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Abstract

This paper addresses the design and implementation of YapTab, a tabling
engine that extends the Yap Prolog system to support sequential tabling. The
tabling implementation is largely based on the XSB engine, the SLG-WAM,
however substantial differences exist since our final goal is to support parallel
tabling execution. We discuss the major contributions in YapTab and outline
the main differences of our design in terms of data structures and algorithms.
Finally, we present some initial performance results for YapTab and compare
with those for XSB.

Keywords: Logic Programming, Tabling, Implementation, Performance.

1 Introduction

Logic programming systems provide a high-level, declarative approach to program-
ming. Arguably, Prolog is the most popular logic programming language. In Prolog
programs are written using Horn Clauses, a subset of First-Order Logic that has
an intuitive interpretation as positive facts and rules. The operational semantics
of Prolog is given by SLD-resolution, a refutation strategy particularly simple and
that matches stack-based machines particularly well.

Ideally one would want Prolog programs to be written as logical statements, and
for control to be a separate issue. In practice, Prolog programmers must be aware
of the Prolog computation rule, as the limitations of the Prolog computation rule
mean that logically correct programs can, say, enter infinite loops. To improve the
declarativeness and expressiveness of Prolog several proposals have been put forth.
One such proposal that has been gaining in popularity is the use of tabling. In a
nutshell, tabling is about storing intermediate solutions to a query so that they can
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be reused later. Work on SLG-resolution [1] as implemented in the XSB System [14]
proved the viability of this technology.

One important advantage of tabling systems is that they avoid looping and thus
terminate for all programs with the bounded term-size property [2]. This removes
one of the main limitations of Prolog as a query processing language for data-base
processing. Tabling can be seen as a natural way for storing intermediate results,
nicely matching the characteristics of well-known algorithms for natural language
processing and program analysis, just to mention a few examples. The fundamen-
tal robustness of tabling and of SLG-resolution has also made it a good basis for
extending Prolog’s Horn clause language, including support for negation.

Although tabling can work for both deterministic and non-deterministic pro-
grams, quite a few interesting applications of tabling are by nature non-deterministic.
This rises the question of whether further efficiency would be possible through the
use of or-parallelism, that is, by running several branches of the search tree in paral-
lel. In previous work [11] we proposed two computational models, the Or-Parallelism
within Tabling (OPT) and Tabling within Or-Parallelism (TOP) models, to combine
tabling with or-parallelism. We have since decided to implement the OPT model [12]
over the YapOr system [13], based on the high-performance Yap Prolog compiler [4].

This paper addresses the implementation of YapTab, a sequential tabling engine
designed to support or-parallelism. The implementation is based on the ground-
breaking work for the XSB system. We innovated by considering the novel issues
arising with the introduction of parallelism. In terms of the basic engine, the original
XSB design was therefore changed when restoring computations, determining leader
nodes and completing subgoals.

The remainder of the paper is organized as follows. First, we briefly introduce
the tabling concepts and the SLG-WAM. Next, we present the OPT computational
model and discuss the major contributions in YapTab. We then present the main
data areas, data structures and algorithms to extend the Yap Prolog system to
support tabling. Last, we present some early performance data and terminate by
outlining some conclusions and further work.

2 Tabling Concepts and the SLG-WAM

Tabling is about storing and reusing intermediate answers for goals. Whenever a
tabled subgoal S is called for the first time, an entry for § is allocated in the table
space. 'This entry will collect all the answers generated for S. Repeated calls to
variants of S are resolved by consuming the answers already stored in the table.
Meanwhile, as new answers are generated for S, they are inserted into the table
and returned to all variant subgoals. Within this model, the nodes in the search
space are classified as either generator nodes, corresponding to first calls to tabled
subgoals, consumer nodes, that consume answers from the table space, and interior
nodes, that are evaluated by standard SLD-resolution.

Space for a subgoal can be reclaimed when the subgoal has been completely eval-
uated. A subgoal is said to be completely evaluated when all its possible resolutions
have been performed, that is, when no more answers can be generated and the



variant subgoals have consumed all the available answers. Note that a number of
subgoals may be mutually dependent, forming a strongly connected component (or
SCC) [14], and therefore can only be completed together. The completion opera-
tion is thus performed by the leader of the SCC, that is, by the oldest subgoal in
the SCC, when all possible resolutions have been made for all subgoals in the SCC.
Hence, in order to efficiently evaluate programs one needs an efficient and dynamic
detection scheme to determine when all the subgoals in a SCC have been completely
evaluated.

For definite programs, tabling based evaluation has four main types of operations:
Tabled Subgoal Call creates a generator node; New Answer verifies whether a newly
generated answer is already in the table, and if not, inserts it; Answer Resolution
consumes an answer from the table; and Completion determines whether an SCC is
completely evaluated, and if not, schedules a resolution to continue the execution.

In XSB, the implementation of tabling was attained by extending the WAM [15]
into the SLG-WAM, with minimal overhead. In short, the SLG-WAM introduces
special instructions to deal with the operations above and two new memory areas:
a table space, used to save the answers for tabled subgoals; and a completion stack,
used to detect when a set of subgoals is completely evaluated.

Further, whenever a consumer node gets to a point in which it has consumed
all available answers, but the correspondent tabled subgoal has not yet completed
and new answers may still be generated, the computation must be suspended. In
the SLG-WAM the suspension mechanism is implemented through a new set of
registers, the freeze registers, which freeze the WAM stacks at the suspension point
and prevent all data belonging to the suspended branch from being erased. To later
resume a suspended branch, the bindings belonging to the branch must be restored.
SLG-WAM achieves this by using an extension of the standard trail, the forward
trail, to keep track of the bindings values. Other implementation mechanisms for
tabling have been proposed recently [6, 5, 9, 16].

3 Tabling and Parallelism

In previous work [11] we proposed two computational models to combine tabling
with or-parallelism, the OPT and the TOP approaches. We have decided to im-
plement the OPT approach [12]. The OPT approach generalizes Warren’s multi-
sequential engine framework for or-parallelism. The or-parallelism stems from hav-
ing several engines that implement SLG-resolution, instead of implementing Prolog’s
SLD-resolution.

Tabling is the base component of the OPT computational model. Each computa-
tional agent, or worker, can be considered a full sequential tabling engine and should
spend most of its computation time exploiting the search tree involved in such an
evaluation. It allocates all three types of nodes, fully implements suspension of
tabled subgoals, and resumes subcomputations to consume newly found answers.
Or-parallelism is only triggered when a worker runs out of alternatives to exploit.
Unexploited alternatives should be made available for parallel execution, regardless
of whether they originate from a generator, consumer or interior node. Therefore,



parallelism stems from both tabled and non-tabled subgoals. This contrasts with
the table-parallelism model [7] that only considers tabled subgoals as candidates for
parallel execution.

To implement the OPT approach, we have decided to use the YapOr system [13]
as the parallel component of the model. The YapOr system is an or-parallel Pro-
log system based on environment copying. Thus, we have designed the YapTab
tabling engine in order to meet the requirements of the OPT approach based on
environment copying. Although the YapTab tabling engine is SLG-WAM based, as
is the XSB system, we have taken some different implementation decisions in order
to avoid potential sources for execution overhead resulting from its integration with
the environment copying model.

In an environment copying model, sharing is implemented through copying of the
execution stacks between workers and, thus, a shared branch may exist several times
for the workers that are sharing the branch. The duplication of items is a major
source of overhead. It implies larger stack areas to be copied when sharing, and
it requests synchronization mechanisms when updating common items and when
replicating the new values. Hence, in order to efficiently integrate the tabling and
the or-parallel components of the OPT model, we should minimize this duplication.
To address this need, YapTab introduces a new data structure, the dependency
frame, that resides in a single shared space that we called the dependency space.

The dependency frame data structure keeps track of all data related with tabling
suspensions. This allows us to reduce the number of extra fields in tabled choice
points and to eliminate the need for a completion stack area. Moreover, a smaller
number of extra fields in tabled choice points minimizes the time needed to perform
copying. Eliminating the completion stack area from the YapTab design reduces the
number of stack areas to be copied when sharing, and simplifies the complexity in
managing shared tabling suspensions.

In practice, we found that this solution simplifies the parallel implementation
of fundamental aspects to the system’s efficiency. Sharing tabling suspensions is
straightforward, the worker requesting work only needs to update its private top de-
pendency frame pointer to the one’s of the sharing worker. Concurrent accesses or
updates to the shared suspension data can be synchronized through the use of a lock-
ing mechanism at the dependency frame level. The OPT completion algorithm [12]
for shared branches is mainly based on the dependency frame data structure which
avoids explicit communication and synchronization between workers.

4 Extending Yap to Support Tabling

The YapTab design is WAM based, as is the SLG-WAM. It implements two tabling
scheduling strategies, batched and local [8], and in the initial design it only considers
table predicates without any kind of negative calls.

As in the original SLG-WAM, we introduce a new data area, the table space;
a new set of registers, the freeze registers; an extension of the standard trail, the
forward trail; and the four main tabling operations: tabled subgoal call, new answer,
answer resolution and completion. As the basis for tables we use tries as proposed



in [10]. Tries provide complete discrimination for terms and permit a lookup and
possible insertions to be performed in a single pass through a term, which makes it
easily parallelizable.

The substantial differences between the two designs, and corresponding imple-
mentations, reside in the aspects that can be a potential source of overheads when
the tabling engine is extended to a parallel model. In order to efficiently integrate the
tabling and the or-parallel components of the OPT computational model, YapTab
introduces the dependency frame data structure. To take advantage of the philos-
ophy behind the dependency frame data structure, all the algorithms related with
suspension, resumption and completion were redesigned. We then present the main
data areas, data structures and algorithms implemented to extend the Yap system
to support tabling.

Tabled Nodes

Remember that interior nodes correspond to normal (not tabled) subgoals and they
are evaluated by standard SLD-resolution. Generator and consumer nodes corre-
spond, respectively, to first and variant calls to tabled subgoals. The generator nodes
use program clause resolution to produce and store answers in the table space for
the corresponding tabled subgoal. The consumer nodes load from the table space
the answers previously stored by the associated generator node.

Interior nodes are implemented as normal WAM choice points (we assume famil-
iarity with WAM choice points [15]). In the SLG-WAM, generator nodes are WAM
choice points extended with a few extra fields to control the tabling execution. In
our implementation the generator choice point only requires one of the extra fields
used in the SLG-WAM, that is a pointer to the associated subgoal frame [14] in
the table space, hence allowing correct access to the chain of answers associated
with the subgoal. Figure 1 illustrates the type of nodes being considered and their
relationship with the table and dependency spaces.

In the SLG-WAM, the consumer choice points store supplementary information
about the suspension point. In our case, we move that information to a dependency
frame and leave a pointer to this frame in the consumer choice point. Hence, the
consumer choice point only requires an extra field. Each dependency frame is linked
to the previous one forming a dependency chain of consumer nodes. Additionally,
the dependency frame stores information to efficiently check for completion points,
and to efficiently move across the consumer nodes with unconsumed answers. As
we shall see, this additional information replaces the need for a completion stack.

Freeze Registers

A tabling evaluation can be seen as a sequence of suspension and resumptions of
subcomputations. To preserve the environment of a suspended computation the
stacks are frozen using a set of freeze registers, one per stack. This way, and until
the completion of the appropriate subgoal call takes place, the space belonging to
the suspended branch is safe from being erased. It is only upon completion that
we can release the space previously frozen and adjust the freeze registers. In our
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Figure 1: The nodes and their relationship with the table and dependency spaces.

approach, we adjust the freeze registers by using the top stack pointers saved in the
last suspension point, that is, the younger consumer node in the currently active
stacks. To access that node we check for the top dependency frame in the chain
of dependency frames. It is interesting to remark that we apply exactly the same
mechanism for our implementation of or-parallelism with the SBA model [3].

Completion and Leader Nodes

The completion operation takes place when a generator node exhausts all alterna-
tives and it finds itself as a leader node. We designed our algorithms to quickly
determine whether a generator node is a leader node. A special field in the de-
pendency frame structure is used to hold a pointer to the leader node of the SCC
that includes the current suspension point. To compute the leader node information
when allocating a dependency frame, we first hypothesize that the leader node is the
generator node for the current variant subgoal call, say N. Next, for all consumer
nodes between N and the current consumer node, we check whether they depend on
an older generator node. Consider that the oldest dependency is for the generator
node N’. If this is the case, then N’ is the leader node, otherwise our hypothesis
was correct and the leader is indeed the initially found generator node N .

By using the leader node information from the dependency frames, the generator
nodes can quickly determine whether they are leader nodes. A generator node finds



itself as a leader node if there are no younger dependencies (i.e., no younger consumer
nodes) or if it is the leader node referred in the top dependency frame. Figure 2
illustrates a small example of node dependencies.

(a) (b) (c) (d)

] =10 2] =10 -
O O O O -

O o
DEP- FR DEP- FR DEP- FR

—>L=N1 —|L=N —L =N N4
— — —

10 [ .
DEP- FR

l:l Gener at or Node O Consumer Node —
O Interior Node @ Top Leader Node

Figure 2: Spotting the top leader node.

In Fig. 2(a), the generator node N3 is the top leader node because there are no
younger consumer nodes. By top leader node we mean the generator node where
the next completion operation may take place, i.e., the younger generator node that
is a leader node. Suppose that a new consumer node is created, that is node N4
in Fig. 2(b). Then a dependency frame associated with N4 has to be allocated and
the leader node information must be computed. In this case, the leader node is N1
because N4 is a variant subgoal a of the generator node N1 and there are no other
consumer nodes in between. As a result, the top leader node for the set of nodes
including N4 becomes N1. Figure 2(c) illustrates a similar case to the first one, and
N5 becomes the new top leader node. The consumer node N6 (Fig. 2(d)) for the
variant subgoal ¢ has its generator node at node N3. Since in between nodes N6
and N3 there is a dependency for an older generator node, N1, given by the frame
associated with consumer node N4, the leader node information for the dependency
frame associated with N6 is also N1. This turns N1 again as the top leader node.

Whenever a generator node finds that it is the top leader node, it starts to check
if there are younger consumer nodes with unconsumed answers. This can be done by
going through the chain of dependency frames looking for a frame with unconsumed
answers. If there is such a frame, it resumes the computation to the corresponding
consumer node. Otherwise, we can perform completion. This includes marking as
completed all the subgoals in the SCC; deallocating all the younger dependency
frames; and readjusting the pointer to the chain of dependency frames.



Answer Resolution

The answer resolution operation has to be performed whenever the computation
backtracks or is resumed to a consumer node. That operation is responsible for
guaranteeing that every answer is consumed once and just once.

First, the answer resolution operation checks for unconsumed answers. If there are
new answers in the table for the subgoal at hand, it loads the next available answer
and proceeds the execution. Otherwise, it checks in the dependency frame for a
backtracking node. If this is the first time that backtracking from that consumer
node takes place, then backtracking is performed as usual to the previous node.
Otherwise, we know that the computation has been resumed from an older generator
node N during an unsuccessful completion operation and, therefore, backtracking
must be done to the next consumer node that has unconsumed answers and is
younger than N. If there are no such consumer nodes then backtracking must be
done to the N generator node.

5 Initial Performance Evaluation

We have implemented two scheduling strategies, batched and local scheduling, that
constraint differently the tabling execution. The performance study will be made
using both strategies. We start by analyzing the overheads of supporting tabling in
Yap on a set of non tabled Prolog programs, and by measuring the XSB behavior
on the same set of programs. We then use four versions of a tabled program with
varying complexity of the search space to compare YapTab with XSB.

YapTab is based on the Yap4.2.1 engine and the results were obtained on a 200
MHz PentiumPro with 128MB of main memory, a 256KB cache, and running the
linux-2.2.5 kernel. We used the same compilation flags for Yap and for YapTab.
Regarding XSB, we used version 2.2 with the default configuration and the default
execution parameters (chat engine and batched scheduling).

To put the performance results in perspective we first use a standard set of non
tabled logic programming benchmarks to compare the performance of YapTab with
Yap and XSB. The benchmarks include the n-queens problem, the puzzle and cubes
problems from Evan Tick’s book, an hamiltonian graph problem and a naive sorting
resolution.

Benchmark | YapTab | Yap Prolog | XSB Prolog |

9-queens 740 740(1.00) | 1819(2.46)
cubes 210 210(1.00) 589(2.80)
ham 460 | 430(0.93) |  1139(2.48)
nsort 390 370(0.95) 1101(2.82)
puzzle 2430 | 2120(0.87) |  5819(2.39)
| Average | (0.95) | (2.59) |

Table 1: YapTab, Yap and XSB running times on a set of non tabled benchmarks.

Table 1 shows the base running times, in milliseconds, for YapTab, Yap Prolog
and XSB Prolog for the set of non tabled benchmarks. In parentheses, it shows the



performance of Yap and XSB over the YapTab running times. The results indicate
that YapTab introduce, on average, an overhead of about 5% over standard Yap.
These overheads are due to the handling of the freeze registers and the forward trail.
Regarding XSB, the results show that, on average, YapTab is 2.59 times faster than
XSB, a result mainly due to the faster Yap engine.

To assess the performance of YapTab when running tabled programs and compare
it with XSB, we wrote four versions of the following tabled program:

:- table path/3.

path(X,Y,[X,Y]) :- arc(X,Y).
path(X,Y,P) :- path(X,Z,P1), arc(Z,Y), insert_if_new(Y,P1,P).

insert_if_new(X,[],[X]).
insert_if_new(X,[H|T],[H|NT]) :- X \= H, insert_if_new(X,T,NT).

The four versions differ mainly in the number of nodes and graph topology, hence
defining search spaces of varying complexity. In all versions, the query goal is to
find the transitive closure of the given graph.

| Benchmark | YapTab Batched | YapTab Local | XSB Prolog |
binary tree (depth 10) 440 480(1.09) 451(1.03)
chain (64 nodes) 120 150(1.25) 399(3.33)
cycle (64 nodes) 380 470(1.24) 1121(2.95)
grid (4x4 nodes) 1270 1390(1.09) 5740(4.52)

| Average | (1.17) | (2.96) |

Table 2: YapTab and XSB running times on a four version tabled benchmark.

Table 2 shows the running times, in milliseconds, for YapTab, using batched
(YapTab Batched) and local (YapTab Local) scheduling strategies, and XSB Prolog
for the four benchmarks. The results show that YapTab Batched on average per-
forms better than YapTab Local and XSB. In parentheses it shows the overheads of
YapTab Local and XSB over YapTab Batched. The results obtained for batched and
local scheduling confirm previous results obtained for XSB using the same schedul-
ing strategies [8]. The results also show that, for these programs, YapTab is about
3 times faster than current XSB. This is due to the faster Yap engine, as seen in
table 1, and to the fact that XSB implements functionalities that are still lacking
in YapTab and those may cause overheads during execution. The exception is the
binary tree benchmark where XSB benefits from the use of hashing in the imple-
mentation of tries to optimize table access [10]. YapTab does not yet implement
this hashing optimization and, therefore, its performance degrades with searching
through the larger number of different nodes that the binary tree program presents.

6 Conclusions

We have presented the design and implementation of YapTab, an extension of the
Yap Prolog system that implements sequential tabling. Our system includes all the
machinery required to execute programs with tabling in or-parallel. YapTab reuses



the principles of XSB-Prolog’s SLG-WAM engine, whilst innovating by separating
the tabling suspension data in a single space, the dependency space, and by propos-
ing a new completion detection algorithm not based on the intrinsically sequential
completion stack.

Our first results are very encouraging. Overheads over standard Yap are low and
performance in tabling benchmarks is quite satisfactory even when compared with
the arguably more mature and complete XSB system.

We have obtained very initial timings for parallel execution on a shared memory
PentiumPro machine. The results show significant speedups for a tabled application
increasing up to the four processors and encourage us in our believe that tabling
and parallelism may together contribute to increasing the range of applications for
Logic Programming.
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