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Abstract

This paper addresses the design and implementation of YapTab, a tabling
engine that extends the Yap Prolog system to support sequential tabling. The
tabling implementation is largely based on the XSB engine, the SLG-WAM,
however substantial differences exist since our final goal is to support parallel
tabling execution. We discuss the major contributions in YapTab and outline
the main differences of our design in terms of data structures and algorithms.
Finally, we present some initial performance results for YapTab and compare
with those for XSB.
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1 Introduction

Logic programming systems provide a high-level, declarative approach to program-
ming. Arguably, Prolog is the most popular logic programming language. Prolog
programs are written in a subset of First-Order Logic, Horn clauses, that has an
intuitive interpretation as positive facts and rules. Following Kowalski’s [10] motto:

algorithm = logic + control

Ideally, one would want Prolog programs to be written as logical statements first,
and for control to be tackled as a separate issue. In practice, the operational se-
mantics of Prolog is given by SLD-resolution with depth-first search, a refutation
strategy particularly simple and that matches current stack-based machines par-
ticularly well. Unfortunately, the limitations of SLD-resolution means that Prolog
programmers must be very aware of the Prolog computation rule throughout pro-
gram development. For instance, it is in fact quite possible that logically correct
programs will enter infinite loops.

Several proposals have been put forth to improve the declarativeness and expres-
siveness of Prolog. One such proposal that has been gaining in popularity is the
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use of tabling or memoing. In a nutshell, tabling consists of storing intermediate
solutions to a query so that they can be reused during the query execution process.
It can be shown that tabling-based computational rules can have better termination
properties than SLD-based models, and indeed termination can be guaranteed for
all programs with the bounded term-size property [3].

Work on SLG-resolution [2], as implemented in the XSB System [16], proved the
viability of tabling technology for applications such as natural language processing,
knowledge-base systems and data-cleaning, model-checking, and program-analysis.
Tabling also facilitates the implementation of several extensions to Prolog, including
support for non-definite clauses [16] that allows for non-monotonic reasoning.

Although tabling can work for both deterministic [18] and non-deterministic pro-
grams, quite a few interesting applications of tabling are by nature non-deterministic.
This rises the question of whether further efficiency would be possible by running
several branches of the search tree in parallel. Freire and colleagues were the first to
propose that tabled goals could be a source of parallelism [7]. In previous work [12]
we showed that the same mechanism can be used to exploit or-parallelism from both
tabled and non-tabled goals. We also presented two computational models, the Or-
Parallelism within Tabling (OPT) and Tabling within Or-Parallelism (TOP) models,
that combine tabling with or-parallelism. We have since decided to implement the
OPT model [13] over the YapOr system [14], based on the high-performance Yap
Prolog compiler [4].

This paper addresses the implementation of YapTab, a sequential tabling engine
designed to support or-parallelism. The implementation is based on the ground-
breaking work for the XSB system, and specifically on the SLG-WAM [17]. We
innovated by considering the novel issues arising with the introduction of parallelism.
In terms of the basic engine, the original XSB design was therefore changed when
restoring computations, determining leader nodes and completing subgoals.

The remainder of the paper is organized as follows. First, we briefly introduce
the tabling concepts and the SLG-WAM. Next, we present the OPT computational
model and discuss the major contributions in YapTab. We then present the main
data areas, data structures and algorithms to extend the Yap Prolog system to
support tabling. Last, we present some early performance data and terminate by
outlining some conclusions and further work.

2 Tabling Concepts and the SLG-WAM

Tabling is about storing and reusing intermediate answers for goals. Whenever a
tabled subgoal S is called for the first time, an entry for § is allocated in the table
space. 'This entry will collect all the answers generated for S. Repeated calls to
varitants of S are resolved by consuming the answers already stored in the table.
Meanwhile, as new answers are generated for S, they are inserted into the table
and returned to all variant subgoals. Within this model, the nodes in the search
space are classified as either generator nodes, corresponding to first calls to tabled
subgoals, consumer nodes, that consume answers from the table space, and interior
nodes, that are evaluated by standard SLD-resolution.
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Space for a subgoal can be reclaimed when the subgoal has been completely eval-
uated. A subgoal is said to be completely evaluated when all its possible resolutions
have been performed, that is, when no more answers can be generated and the
variant subgoals have consumed all the available answers. Note that a number of
subgoals may be mutually dependent, forming a strongly connected component (or
SCC) [16], and therefore can only be completed together. The completion opera-
tion is thus performed by the leader of the SCC, that is, by the oldest subgoal in
the SCC, when all possible resolutions have been made for all subgoals in the SCC.
Hence, in order to efficiently evaluate programs one needs an efficient and dynamic
detection scheme to determine when all the subgoals in a SCC have been completely
evaluated.

For definite programs, tabling based evaluation has four main types of operations:
Tabled Subgoal Call creates a generator node; New Answer verifies whether a newly
generated answer is already in the table, and if not, inserts it; Answer Resolution
consumes an answer from the table; and Completion determines whether an SCC is
completely evaluated, and if not, schedules a resolution to continue the execution.

In XSB, the implementation of tabling was attained by extending the WAM [19]
into the SLG-WAM, with minimal overhead. In short, the SLG-WAM introduces
special instructions to deal with the operations above and two new memory areas:
a table space, used to save the answers for tabled subgoals; and a completion stack,
used to detect when a set of subgoals is completely evaluated.

Further, whenever a consumer node gets to a point in which it has consumed
all available answers, but the correspondent tabled subgoal has not yet completed
and new answers may still be generated, the computation must be suspended. In
the SLG-WAM the suspension mechanism is implemented through a new set of
registers, the freeze registers, which freeze the WAM stacks at the suspension point
and prevent all data belonging to the suspended branch from being erased. To
later resume a suspended branch, the bindings belonging to the branch must be
restored. SLG-WAM achieves this by using an extension of the standard trail, the
forward trail, to keep track of the bindings values. An alternative to the SLG-WAM
is to keep on working on the current stacks but store the frozen stacks away on an
external space, as is done in CAT [5] (the same principle was used to suspend or-
parallel work in Muse [1]). The CHAT model [6] significantly reduces the overheads
of copying and is currently the default scheme in XSB-Prolog. In more recent work
some authors have proposed a linear tabling mechanism [20] and a reordering based
tabling mechanism [9]. Both of these schemes avoid freezing by recomputing goals
until a fixed point is reached.

3 Tabling and Parallelism

In previous work [12] we proposed two computational models to combine tabling
with or-parallelism, the OPT and the TOP approaches. We have decided to im-
plement the OPT approach [13]. The OPT approach generalizes Warren’s multi-
sequential engine framework for or-parallelism. The or-parallelism stems from hav-
ing several engines that implement SLG-resolution, instead of implementing Prolog’s
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SLD-resolution.

Tabling is the base component of the OPT computational model. Each computa-
tional agent, or worker, can be considered a full sequential tabling engine and should
spend most of its computation time exploiting the search tree involved in such an
evaluation. It allocates all three types of nodes, fully implements suspension of
tabled subgoals, and resumes subcomputations to consume newly found answers.
Or-parallelism is only triggered when a worker runs out of alternatives to exploit.
Unexploited alternatives should be made available for parallel execution, regardless
of whether they originate from a generator, consumer or interior node. Therefore,
parallelism stems from both tabled and non-tabled subgoals. This contrasts with
the table-parallelism model [7] that only considers tabled subgoals as candidates for
parallel execution.

To implement the OPT approach, we have decided to use the YapOr system [14]
as the parallel component of the model. The YapOr system is an or-parallel Pro-
log system based on environment copying. Thus, we have designed the YapTab
tabling engine in order to meet the requirements of the OPT approach based on
environment copying. The YapTab tabling engine is SLG-WAM based, not copying
or recomputation-based. We decided to use the SLG-WAM in order to better isolate
the interactions between tabling and parallelism. Using recomputation would sim-
plify the implementation [9] but may result in a larger search space, so it would be
hard to evaluate our parallel implementation versus current sequential technology.
As we shall see next, most of our work supports both copying and the SLG-WAM’s
cactus stack.

In an environment copying model, sharing is implemented through copying of
the execution stacks between workers and, thus, a shared branch may exist several
times for the workers that are sharing the branch. The duplication of items is a
major source of overhead. It implies larger stack areas to be copied when sharing,
and it requires synchronization mechanisms when updating common items and when
replicating the new values. Hence, in order to efficiently integrate the tabling and the
or-parallel components of the OPT model, we should minimize this duplication. To
address this need, YapTab introduces a new data structure, the dependency frame,
that resides in a single shared space that we called the dependency space.

The dependency frame data structure keeps track of all data related with tabling
suspensions. This allows us to reduce the number of extra fields in tabled choice
points and to eliminate the need for a completion stack area. Moreover, a smaller
number of extra fields in tabled choice points minimizes the time needed to perform
copying. Eliminating the completion stack area from the YapTab design reduces the
number of stack areas to be copied when sharing, and simplifies the complexity in
managing shared tabling suspensions.

In practice, we found that this solution simplifies the parallel implementation
of fundamental aspects to the system’s efficiency. Sharing tabling suspensions is
straightforward, the worker requesting work only needs to update its private top de-
pendency frame pointer to the one’s of the sharing worker. Concurrent accesses or
updates to the shared suspension data can be synchronized through the use of a lock-
ing mechanism at the dependency frame level. The OPT completion algorithm [13]
for shared branches is mainly based on the dependency frame data structure which
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avoids explicit communication and synchronization between workers.

4 Extending Yap to Support Tabling

The YapTab design is WAM based, as is the SLG-WAM. It implements two tabling
scheduling strategies, batched and local [8], and in the initial design it only considers
table predicates without any kind of negative calls. As in the original SLG-WAM, it
introduces a new data area, the table space; a new set of registers, the freeze registers;
an extension of the standard trail, the forward trail; and the four main tabling
operations: tabled subgoal call, new answer, answer resolution and completion.

The substantial differences between the two designs, and corresponding imple-
mentations, reside in the aspects that can be a potential source of overheads when
the tabling engine is extended to a parallel model. In order to efficiently integrate the
tabling and the or-parallel components of the OPT computational model, YapTab
introduces the dependency frame data structure. To take advantage of the philos-
ophy behind the dependency frame data structure, all the algorithms related with
suspension, resumption and completion were redesigned. We then present the main
data areas, data structures and algorithms implemented to extend the Yap system to
support tabling. All the algorithms described assume a batched scheduling strategy
implementation [8].

4.1 Table Space

The table space can be accessed in different ways during the course of an evaluation:
to look up if a subgoal is in the table, and if not insert it; to verify whether a newly
found answer is already in the table, and if not insert it; to pick up answers to
consumer nodes; and to mark subgoals as completed.

Hence, the correct design of the table data structures is the base component to
implement an efficient tabling system. Our implementation uses tries as the basis
for tables, as proposed in [11]. Tries provide complete discrimination for terms and
permit a lookup and possible insertions to be performed in a single pass through a
term. Tries are also easily parallelizable.

Figure 1 presents the table data structures for a particular predicate t/2 after
the execution of some tabled_subgoal_call and new_answer instructions. As in
SLG-WAM, each invocation of the tabled_subgoal_call instruction leads to either
finding a path through the subgoal trie nodes, always starting from the table entry,
until a matching subgoal frame is reached, or creating the correspondent path of
subgoal trie nodes, otherwise. Each invocation of the new_answer instruction corre-
sponds to the definition of a path through the answer trie nodes, starting from the
corresponding subgoal frame.

Searching through a chain of sibling nodes that represent alternative paths for
a table entry is done sequentially. However, if the chain becomes larger then a
threshold value, we dynamically index the nodes through a hash table to provide
direct node access and therefore optimizing the search.

The table subgoal frames delimit the subgoal and answer trie nodes space. They
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code for table entry
2 fort/2

| '

tabled |_subgoal_call t(X,a)
new_answer t(X,a) -> X = h(i) subgoal trie nodes
tabled |_subgoal_call t(Y,Z)
new, _answer t(Y,Z) ->Y =b; Z=c varl >
new _answer t(Y,Z)->Y =b; Z=d
néN_answer t(Y,2)->Y=¢gzZ=f

subgoal frame subgoal frame

for call for call
t(var O,var 1) t(var 0,8)

'
@@

Sg':r = m

SgFr_first_answer

answer trie nodes

Figure 1: Using tries to organize the table space.

include a SgFr_first_answer pointer to provide access to the answers already found
for a particular subgoal. Another pointer, SgFr_last_answer, marks the last answer
that has been found for the subgoal. Whenever a consumer node needs to check
whether new answers for its subgoal have been added to table, it compares the sub-
goal frame SgFr_last_answer pointer with its pointer to the last consumed answer.
The subgoal frames are also used to mark subgoals as completed.

4.2 Generator and Consumer Nodes

Remember that interior nodes correspond to normal (not tabled) subgoals and they
are evaluated by the standard SLD-resolution. Generator and consumer nodes cor-
respond, respectively, to first and variant calls to tabled subgoals. The generator
nodes use program clause resolution to produce and store answers in the table space
for the corresponding tabled subgoal. The consumer nodes load from the table space
the answers previously stored by the associated generator node.

Interior nodes are implemented as normal WAM choice points (see Fig. 2). The
CP_TR, CP_H, CP_B, CP_CP, CP_AP and CP_ENV choice point fields [19] are used to store
at choice point creation, respectively, the top of trail; top of global stack; failure
continuation choice point; success continuation program counter; choice point next
alternative; and current environment.

In the SLG-WAM, generator nodes are WAM choice points extended with a few
extra fields to control tabling execution. In our implementation the generator choice
point only requires one of the extra fields used in the SLG-WAM, the CP_SG_FR field,
that is a pointer to the associated subgoal frame in the table space.

In SLG-WAM, the consumer choice points store supplementary information about
the suspension point. In our case, we move that information to a dependency frame
and leave a pointer to this frame in the CP_DEP_FR consumer choice point field.
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Interior CP Generator CP Consumer CP
CP_TR CP_TR CP_TR
CP_H CP_H CP_H
CP_ B CcP_B CP_ B
CP_CP CP_CP CP_CP
CP_AP CP_AP CP_AP
CP_ENV CP_ENV CP_ENV
CP_SG FR CP_DEP_FR

Figure 2: Structure of interior, generator and consumer choice points.

Hence, the consumer choice point only requires an extra field. The dependency
frames are linked forming a dependency graph between consumer nodes. Addi-
tionally, the dependency frame stores information to efficiently check for completion
points, and to efficiently move across the consumer nodes with unconsumed answers.
As we shall see, this additional information replaces the need for a completion stack.

4.3 Subgoal and Dependency Frames

The subgoal and dependency frames are the key data structures required to control
the flow of a tabling computation. As mention before, the subgoal frames are used
to access, insert and load the particular answers found for a subgoal and to check
for completed subgoals. The dependency frames are used to synchronize suspension,
resumption and completion of subcomputations. Figure 3 shows the subgoal and
dependency frame structures in detail.

Subgoal Frame Dependency Frame

SgFr_gen_cp

DepFr _back_gen_cp

SgFr _answer _trie

DepFr _| eader _cp

SgFr _first_answer

DepFr _cons_cp

SgFr _| ast _answer DepFr _sg_fr
SgFr _conpl et ed DepFr _| ast _ans
SgFr _next DepFr _next

Figure 3: Structure of subgoal and dependency frames.

A subgoal frame is a six field data structure. The SgFr_gen _cp is a back pointer
to the correspondent generator choice point; the SgFr_answer_trie is a pointer
to the top answer trie node and it is used to check for/insert new answers; the
SgFr_first_answer is a pointer to the bottom answer trie node of the first available
answer; the SgFr_last_answer is a pointer to the bottom answer trie node of the
last available answer; the SgFr_completed is a flag that indicates if a subgoal is
completed or not; and the SgFr_next is a pointer to the next subgoal frame and it is
used to efficiently go through the frames when performing completion. To access the
subgoal frames chain, we use a global TOP_SG_FR variable that points to the younger
subgoal frame.

Each dependency frame is also a six field data structure. The DepFr_back_gen_cp
is a pointer to the older generator choice point when we perform an unsuccessful com-
pletion operation and it is used to efficiently schedule a backtracking node (see 4.7
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for details); the DepFr_leader cp is a pointer to the leader choice point and it is used
to check for completion points; the DepFr_cons_cp is a back pointer to the consumer
choice point; the DepFr_sg_fr and the DepFr_last_ans are pointers respectively to
the correspondent subgoal frame and to the last consumed answer and they are used
to connect consumer nodes with the table space in order to search for and to pick
up new answers; and the DepFr_next is a pointer to the next dependency frame and
it is used to form a dependency graph between consumer nodes, used to efficiently
check for leader nodes and perform completion. To access the dependency graph,
we use a global TOP_DEP_FR variable that points to the younger dependency frame.

Figure 4 shows an example of how the data structures presented are used in a
particular evaluation. The left sub-figure presents the dependencies between the
predicates involved in the example.

CP_AP  p—» table retry_me
CP1 , > Tetry_| subgoal frame |
generator node for call t(var 0)
for first
t(X) call SgFr_next
tabled_subgoal_call t(X) CP_SG_FR
—

tabled_subgoal_call v(Y)

subgoal frame %

tablfd_sjbgoal_call v(Y) cre TP AP completion for call v(var 0)
tabled_subgoal _call t(X) generator node SgFr_next
for first
v(Y) call
table_trust_me CP_SG_FR
> SG_|

table retry_me

DepFr_back_gen_cp

P AP i >
Oonw%z?mde CP_/ |—>» answer_resolution Dephr_Teader_cp > CP2
for variant DepFr_cons _cp » CP3
v(Y) cal DepFr_sg_fr =
CP_DEP_FR
—

DepFr_last_ans > NULL
DepFr_next <

CP4 CP_AP  —» answer_resolution
consumer node DepFr_back_gen_cp

for variant / DepFr_leader_cp > CP1

i (X) call e G -
suspended  running (X) CFDEP IR DepFr_cons cp > CP4
—— DepFr_sg_fr
DepFr_last_ans » NULL
DepFr_next —

Figure 4: Dependencies between choice points, subgoal and dependency frames.

The first instance of tabled subgoal call searches the table space for the cor-
responding subgoal t(X). As this is the first call to the subgoal, it must allocate
a subgoal frame and store a generator choice point. Supposing that t/1 is a three
clause predicate, the CP_AP generator field is initialized with the table_retry_me
instruction corresponding to the WAM code of the second clause. Assuming that
v/1 is a two clause predicate, an analogous situation occurs with the first call to
subgoal v(Y). The only difference resides in the table_trust_me instruction used to
initialize the CP_AP generator choice point field.

Following the example, the second call to v(Y) searches the table space and finds
that it is a variant call to subgoal v(var0). Thus, it allocates a dependency frame
and stores a consumer choice point. A consumer choice point is initialized with its
CP_AP field pointing to the answer_resolution pseudo instruction. Assuming that
no answers were found for subgoal v(var0), the computation will backtrack to the
previous choice point CP2. The table_trust_me instruction gets executed, and the
CP_AP generator choice point field is update to the completion pseudo instruction.
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The second call to t (X) implies a similar procedure to the previous one.
The dependency frame fields DepFr_back_gen_cp and DepFr_leader_cp and the
pseudo instructions answer_resolution and completion are detailed next.

4.4 Freeze Registers

A tabling evaluation can be seen as a sequence of suspension and resumptions of
subcomputations. To preserve the environment of a suspended computation the
stacks are frozen using a set of freeze registers, one per stack. This way, and until the
completion of the appropriate subgoal call does not take place, the space belonging
to the suspended branch is safe from being erased. It is only upon completion that
we can release the space previously frozen and adjust the freeze registers.

In the SLG-WAM, the generator choice points are extended to store the freeze
registers at choice point creation, so that they can be adjusted if completion takes
place. In our approach, we adjust the freeze registers using the top stack pointers
saved in the previous suspension point, that is, the younger consumer node kept in
the preserved stacks. To access that node we check for the top dependency frame,
using TOP_DEP_FR.

4.5 Forward Trail

The forward trail is an extension of the standard WAM trail that records the variable
bindings. In SLG-WAM, each forward trail frame records the address of the trailed
variable, the value to which the variable was bound and a pointer to the parent trail
frame. The parent trail frame pointer is used to correctly move across the variables
in a branch, hence avoiding variables in frozen segments [16].

In YapTab, the forward trail is implemented without parent trail frame point-
ers. As Yap already uses the trail to store information beyond the normal variable
trailing (to control dynamic predicates and multi-assignment variables), we extend
this information to also control the chain between frozen segments. In terms of
computation complexity the two approaches are equivalent. The main advantage of
our scheme is that Yap already tests the trail frames to check if they are of a special
type, and so, we do not introduce further overheads which would be the case if we
had chosen the SLG-WAM approach.

Figure 5 illustrates our implementation scheme. Suppose that the execution has
reached the consumer node marked as (a). At this point the trail register TR and
the trail freeze register TR_FZ are the same. Now if backtracking takes place up to
the node marked by (b), the variables corresponding to the backtracked segment are
untrailed and the trail register is made to point to the last untrailed frame. At this
point, the trail register points to a position preceding the one pointed by the trail
freeze register. The trail segment in between these registers must become frozen
as it may be resumed later. To ensure that the bindings in the frozen segment are
not erased and are not seen by a new untrailing operation, we use a special trail
frame to mark the existence of a frozen segment just above it. This frame records
the continuation trail frame that allows for the frozen segment to be ignored in a
backtracking operation. The trail register is also updated to point to this new trail
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X=a TR—»| X=a X=a X=a e
Y=b Y=b Y=b Y=b
TR=TRFZ—>»| Z=c JTRFZ—»| z=c JTRFZ—»| Z=c Z=c TR1
TR—| frozen frozenA
segment segment
Y=d e
TR FZ—»| Z=e TR2
TR: trail register frozen} |
TR_FZ: trail freeze register Sl
TR trail register before first suspension TR—»| z=1
TR2: trail register before second suspension
: consumer node

Figure 5: The forward trail implementation.

frame (as illustrated in (c)). Suppose the execution has evolved to situation (d)
in which the trail shows a more complex chaining of segments. At this point, if
resumption takes place at one of the consumer nodes, then the variable bindings
belonging to the respective branch can be correctly untrailed to the previous values.
This is accomplished by following the trail register saved in the consumer node
before the suspension (TR1 or TR2 in situation (d)).

4.6 Completion and Leader Nodes

The completion operation takes place when a generator node exhausts all alterna-
tives and it finds itself as a leader node. We designed our algorithms to quickly
determine whether a generator node is a leader node. A special field in the de-
pendency frame structure is used to hold a pointer to the leader node of the SCC
that includes the current suspension point. To compute the leader node information
when allocating a dependency frame, we first hypothesize that the leader node is the
generator node for the current variant subgoal call, say N. Next, for all consumer
nodes between N and the current consumer node, we check whether they depend on
an older generator node. Consider that the oldest dependency is for the generator
node N’. If this is the case, then N’ is the leader node, otherwise our hypothesis
was correct and the leader is indeed the initially found generator node N'.

By using the leader node information from the dependency frames, the generator
nodes can quickly determine whether they are leader nodes. A generator node finds
itself as a leader node if there are no younger dependencies (i.e., no younger consumer
nodes) or if it is the leader node referred in the top dependency frame. Figure 6
illustrates a small example of node dependencies.

In Fig. 6(a), the generator node N3 is the top leader node because there are no
younger consumer nodes. By top leader node we mean the generator node where
the next completion operation may take place, i.e., the younger generator node that
is a leader node. Suppose that a new consumer node is created, that is node N4
in Fig. 6(b). Then a dependency frame associated with N4 has to be allocated and
the leader node information must be computed. In this case, the leader node is N1
because N4 is a variant subgoal a of the generator node N1 and there are no other
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(a) (b) (c) (d)
= =10 = =10 N
() (2) () () e
O =
DEP- FR DEP- FR DEP- FR
—»L:Nll —»L:Nll HL:Nll N4
10O KN N
Ij Gener at or Node Consumer Node
DEP- FR
O Interior Node @ Top Leader Node —» L = N1| N6

Figure 6: Spotting the top leader node.

consumer nodes in between. As a result, the top leader node for the set of nodes
including N4 becomes N1. Figure 6(c) illustrates a similar case to the first one, and
N5 becomes the new top leader node. The consumer node N6 (Fig. 6(d)) for the
variant subgoal ¢ has its generator node at node N3. Since in between nodes N6
and N3 there is a dependency for an older generator node, N1, given by the frame
associated with consumer node N4, the leader node information for the dependency
frame associated with N6 is also N1. This turns N1 again as the top leader node.

We then present in Fig. 7 the pseudo-code for the completion() instruction.
It gets executed when the computation fails to a generator choice point with no
alternatives left.

completion (generator node GN) {
if (GN is the top leader node) {
df = TOP_DEP_FR
while (DepFr_cons_cp(df) is younger than GN)) {
if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {

CN = DepFr_cons_cp(df) J younger consumer node with unconsumed answers
DepFr_back_gen_cp(df) = GN
restore_variables(from CP_TR(GN) to CP_TR(CN))
goto answer_resolution(CN) Y resume computation to CN

}
df = DepFr_next(df)
complete(GN) 7 perform completion in GN

backtrack_to(CP_B(GN))
Figure 7: Pseudo-code for completion().

Whenever a generator node finds that it is the top leader node, it starts to check
if there are younger consumer nodes with unconsumed answers. This can be done by
going through the chain of dependency frames looking for a frame with unconsumed
answers. If there is such a frame, it resumes the computation to the corresponding
consumer node. Before resuming, it musts update the DepFr_back gen cp field
(more details in 4.7) and use the forward trail to restore conditional bindings.
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Otherwise, we can perform completion. This includes marking as completed all
the subgoals in the SCC, using the TOP_SG_FR to go through the subgoals frames;
deallocating all the younger dependency frames, using the TOP_DEP_FR to go through
the dependency frames; and readjusting the TOP_SG_FR and TOP_DEP_FR top pointers.

4.7 Answer Resolution

When a consumer choice point is allocated, its CP_AP field is made to point to
an answer_resolution instruction. This instruction is responsible for resuming
the computation guaranteeing that every answer is consumed once and just once.
Figure 8 shows the pseudo-code for the answer_resolution() instruction.

answer_resolution (consumer node CN) {
DEP_FR = CP_DEP_FR(CN)
if (DepFr_last_ans(DEP_FR) != SgFr_last_answer(DepFr_sg_fr(DEP_FR))) {
load_next_unconsumed_answer_for_subgoal (DepFr_sg_fr (DEP_FR))
proceed

}
back_cp = DepFr_back_gen_cp(DEP_FR)
if (back_cp == NULL)
backtrack_to(CP_B(CN))
df = DepFr_next (DEP_FR)
while (DepFr_cons_cp(df) is younger than back_cp)) {
if (DepFr_last_ans(df) != SgFr_last_answer (DepFr_sg_fr(df))) {
DepFr_back_gen_cp(df) = back_cp
back_cp = DepFr_cons_cp(df) % next consumer node with unconsumed answers
restore_variables(from CP_TR(CN) to CP_TR(back_cp))
goto answer_resolution(back_cp) 7 resume computation to back_cp

}
df = DepFr_next(df)

unbind_variables(from CP_TR(CN) to CP_TR(back_cp))
goto completion(back_cp) % resume computation to older generator node

Figure 8: Pseudo-code for answer_resolution().

The answer_resolution algorithm first checks the table space for unconsumed
answers for the subgoal in hand. If there are new answers, it loads the next available
answer and proceeds the execution. Otherwise, it schedules for a backtracking node.

If this is the first time that backtracking from that consumer node takes place,
then backtracking is performed as usual to the previous node. This is the case
when the DepFr_back_gen_cp dependency frame field is NULL. Otherwise, we know
that the DepFr_back_gen_cp field stores the pointer to the older generator node N/
from where the computation has been resumed during an unsuccessful completion
operation. Therefore, backtracking must be done to the next consumer node that
has unconsumed answers and is younger than A. If there are no such consumer
nodes then backtracking must be done to the N generator node.

5 Local Scheduling

All the algorithms described in the previous section assume a batched scheduling
strategy. Local scheduling is an alternative tabling scheduling strategy that tries to
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evaluate subgoals as soon as possible [8]. Evaluation is done one SCC at a time,
and answers are returned outside of an SCC only after that SCC is completely
evaluated. In other words, local scheduling prevents answers from being returned to
the calling environment of the leader while its SCC is not completely evaluated. We
are interested in alternative tabling scheduling strategies to study its impact when
combining tabling with parallelism. As local scheduling completes subgoals sooner,
this can decrease some complex dependencies when running in parallel. We then
present how local scheduling is implemented on top of batched scheduling.

As the reader will see, it is straightforward to extend the engine to local schedul-
ing. To prevent answers from being returned to the calling environment of a gen-
erator node, after a new answer is found for a particular subgoal, local scheduling
fails and backtracks to search for the complete set of answers. If a generator node
finds that it is not a leader node, then it must act like a consumer node to consume
the answers that were prevented from being returned to its environment. In our ap-
proach, a generator choice point is implemented as a consumer choice point. Hence,
when we store a generator node we must allocate a dependency frame and initialize
it as described before.

In batched scheduling we use the CP_SG_FR generator choice point field to access
the correspondent subgoal frame. In local scheduling we must use the DepFr_sg_fr
field of the dependency frame pointed by the CP_DEF_FR generator choice point field.
To fully implement local scheduling, we need to slightly change the completion
instruction. Figure 9 shows the modified pseudo-code for completion.

completion (generator node GN) {
if (GN is the top leader node) {

ééﬁplete(GN)

load_first_unconsumed_answer_for_subgoal (DepFr_sg_fr(CP_DEP_FR(GN))) 7 new

proceed % new
CP_AP(GN) = answer_resolution % new
backtrack_to(CP_B(GN))

}

Figure 9: Pseudo-code for completion() using a local scheduling strategy.

As the newly founded answers are prevented from being immediately returned,
we need to consume them at a later point. If we perform completion with success,
instead of backtracking to the previous node, we start consuming the set of answers
that have been founded to the completed subgoal. Otherwise, if a generator node
finds that it is not a leader node then it must act like a consumer node. To implement
this idea we update the CP_AP choice point field to the answer_resolution pseudo-
instruction before backtracking.

6 Initial Performance Evaluation

We have implemented two scheduling strategies, batched and local scheduling, that
constraint differently the tabling execution. The performance study will be made
using both strategies. We start by analyzing the overheads of supporting tabling in
Yap on a set of non tabled Prolog programs, and by measuring the XSB behavior
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on the same set of programs. We then use four versions of a tabled program with
varying complexity of the search space to compare YapTab with XSB.

YapTab is based on the Yap4.2.1 engine and the results were obtained on a
200 MHz PentiumPro with 128 MB of main memory, a 256KB cache, and running
Linux2.2.5. We used the same compilation flags for Yap and for YapTab. Regarding
XSB, we used version 2.2 with the default configuration and the default execution
parameters (chat engine and batched scheduling).

To put the performance results in perspective we first use a standard set of non
tabled logic programming benchmarks to compare the performance of YapTab with
Yap and XSB. The benchmarks include the n-queens problem, the puzzle and cubes
problems from Evan Tick’s book, an hamiltonian graph problem and a naive sorting
resolution.

Benchmark | YapTab | Yap Prolog | XSB Prolog |

9-queens 740 740(1.00) 1819(2.46)
cubes 210 210(1.00) 580(2.80)
ham 460 430(0.93) 1139(2.48)
nsort 390 370(0.95) 1101(2.82)
puzzle 2430 | 2120(0.87) 5819(2.39)
| Average | (0.95) | (2.59) |

Table 1: YapTab, Yap and XSB running times on a set of non tabled benchmarks.

Table 1 shows the base running times, in milliseconds, for YapTab, Yap Prolog
and XSB Prolog for the set of non tabled benchmarks. In parentheses, it shows the
performance of Yap and XSB over the YapTab running times. The results indicate
that YapTab introduce, on average, an overhead of about 5% over standard Yap.
These overheads are due to the handling of the freeze registers and the forward trail.
Regarding XSB, the results show that, on average, YapTab is 2.59 times faster than
XSB. This is almost due to the faster Yap engine.

To assess the performance of YapTab when running tabled programs and compare
it with XSB, we wrote four versions of the following tabled program:

:- table path/3.

path(X,Y,[X,Y]) :- arc(X,Y).
path(X,Y,P) :- path(X,Z,P1), arc(Z,Y), insert_if_new(Y,P1,P).

insert_if_new(X,[1,[X]).
insert_if_new(X,[H|T],[HINT]) :- X \= H, insert_if_new(X,T,NT).

The four versions differ mainly in the number of nodes and graph topology, hence
defining search spaces of varying complexity. In all versions, the query goal is to
find the transitive closure of the given graph.

Table 2 shows the running times, in milliseconds, for YapTab, using batched
(YapTab Batched) and local (YapTab Local) scheduling strategies, and XSB Prolog
for the four benchmarks. The results show that YapTab Batched on average per-
forms better than YapTab Local and XSB. In parentheses it shows the overheads of
YapTab Local and XSB over YapTab Batched. The results obtained for batched and
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| Benchmark | YapTab Batched | YapTab Local | XSB Prolog |
binary tree (depth 10) 180 230(1.27) 451(2.50)
chain (64 nodes) 130 160(1.23) 399(3.06)
cycle (64 nodes) 390 490(1.25) 1121(2.87)
grid (4x4 nodes) 1330 1450(1.09) 5740(4.31)

| Average | (1.21) | (3.18) |

Table 2: YapTab and XSB running times on a four version tabled benchmark.

local scheduling confirm previous results obtained for XSB using the same schedul-
ing strategies [8]. The results also show that, for these programs, YapTab is about
3.18 times faster than current XSB. This is partly due to the faster Yap engine, as
seen in table 1, and to the fact that XSB implements extra functionalities that are
still lacking in YapTab and those may cause delays during execution.

In comparison with the results presented in [15], the running time for the binary
tree benchmark was reduced by a factor of 2.5 just by employing hashing in the
implementation of tries. This benchmark is a good example in which large chains of
sibling nodes, representing alternative paths for a table entry, are formed and there-
fore using hashing to directly access each node in the chain gives much improvement
in the execution time.

7 Conclusions

We have presented the design and implementation of YapTab, an extension of the
Yap Prolog system that implements sequential tabling. Our system includes all the
machinery required to execute programs with tabling in or-parallel. YapTab reuses
the principles of XSB-Prolog’s SLG-WAM engine, whilst innovating by separating
the tabling suspension data in a single space, the dependency space, and by propos-
ing a new completion detection algorithm not based on the intrinsically sequential
completion stack.

Our first results are very encouraging. Overheads over standard Yap are low and
performance in tabling benchmarks is quite satisfactory even when compared with
the arguably more mature and complete XSB system.

We have obtained very initial timings for parallel execution on a shared memory
PentiumPro machine. The results show significant speedups for a tabled application
increasing up to the four processors and encourage us in our believe that tabling
and parallelism may together contribute to increasing the range of applications for
Logic Programming.
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