled trie ode for ompat lists inluding ompound terms and sub-lists.In more detail, in list [f(1,2),[℄,g(a)℄, the tokens to be ompiled with the new ?_in_listtrie instrutions are the tokens f/2 and [℄. Token f/2 beause it is the �rst token in the



3.3 Compiled Tries for Compat Lists 39aggregated representation <f/2,1,2> of the �rst list element and token [℄ beause it is thesingle token representing the seond list element. In the seond example, list [1,[2,3℄,[℄℄,as the seond list element is itself a list, the same idea is applied not only to the tokensin the aggregated representation of the main list but also to the tokens in the aggregatedrepresentation, <BLIST,2,ELIST,3>, of the sub-list. Therefore, the tokens 1 (�rst element ofthe seond element of the main list), BLIST (�rst token of the seond element of the mainlist), 2 (�rst element of the sub-list) are ompiled with the ?_in_list instrution.
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Chapter 4
Global Trie
The tabling tehnique was developed to overame partiular limitations of Prolog. Never-theless, when used to solve real world problems, tabling an show some drawbaks. Oneof the most ommon limitations of tabling, is the overload of system's memory. TheGlobal Trie (GT) design stands as an alternative method to YapTab's standard tablespae representation. The GT table spae design emerges with the intent to surpassthose disadvantages, namely by storing terms in the same trie, thus preventing repeatedrepresentations of a term in di�erent trie data strutures. In this hapter, we desribe theimplementation of distint GT's strategies.4.1 Global Trie for Calls and AnswersAs proposed by Costa and Roha [31, 32℄, in the Global Trie for Calls and Answer (GT-CA)design, the main idea is to avoid term repetitions, whih ould take plae in di�erent triedata strutures as shown in Fig. 4.1. Here, the representation of the terms f(1) and f(2)ours several times eah. The �rst approah to prevent these repetitions resorted to groupall tabled subgoal alls and/or answers, by storing them in a ommon global trie, insteadof being spread over several di�erent tries. This oneptual hange is ahieved withoutremoving the gains obtained by the use of tries. Therefore, the GT-CA data struture is stilla tree struture, where eah di�erent path through the GT nodes orresponds to a subgoalall and/or answer. In spite of the new organization for the table spae, the hierarhialstruture of the table spae still follows by the existene of a subgoal trie and an answer triedata strutures (see Fig. 4.2). However, in this partiular design, both are represented by aunique level of trie nodes that point to the orresponding terms in the GT-CA (see the allNnodes for the subgoal trie and the answerN nodes for the answer trie in Fig. 4.2). Heneforth,oexisting terms on alls and/or answers, are represented only one in GT-CA, thus avoiding41
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:- table t/2.

t(X,Y) :- term(X), term(Y).
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Figure 4.1: YapTab's standard table design.repetition of terms one stored in the GT.The role for the several tries is of simple assimilation. For the subgoal tries, eah node nowrepresents a di�erent subgoal all. The node's token is the pointer to the node in the GT-CA orresponding to the path representation for the subgoal all, i.e., all argument termsrepresented in the original subgoal trie (Fig. 4.1) are now represented and inserted in theGT-CA. However, the organization used in the subgoal tries allows one to maintain the listof sibling nodes and the aess to the orresponding subgoal frames unaltered.In a similar way, for the answer tries, eah node now represents a di�erent answer for therespetive subgoal. Instead of having the omplete answer term represented in the answertries, with this design the answer trie node's token is simply a pointer to the orrespondingpath in the GT-CA representation. One again, the organization used in the answer tries tomaintain the list of sibling nodes and to enable answer reovery in insertion order, remainsunaltered. With this organization, answers are now loaded by following the pointer in thenode's token and then by traversing the orresponding GT-CA's nodes bottom-up.Figure 4.2 uses the example from Fig. 4.1 to illustrate how the GT-CA design works. Initially,the subgoal trie and the GT-CA are empty. Then, the subgoal t(f(1),X) is alled. Whenthis ours, three nodes are inserted in the GT-CA to represent the all: one representsthe funtor f/1, a seond refers to the onstant 1 and the last representing the variable X.Next, a node representing the path inserted in the GT-CA is stored in the subgoal trie (node
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Figure 4.2: YapTab's table organization using the GT-CA design.
all1 in Fig. 4.2). The all1 node serves two purposes: its token's �eld is used to storethe referene to the leaf node of the GT-CA's inserted path and its hild �eld is used tostore the referene to the orresponding subgoal frame. Afterwards, for the seond subgoalall t(X,Y), we start by inserting the all in the GT-CA and for that we represent the freevariables X and Y by the nodes VAR0 and VAR1, respetively. Next, we store a node in thesubgoal trie (node all2) to represent the path inserted in the GT-CA.For eah answer, its term representation is inserted �rst in the GT-CA and then we stored anode in the orresponding answer trie, to represent the path inserted in the GT-CA (nodeslabeled answer1, answer2, answer3, answer4 in Fig. 4.2). Notie that in some situations,only part (or possibly none) of the term onstrution in the GT-CA is required, if part orthe omplete term representation already exists, thus emphasizing the ontributions of a GTto store all term representations.With this example, we an also see that with the GT-CA we annot share the representationof ommon terms appearing at di�erent arguments or substitution positions. An example is



44 Global Triethe representation of the terms f(1), f(2) and VAR0, whih appear more than one in theGT. In fat, a subgoal all is represented by a sequene of argument terms while an answeris represented by a sequene of substitution terms. Moreover, when the number of argumentor substitution terms is greater than one, the representation of a subgoal all or answer anend at internal nodes of other subgoal alls and/or answers, and not neessarily at a leafnode. This spei� situation raises di�ulties when supporting table abolish operations,sine individual nodes an be part of di�erent subgoal alls and/or answers representation.In this ase the removal proess of a individual node an not be done while it belongs toother di�erent term representations. This problem an be solved by introduing an extra�eld in eah trie node to ount the number of paths it belongs to and only allowing deletionwhen it reahes zero, but this solution is ontraditory with the GT goal of saving memoryusage.Another drawbak of the GT-CA design ours when a subgoal is ompleted. As mentionedpreviously, a strategy exists to avoid answer reovery using bottom-up uni�ation andperforming instead what is alled a ompleted table optimization [8℄. This optimizationimplements answer reovery by top-down traversing the ompleted answer trie and byexeuting spei� WAM-like ode from the answer trie nodes. However, when traversing theGT-CA with a top-down approah, traversed nodes an belong to several di�erent subgoaland/or answer tries. So, with the GT-CA approah this optimization is no longer possible.4.2 Global Trie for TermsThe Global Trie for Terms (GT-T) design an be seen as an extension of the previousapproah [33℄. The GT-T was designed to optimize the GT struture organization bymaximizing the sharing of tabled data whih is struturally equal. In the GT-T design,all argument and substitution terms appearing in tabled subgoal alls and/or answers arerepresented only one in the ommon GT, this allows to prevent situations where argumentand substitution terms are represented more than one as in the example of Fig. 4.2.As an extension of the previous GT-CA design, the GT-T data struture is still a treestruture. However, in this organization, eah di�erent path through the trie nodes representsa unique argument and/or substitution term, in ontrast to the previous strategy where a pathould represent more than an argument or substitution term. Therefore, the representationof terms always end at leaf trie nodes. In this table organization, the subgoal and answer triesdata struture are no longer represented as a unique level of trie nodes. In both tries, eahpath is now omposed of a �xed number of trie nodes, representing in the subgoal trie thearguments for the tabled subgoal all, or representing the substitution terms in the answertrie. More spei�ally, for the subgoal tries, eah node now represents an argument term



4.2 Global Trie for Terms 45in whih the node's token is used to store the referene to the unique path in the GT-Twhere the atual argument term is represented. Similarly for the answer tries, eah nodenow represents a substitution term, where the node's token stores the referene to the path'sleaf node in the GT-T. The features used in tries to maintain the list of sibling nodes andto enable answer reovery in insertion order, introdued by YapTab's original subgoal andanswer tries representation, remains unaltered.Figure 4.3 illustrates how the GT-T design works, by stressing its most important features,and for that we use again the example from Fig. 4.1. Initially, the subgoal trie and the GT-Tare empty. Then, the �rst subgoal t(f(1),X) is alled and the two argument terms, f(1)(represented by the tokens f/1 and 1) and X (token VAR0), are �rst inserted in the GT-T.Afterwards, the argument terms are represented in the subgoal trie by two nodes (nodes arg1and arg2), and eah node's token stores the referene to the leaf node of the orrespondingterm representation inserted in the GT-T. For the seond subgoal all t(X,Y), the argumentterms VAR0 and VAR1, representing respetively X and Y, are also �rst inserted in the GT-T,followed by the insertion of two nodes in the subgoal trie to represent them. In eah token'snode we store the referene to the orresponding representation in the GT-T.When proessing answers, the proedure is similar to the one exeuted for subgoal alls. Foreah substitution term, we also insert �rst its representation in the GT-T and then we inserta node in the orresponding answer trie, in order to store the referene to its path in theGT-T (nodes labeled subs1 and subs2 in Fig. 4.3). As shown in Fig. 4.3, the substitutionterms for the omplete set of answers for the two subgoal alls only inlude the terms f(1)and f(2). Moreover, as f(1) was inserted in the global trie at the time of the �rst subgoalall, we only need to insert f(2) (represented by the nodes f/1 and 2), meaning that in fatwe only need to insert the token 2, in order to represent the full set of answers. So, we aremaximizing the sharing of ommon terms appearing at di�erent arguments or substitutionpositions. For this partiular example, the result is a very ompat representation of the GT,as most subgoal alls and/or answers share the same term representations.Regarding spae relamation, as eah di�erent path in the GT-T always ends at a leaf node,we an use the hild �eld (that is always NULL in a leaf node) to ount the number ofreferenes to the path it represents. This feature is of uttermost importane for the deletionproess of a path, whih an only be performed when there is no referene to it, this istrue when the leaf node's hild �eld reahes zero. With this feature, the previous GT-CA'sproblem of supporting table abolish operations without introduing extra memory overheads,is solved.Another GT-CA's problem was related with ompiled tries, i.e., the tehnique used onompletion of a subgoal. With GT-T suh problem no longer exists and in order to enable theneessary topdown traversing, we keep the GT only with the term representations and store
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Figure 4.3: YapTab's table organization using the GT-T design.
the WAM-like instrutions in the answer tries, as in the original design [8℄. The di�ereneaused by the existene of the GT is a new set of high-level WAM-like instrutions, i.e.,instead of working at the level of atoms/terms/funtors/lists as in [8℄, eah instrution worksat the level of the substitution terms. For example, onsidering again the loading of fouranswers for the all t(X,Y), one has two hoies for the variable X and, to eah variableX, we have two hoies for variable Y (ombination between two variables). In the GT-Tdesign, the answer trie nodes representing the hoies for X and for Y (nodes subs1 andsubs2 respetively) are ompiled with a WAM-like sequene of trie instrutions, suh astry_subs_term (for �rst hoies) and trust_subs_term (for seond/last hoies). GT-T'sompiled tries also inlude a retry_subs_term instrution (for intermediate hoies) and ado_subs_term instrution (for single hoies).



4.3 Global Trie for Subterms 474.3 Global Trie for SubtermsIn this design, we optimize the GT-T in order to obtain higher e�ieny at the memory level.The Global Trie for Subterms (GT-ST) maintains most of the GT-T features, suh as thesharing of the tabled data that is struturally equal. Yet, in this last design, we take intoaount the use of tabling mehanisms in real world problems, whih require extensive searhand where redundant data ommonly our. Therefore, we maximize the representation ofthe strutural equal data at a seond level, by avoiding the representation of equal subterms,and thus preventing situations where the representation of those subterms ours more thanone.Although GT-ST uses the same tree struture for data strutures, every di�erent path annow represent a omplete term or a subterm of another term, but still being an unique term.This partiularity is evidened in GT's ompound term onstrution, suh as lists or funtors,that also have ompound terms as arguments. In what follows, we will refer to ompoundterms arguments whih are ompound terms too, as subterms. In this ase, we hange thestruture of the term in the GT by reating singular strutures for eah subterm, i.e., wheninserting a term suh as f(p(1)), after the onstrution of the funtor f/1 the insertion isstopped, and the onstrution of the subterm p(1) is inserted as a individual term in the GT.After the omplete insertion of subterm p(1), the onstrution of the main term is resumedby inserting a node pointing to the respetive subterm representation previously made.Although the strutural di�erenes in the GT-ST table spae design, GT-T's struturefor subgoal and answer tries, where eah path is omposed by a �xed number of nodesrepresenting, respetively, the arguments for table subgoal alls or the substitution terms, isused without hanges. Thus the subgoal trie and answer trie nodes store the pointers to therespetive representation in the GT. Features regarding the subgoal frame struture, suh asto maintain the hronologial order of answer's insertion and orret reovery, also remainunaltered.One last optimization is provided in GT-ST design, whih an be also applied to the previousGT-CA and GT-T designs. The goal is to prevent the single node term representation inthe GT, suh as when representing atoms, integers and variables, by inserting them in therespetive subgoal or answer trie, thus preventing unneessary memory usage. The proedureonsists in inserting diretly the subgoal all arguments or substitution terms, whih havea single node representation, in the respetive subgoal or answer trie, thus avoiding itsrepresentation in the global trie. This optimization is straightforward. Sine, by default, weare inserting a node in the subgoal trie or answer trie to point to the respetive representationin the GT, for atomi terms we now avoid this and use the node to store the respetive term.Figure 4.4 shows an example of how the previous GT-T design stores subterms by illustratingthe resulting table data strutures for the program desribed in the top of the �gure.
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:- table t/2.

t(X,Y) :- term(X), term(Y).
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Figure 4.4: YapTab's table organization for ompound terms using the GT-T design.
Figure 4.5 illustrates GT-ST design behavior, using the same example from Fig. 4.4. Initially,the subgoal trie and GT-ST are empty. Next the �rst subgoal t(f(p(1),p(1)),X) is alledand the two argument terms are inserted in the global trie. Regarding the insertion of the�rst argument, f(p(1),p(1)), we emphasize the di�erenes between this and the previousGT-T design.
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Figure 4.5: YapTab's table organization for ompound terms using GT-ST.Primarily, the node to represent the funtor f/2 is inserted, but then the insertion of funtorp/1 is stopped and the term p(1) is inserted as a distint term in the GT-ST, i.e., as a siblingof the already stored node f/2. The nodes for p/1 and 1 are then inserted in the GT-ST.Next, a node is inserted, in the plae where we have previously stopped the term onstrution(as a hild node of node f/2), to store the referene to the leaf node of the subterm p(1)representation. The onstrution of the main term then ontinues, applying an analogousproedure to the seond argument of f/2. However the subterm p(1) is already stored inthe GT, therefore it is only required the insertion of a node to store the referene to p(1)representation's leaf node. Afterwards, the respetive argument node (node arg1 in Fig. 4.5)is inserted in the subgoal trie storing the GT-ST referene representing f(p(1),p(1)). Forthe seond subgoal all, t(X,Y), we do not interat with the GT-ST. Therefore for eahargument term, X and Y, we simply store in the subgoal trie the respetive nodes with VAR0



50 Global Trieand VAR1 labels, as shown in the Fig. 4.5.The proedure used when proessing answers is equivalent to the one used when storing thesubgoal all arguments. For eah substitution term (if not an atomi term), we �rst insertthe term in the GT-ST and then we store a node in the orresponding answer trie to store thereferene to its path in the GT-ST (nodes labeled subs1 and subs2 in Fig. 4.5). In Fig. 4.5the substitution terms for the omplete set of answers for all subgoal alls are f(p(1),p(1))and f(p(2),p(2)). Thus, as f(p(1),p(1)) is already stored in the global trie (inserted whenstoring the �rst subgoal all), we only need to store the seond term in order to representthe whole set of answer. With this approah we inrease the sharing of ommon subtermsbetween terms and redue the omplexity when storing atomi terms.Regarding spae retrieval, the GT-ST design has the same features of the GT-T, where everypath representing a singular term always ends at a leaf node. We also use the hild �eld(that is always NULL in a leaf node) to ount the number of referenes to it. This proedureworks in any situation, even in what onerns to subterm's referening. As mentioned inthe previous setion, regarding the support of table abolish operations, this feature is ofuttermost importane in the deletion of a path, whih ours when the hild's node �eldis zero. As provided in the GT-T design, the GT-ST also supports the tehniques used onompletion of a subgoal, keeping the global trie only with the term representation and storingthe WAM-like instrutions in the answer tries. Although, in this design we use an hybridset of WAM-like instrutions, ones that work at the level of the substitution terms and otherthat work at level of the atomi terms. Therefore, taking into onsideration the positionof the node in the answer trie and if it is a ompound term or an atomi term. Hene,answer trie nodes are ompiled with the instrutions: try_subs_term/atom for �rst hoies,retry_subs_term/atom for intermediate hoies, trust_subs_term/atom for last hoies anddo_subs_term/atom for single hoies.



Chapter 5
Implementation
In this hapter, we fous on the implementation details for YapTab's alternative table designsand we desribe the GT data strutures and algorithms in more detail. Throughout, we alsodesribe how tries are strutured, speifying the main features of trie nodes, and present themain proedures whih interat with tries, preforming omparisons with YapTab's originaltable design. In what follows, we desribe the three previously presented alternatives,detailing them separately.5.1 Global Trie for Calls and AnswersWe next desribe the �rst presented alternative to YapTab's table design. We startwith Fig. 5.1 desribing in more detail the table organization previously presented inFig. 4.2 for the subgoal all t(f(1),X). Internally, all tries are represented by a top rootnode, ating as the entry point for the orresponding subgoal, answer or global trie datastruture. For the subgoal tries, the root node is stored in the orresponding table entry'ssubgoal_trie_root_node data �eld. For the answer tries, the root node is stored in theorresponding subgoal frame's answer_trie_root_node data �eld. For the global trie,the root node is stored in the GT_ROOT_NODE global variable. Regarding the trie nodes,remember that they are internally implemented as 4-�eld data strutures. The �rst �eld(entry) stores the token for the node and the seond (hild), third (parent) and fourth(sibling) �elds store pointers, respetively, to the �rst hild node, to the parent node, andto the sibling node. Traversing a trie to hek/insert for new alls or for new answers isimplemented by repeatedly invoking a trie_node_hek_insert() proedure for eah tokenthat represents the all/answer being heked. Given a trie node parent and a token t, thetrie_node_hek_insert() proedure returns the hild node of parent that represents thegiven token t. Figure 5.2 shows the pseudo-ode for this proedure.51
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trie_node_check_insert(TRIE_NODE parent, TOKEN t) {
  child = parent->child
  if (child == NULL) {              // the list of sibling nodes is empty
    child = new_trie_node(t, NULL, parent, NULL)
    parent->child = child
  } if (is_not_a_hash_table(child)) {    // sibling nodes without hashing
    sibling_nodes = 0             // to count the number of sibling nodes
    do {           // check if token t is already in the list of siblings
      if (child->token == t)
        return child
      sibling_nodes++
      child = child->sibling
    } while (child)
    child = new_trie_node(t, NULL, parent, parent->child)
    if (sibling_nodes > MAX_SIBLING_NODES_PER_LEVEL) {  // alloc new hash
      hash = new_hash_table(child)
      parent->child = hash
    } else
      parent->child = child
  } else {                                  // sibling nodes with hashing
    hash = child
    bucket = hash_function(hash, t)    // get the hash bucket for token t
    child = bucket -> child
    sibling_nodes = 0
    while (child) {     // check if token t is already in the hash bucket
      if (child->token == t)
        return child
      sibling_nodes++
      child = child->sibling
    }
    child = new_trie_node(t, NULL, parent, bucket)
    bucket -> child = child
    if (sibling_nodes > MAX_SIBLING_NODES_PER_BUCKET)      // expand hash
      expand_hash_table(hash)
  }
  return child
} Figure 5.2: Pseudo-ode for the trie_node_hek_insert() proedure.

through a hash table, hene providing diret node aess and optimizing searh. Furtherhash ollisions are redued by dynamially expanding the hash tables when a seond thresholdvalue (MAX_SIBLING_NODES_PER_BUCKET) is reahed for a partiular hash buket. If not usinghashing, the proedure then traverses sequentially the list of sibling nodes and heks for onerepresenting the given token t. If suh a node is found then exeution is stopped and the nodereturned. Otherwise, a new trie node is initialized and inserted in the beginning of the list. Ifreahing the threshold value MAX_SIBLING_NODES_PER_LEVEL, a new hash table is initializedand inserted as the �rst hild of the given parent node. If using hashing, the proedure�rst alulates the hash buket for the given token t and then, it traverses sequentially the



54 Implementationlist of sibling nodes in the buket heking for one representing t. Again, if suh a nodeis found then exeution is stopped and the node returned. Otherwise, a new trie node isinitialized and inserted in the beginning of the buket list. If reahing the threshold valueMAX_SIBLING_NODES_PER_BUCKET, the urrent hash table is expanded.To manipulate tries we use two interfae proedures. For traversing a trie to hek/insert fornew alls or for new answers we use thetrie_hek_insert(TRIE_NODE root, TERM t)proedure, where root is the root node of the trie to be used and t is the all/answerterm to be inserted. The trie_hek_insert() proedure invokes repeatedly the previoustrie_node_hek_insert() proedure for eah token that represents the given term andreturns the referene to the leaf node representing its path. Note that inserting a termrequires in the worst ase alloating as many nodes as neessary to represent its ompletepath. On the other hand, inserting repeated terms requires traversing the trie struture untilreahing the orresponding leaf node, without alloating any new node.To load a term from a trie bak to the Prolog engine we use thetrie_load(TRIE_NODE leaf)proedure, where leaf is the referene to the leaf node of the term to be returned. Whenloading a term, the trie nodes are traversed in bottom-up order. When inserting terms inthe table spae we need to distinguish two situations: (i) inserting tabled alls in a subgoaltrie struture; and (ii) inserting answers in a partiular answer trie struture. The formersituation is handled by the subgoal_hek_insert() proedure as shown in Fig. 5.3 and thelatter situation is handled by the answer_hek_insert() proedure as shown in Fig. 5.4.
subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call) {
  st_root_node = te->subgoal_trie_root_node
  if (GT_ROOT_NODE) {                               // GT-CA table design
    leaf_gt_node = trie_check_insert(GT_ROOT_NODE, call)
    leaf_st_node = trie_node_check_insert(st_root_node, leaf_gt_node)
  } else {                                       // original table design
    leaf_st_node = trie_check_insert(st_root_node, call)
  }
  return leaf_st_node
}Figure 5.3: Pseudo-ode for the GT-CA's subgoal_hek_insert() proedure.In the original table design, the subgoal_hek_insert() proedure simply uses the



5.2 Global Trie for Terms 55trie_hek_insert() proedure to hek/insert the given all in the subgoal trie or-responding to the given table entry te. In the new design based on the GT-CA, thesubgoal_hek_insert() proedure now �rst heks/inserts the given all in the GT. Then,it uses the referene to the GT's leaf node representing all (leaf_gt_node in Fig. 5.3) asthe token to be heked/inserted in the subgoal trie orresponding to the given table entryte. Note that this is done by alling the trie_node_hek_insert() proedure, thus if thelist of sibling nodes in the subgoal trie exeeds the MAX_SIBLING_NODES_PER_LEVEL thresholdvalue, then a new hash table is still initialized as desribed before.The answer_hek_insert() proedure works similarly. In the original table design, itheks/inserts the given answer in the answer trie orresponding to the given subgoal framesf. In the new design based on the GT-CA, it �rst heks/inserts the given answer in the GTand, then, it uses the referene to the GT's leaf node representing answer (leaf_at_nodein Fig. 5.4) as the token to be heked/inserted in the answer trie orresponding to thegiven subgoal frame sf. Again, if the list of sibling nodes in the answer trie exeeds theMAX_SIBLING_NODES_PER_LEVEL threshold value, a new hash table is initialized.
answer_check_insert(SUBGOAL_FRAME sf, ANSWER answer) {
  at_root_node = sf->answer_trie_root_node
  if (GT_ROOT_NODE) {                                 // GT-CA table design
    leaf_gt_node = trie_check_insert(GT_ROOT_NODE, answer)
    leaf_at_node = trie_node_check_insert(at_root_node, leaf_gt_node)
  } else {                                         // original table design
    leaf_at_node = trie_check_insert(at_root_node, answer)
  }
  return leaf_at_node
}Figure 5.4: Pseudo-ode for the GT-CA's answer_hek_insert() proedure.Finally, the answer_load() proedure is used to onsume answers. Figure 5.4 shows thepseudo-ode for it. In the original table design, it simply uses the trie_load() proedureto load from the answer trie the answer given by the trie node leaf_at_node. In the newdesign based on the GT-CA, the answer_load() proedure �rst aesses the GT's leaf node(leaf_gt_node in Fig 5.5) represented in the token �eld of the given trie node (leaf_at_nodein 5.5). Then, it uses the trie_load() proedure to load from the GT bak to the Prologengine the answer represented by the obtained GT's leaf node.5.2 Global Trie for TermsWe now desribe in more detail the GT-T data strutures and algorithms. We start withFig. 5.6 showing in more detail the table organization previously presented in Fig. 4.3
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answer_load(ANSWER_TRIE_NODE leaf_at_node) {
  if (GT_ROOT_NODE) {                                 // GT-CA table design
    leaf_gt_node = leaf_at_node->token
    answer = trie_load(leaf_gt_node)
  } else                                           // original table design
    answer = trie_load(leaf_at_node)
  return answer
} Figure 5.5: Pseudo-ode for the GT-CA's answer_load() proedure.

for the subgoal all t(X,Y). As mentioned previously, tries are represented by a top rootnode, ating as the entry point for the orresponding subgoal, answer or global trie datastruture. For the subgoal tries, the root node is stored in the orresponding table entry'ssubgoal_trie_root_node data �eld. For the answer tries, the root node is stored in theorresponding subgoal frame's answer_trie_root_node data �eld. For the global trie, theroot node is stored in the GT_ROOT_NODE global variable.In this table organization, the trie nodes have the same struture as in the previous design,being internally implemented as 4-�eld data strutures. The �rst �eld (token) stores thetoken for the node and the seond (hild), third (parent) and fourth (sibling) �elds storepointers, respetively, to the �rst hild node, to the parent node, and to the next sibling node.Remember that for the global trie, the leaf node's hild �eld is used to ount the number ofreferenes to the path it represents. For the answer tries, an additional �eld (ode) is used tosupport ompiled tries. As mentioned before, traversing a trie to hek/insert for new allsor for new answers is implemented by repeatedly invoking a trie_node_hek_insert()proedure for eah token that represents the all/answer being heked. Given a trie nodeparent and a token t, the trie_node_hek_insert() proedure returns the hild node ofparent that represents the given token t.Initially, the proedure heks if the list of sibling nodes is empty. If this is the ase, a newtrie node representing the given token t is initialized and inserted as the �rst hild of thegiven parent node. To initialize new trie nodes, we use a new_trie_node() proedure withfour arguments, eah one orresponding to the initial values to be stored respetively in thetoken, hild, parent and sibling �elds of the new trie node. For answer trie nodes, the ode�eld is omputed later when ompletion takes plae. Otherwise, if the list of sibling nodes isnot empty, the proedure heks if they are being indexed through a hash table.As in the previous design, two threshold values, MAX_SIBLING_NODES_PER_LEVEL andMAX_SIBLING_NODES_PER_BUCKET, ontrol whether to dynamially index/expand the nodesthrough a hash table. If not using hashing, the proedure then traverses sequentially thelist of sibling nodes and heks for one representing the given token t. If suh a node
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Figure 5.6: Implementation details for GT-T design.is found then exeution is stopped and the node returned. Otherwise, a new trie nodeis initialized and inserted in the beginning of the list. If reahing the threshold valueMAX_SIBLING_NODES_PER_LEVEL, a new hash table is initialized and inserted as the �rst hildof the given parent node. If using hashing, the proedure �rst alulates the hash buket forthe given token t and then, it traverses sequentially the list of sibling nodes in the buketheking for one representing t. Again, if suh a node is found then exeution is stopped andthe node returned. Otherwise, a new trie node is initialized and inserted in the beginning ofthe buket list. If reahing the threshold value MAX_SIBLING_NODES_PER_BUCKET, the urrenthash table is expanded.



58 ImplementationTo manipulate tries we still use two interfae proedures:trie_hek_insert(TRIE_NODE root, TERM t)trie_load(TRIE_NODE leaf)One more, the trie_load() is used to load a term from a trie bak to the Prologengine, where leaf is the referene to the leaf node of the term to be loaded. Thetrie_hek_insert() is used for traversing a trie to hek/insert for new terms, where rootis the root node of the trie to be used and t is the term to be inserted. It invokes repeatedlythe previous trie_node_hek_insert() proedure for eah token that represents the giventerm t and returns the referene to the leaf node representing its path. Inserting tabled allsin a subgoal trie struture is now handled by the subgoal_hek_insert() proedure asshown in Fig. 5.7 and inserting answers in a partiular answer trie struture is now handledby the answer_hek_insert() proedure as shown in Fig. 5.8.
subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call, SUBGOAL_ARITY a) {
  if (GT_ROOT_NODE) {                                  // GT-T table design
    st_node = te->subgoal_trie_root_node
    for (i = 1; i <= a; i++) {
      t = get_argument_term(call, i)
      leaf_gt_node = trie_check_insert(GT_ROOT_NODE, t)
      leaf_gt_node->child++       // increase number of paths it represents
      st_node = trie_node_check_insert(st_node, leaf_gt_node)
    }
    leaf_st_node = st_node
  } else                                           // original table design
    leaf_st_node = trie_check_insert(te->subgoal_trie_root_node, call)
  return leaf_st_node
} Figure 5.7: Pseudo-ode for the GT-T's subgoal_hek_insert() proedure.In the GT-T design, for eah argument term t, the subgoal_hek_insert() �rstheks/inserts the term t in the GT-T and, then, it uses the referene to the leaf noderepresenting t in the GT-T (leaf_gt_node in Fig. 5.7) as the token to be heked/insertedin the subgoal trie orresponding to the given table entry te. Note that this is done by allingthe trie_node_hek_insert() proedure, thus if the list of sibling nodes in the subgoaltrie exeeds the MAX_SIBLING_NODES_PER_LEVEL threshold value, then a new hash table isinitialized as desribed before.The answer_hek_insert() proedure works similarly. In the GT-T design, for eahsubstitution term t, it �rst heks/inserts the term t in the GT-T and, then, it uses thereferene to the leaf node representing t in the GT-T (leaf_gt_node in Fig. 5.8) as the tokento be heked/inserted in the answer trie orresponding to the given subgoal frame sf. Again,



5.3 Global Trie for Subterms 59if the list of sibling nodes in the answer trie exeeds the MAX_SIBLING_NODES_PER_LEVELthreshold value, a new hash table is initialized.
answer_check_insert(SUBGOAL_FRAME sf, ANSWER answer, SUBSTITUTION_ARITY a) {
  if (GT_ROOT_NODE) {                                     // GT-T table design
    at_node = sf->answer_trie_root_node
    for (i = 1; i <= a; i++) {
      t = get_substitution_term(answer, i)
      leaf_gt_node = trie_check_insert(GT_ROOT_NODE, t)
      leaf_gt_node->child++          // increase number of paths it represents
      at_node = trie_node_check_insert(at_node, leaf_gt_node)
    }
    leaf_at_node = at_node
  } else                                              // original table design
      leaf_at_node = trie_check_insert(sf->answer_trie_root_node, answer)
  return leaf_at_node
} Figure 5.8: Pseudo-ode for the GT-T's answer_hek_insert() proedure.Finally, Fig. 5.9 shows the pseudo-ode for the new answer_load() proedure. In the newGT-T design, for eah answer trie node at_node, now the answer_load() proedure uses thetrie_load() proedure to load from the GT-T bak to the Prolog engine the substitutionterm given by the referene (leaf_gt_node in Fig. 5.9) stored in the orresponding token�eld.
answer_load(ANSWER_TRIE_NODE leaf_at_node, SUBSTITUTION_ARITY a) {
  if (GT_ROOT_NODE) {                                // GT-T table design
    at_node = leaf_at_node
    for (i = a; i >= 1; i--) {
      leaf_gt_node = at_node->token
      t = trie_load(leaf_gt_node)
      put_substitution_term(t, answer)
      at_node = at_node->parent
    }
  } else                                         // original table design
    answer = trie_load(leaf_at_node)
  return answer
} Figure 5.9: Pseudo-ode for the GT-T's answer_load() proedure.

5.3 Global Trie for SubtermsFinally, we then desribe the data strutures and algorithms for the GT-ST table design.Figure 5.10 shows in more detail the table organization previously presented in Fig. 4.5 for



60 Implementationthe subgoal all t(X,Y). As mentioned in the previous setions, tries are represented by a toproot node, ating as the entry point for the orresponding trie data struture, and trie nodesare internally implemented as 4-�eld data strutures. The �rst �eld (entry) stores the tokenfor the node and the seond (hild), third (parent) and fourth (sibling) �elds store pointers,respetively, to the �rst hild node, to the parent node, and to the sibling node. Traversing atrie to hek/insert for new alls or new answers is also implemented by repeatedly invoking atrie_node_hek_insert() proedure for eah token that represents the all/answer beingheked. The same algorithm is applied on this design, i.e., given a trie node parent and atoken t, the trie_node_hek_insert() proedure returns the hild node of parent thatrepresents the given token t.Initially, the proedure heks if the list of sibling nodes is empty. If this is the ase, anew trie node representing the given token t is initialized and inserted as the �rst hildof the given parent node.Otherwise, if the list of sibling nodes is not empty, the proedureheks if they are being indexed through a hash table. The usage of the threshold valuesMAX_SIBLING_NODES_PER_LEVEL and MAX_SIBLING_NODES_PER_BUCKET remains unaltered.When using hashing, the proedure �rst alulates the hash buket for the given token tand then, it traverses sequentially the list of sibling nodes in the buket heking for one rep-resenting t. Again, if suh a node is found then exeution is stopped and the node returned.Otherwise, a new trie node is initialized and inserted in the beginning of orresponding thebuket list. If reahing the threshold value MAX_SIBLING_NODES_PER_BUCKET the urrent hashtable is expanded. If not using hashing, the list of sibling nodes is sequentially traversed tobe heked for one representation of the given token t. The proedure is stopped when suhrepresentation is found, returning the respetive node. Otherwise, a new trie node insertedin the list of siblings. When the threshold value MAX_SIBLING_NODES_PER_LEVEL is reahed,during a new node's insertion, a new hash table is initialized, inserting the new node in thenew hash table.As for the previous designs, in the GT-ST we also use two interfae proedures to manipulatetries. trie_hek_insert(TRIE_NODE root, TERM t)trie_load(TRIE_NODE leaf)The trie_load() proedure is used to load a term from a trie bak to the Prologengine, where leaf is the referene to the leaf node of the term to be loaded. Thetrie_hek_insert() is used for traversing a trie to hek/insert for new terms, whereroot is the root node of the trie to be used and t is the term to be inserted. As desribedin the previous setions, the two distint situations of inserting tabled alls in a subgoal triestruture and inserting answers in a partiular answer trie struture are handled respetivelyby the subgoal_hek_insert() and answer_hek_insert() proedures. In the GT-ST



5.3 Global Trie for Subterms 61
Subgoal Trie

subgoal_trie_root_node

Global Trie

root
node

Answer Trie

VAR1

table entry for t/2

VAR0

answer_trie_root_node

subgoal frame for t(VAR0,VAR1)

root
node

subs2

subs1

try

try

subs2

trust

subs2

subs1

trust

try

subs2

trust

GT_ROOT_NODE

root
node

subt2 subt2

subt1 subt1

f/2

2 1

p/1

Figure 5.10: Implementation details for the GT-ST design.design these proedures are analogues to the ones presented for the GT-T design, as shownrespetively in Fig. 5.7 and Fig. 5.8. Both proedures start by �rst heking/inserting theterm t in the GT, in order to use the referene to the leaf node representing t in the GT-T, asthe token to be heked/inserted in the orresponding subgoal or answer trie. In the GT-ST,both proedures behave in same way in what regards to the subgoal and answer hek/insertproedure.The di�erene relies in the insertion of terms in the GT, and for that we have hanged the



62 Implementationtrie_hek_insert() proedure in suh a way that when a ompound term has a ompoundterm as an argument, the proedure alls itself. In what remains we will refer to a termargument as a subterm. Figure 5.11 shows the pseudo-ode for the hanges made to thetrie_hek_insert() proedure in order to support the new algorithm.
trie_check_insert(TRIE_NODE root, TERM t) {
  current_node = root
  if (is_atomic_term(t)) {
    current_node = trie_node_check_insert(current_node, t)
  } else if (is_compound_term(t)) {                      // GT-ST table design
    if (current_node == GT_ROOT_NODE) {
      st = compound_term_name(t)
      a = compound_term_arity(t)
      current_node = trie_node_check_insert(current_node, st)
      for (i = 0; i < a; i ++) {
        st = get_argument_term(t, i)
        current_node = trie_check_insert(current_node, st)
      }
    } else {                            // compound subterm of a compound term
      ref = trie_check_insert(GT_ROOT_NODE, t)
      current_node = trie_node_check_insert(current_node, ref)
    }
  }
  ...
  return current_node
}Figure 5.11: Pseudo-ode for the GT-ST's trie_hek_insert() proedure for the GT-STdesign.Remember that, with the GT enabled, the trie_hek_insert() proedure for a all oranswer is alled with the GT_ROOT_NODE as the root argument. For the given term t,we initially verify its type in order to preform the respetive ation of insertion in thetrie. When t is a ompound term, two situations an our: (i) if the urrent_node isthe GT_ROOT_NODE then the insertion proeeds by �rst inserting the term's name with thetrie_node_hek_insert() and then, for eah element of t (subterm), by invoking thetrie_hek_insert() proedure; (ii) on the other hand, if the urrent_node is not theGT_ROOT_NODE, whih means that t is an argument from a ompound term, then we �rst allthe trie_hek_insert() proedure with the GT_ROOT_NODE and the term t as arguments.By doing that, t is inserted as a simple term in the GT and when the trie_hek_insert()proedure returns, the referene ref to the leaf node of the subterm's path representation oft in the GT is inserted after the urrent_node by alling the trie_node_hek_insert()proedure.The answer_load() proedure in this design is used as in the GT-T design, i.e., it usesthe trie_load() proedure to load from the GT bak to the Prolog engine the substitutionterm given by the referene stored in the orresponding token �eld. In the ase of subterm



5.3 Global Trie for Subterms 63referenes in the GT, the trie_load() proedure alls itself to �rst load the subterm referenefrom the GT.Finally, in what regards the optimization mentioned in the previous hapter for therepresentation of atomi terms (integers, atoms and variables), Fig. 5.10 presents the hangesmade to the table spae when using this optimization. Remember that in the previousGT design, when inserting an atomi term, being it part of an answer or subgoal, thealgorithm �rst heks/inserts the term in the GT and only then inserts the referene toits representation in the respetive subgoal or answer trie. To implement this optimization,the subgoal/answer_hek_insert() proedures were slightly hanged. Before we insert aterm t in the GT, now we �rst verify if it is an atomi term, and if so, instead of inserting itin the GT we represent the term in its respetive subgoal/answer trie. Figure 5.12 shows thepseudo-ode for this optimization applied to the subgoal_hek_insert() proedure. It isapplied similarly to the answer_hek_insert() proedure.
subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call, SUBGOAL_ARITY a) {
  if (GT_ROOT_NODE) {                                        // GT-ST table design
    st_node = te->subgoal_trie_root_node
    for (i = 1; i <= a; i++) {
      t = get_argument_term(call, i)
      if (is_atomic_term(t))                          // atomic term optimization
        st_node = trie_node_check_insert(st_node, t)
      else {
        leaf_gt_node = trie_check_insert(GT_ROOT_NODE, t)
        leaf_gt_node->child++           // increase number of paths it represents
        st_node = trie_node_check_insert(st_node, leaf_gt_node)
      }    
    }
    leaf_st_node = st_node
  } else                                                 // original table design
    leaf_st_node = trie_check_insert(te->subgoal_trie_root_node, call)
  return leaf_st_node
}Figure 5.12: Pseudo-ode for the GT'ST subgoal_hek_insert() proedure optimized foratomi terms.
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Chapter 6
Experimental Results
In this hapter we present the experimental results obtained for the optimizations previouslydesribed, and for that we ompare the running times and system's memory spent by eah.Initially, we present results for the new ompat list terms representation, making omparisonwith the YapTab system. Afterwords, we disuss the results obtained by testing the GTtable designs, one more omparing then with the YapTab system. The environment for ourexperiments was an Intel(R) Core(TM)2 Quad 2.66GHz with 3.2 GBytes of main memoryand running the Linux kernel 2.6.24-28-generi with YapTab 6.2.0.6.1 Compat List TermsWe next present some experimental results omparing YapTab with and without support forompat lists. To put the performane results in perspetive, we have de�ned a top querygoal that alls reursively a tabled prediate list_terms/1 that simply stores in the tablespae list terms fats. We experimented the list_terms/1 prediate using 50,000, 100,000and 200,000 list terms of sizes 60, 80 and 100 for empty-ending and term-ending lists withthe �rst and with the last element di�erent. Tables 6.1 and 6.2 show the table memoryusage (olumns Memory), in KBytes, and the running times, in milliseonds, to store(olumns Store) the tables (�rst exeution) and to load from the tables (seond exeution)the omplete set of answers without (olumns Load) and with (olumns Comp) ompiledtries for YapTab using standard lists (olumnYapTab) and using the �nal design for ompatlists (olumn YapTab+CL/YapTab). For ompat lists, we only show the memory andrunning time ratios over YapTab using standard lists. The running times are the average of�ve runs.The results in Tables 6.1 and 6.2 learly on�rm that the new trie design based onompat lists an derease signi�antly memory usage when ompared with standard lists.65



66 Experimental ResultsEmpty-Ending Lists YapTab YapTab+CL/YapTabMemory Store Load Comp Memory Store Load CompFirst element di�erent50,000 [E1,...,E60℄ 117,187 327 48 48 0.51 0.50 0.72 0.7350,000 [E1,...,E80℄ 156,250 486 62 62 0.51 0.50 0.66 0.6550,000 [E1,...,E100℄ 195,312 641 75 75 0.51 0.47 0.65 0.65100,000 [E1,...,E60℄ 234,375 775 93 93 0.51 0.47 0.74 0.74100,000 [E1,...,E80℄ 312,500 1,135 122 122 0.51 0.45 0.67 0.68100,000 [E1,...,E100℄ 390,625 1,531 150 149 0.51 0.46 0.65 0.66200,000 [E1,...,E60℄ 468,750 1,868 187 186 0.51 0.48 0.74 0.75200,000 [E1,...,E80℄ 625,000 2,544 250 247 0.51 0.48 0.66 0.66200,000 [E1,...,E100℄ 781,250 3,161 300 302 0.51 0.54 0.66 0.68last element di�erent50,000 [E1,...,E60℄ 1,955 58 22 21 0.50 0.77 0.70 0.7350,000 [E1,...,E80℄ 1,956 82 29 28 0.50 0.73 0.67 0.6950,000 [E1,...,E100℄ 1,957 94 35 35 0.50 0.78 0.68 0.68100,000 [E1,...,E60℄ 3,909 122 43 43 0.50 0.76 0.75 0.72100,000 [E1,...,E80℄ 3,910 156 57 57 0.50 0.77 0.72 0.70100,000 [E1,...,E100℄ 3,910 191 70 70 0.50 0.79 0.69 0.67200,000 [E1,...,E60℄ 7,815 255 87 92 0.50 0.73 0.72 0.68200,000 [E1,...,E80℄ 7,816 318 118 118 0.50 0.76 0.65 0.66200,000 [E1,...,E100℄ 7,817 377 141 140 0.50 0.78 0.67 0.67Table 6.1: Table memory usage (in KBytes) and store/load times (in milliseonds) for YapTabwith and without support for ompat lists for empty-ending lists with di�erent �rst or lastelements.In partiular, for empty-ending lists, with the �rst and with the last element di�erent, andfor term-ending lists with the �rst element di�erent, the results show an average redutionof 50%. For term-ending lists with the last element di�erent, memory usage is almost thesame. This happens beause the memory redution obtained in the representation of theommon list elements (respetively 59, 79 and 99 elements in these experiments) is residualwhen ompared with the number of di�erent last elements (50,000, 100,000 and 200,000 inthese experiments).Regarding running time, the results in Tables 6.1 and 6.2 indiate that ompat listsan ahieve impressive gains for storing and loading list terms. In these experiments, thestoring time using ompat lists is around 2 times faster for list terms with the �rst elementdi�erent, and around 1.3 (0.79 ratio) to 1.4 (0.73 ratio) times faster for list terms withthe last element di�erent. Note that this is the ase even for term-ending lists, wherethere is no signi�ant memory redution. This happens beause the number of nodes to betraversed when navigating the trie data strutures for ompat lists is onsiderably smaller



6.2 Global Trie 67Term-Ending Lists YapTab YapTab+CL/YapTabMemory Store Load Comp Memory Store Load Comp1st element di�erent50,000 [E1,...,E59|E60℄ 115,235 320 48 47 0.52 0.51 0.72 0.7350,000 [E1,...,E79|E80℄ 154,297 471 62 62 0.51 0.53 0.67 0.6650,000 [E1,...,E99|E100℄ 193,360 657 74 73.6 0.51 0.47 0.66 0.65100,000 [E1,...,E59|E60℄ 230,469 732 97 96 0.52 0.50 0.72 0.72100,000 [E1,...,E79|E80℄ 308,594 1149 124 122 0.51 0.46 0.66 0.67100,000 [E1,...,E99|E100℄ 386,719 1516 149 146 0.51 0.49 0.66 0.67200,000 [E1,...,E59|E60℄ 460,937 1853 187 190 0.52 0.52 0.77 0.74200,000 [E1,...,E79|E80℄ 617,188 2417 244 248 0.51 0.51 0.69 0.69200,000 [E1,...,E99|E100℄ 773,438 3152 296 299 0.51 0.53 0.67 0.66last element di�erent50,000 [E1,...,E59|E60℄ 979 57 22 22 1.00 0.82 0.70 0.7450,000 [E1,...,E79|E80℄ 980 74 28 28 1.00 0.89 0.69 0.6950,000 [E1,...,E99|E100℄ 981 94 43 39 1.00 0.79 0.54 0.59100,000 [E1,...,E59|E60℄ 1,956 113 42 42 1.00 0.84 0.74 0.74100,000 [E1,...,E79|E80℄ 1,956 146 56 60 1.00 0.81 0.64 0.69100,000 [E1,...,E99|E100℄ 1,957 190 74 70 1.00 0.77 0.62 0.68200,000 [E1,...,E59|E60℄ 3,909 238 85 90.4 1.00 0.77 0.78 0.69200,000 [E1,...,E79|E80℄ 3,910 294 113 113 1.00 0.85 0.73 0.67200,000 [E1,...,E99|E100℄ 3,910 364 140 140 1.00 0.81 0.70 0.67Table 6.2: Table memory usage (in KBytes) and store/load times (in milliseonds) for YapTabwith and without support for ompat lists for lists with di�erent �rst or last elements.than the number of nodes for standard lists. These results also indiate that ompat listsan outperform standard lists for loading terms, both with and without ompiled tries, andthat the redution on the running time seems to derease as the size of the list terms beingonsidered inreases.6.2 Global TrieWe next present some experimental results omparing YapTab with and without support forthe ommon global trie data struture. To put the performane results in perspetive andhave a well-de�ned starting point omparing the GT-T and GT-ST approahes, �rst we havede�ned a tabled prediate t/5 that simply stores in the table spae terms de�ned by term/1fats, and then we used a top query goal test/0 to reursively all t/5 with all ombinationsof one and two free variables in the arguments. An example of suh ode for funtor termsof arity 1 (1000 terms in total) is shown next.



68 Experimental Results:- table t/5.t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).test :- t(A,f(1),f(1),f(1),f(1)), fail.test :- t(f(1),f(1),f(1),f(1),A), fail.test :- t(A,B,f(1),f(1),f(1)), fail....test :- t(f(1),f(1),f(1),A,B), fail.test.term(f(1)).term(f(2)).term(f(3))....term(f(998)).term(f(999)).term(f(1000)).We experimented the test/0 prediate with 10 di�erent kinds of 1000 term/1 fats: integers,atoms, funtor (with arity 1, 2, 4 and 6) and list (with length 1, 2 and 4) terms. Table 6.3shows the table memory usage (olumn Memory), in MBytes, and the running times, inmilliseonds, to store (olumn Store) the tables (�rst exeution) and to load from the tables(seond exeution) the omplete set of subgoals/answers without (olumn Load) and with(olumn Comp) ompiled tries for YapTab's original table design.Table 6.4 shows the same �gures presented in Table 6.3, memory in MBytes and runningtimes spent to store tables and to load answer from tables, with and without ompiled tries,in milliseonds, but when using the GT-T (olumn GT-T/YapTab) or the GT-ST (olumnGT-ST/YapTab) designs. For this table, we only show the ratios over YapTab's originaltable design using the results presented in Table 6.3.Notie, that the results obtained for the �rst GT design, the GT-CA, are not shown here,sine this design is no longer supported and the hanges made at YapTab's latest versiondid not inlude this design. Therefore, a fair omparison between all the GT designs is notpossible. For referene, in Appendix A, we show the results obtained and published in [33℄for a preliminary version of the GT-CA design.The results in Table 6.4 suggest that both GT designs are a very good approah to reduememory usage and that this redution inreases proportionally to the length and redundanyof the terms stored in the global trie. In partiular, for funtor and list terms, the resultsshow an inreasing and very signi�ant redution on memory usage, for both GT-T andGT-ST approahes. The results for the speial ases of integer and atoms terms are also veryinteresting as they show that the ost of representing only atomi terms in the respetivetries. Note that, although, integers and atoms terms are only represented in the respetivetries, it is neessary to hek for these type of term, in order to proeed with the respetivestore/load algorithm.



6.2 Global Trie 69Terms YapTabMemory Store Load Comp1000 ints 191 1,270 345 3441000 atoms 191 1,423 343 4061000 f/1 191 1,680 542 3611000 f/2 382 2,295 657 4501000 f/4 764 3,843 973 6311000 f/6 1,146 5,181 1,514 7981000 [ ℄/1 382 2,215 507 4661000 [ ℄/2 764 3,832 818 6041000 [ ℄/4 1,528 6,566 1,841 1,066Table 6.3: Table memory usage (in MBytes) and store/load times (in milliseonds) for thetest/0 prediate using YapTab's original table design.Terms GT-T/YapTab GT-ST/YapTabMemory Store Load Comp Memory Store Load Comp1000 ints 1.00 1.05 1.00 1.00 1.00 1.09 1.11 1.071000 atoms 1.00 1.04 1.01 1.02 1.00 1.04 1.03 1.081000 f/1 1.00 1.32 1.16 2.10 1.00 1.34 1.17 2.131000 f/2 0.50 1.10 1.14 1.84 0.50 1.06 1.11 1.881000 f/4 0.25 0.81 0.98 1.44 0.25 0.78 1.04 1.531000 f/6 0.17 0.72 0.72 1.38 0.17 0.66 0.71 1.361000 [ ℄/1 0.50 1.08 1.05 1.61 0.50 1.10 1.02 1.581000 [ ℄/2 0.25 0.80 0.94 1.38 0.25 1.00 1.05 1.481000 [ ℄/4 0.13 0.63 0.54 0.96 0.13 0.89 0.66 1.14Average 0.53 0.95 0.95 1.42 0.53 0.99 0.99 1.47Table 6.4: Table memory usage (in MBytes) and store/load times (in milliseonds) for thetest/0 prediate using YapTab with support for the ommon global trie data struture.Regarding running time the results suggest that, in general, GT-ST, spends more time in thestore and load term proedures. Suh behaviour an be easily explained by the fat that, theGT-ST's storing and loading algorithms have more sub-ases to proess in order to supportsubterms. These results also seem to indiate that memory redution for small sized terms,generally omes at a prie in storing time (between 4% and 32% more for GT-T and between4% and 34% more for GT-ST in these experiments). The opposite ours in the tests whereterm's length are higher (between 19% and 37% less for GT-T and 11% and 34% less forGT-ST). Note that with GT-T and GT-ST support, we pay the ost of navigating in twotries when heking/storing/loading a term. Moreover, in some situations, the ost of storinga new term in an empty/small trie an be less than the ost of navigating in the global trie,even when the term is already stored in the global trie. However, our results seem to suggest



70 Experimental Resultsthat this ost dereases proportionally to the length and redundany of the terms stored inthe global trie. In partiular, for funtor and list terms and funtor terms, GT-T and GT-STsupport showed to outperform the original YapTab design and, in partiular, the redutionseems to derease also proportionally to the length of the terms stored in the global trie.The results obtained for loading terms also show some gains without ompiled tries (around5% for GT-T and 1% for GT-ST on average) but, when using ompiled tries the resultsshow some signi�ant osts on running time (around 42% for GT-T and 47% for GT-STon average). We believe that this ost is smaller for GT-T as a result of having less sub-ases in the storing/loading algorithms. On the other hand, we also believe that some ahebehaviour e�ets, redue the osts on running times, for both GT designs. As we need tonavigate in the global trie for eah substitution term, we kept aessing the same global trienodes, thus reduing eventual ahe misses. This seems to be the reason why for list termsof length 4, GT-T learly outperforms the original YapTab design, both without and withompiled tries. Note that, for this partiular ase, the GT-T support only onsumes 13% ofthe memory used in the original YapTab.Next, we tested our approah with two well-known Indutive Logi Programming (ILP) [34℄benhmarks: the arinogenesis (Car) and the mutagenesis (Muta) data sets. We usedthese data sets in a Prolog program that simulates the test phase of an ILP system. Forthat, �rst we ran the April ILP system [35℄ for the two data sets, eah with two di�erenton�gurations, in order to ollet the set of lauses generated for eah on�guration. Thesimulator program then uses the orresponding set of generated lauses to run the positiveand negative examples de�ned for eah data set against them. To evaluate lauses, we usedtwo di�erent strategies: Pred denotes the tabling of individual prediates and Conj denotesthe tabling of literal onjuntions (as desribed in [36℄). By tabling onjuntions, we onlyneed to ompute them one. The strategy is then reursively applied as the ILP systemgenerates more spei� lauses, but this an inrease the table memory usage arbitrarily.Tables 6.6 and 6.5 show the table memory usage (olumns Memory), in MBytes, andthe running times, in seonds, to store (olumns Store) the tables (�rst exeution) andto load from the tables (seond exeution) the omplete set of subgoals/answers without(olumns Load) and with (olumns Comp) ompiled tries for YapTab using the originaltable organization (olumn YapTab), using the GT-T approah (olumn GT-T/YapTab)and using the GT-ST design (olumn GT-ST/YapTab). Again, for the GT-T and GT-STapproahes we only show the memory and running time ratios over YapTab's original tableorganization.In general, the results in Table 6.6 on�rm the results obtained in Table 6.4 for memory usagewith both GT-T and GT-ST designs showing equivalent memory usage ratios. In partiular,for the Pred strategy, memory usage showed to be, on average, 2% less for the GT-ST



6.2 Global Trie 71Data Sets YapTabMemory Store Load CompPredCar_v1 1,669.0 68,524 72,088 84,658Car_v2 2.1 50,151 54,391 68,832Muta_v1 0.6 96,578 5,072 5,456Muta_v2 0.6 95,181 2,109 2,604ConjCar_v1 18.5 652 588 536Car_v2 a.m. a.m. a.m. a.m.Muta_v1 84.8 102,214 6,792 7,309Muta_v2 675.6 95,846 1,724 2,152Table 6.5: Table memory usage (in MBytes) and store/load times (in seonds) for the ICLPbenhmarks using YapTab's original table design.Data Sets GT-T/YapTab GT-ST/YapTabMemory Store Load Comp Memory Store Load CompPredCar_v1 0.62 1.15 1.13 1.12 0.60 1.07 1.02 0.97Car_v2 0.53 1.00 1.06 1.02 0.53 1.04 1.16 1.09Muta_v1 0.62 1.09 1.07 1.04 0.60 1.06 1.08 1.06Muta_v2 0.62 0.99 1.05 1.01 0.60 1.00 1.29 1.29Average 0.59 1.09 1.08 1.06 0.57 1.11 1.18 1.18ConjCar_v1 0.39 0.97 0.97 1.00 0.39 1.04 1.10Car_v2 - - - - - - - -Muta_v1 0.53 1.00 1.06 1.02 0.53 1.04 1.16 1.09Muta_v2 0.16 1.07 0.86 0.57 0.16 1.04 0.95 0.71Average 0.36 1.01 0.96 0.86 0.36 1.05 1.05 0.96Table 6.6: Table memory usage (in MBytes) and store/load times (in seonds) for the ILPbenhmarks using YapTab with the support for the ommon global trie data struture.design than GT-T. Sine the Pred strategy tables individual prediates, the existene ofomplex ompound terms redues the memory spend when using GT-ST, although, thesegains are residual. For the Conj strategy, both designs outperform the YapTab standardtable organization. This happens beause after a ertain time, the Conj strategy will nottable new terms, but only answers that are ombinations of previous terms, therefore makingthe GT approah more feasible as it an share the representation of ommon terms appearingat di�erent argument or substitution positions.Regarding running time, the results in Table 6.6 also on�rm and reinfore the results



72 Experimental Resultsobtained in Table 6.4. GT-T support outperforms the GT-ST design for storing and loadingtimes and, for some on�gurations, it also outperforms the original YapTab design. This isthe ase for on�gurations either with or without ompiled tries.Finally, in Table 6.7, we present a new set of tests speially designed to provide moreexpressive results regarding the omparison between the GT-ST and the GT-T designs. Inthis tests, we have de�ned a tabled prediate t/1 that simply stores in the table spae termsde�ned by term/1 fats and then we used a test/0 prediate to all t/1 with a free variable.We experimented test/0 prediate with 9 di�erent sets of 500,000 term fats of ompoundterms (with arity 1, 2, 3) where its arguments were also ompound subterms (with arity 1,3, 5). An example of suh ode for a ompound term f with arity 2 ontaining argumentssubterms with arity 3 (500,000 terms in total) is shown next.:- table t/1.t(A) :- term(A).test :- t(A), fail.test.term(f(g(1,1,1), g(1,1,1))).term(f(g(2,2,2), g(2,2,2))).term(f(g(3,3,3), g(3,3,3)))....term(f(g(499998,499998,499998), g(499998,499998,499998))).term(f(g(499999,499999,499999), g(499999,499999,499999))).term(f(g(500000,500000,500000), g(500000,500000,500000))).Opposed to the previous experiments, here we just used one free variable for the tabledprediate t/1. This di�erene is neessary, beause when we have more than one free variableand, we produe di�erent ombinations between those free variables, we are raising thenumber of nodes represented in the loal tries. More preisely, di�erent ombinations of freevariables raises the number of answers and therefore the number of nodes in the loal answertries. Moreover, sine these experiments serve the purpose to show the di�erenes betweenthe GT-T and GT-ST at memory level, we did not inlude the YapTab original table designin these experiments.Table 6.7 shows the table memory usage (olumns Tab.Memory) omposed by twoolumns one for total memory (olumns Total) and the other for GT's memory (olumnsGT ), in MBytes, and the running times, in milliseonds, to store (olumns Store) thetables (�rst exeution) and to load from the tables (seond exeution) the omplete set ofsubgoals/answers without (olumns Load) and with (olumns Comp) ompiled tries usingthe GT-T table design (olumn GT-T ), and using the GT-ST design (olumn GT-ST/GT-T ). For the values referring the GT-ST we only show the memory and running times ratiosover the GT-T design. The running times are the average of �ve runs.Table 6.7 suggests that the GT-ST outperforms the GT-T design in some speial ases, the



6.2 Global Trie 73500,000 GT-T GT-ST/GT-TTerms Tab.Memory Tab.MemoryTotal GT Store Load Comp Total GT Store Load Compf/1g/1 17.17 7.63 126 28 51 1.44 2.00 1.55 1.14 1.00g/3 32.43 22.89 198 34 61 1.24 1.33 3.29 1.12 1.25g/5 47.68 38.15 293 47 83 1.16 1.2 1.46 1.00 0.99f/2g/1 32.43 22.89 203 38 71 1.00 1.00 1.28 1.13 1.09g/3 62.94 53.41 45 60 103 0.76 0.71 1.18 0.84 0.95g/5 93.46 83.92 438 111 146 0.67 0.64 1.10 0.67 0.8f/3g/1 47.68 38.15 296 50 89 0.84 0.80 2.87 1.02 1.03g/3 93.46 83.92 616 142 164 0.59 0.55 1.25 0.8 0.85g/5 139.24 129.7 832 197 224 0.51 0.47 0.96 0.67 0.74Average 0.96 0.97 0.93 0.97 0.91Table 6.7: Table memory usage (in MBytes) and store/load times (in seonds) for subtermrepresentation using YapTab with support for the ommon global trie data struture.results show three di�erent situations, that an be distinguished by the arity of the funtorterm f . For f/1 terms, it learly shows that the osts are higher for GT-ST, sine it needs tostore one extra node for every distint subterm representation and there is no redundany inthe subterms. We an also see that the memory ost seems to be redued when the subterm'sarity inreases from g/1 to g/5. This ours beause the ost of the extra node for eahsubterm is diluted in the number of nodes represented in the GT.The results on table 6.7 also show that, in some ases, the storing proess an be a veryexpensive proedure. Remember that with the GT-ST support, we pay the ost of rereatingthe loal tries/global trie interations when heking/storing/loading a term inside the GT.A partiular situation ours for the ase of f/2 with subterms g/1 where the memoryspend is the same for both designs. This happens beause the extra node used by GT-ST, torepresent the referene to the subterm representation, is balaned by the arity of the funtorterm f . From this point on, the GT-ST always outperforms the GT-T, not only for thesystem's memory, but also for the running times with and without ompiled tries. Theseresults suggest that, at least for some lass of appliations, GT-ST support has potential toahieve signi�ant redutions on memory usage without ompromising running time.
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Chapter 7
Conlusions and Further Work
In this �nal hapter, we summarize the ahievements of the work presented in this thesis,providing our onlusions and some diretions for further work.We have presented a new and more ompat representation of list terms for tabled data thatavoids the reursive nature of the WAM representation by removing unneessary intermediatepair tokens. Our presentation followed the di�erent approahes that we have onsidered untilreahing our urrent �nal design. We foused our disussion on a onrete implementation,the YapTab system, but our proposals an be easy generalized and applied to other tablingsystems. Our experimental results are quite interesting, they learly show that with ompatlists, it is possible not only to redue the memory usage overhead, but also the running timeof the exeution for storing and loading list terms, both with and without ompiled tries.We also have presented three new designs for the table spae organization, that have theommon feature of representing all tabled subgoals and tabled answers only one in a ommonglobal trie instead of being spread over several di�erent trie data strutures. The goal ofthe GT designs starts by reduing to a minimum the nodes present in the subgoal andanswer tries by moving the respetive representation to the GT. Continues in the redutionof the redundany in term representation by maximizing the sharing of tabled data that isstruturally equal. And ends in the redution of the redundany of subterm representationin ompound terms also maximizing the sharing of tabled data. Our experiments using theYapTab tabling system showed that our approahes have potential to ahieve signi�antredutions on memory usage without ompromising running time.Further work will inlude, for the list term representation, exploring the impat of ourproposal in real-world appliations, suh as, the works on Indutive Logi Programming andProbabilisti Logi Learning with the ProbLog language [37℄, that heavily uses list terms torepresent, respetively, hypotheses and proofs in trie data strutures. For the GT designs,further work inlude, exploring the impat of applying our proposal to other real-world75



76 Conlusions and Further Workappliations, that pose many subgoal queries, possibly with a large number of redundantanswers, seeking real-world experimental results allowing us to improve and expand theurrent implementations.



Appendix A
Experimental Results for GT-CA
This appendix ontains the results for the tabled prediate t/5 and the ILP benhmark testsused in Chapter 6, obtained and published in [33℄ for a preliminary implementation of theGT-CA design. The environment for these experiments was an Intel(R) Core(TM)2 Quad2.66GHz with 2 GBytes of main memory and running the Linux kernel 2.6.24.23 with YapTab5.1.4.

Terms YapTab GT-CA/YapTab GT-T/YapTabMem Str Load Cmp Mem Str Load Cmp Mem Str Load Cmp1000 ints 191 1009 358 207 1.08 1.56 1.30 n.a. 1.00 1.32 1.18 1.691000 atoms 191 1040 337 231 1.08 1.54 1.41 n.a. 1.00 1.26 1.24 1.541000 f/1 191 1474 548 239 1.08 1.35 1.33 n.a. 1.00 1.28 1.11 1.881000 f/2 382 1840 632 353 0.58 1.25 1.37 n.a. 0.50 1.11 1.18 1.581000 f/4 764 2581 786 631 0.33 1.21 1.35 n.a. 0.25 1.07 1.16 1.141000 f/6 1146 3379 1032 765 0.25 1.12 1.29 n.a. 0.17 1.01 1.05 1.081000 [ ℄/1 382 1727 466 365 0.58 1.32 1.44 n.a. 0.50 1.17 1.21 1.291000 [ ℄/2 764 2663 648 459 0.33 1.06 1.55 n.a. 0.25 0.93 1.20 1.481000 [ ℄/4 1528 4461 1064 720 0.20 1.10 1.57 n.a. 0.13 0.81 1.01 1.281000 [ ℄/6 2293 6439 2386 1636 0.16 1.02 1.05 n.a. 0.08 0.71 0.58 0.68Average 0.57 1.25 1.37 n.a. 0.49 1.07 1.09 1.36Table A.1: Table memory usage (in MBytes) and store/load times (in milliseonds) for thetest/0 prediate using YapTab with and without support for the ommon global trie datastruture.
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78 Experimental Results for GT-CAData Sets YapTab GT-CA/YapTab GT-T/YapTabMem Str Load Cmp Mem Str Load Cmp Mem Str Load CmpPredCar_P1 1.6 70.72 71.26 72.95 0.82 1.35 1.34 n.a. 0.62 1.07 1.05 1.03Car_P2 2.1 51.19 50.44 55.97 0.87 1.42 1.44 n.a. 0.51 1.23 1.30 1.22Muta_P1 0.6 98.93 5.57 5.86 0.73 1.20 1.19 n.a. 0.63 0.91 1.00 0.94Muta_P2 0.6 93.01 2.01 2.40 0.73 1.26 1.47 n.a. 0.63 0.96 1.22 1.10Average 0.79 1.31 1.36 n.a. 0.60 1.04 1.14 1.07ConjCar_C1 18.5 0.56 0.51 0.48 0.53 1.57 1.63 n.a. 0.39 1.20 1.22 1.08Car_C2 2802.8 93.85 70.16 36.44 0.50 1.50 1.50 n.a. 0.14 1.11 1.09 0.82Muta_C1 84.7 97.02 7.36 6.14 0.66 1.30 1.65 n.a. 0.53 0.99 1.22 1.35Muta_C2 675.6 92.76 1.36 1.53 0.16 1.25 1.42 n.a. 0.16 0.98 1.10 0.78Average 0.46 1.41 1.55 n.a. 0.31 1.07 1.16 1.01Table A.2: Table memory usage (in MBytes) and store/load times (in seonds) for theICLP benhmarks using YapTab with and without support for the ommon global trie datastruture.
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