Novel Models for Or-Parallel Logic Programs:
A Performance Analysis

Vitor Santos Costal Ricardo Rocha? Fernando Silva?

! COPPE Systems Engineering, Federal University of Rio de Janeiro, Brazil
vitor@Qcos.ufrj.br
2 DCC-FC & LIACC, University of Porto, Portugal
{ricroc,fds}@ncc.up.pt

Abstract. One of the advantages of logic programming is the fact that
it offers many sources of implicit parallelism, such as and-parallelism and
or-parallelism. Arguably, or-parallel systems, such as Aurora and Muse,
have been the most successful parallel logic programming systems so far.
Or-parallel systems rely on techniques such as Environment Copying to
address the problem that branches being explored in parallel may need
to assign different bindings for the same shared variable. Recent research
has led to two new binding representation approaches that also support
independent and-parallelism: the Sparse Binding Array and the Copy-
On-Write binding models. In this paper, we investigate whether these
newer models are practical alternatives to copying for or-parallelism. We
based our work on YapOr, an or-parallel copying system using the YAP
Prolog engine, so that the three alternative systems share schedulers and
the underlying engine.

1 Introduction

One of the advantages of logic programming (LP) is the fact that one can exploit
implicit parallelism in logic programs. Implicit parallelism reduces the program-
mer effort required to express parallelism and to manage work. Logic programs
have two major forms of implicit parallelism: or-parallelism (ORP) and and-
parallelism (ANDP). Given an initial query to the logic programming system,
ORP results from trying several different alternatives simultaneously. In con-
trast, ANDP stems from dividing the work required to solve the alternative
between the different processors. One particularly interesting form of ANDP is
independent and-parallelism (IAP), found in divide-and-conquer problems.

Arguably, ORP systems, such as Aurora [16] and Muse [2], have been the
most successful parallel logic programming systems so far. One reason is the
large number of logic programming applications that require search, including
structured database querying, expert systems and knowledge discovery applica-
tions. Parallel search can be also useful in constraint logic programming.

Two major issues must be addressed to exploit ORP. First, one must address
the multiple bindings problem. This problem arises because alternatives being
exploited in parallel may give different values to variables in shared branches

of the search tree. Several mechanisms have been proposed for addressing this
problem [14]. Second, the ORP system itself must be able to divide work between
processors. This scheduling problem is made complex by the dynamic nature of
work in ORP systems.

Most modern parallel LP systems, including SICStus Prolog [5], Eclipse [1],
and YAP [12] use copying as a solution to the multiple bindings problem. Copy-
ing was made popular by the Muse ORP system, a system derived from an early
release of SICStus Prolog. The key idea for copying is that workers maintain
separate stacks, but the stacks are in shared memory. Whenever a processor,
say Wi, wants to give work to another, say W>, W essentially copies its own
stacks to Ws. In contrast to other approaches, Muse [3] showed that copying has
a low overhead over the corresponding sequential system. On the other hand,
copying has a few drawbacks. First, it is expensive to exploit more than just
ORP with copying, as the efficiency of copying largely depends on copying con-
tiguous stacks, but this is difficult to guarantee in the presence of ANDP [15]. A
second issue is that copying makes it more expensive to suspend branches during
execution. This is a problem when implementing cuts and side-effects.

Recent research in the combination of IAP and ORP has led to two new
binding representation approaches: the SBA (Sparse Binding Array) [8] and the
aCOWL (copy-on-write design) [9]. The SBA is an evolution of Warren’s Binding
Array (BA) representation [20]. In BA systems, the stacks form a cactus-tree
representing the search-tree, and processors expand tips of this tree. Workers
thus use a shared pool of memory except when storing bindings that are private
to a worker. These are stored in a local data-structure, the Binding Array. The
aCOWL scheme uses a copy-on-write mechanism to do lazy copying. Both of
these approaches elegantly support IAP and ORP.

The question remains of how these systems fare against copying for ORP,
in order to verify whether they are indeed practical alternatives to copying. To
address this question, we experimented with YapOr, an ORP copying system
using the YAP engine [18], and we implemented the SBA and the aCOWL
over the original system. The three alternative systems share schedulers and the
underlying engine: they do only differ in their binding scheme. We then used a
set of well known ORP all-solutions benchmarks to evaluate how they perform
comparatively.

The paper is organised as follows. We first review in more detail the three
models. Next, we discuss their implementation. We then present and discuss
experimental results. Last, we make some concluding remarks.

2 Models for Or-Parallelism

A goal in our research is to develop a system capable of exploring implicitly all
forms of parallelism in Prolog programs. A key point to achieve such a goal is to
determine a binding model that simplifies the exploitation of the combined forms
of parallelism. In this paper we concentrate in three binding models: environment
copying, sparse binding arrays and copy-on-write. We assume a multisequencial

system, where the computational agents, or workers, do not initially inform the
system that they have created new alternatives, and thus have exclusive access to
these alternatives. This is called private work. At some point these alternatives
may be made available to other workers, and we say they become public work.

The Environment copying model was introduced by Ali and Karlson in the
Muse system [2]. In this model each computing agent (or worker) maintains a
separate environment, almost as in sequential Prolog, in which the bindings it
makes are independently recorded, hence solving the multiple bindings problem.
When a worker becomes idle (that is, when it has no work), it searches for a busy
worker from whom to request work. Sharing work among workers thus involves
the actual copying of the computation state (WAM stacks) from the busy worker
to the requester. After copying both workers have exactly the same state, and
will diverge by executing alternative branches at the choice-point where the work
sharing took place.

Efficient implementations of copying depend on Incremental copying to re-
duce the overheads of copying. With this technique, one just copies the parts of
the execution stacks that are different among the workers involved. The scheduler
plays an important role here by guiding idle workers to request work from the
nearest busy workers. Bottom-most scheduling strategies have been very success-
ful with this binding model, because they increase the number of choice-points
shared between workers, thus preventing unnecessary copying.

The Copy-On-Write model, or aCOWL, was proposed by Santos Costa [9]
towards supporting and/or parallelism. In the «COWL, similarly to environment
copying, each worker maintains a separate environment. Moreover, whenever a
worker wants to share work from a different worker, it also logically copies all
execution stacks. The insight here is that although stacks will be logically copied,
they will be physically copied only on demand. To do so, the aCOWL applies
the Copy-On-Write mechanism provided by most modern Operating Systems.

The aCOWL has two major advantages. First, we can copy anything. We can
copy standard Prolog stacks, the store of a constraint solver, or a set of stacks for
ANDP. Indeed, we might not even have a Prolog system at all. Second, because
copying is done on demand, we do not need to worry about the overheads of
copying large, non-contiguous, stacks. This is an important advantage for ANDP
computations. The main drawback of the aCOWL is that the actual setting up
of the COW mechanism can be itself quite expensive, and in fact, more expensive
than just copying the stacks. In the next sections we discuss an implementation
and its performance results.

The Sparse Binding Array (SBA) derives from Warren’s Binding Arrays.
Binding arrays were originally proposed for the SRI model [20]. In this model
execution stacks are distributed over a shared address space, forming the so-
called cactus-stack. In more detail, workers expand the stacks in the parts of the
shared space they own, whilst they also can access stacks originally created by
other workers. Note that the major source of updates to public and private work
are bindings of variables. Bindings to the public part of the tree are tentative,
and in fact different alternatives of the search tree may give different values,

or even no value, to the same variable. These bindings are called conditional
bindings, and WAM-based systems will also stored them in the Trail data-area,
so that they can later be undone. Conditional bindings cannot be stored in the
shared tree. Instead, in the original BA scheme workers use a private array data
structure associated with each computing agent to record conditional bindings.

The Sparse or Shadow Binding Array (SBA) [8] is a simplification of the BA
designed to handle TAP. In the SBA each worker has a private virtual address
space that fully shadows the system’s shared address space. In other words, ev-
ery work has its own shadow of the whole shared stacks. This “shadow” will be
used to store to shared variables. Thus, the execution data structures and un-
conditional bindings are still stored in the shared address space, only conditional
bindings are stored in the shadow area. The SBA thus preempts the problem
of managing a BA in the presence of IAP [13], at the cost of having to allocate
much more virtual space than the BA. A further optimisation in the SBA is that
each SBA is mapped at the same fixed location for each worker in the system.
We thus can maintain pointers from the shared stacks to the SBA.

3 Implementation Issues

The literature includes several comparisons of copying-based versus BA-based
systems, and particularly of Aurora vs. Muse [4,7]. One problem with these
studies is that Aurora and Muse have very different implementations: it is quite
difficult to know whether the differences stem from the model or from the actual
implementation.

In contrast, we experimented with the three models by implementing them
over the same YapOr system [18]. The system is derived from the Yap engine [10].
This is one of the fast emulator-based Prolog systems currently available, and
only 2 to 3 times slower than systems that generate native-code. We would expect
Yap to be between 2 to 4 times faster than the sequential Aurora engine on the
same hardware.

3.1 YapOr With Copying

The YapOr system was originally designed to implement copying. The system
is based on the Yap engine. The main changes were required on the instructions
that manipulate choice-points. Other changes are in the initialisation code for
memory allocation and worker creation, some small changes in the compiler to
provide extra information for managing ORP, and lastly a change designed to
support built-in synchronisation.

In a nutshell, the adapted engine communicates with YapOr through a fixed
set of interface functions and through two special instructions. The functions
are entered when choice-points are activated, updated, or removed. The two
instructions are activated whenever a worker backtracks to the shared part of
the tree and they call the scheduler to do work search. One instruction processes

parallel choice-points, and the other sequential choice-points (that is, choice-
points such that their alternatives must be explored in sequential order).

The scheduler is the major component of YapOr. Work is represented as a
set of or-frames in a special shared area. Idle workers consult this area and the
GLOBAL and LOCAL data structures, which contains data on work and the status
of each worker, until they find work. If there is no work in the shared tree,
idle workers try to share work with a busy worker. This sharing is implemented
by two model dependent functions: p_share work(), for the busy worker, and
q_share_work (), for the idle one. After sharing the previously idle worker will
backtrack to a newly shared choice-point, whereas the previously busy worker
continues execution from the same point. Note that before sharing, workers will
try to move up in the tree to simplify incremental copying. In copying, sharing
is implemented by the following algorithm:

Busy Worker P Signals Idle Worker Q

Compute stacks to copy Wait sharing signal
----sharing---->

Copy trail 7
Copy heap 7
Wait nodes_shared signal

Share private nodes

--nodes_shared->

Help Q in copy ? Copy local stack 7

<---copy_done---
. ---copy_done---> .
Wait copy_done signal Wait copy_done signal
Back to Prolog execution Install conditionals

Backtrack to shared node 7

Fail to top shared node
Wait ready signal .

Initially, the idle worker waits for a sharing signal while the busy worker
computes the stacks to copy. Next, the busy worker prepares its private nodes
for sharing whilst the idle worker performs incremental copying. The busy worker
may help in the copying process to speed it up. The two workers then synchronise
to determine the end of copying. At the end, the busy worker goes back to
Prolog execution and the idle worker installs the conditional bindings from the
busy worker that correspond to variables in the maintained part of the stacks.
To guarantee the correctness of the installation step, the busy worker can not
backtrack to a shared node until the idle worker do not completes installation.

3.2 aCOWL

To support sharing of work in the «COWL we had to change p_share work()
and q_share work (). We applied the main function where Unix-style Operating
Systems implement COW: the fork() function. The idea is that whenever a
worker P accepts a work request from another worker Q, worker P forks a child
process that will assume the identity of worker Q, whilst the older process exe-
cuting Q exits. At this point, the new process Q has the same state as that of P.
The process Q then is forced to backtrack to the same choice-point. Note that

scheduling is realised in exactly the same way as for the environment copying
model, that is through the use of a public tree of or-frames in shared space.
The synchronisation algorithm for sharing work in «COWL is as follows:

Busy Worker P Signals Idle Worker Q
Wait sharing signal
. ----sharing----> .
fork() exit ()
. Child takes Q’s id
Back to Prolog execution Fail to top shared node

Note that fork() is a rather expensive operation. For programs which have
parallelism of high granularity, one expects that the workers will be busy most of
the time and the number of sharing operations be small. In this case the model
is expected to be efficient. On the other hand, we would expect worse results for
fine-grained applications. Note that one could use the mmap() primitive as an
alternative to fork (), but we felt fork() provided the most elegant solution.

3.3 Sparse Binding Arrays

Supporting the SBA requires changes to both the engine and the sharing mech-
anism. The main changes to the engine affect pointer comparison, and variable
and binding representation.

As regards pointer comparison, the Yap system assumes pointers in the stacks
follow a well-defined ordering: the local stack is above the global stack, the local
stack grows downwards, and the global stack grows upwards. These invariants
allows one to easily calculate variable age and are useful for trailing and recov-
ering space. Unfortunately, they are not valid in the SBA, as the cactus stack is
fragmented. Aurora uses the BA offset as a means for calculating age, but has
to pay the overhead of maintaining an extra counter. The Aurora/SBA imple-
mentation used an age counter that records the number of choice-points above
the current choice-point [8]. The YAP SBA implementation does not maintain
such counters, and instead follows the rule:

1. the sequential invariant is guaranteed to hold for private data;
2. shared data in the cactus-stack are protected as regards recovering space,
and age follows the simple rule: smaller is older.

To implement this rule, each worker manages the so-called frozen registers that
separate its private from the shared parts of the tree. Moreover, an extra reg-
ister, BB, replaces the WAM’s B register when detecting whether a binding is
conditional. Note that these same problems must be addressed to support TAP.

The second issue we had to address is variable representation. In the original
WAM a variable is represented as a pointer to itself. This is unfortunate, because
we would need to initialise the whole of the BA. BA based systems (with the
exception of Andorra-I [11]) thus assume unbound variables are ultimately null
cells. In Aurora, a new variable is initialised as a tagged pointer to the BA,
itself null. In the SBA we do not need pointers to the BA, as it is sufficient to

calculate the offset we are at in the shared space, and add it to the SBA base.
Aurora/SBA thus initialises a new variable as a tagged age field.

We decided to optimise for the sequential overhead in the YapOr/SBA im-
plementation. To do so, a new cell is initialised as a null field. Moreover, and in
contrast to previous BA-based systems, conditional bindings will only be moved
to the SBA when they are made public, and only then. This means that private
execution in our scheme will not use the SBA at all.

As bindings are made public they will be copied to the SBA. Moreover, the
original cell will be made to point to the SBA. Thus the variable dereferencing
mechanism is unaware of the existence of the SBA. Note that the pointer that
is placed in the original cell is independent of workers, although it points at a
private structure.

The changes to the engine are therefore quite extensive. As regards the
changes to p_share_work () and qg_share_work (), the new algorithm is as follows:

Busy Worker P Signals Idle Worker Q
Compute stacks to share Wait sharing signal
Share private nodes .

----sharing----> .
. Install conditionals
Back to Prolog execution Fail to top shared node

4 Performance Evaluation

In order to compare the performance of these three models we experimented the
3 systems in two parallel architectures: a Sun SparcCenter2000 with 8 CPUs
and 256MB of memory, running Solaris2.7, and a PC server with 4 PentiumPro
CPUs/200MHz/256KB caches and 128 MB of memory, running Linux2.2.5 from
standard RedHat6.0. Each CPU in the PC server is about 4 times as fast as each
CPU in the SparcCenter. All systems used the same compilation flags.

We used a standard set of all-solutions benchmarks, widely used to compare
ORP logic-programming systems [19]. We preferred all-solutions benchmarks
because they are not susceptible to speculative execution, and our goal was to
compare the models. The benchmarks include the n-queens problem, the puzzle
and cubes problems from Evan Tick’s book, an hamiltonian graph problem and
a naive sorting resolution. Table 1 shows the execution time, in seconds, for Yap
Prolog and the overhead, in percentage over Yap Prolog, introduced by each
or-parallel model when executing with one worker.

The overhead for copying (YapOr) confirmed previous results, and is of the
order of 2% or 13% on PC/Linux and Sparc/Solaris, respectively. The overhead
obtained for «COWTL is equivalent to copying. The results are consistent, and the
variations are quite above the noise in our measures. We expected performance
to be about the same, as for a single processor we execute quite the same code:
the systems only differ in their scheduling code, and this is never activated.

The overhead for SBA is, as expected, higher but not very much so, only of
15% or 32%. We believe this good result stems from the optimisations discussed

Yap Prolog || YapOr || aCOWL SBA
Programs|| PC | Sparc [[PC|Sparc||PC|Sparc||PC[Sparc

cubesb 0.216| 0.753|| 2%| 13%|| 4%| 10%| 9%| 21%
cubes7 2.505| 9.042|| 1% 7%\ 3% 5% 7%| 17%
ham 0.435| 1.537|| 4%| 20%|| 4%| 24%|[25%| 57%
nsort 34.810(|142.161|| 1%| 14%|| 1%| 21%||22%| 55%
puzzle 2.145| 8.411|| 2%| 22%| 2%| 18%]|22%| 39%
queens10 0.703| 2.809|| 3% 8%|| 4% T%(12%| 17%
queensl2 ([20.921| 84.600|| 2%| 4%| 3%| 4%||10%| 15%

[Average [2%] 13%[[3%] 13%[[15%[32%)]
Table 1. Overheads Yap Prolog/Or-Parallel Models with one worker.

in the previous section. In fact, SBA vs. YapOr performs relatively better than
Aurora vs. Muse. We believe this result supports continuing research on the
SBA.

Table 2 shows speedups for the PC Server, and Table 3 for the SparcCenter.
We use Copy for copying and COW for the aCOWL. The results show that
the best speedups are obtained with copying. The SBA follows quite closely,
but the speedups are not as good for higher number of workers. We believe this
is partly a problem with the SBA optimisations. As work becomes more fine-
grained, more bindings need to be stored in the Binding Array. Execution thus
slows down as the system needs to follow longer memory references and touches
more cache-lines and pages.

2 workers 3 workers 4 workers
Programs||Copy| COW|[SBA || Copy|COW[SBA[[Copy|COW[SBA
cubesb 1.99| 1.88(1.98|| 2.97| 2.60(2.97|| 3.95| 2.69|3.98
cubes7 1.99| 1.98(1.99|| 2.99| 2.92|2.99|| 3.99| 3.83|3.98
ham 1.97| 1.90(1.99|| 2.93| 2.64|2.97|| 3.82| 2.79| 3.87
nsort 2.03| 2.00{1.96|| 3.06| 2.98|2.93|| 4.08| 3.90| 3.90
puzzle 1.97| 1.93|1.95|| 2.96| 2.41|2.92|| 3.94| 3.20| 3.88
queensl(1.99| 1.88(1.99|| 2.96| 2.12(2.97|| 3.92| 2.42|3.92
queensl2 2.00] 1.99|1.99|| 3.00| 2.86|2.99|| 4.00| 3.82|3.98

|[Average || 1.99] 1.94]1.98]] 2.98] 2.65[2.96] 3.96] 3.24]3.93]
Table 2. Speedups for the three models on the PC Server.

The results for the «COWL are quite good, considering the very simple ap-
proach we use to share work. The aCOWL performs well for smaller number
of processors and for coarse-grained applications. As granularity decreases the
overhead of the fork() operation becomes more costly, and in general system
performance decreases versus other systems. As implemented, the aCOWL is
therefore of interest for parallel workstations or for applications with large run-
ning times, which are indeed the ultimate goal for our work.

2 workers 4 workers 6 workers 8 workers
Programs| Copy| COW[SBA||Copy|COW|SBA || Copy|[COW[SBA [Copy|COW|[SBA

cubesb 2.00{ 1.83|1.96| 3.95| 2.72|3.70|| 5.79| 2.87|4.88|| 7.35| 2.32|6.02
cubes? 2.01| 1.97)1.99(| 3.98| 3.79|3.87|| 5.97| 5.03|5.53|| 7.74| 5.87|7.40
ham 1.98| 1.78|1.90|| 3.79| 2.54|3.98|| 5.57| 3.00|5.33|| 6.97| 2.15|7.29
nsort 1.94| 1.97|2.02(3.83| 3.77|4.01|| 5.69| 5.42|5.88|| 7.42| 6.03|7.77
puzzle 2.02| 1.92|1.91|| 3.94| 3.08|3.64|| 5.91| 3.79|5.12|| 7.68| 3.79|7.08
queensl10 2.03| 1.85|1.93| 3.97| 2.36|3.82| 5.83| 2.73|5.48|| 7.47| 2.43|6.95
queensl?2 2.01] 1.95/1.97| 4.01| 3.74|3.92| 5.97| 5.13|5.89| 7.77| 5.81|7.66

|Average || 2.00] 1.90[1.95]] 3.92] 3.14[3.85[] 5.82] 4.00]5.44] 7.49] 4.06]7.14|
Table 3. Speedups for the three models on the SparcCenter.

5 Conclusions

We have discussed the performance of 3 models for the exploitation of ORP in
logic programs. Our results show that copying has a somewhat better perfor-
mance for all-solution search problems. The results confirm the relatively low
overheads of copying for ORP systems.

Our results confirm that the SBA is a valid alternative to copying. Although
the SBA is slightly slower than copying and cannot achieve as good speedups,
it is an interesting alternative for the applications where copying does not work
so well. As an example we are using the SBA to implement TAP.

Our implementation of the «COWL shows good base performance, but suf-
fers heavily as parallelism becomes more fine-grained. Still, we see the «COWL
as a valid alternative for the good reason that the applications that interest us
the most have very good parallelism. The «COWL has two interesting advan-
tages for such applications: it facilitates support of extensions to Prolog, such
as sophisticated constraint systems, and it largely simplifies the implementation
of garbage collection, that in this model can be performed independently by
each worker. The next major challenge for the «COWL will be the support of
suspension, required for single-solution applications.

We would like to perform low-level simulation in order to better quantify
how the memory footprints and miss-rates differs between models. Work on
these models is progressing apace. We are working on better application support
for constraint and inductive logic programming systems. Moreover, we are using
copying as the basis for parallelising tabling [17], useful say for model-checking,
and the SBA as the basis for IAP [6], that has been used in natural language
applications.

Acknowledgments

The authors would like to acknowledge and thank the contribution and support
from Eduardo Correia. The work has also benefitted from discussions with Luis
Fernando Castro, Inés de Castro Dutra, Kish Shen, Gopal Gupta, and Enrico

Pontelli. Our work has been partly supported by Fundacdo da Ciéncia e Tec-
nologia and JNICT under the project Dolphin (PRAXIS/2/2.1/TIT/1577/95)
and by Brazil’s CNPq under the NSF-CNPq project C LoP".

References

N =

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A. Aggoun and et. al. ECLiPSe 3.5 User Manual. ECRC, December 1995.

K. A. M. Ali and R. Karlsson. The Muse Approach to OR-Parallel Prolog. Inter-
national Journal of Parallel Programming, 19(2):129-162, April 1990.

K. A. M. Ali and R. Karlsson. The Muse Or-parallel Prolog Model and its Perfor-
mance. In NACLP’90, pages 757-776. MIT Press, October 1990.

A. Beaumont, S. M. Raman, P. Szeredi, and D. H. D. Warren. Flexible Scheduling
of OR-Parallelism in Aurora: The Bristol Scheduler. In PARLE’91, volume 2, pages
403-420. Springer Verlag, June 1991.

M. Carlsson and J. Widen. SICStus Prolog User’s Manual. SICS Research Report
R88007B, Swedish Institute of Computer Science, October 1988.

L. F. Castro, V. S. Costa, C. Geyer, F. Silva, P. Kayser, and M. E. Correia. DAOS:
Distributed And-Or in Scalable Systems. In EuroPar’99. Springer-Verlag, LNCS,
August 1999.

M. E. Correia, F. Silva, and V. S. Costa. Aurora vs. Muse; A Performance Study of
Two Or-Parallel Prolog Systems. Computing Systems in Engineering, 6(4/5):345—
349, 1995.

M. E. Correia, F. Silva, and V. S. Costa. The SBA: Exploiting Orthogonality in
AND-OR Parallel Systems. In ILPS’97, pages 117-131. The MIT Press, 1997.

V. S. Costa. COWL: Copy-On-Write for Logic Programs. In IPPS5’99. IEEE Press,
May 1999.

V. S. Costa. Optimising Bytecode Emulation for Prolog. In PPDP’99. Springer-
Verlag, LNCS, September 1999.

V. S. Costa, D. H. D. Warren, and R. Yang. The Andorra-I Engine: A Parallel
Implementation of the Basic Andorra Model. In ICLP’91, 1991.

L. Damas, V. S. Costa, R. Reis, and R. Azevedo. YAP User’s Guide and Reference
Manual, 1998. http://www.ncc.up.pt/ vsc/Yap.

G. Gupta and V. S. Costa. And-Or Parallelism in Full Prolog with Paged Binding
Arrays. In PARLE’92, pages 617—632. Springer-Verlag, LNCS 605, June 1992.

G. Gupta and B. Jayaraman. Analysis of or-parallel execution models. ACM
TOPLAS, 15(4):659-680, 1993.

Gopal Gupta, M. Hermenegildo, E. Pontelli, and Vitor Santos Costa. ACE:
And/Or-parallel Copying-based Execution of Logic Programs. In Proc. ICLP’94,
pages 93-109. MIT Press, 1994.

E. Lusk and et. al. The Aurora Or-parallel Prolog System. New Generation
Computing, 7(2,3):243-271, 1990.

R. Rocha, F. Silva, and V. S. Costa. Or-Parallelism within Tabling. In PADL’99,
pages 137-151. Springer-Verlag, LNCS 1551, January 1999.

R. Rocha, F. Silva, and V. S. Costa. YapOr: an Or-Parallel Prolog System based on
Environment Copying. In EPIA’99, pages 178-192. Springer-Verlag, LNAI 1695,
September 1999.

P. Szeredi. Performance Analysis of the Aurora Or-parallel Prolog System. In
NACLP’89, pages 713-732. MIT Press, October 1989.

D. H. D. Warren. The SRI Model for Or-Parallel Execution of Prolog—Abstract
Design and Implementation Issues. In SLP’87, pages 92-102, 1987.

