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Abstract. Tabling is an implementation technique that improves the
declarativeness and expressiveness of Prolog by reusing solutions to goals.
Quite a few interesting applications of tabling have been developed in the
last few years, and several are by nature non-deterministic. This raises
the question of whether parallel search techniques can be used to improve
the performance of tabled applications.

In this work we demonstrate that the mechanisms proposed to parallelize
search in the context of SLD resolution naturally generalize to parallel
tabled computations, and that resulting systems can achieve good per-
formance on multi-processors. To do so, we present the OPTYap par-
allel engine. In our system individual SLG engines communicate data
through stack copying. Completion is detected through a novel parallel
completion algorithm that builds upon the data structures proposed for
or-parallelism. Scheduling is simplified by building on previous research
on or-parallelism. We show initial performance results for our implemen-
tation. Our best result is for an actual application, model checking, where
we obtain linear speedups.
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1 Introduction

The past years have seen wide effort at increasing Prolog’s declarativeness and
expressiveness. Tabling or memoing is one such proposal that has been gaining
in popularity. In a nutshell, tabling consists of storing intermediate answers for
subgoals so that they can be reused when a repeated subgoal appears. Work on
SLG resolution [3], as implemented in the XSB System [15], proved the viability
of tabling technology for application areas such as natural language processing,
knowledge based systems, model checking, or program analysis. Tabling based
models are able to reduce the search space, avoid looping, and always terminate
for programs with the bounded term-size property [4].

Tabling works for both deterministic and non-deterministic applications, but
it has frequently been used to reduce search space. This rises the question of
whether further efficiency improvements may be achievable through parallelism.
Freire and colleagues [7] were the first to propose that tabled goals could in-
deed be a source of implicit parallelism. In their model, each tabled subgoal is
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computed independently in a separate computational thread, a generator thread.
Each generator thread is the sole responsible for fully exploiting its subgoal and
obtain the complete set of answers. This model restricts parallelism to concur-
rent execution of generator threads. Parallelism arising from non-tabled subgoals
or from alternative clauses is not exploited.

Our suggestion is that we should exploit parallelism from both tabled and
non-tabled subgoals. By doing so we can both extract more parallelism, and
reuse the mature technology for tabling and parallelism. Towards this goal,
we previously proposed two computational models to combine tabling with or-
parallelism [12], Or-Parallelism within Tabling (OPT) and Tabling within Or-
Parallelism (TOP) models.

This paper presents an implementation for the OPT model, the OPTYap
system. To the best of our knowledge, OPTYap is the first available system
that can exploit parallelism from tabled programs. The OPT model considers
tabling as the base component of the system. Each computational worker behaves
as a full sequential tabling engine. The or-parallel component of the system is
triggered to allow synchronized access to the shared part of the search space or
to schedule work.

From the beginning, we aimed at developing an or-parallel tabling system
that, when executed with a single worker, runs as fast or faster than current
sequential tabling systems as otherwise, parallel performance would not be sig-
nificant and fair. To achieve these goals, OPTYap builds on YapOr [13] and
YapTab [14] engines. YapOr is an or-parallel engine that extends Yap’s efficient
sequential engine [16]. It is based on the environment copy model, as first imple-
mented in Muse [1]. YapTab is a sequential tabling engine that extends Yap’s ex-
ecution model to support tabled evaluation. YapTab’s implementation is largely
based on the ground-breaking SLG-WAM work used in the XSB system [15].

The remainder of the paper is organized as follows. First, we briefly introduce
the basic tabling definitions and the SLG-WAM. Next, we present the OPT com-
putational model and discuss its implementation framework. We then present
the new data areas, data structures and algorithms to extend the Yap Prolog
system to support sequential and parallel tabling. Last, we present some early
performance data and terminate by outlining some conclusions and further work.

2 Tabling and the SLG-WAM

Tabling is about storing and reusing intermediate answers for goals. In variant-
based tabling, whenever a tabled subgoal S is called for the first time, an entry for
S is allocated in the table space. This entry will collect all the answers found for
S. Repeated calls to variants of S are resolved by consuming the answers already
stored in the table. Meanwhile, as new answers are generated, they are inserted
into the table and returned to all variant subgoals. Within this model, the nodes
in the search space are classified as either generator nodes, corresponding to first
calls to tabled subgoals, consumer nodes, corresponding to variant calls to tabled
subgoals, and interior nodes, corresponding to non-tabled predicates.



Tabling based evaluation has four main types of operations for definite pro-
grams. The Tabled Subgoal Call operation checks if the subgoal is in the table
and if not, inserts it and allocates a new generator node. Otherwise, allocates
a consumer node and starts consuming the available answers. The New Answer
operation verifies whether a newly generated answer is already in the table, and
if not, inserts it. The Answer Resolution operation consumes the next newly
found answer, if any. The Completion operation determines whether a tabled
subgoal is completely evaluated, and if not, schedules a possible resolution to
continue the execution.

Space for a subgoal can be reclaimed when the subgoal has been completely
evaluated. A subgoal is said to be completely evaluated when all its possible
resolutions have been performed, that is, when no more answers can be generated
and the variant subgoals have consumed all the available answers. Note that a
number of subgoals may be mutually dependent, forming a strongly connected
component (or SCC) [15], and therefore can only be completed together. The
completion operation is thus performed at the leader of the SCC, that is, by the
oldest subgoal in the SCC, when all possible resolutions have been made for all
subgoals in the SCC. Hence, in order to efficiently evaluate programs one needs
an efficient and dynamic detection scheme to determine when all the subgoals
in a SCC have been completely evaluated.

The implementation of tabling in XSB Prolog was attained by extending the
WAM [17] into the SLG-WAM [15]. In short, the SLG-WAM introduces a new
set of instructions to deal with the operations above, a special mechanism to
allow suspension and resumption of computations, and two new memory areas:
a table space, used to save the answers for tabled subgoals; and a completion
stack, used to detect when a set of subgoals is completely evaluated. The SLG-
WAM also introduced the concepts of freeze registers and forward trail to handle
suspension [15].

3 Or-Parallelism within Tabling

The OPT model [12] divides the search tree into a public and several private
regions, one per worker. Workers in their private region execute nearly as in
sequential tabling. Workers exploiting the public region of the search tree must
be able to synchronize in order to ensure the correctness of the tabling opera-
tions. When a worker runs out of alternatives to exploit, it enters in scheduling
mode. The YapOr scheduler is used to search for busy workers with unexploited
work. Alternatives should be made available for parallel execution, regardless of
whether they originate from generator, consumer or interior nodes.

Parallel execution requires significant changes to the SLG-WAM. Synchro-
nization is required (i) when backtracking to public generator or interior nodes
to take the next available alternative; (ii) when backtracking to public consumer
nodes to take the next unconsumed answer; or, (iii) when inserting new answers
into the table space. In a parallel tabling system, the relative positions of gen-
erator and consumer nodes are not as clear as for sequential systems. Hence



we need novel algorithms to determine whether a node is a leader node and to
determine whether a SCC can be completed.

OPTYap uses environment, copying for or-parallelism and the SLG-WAM for
tabling because these are, respectively, two of the most successful or-parallel and
tabling engines. Copying is a popular and effective approach to or-parallelism
that minimizes actual changes to the WAM. To share work we use incremental
copying [1], that is, we only copy differences between stacks.

In contrast to copying, the SLG-WAM requires significant changes to the
WAM in order to support freezing of goals. These changes introduce overheads,
namely in trailing and in stack manipulation. Demoen and Sagonas addressed the
problems by suggesting CAT [5] and more recently, CHAT [6]. These two models
reduce overheads by copying parts of stacks, instead of freezing. Although there
is an attractive analogy between copying and CAT or CHAT, a more detailed
analysis shows significant drawbacks. First, both assume separate choice-point
and local stacks. Second, both rely on an incremental saving technique to reduce
copying overheads. Unfortunately, the technique assumes that completion always
takes place at generator nodes. As we shall see, these assumptions do not hold
true for parallel tabling. Last, both may incur in substantial slowdowns for some
applications. We therefore used the SLG-WAM in our work.

Rather different approaches to tabling have also been proposed recently [18,
9]. In both cases, the main idea is to recompute tabled goals, instead of suspend-
ing. Unfortunately, the process of retrying alternatives may cause redundant
recomputations of non-tabled subgoals that appear in the body of a looping
alternative and redundant consumption of answers if the looping alternative
contains more than one variant subgoal call. Parallel recomputation is harder
because we do not know beforehand if a tabled alternative needs to be recom-
puted: a conservative approach may lose parallelism, and an optimistic approach
may lead to even more redundant computation.

4 The Sequential Tabling Engine

Next, we review the main principles of the YapTab design (please refer to [14, 11]
for more details). YapTab implements two tabling scheduling strategies, batched
and local [8], and in our initial design it only considers positive programs. Tables
are implemented using tries as proposed in [10]. We reconsidered decisions in
the original SLG-WAM that can be a potential source of parallel overheads.
Namely, YapTab considers that control of leader detection and scheduling of
unconsumed answers should be performed through the consumer nodes. Hence,
YapTab associates a new data structure, the dependency frame, to consumer
nodes. In contrast, the SLG-WAM associates this control with generator nodes.
We argue that managing dependencies at the level of the consumer nodes is a
more intuitive approach that we can take advantage of.

The introduction of this new data structure allows us to reduce the number
of extra fields in tabled choice points and to eliminate the need for a separate



completion stack. Furthermore, allocating the data-structure in a separate area
simplifies the implementation of parallelism.

To benefit from the philosophy behind the dependency frame data structure,
we redesigned the algorithms related with suspension, resumption and comple-
tion. We next present YapTab’s main data structures and algorithms. We assume
a batched scheduling strategy implementation [8] (please refer to [11] for the im-
plementation of local scheduling).

Generator and Consumer Nodes YapTab implementation stores generator
nodes as standard nodes plus a pointer to the corresponding subgoal frame.
In contrast to the SLG-WAM, we adjust the freeze registers by using the top
of stack values kept in the consumer choice points. YapTab also implements
consumer nodes as standard nodes plus a pointer to a dependency frame. The
dependency frames are linked together to form the dependency list of consumer
nodes. Additionally, dependency frames store information to efficiently check for
completion points, replacing the need for a separate completion stack [15], as we
discuss next.

Completion and Leader Nodes The completion operation takes place when
a generator node exhausts all alternatives and finds itself as a leader node. We
designed novel algorithms to quickly determine whether a generator node is a
leader node.

Our key idea is that each dependency frame holds a pointer to the presumed
leader node of its SCC, and that the youngest consumer node always knows
the leader for the current SCC. Hence, our leader node algorithm must always
compute leader node information when first creating a new consumer node, say
C. To do so, we first hypothesize that the current leader node is C’s generator
node, say G. Next, for all consumer nodes between C and G, we check whether
they depend on an older generator node. Consider that the oldest dependency
is for G'. If this is the case, then G’ is the leader node, otherwise our hypothesis
was correct and the leader is indeed G.

Whenever we backtrack to a generator that it also the current leader node,
we must check whether there are younger consumer nodes with unconsumed
answers. This is implemented by going through the chain of dependency frames
looking for a frame with unconsumed answers. If there is such a frame, we resume
the computation to the corresponding consumer node. Otherwise, we perform
completion. Completion includes (i) marking all the subgoals in the SCC as
completed; (ii) deallocating all younger dependency frames; (iii) adjusting the
freeze registers; and (iv) backtracking to the previous node to continue the
execution.

Answer Resolution Answer resolution has to be performed whenever the com-
putation fails and is resumed at a consumer choice point. The implementation
must guarantee that every answer is consumed once and just once. First, we
check the table space for unconsumed answers for the subgoal at hand. If there
are new answers, we load the next available answer and proceed with execution.



Otherwise, we schedule for a backtracking node. If this is the first time that back-
tracking from that consumer node takes place, then it is performed as usual to
the previous node. Otherwise, we know that the computation has been resumed
from an older generator node G during an unsuccessful completion operation.
Therefore, backtracking must be done to the next consumer node that has un-
consumed answers and that is younger than G. If there are no such consumer
nodes then backtracking must be done to the generator node G.

5 The Or-Parallel Tabling Engine

The OPTYap engine is based on the YapTab engine. However, new data struc-
tures and algorithms were required to support parallel execution. Next, we de-
scribe the main design and implementation decisions.

Memory Management The efficiency of a parallel system largely depends
on how concurrent handling of shared data is achieved and synchronized. Page
faults and memory cache misses are a major source of overhead regarding data
access or update in parallel systems. OPTYap tries to avoid these overheads
by adopting a page-based organization scheme to split memory among different
data structures, in a way similar to Bonwick’s Slab memory allocator [2].

Our experience showed that the table space is a key data area open to con-
current access operations in a parallel tabling environment. To maximize paral-
lelism, whilst minimizing overheads, accessing and updating the table space must
be carefully controlled. Read/write locks are the ideal implementation scheme
for this purpose. OPTYap implements four alternative locking schemes to deal
with concurrent accesses to the table data structures. Our results suggested that
concurrent table access is best handled by schemes that lock table data only
when writing to the table is likely.

Leader Nodes Or-parallel systems execute alternatives early. As a result, it
is possible that generators will execute earlier, and in a different branch than
in sequential execution. In the worst case, different workers may execute the
generator and the consumer goals. Workers may have consumer nodes while
not having the corresponding generators in their branches. Or, the owner of a
generator node may have consumers being executed by several different workers.
This may induce complex dependencies between workers, hence requiring a more
elaborate completion operation that may involve branches created by several
workers.

OPTYap allows completion to take place at any node, not only at generator
nodes. In order to allow a very flexible completion algorithm we introduce a new
concept, the generator dependency node (or GDN). Its purpose is to signal the
nodes that are candidates to be leader nodes, therefore representing a similar
role as that of the generator nodes for sequential tabling. The GDN is calculated
whenever a new consumer node, say C, is allocated. It is defined as the youngest
node D on the current branch of C, that is an ancestor of the generator node



G for C. Figure 1 presents three different situations that better illustrate the
GDN concept. WG is the worker that allocated the generator node G, WC is the
worker that is allocating a consumer node C, and the node pointed by the black
arrow is the GDN for the new consumer.
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Fig. 1. Spotting the generator dependency node.

In situation (a), the generator node G is on C’s branch, and thus, G is the
GDN. In situation (b), nodes N; and N, are on C’s branch, and both contain
a branch leading to G. As N5 is the youngest node of both, it is the GDN. In
situation (c), N7 is the unique node that belongs to C’s branch and that also
contains G in a branch below. A, contains G in a branch below, but it is not
on C’s branch, while N3 is on C’s branch, but it does not contain G in a branch
below. Therefore, N7 is the GDN. Notice that in both cases (b) and (c¢) the
GDN can be a generator, a consumer or an interior node.

The procedure to compute the leader node information when allocating a
dependency frame for a new consumer node now hypothesizes that the leader
node for the consumer node at hand is its GDN, and not its generator node.

The Control Flow OPTYap’s execution control mainly flows through four
procedures. The process of completely evaluating SCCs is accomplished by the
completion() and answer _resolution() procedures, while parallel synchro-
nization is achieved by the getwork() and scheduler() procedures. Here we
focus on the flow of control in engine mode, that is on the completion(),
answer _resolution() and getwork () procedures, and discuss scheduling later.
Figure 2 presents a general overview of how control flows between the three
procedures and how it flows within each procedure.

Public Completion Different paths may be followed when a worker W reaches a
leader node for a SCC S. The simplest case is when the node is private. In this
case, we proceed as for sequential tabling. Otherwise, the node is public, and
there may exist dependencies on branches explored by other workers. Therefore,
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Fig. 2. The flow of control in a parallel tabled evaluation.

even when all younger consumer nodes on W’s stacks do not have unconsumed
answers, completion cannot be performed. The reason for this is that the other
workers can still influence S. For instance, these workers may find new answers
for a consumer node in &, in which case the consumer must be resumed to
consume the new answers. As a result, in order to allow W to continue execution
it becomes necessary to suspend the SCC at hand.

Suspending in this context is obviously different from suspending consumer
nodes. Consumer nodes are suspended due to tabled evaluation. SCCs are sus-



pended due to or-parallel execution. Suspending a SCC includes saving the SCC’s
stacks to a proper space, leaving in the leader node a reference to where the
stacks were saved, and readjusting the freeze registers and the stack and frame
pointers. If the worker did not suspend the SCC, hence not saving the stacks,
any future sharing work operation might damage the SCC’s stacks and therefore
make delayed completion unworkable.

To deal with the new particularities arising with concurrent evaluation a novel
completion procedure, public_completion(), implements completion detection
for public leader nodes. As for private nodes, whenever a public node finds that
it is a leader, it starts to check for younger consumer nodes with unconsumed
answers. If there is such a node, we resume the computation to it. Otherwise, it
checks for suspended SCCs in the scope of its SCC. A suspended SCC should be
resumed if it contains consumer nodes with unconsumed answers. To resume a
suspended SCC a worker needs to copy the saved stacks to the correct position
in its own stacks, and thus, it has to suspend its current SCC first.

We thus adopted the strategy of resuming suspended SCCs only when the
worker finds itself at a leader node, since this is a decision point where the worker
either completes or suspends the current SCC. Hence, if the worker resumes a
suspended SCC it does not introduce further dependencies. This is not the case
if the worker would resume a suspended SCC R as soon as it reached the node
where it had suspended. In that situation, the worker would have to suspend its
current SCC S, and after resuming R it would probably have to also resume &
to continue its execution. A first disadvantage is that the worker would have to
make more suspensions and resumptions. Moreover, if we resume earlier, R may
include consumer nodes with unconsumed answers that are common with S.
More importantly, suspending in non-leader nodes leads to further complexity.
Answers can be found in upper branches for suspensions made in lower nodes,
and this can be very difficult to manage.

A SCC S is completely evaluated when (i) there are no unconsumed answers
in any consumer node in its scope, that is, in any consumer node belonging to
S or in any consumer node within a SCC suspended in a node belonging to S;
and (ii) there is only a single worker owning its leader node £. We say that a
worker owns a node N when it holds N on its stacks (this is true even if N
is not the worker’s current branch). Completing a SCC includes (i) marking
all dependent subgoals as complete; (ii) releasing the frames belonging to the
complete branches, including the branches in suspended SCCs; (iii) releasing
the frozen stacks and the memory space used to hold the stacks from suspended
SCCs; and (iv) readjusting the freeze registers and the whole set of stack and
frame pointers.

Our public completion algorithm has two major advantages. One is that the
worker checking for completion determines if its current SCC is completely eval-
uated or not without requiring any explicit communication or synchronization
with other workers. The other is that it uses the SCC as the unit for suspension.
This latter advantage is very important since it simplifies the management of
dependencies arising from branches not on stack. A leader node determines the



position from where dependencies may exist in younger branches. As a suspen-
sion unit includes the whole SCC and suspension only occurs in leader node
positions, we can simply use the leader node to represent the whole scope of a
suspended SCC, and therefore simplify its management.

Answer Resolution The answer resolution operation for the parallel environment
essentially uses the same algorithm as previously described for private nodes.

Getwork The last flow control procedure. It contributes to the progress of a
parallel tabled evaluation by moving to effective work. The usual way to execute
getwork () is through failure to the youngest public node on the current branch.
We can distinguish two blocks of code in the getwork() procedure. The first
block detects completion points and therefore makes the computation flow to the
public_completion() procedure. The second block corresponds to or-parallel
execution. It synchronizes to check for available alternatives and executes the
next one, if any. Otherwise, it invokes the scheduler.

The getwork() procedure detects a completion point when A is the leader
node pointed by the top dependency frame. The exception is if N is itself a
generator node for a consumer node within the current SCC and it contains
unexploited alternatives. In such cases, the current SCC is not fully exploited.
Hence, we should exploit first the available alternatives, and only then invoke
completion.

Scheduling Work Scheduling work is the scheduler’s task. It is about efficiently
distributing the available work for exploitation between the running workers.
In a parallel tabling environment we have the extra constraint of keeping the
correctness of sequential tabling semantics. A worker enters in scheduling mode
when it runs out of work and returns to execution whenever a new piece of
unexploited work is assigned to it by the scheduler.

The scheduler for the OPTYap engine is mainly based on YapOr’s scheduler.
All the scheduler strategies implemented for YapOr were used in OPTYap. How-
ever, extensions were introduced in order to preserve the correctness of tabling
semantics. These extensions allow support for leader nodes, frozen stack seg-
ments, and suspended SCCs. The OPTYap model was designed to enclose the
computation within a SCC until the SCC was suspended or completely evalu-
ated. Thus, OPTYap introduces the constraint that the computation cannot flow
outside the current SCC, and workers cannot be scheduled to execute at nodes
older than their current leader node. Therefore, when scheduling for the nearest
node with unexploited alternatives, if it is found that the current leader node is
younger than the potential nearest node with unexploited alternatives, then the
current leader node is the node scheduled to proceed with the evaluation.

Moving In the Tree The next case is when the process above does not return
any node to proceed execution. The scheduler then starts searching for busy
workers that can be requested for work. If such a worker B is found, then the
requesting worker moves up to the lowest node that is common to B, in order



to become partially consistent with part of B. Otherwise, no busy worker was
found, and the scheduler moves the idle worker to a better position in the search
tree. Therefore, we can enumerate three different situations for a worker to move
up to anode N: (i) NV is the nearest node with unexploited alternatives; (ii) N is
the lowest node common with the busy worker we found; or (iii) N corresponds
to a better position in the search tree.

The process of moving up in the search tree from a current node Ny to
a target node Ny is implemented by the move_up_one node() procedure. This
procedure is invoked for each node that has to be traversed until reaching Ny.
The presence of frozen stack segments or the presence of suspended SCCs in
the nodes being traversed influences and can even abort the usual moving up
process.

Assume that the idle worker W is currently positioned at A; and that it wants
to move up one node. Initially, the procedure checks for frozen nodes on the stack
to infer whether W is moving within the SCC. If so, W is simply deleted from
member of NV;. The interesting case is when W is not within a SCC. If A holds
a suspended SCC, then W can safely resume it. If resumption does not take
place, the procedure proceeds to check whether A; is a consumer node. Being
this the case, W is deleted from member of A; and if W is the unique owner
of N; then the suspended SCCs in N; can be completed. Completion can be
safely performed over the suspended SCCs in N; not only because the SCCs are
completely evaluated, as none was previously resumed, but also because no more
dependencies exist, as there are no more branches below N;. The reasons given
to complete the suspended SCCs in N; hold even if N; is not a consumer node,
as long as W is the unique owner of ;. In such case, if V; is a generator node
then its correspondent subgoal can be also marked as completed. Otherwise, W
is simply deleted from being member and owner of N;.

6 Initial Performance Evaluation

The environment for our experiments consists of a shared memory parallel ma-
chine, a 200 MHz PentiumPro with 4 processors, 128 MBytes of main memory,
256 KBytes of cache and running the linux-2.2.12 kernel. The machine was oth-
erwise idle while benchmarking.

YapOr, YapTab and OPTYap are based on Yap’s 4.2.1 engine. Note that
sequential execution would be somewhat better with more recent Yap engines.
We used the same compilation flags for Yap, YapOr, YapTab and OPTYap.
Regarding XSB Prolog, we used version 2.3 with the default configuration and
the default execution parameters (chat engine and batched scheduling).

Non-Tabled Benchmarks To put the performance results in perspective we
first use a common set of non-tabled benchmark programs to evaluate how the
original Yap Prolog engine compares against the several Yap extensions and
against the most well-known tabling engine, XSB Prolog. The benchmarks in-
clude the n-queens problem, the puzzle and cubes problems from Evan Tick’s



book, an hamiltonian graph problem and a naive sort algorithm. All benchmarks
find all solutions for the problem.

Table 1 shows the base running times, in milliseconds, for Yap, YapOr,
YapTab, OPTYap and XSB for the set of non-tabled benchmarks. In paren-
theses, it shows the overhead over the Yap running times. The results indicate
that YapOr, YapTab and OPTYap introduce, on average, an overhead of about
6%, 8% and 12% respectively over standard Yap. Regarding XSB, the results
show that, on average, XSB is 1.9 times slower than Yap, a result mainly due to
the faster Yap engine.

|Program|Yap| YapOr | YapTab |OPTYap| XSB |

9-queens | 584 604(1.03)] 605(1.04)] 626(1.07)] 1100(1.88)
cubes 170 170(1.00)| 173(1.02)| 175(1.03)| 329(1.94)
ham 371| 402(1.08)| 399(1.08)| 432(1.16)| 659(1.78)
nsort 310 330(1.06)| 328(1.06)| 354(1.14)| 629(2.03)
puzzle 1633| 1818(1.11)| 1934(1.18)| 1950(1.19)| 3059(1.87)
|Average | (1.06)] (1.08)] (1.12)] (1.90)]

Table 1. Running times on non-tabled programs.

YapOr overheads result from handling the work load register and from testing
operations that (i) verify whether a node is shared or private, (ii) check for
sharing requests, and (iii) check for backtracking messages due to cut operations.
On the other hand, YapTab overheads are due to the handling of the freeze
registers and support of the forward trail. OPTYap overheads result from both.

Since OPTYap is based on the same environment model as the one used by
YapOr, we then compare OPTYap’s parallel performance with that of YapOr.
Table 2 shows the speedups relative to the single worker case for YapOr and
OPTYap with 2, 3 and 4 workers. Each speedup corresponds to the best execu-
tion time obtained in a set of 3 runs. The results show that OPTYap maintains
YapOr’s behavior in exploiting or-parallelism in non-tabled programs, despite
that it includes all the machinery required to support tabled programs.

YapOr OPTYap
Program| 2 | 3 | 4 2 | 3 | 4
9-queens 1.99| 2.99| 3.94|| 2.00| 2.99| 3.96
cubes 2.00{ 2.98| 3.95|| 1.98| 2.96| 3.97
ham 2.00{ 2.95| 3.90|| 1.97| 2.93| 3.78
nsort 1.97| 2.92| 3.83| 1.97| 2.92| 3.80
puzzle 2.02| 3.03| 4.02|| 1.98| 2.97| 3.94

|Average | 2.00] 2.97] 3.93] 1.98] 2.95] 3.89|

Table 2. Speedups for YapOr and OPTYap on non-tabled programs.

Tabled Benchmarks We then use a set of tabled benchmark programs to
measure the performance of the tabling engines in discussion. The benchmarks



include two transition systems from XMC specs', a same generation problem
for a 24x24x2 data cylinder, and two path problems that find the transitive
closure of different graph topologies. All benchmarks find all the solutions for
the problem.

Table 3 shows the base running times, in milliseconds, for YapTab, OPTYap
and XSB for the set of tabled benchmarks. In parentheses, it shows the overhead
over the YapTab running times. The results indicate that OPTYap introduce,
on average, an overhead of about 17% over YapTab for tabled programs, which
is much worse than the overhead of 5% for non-tabled programs. The difference
results from locking requests to handle the data structures introduced by tabling.
Locks are require to insert new trie nodes into the table space, and to update
subgoal and dependency frame pointers to tabled answers. We observed that the
benchmarks that deal with more tabled answers per time unit are the ones that
perform more locking operations and in consequence introduce further overheads.

|Program |YapTab| OPTYap | XSB |
xmc-sieve 2851 3226(1.13)| 3560(1.25)
xXmc-iproto 2438| 2736(1.22)| 4481(1.84)
same-gen 16598| 17034(1.03)| 25390(1.82)
path-grid 1069| 1240(1.16)| 3610(3.38)
path-chain 102 136(1.33) 271(2.66)
|Average | (1.17)] (2.19)]

Table 3. Running times on tabled programs.

Regarding XSB, the results show that, on average, YapTab is slightly more
than twice as fast as XSB, surprisingly a better result than for non-tabled bench-
marks. In particular, XSB shows the worst behavior for the two programs that
are more table intensive. We believe that the XSB performance may be caused
by overheads in their tabling implementation. XSB must support negated lit-
erals, and also has recently been extended to support attributed variables and
especially subsumption.

Parallel Tabled Benchmarks To assess the performance of OPTYap when
running the tabled programs in parallel, we ran OPTYap for the same set of
tabled programs with varying number of workers. Table 4 shows the speedups
relative to the single worker case for OPTYap with 2, 3 and 4 workers. Each
speedup corresponds to the best execution time obtained in a set of 3 runs.
The table is divided in two blocks: the upper block groups the benchmarks
that showed potential for parallel execution, whilst the lower block includes the
benchmark that do not show any gains when run in parallel.

Globally, our results show quite good speedups for the upper block programs,
especially considering that the execution times were obtained in a multiprocess
environment. In particular, xmc-sieve achieves linear speedups up to 4 workers.

! We are thankful to C.R. Ramakrishnan for providing us these benchmarks.



Number of Workers
Program 2 [ 3 | 4
xmc-sieve 2.00 3.00 3.99
xmc-iproto 1.90 2.78 3.64

Ssame-gen 2.04 2.84 3.86
path-grid 1.82 2.54 3.10
Average 1.94 2.79 3.65

[path-chain|  0.92] 0.86] 0.78]

Table 4. Speedups for OPTYap on tabled programs.

The same-gen benchmark presents also excellent results up to 4 workers and
rme-iproto and path-grid show a slightly slowdown with the increase in the
number of workers. On the other hand, the path-chain benchmark does not
show any speedup at all.

Through experimentation, we observed that workers are busy for more than
95% of the execution time, even for 4 workers. In general, slowdowns are not
caused because workers became idle and start searching for work, as usually
happens with parallel execution of non-tabled programs. Here the problem seems
more complex: workers do have available work, but there is a lot of contention
to access that work.

Closer analysis suggested that there are two main reasons that constraint
speedups. One relates with massive table access to insert and consume answers.
As trie structures are a compact data structure, the presence of massive table
access increases the number of contention points. The other relates with the
sequencing in the order that answers are found. There are answers that can only
be found when other answers are also found, and the process of finding such
answers cannot be anticipated. This incurs in high overheads related with SCC
suspensions and resumptions.

7 Conclusions

In this paper we have presented the design and implementation of OPTYap.
To the best of our knowledge, OPTYap is the first parallel tabling engine for
logic programming systems. OPTYap extends the Yap Prolog system both with
the SLG-WAM, initially implemented for XSB Prolog, and with environment
copying, initially implemented in the Muse or-parallel system.

First results show that OPTYap introduces low overheads for sequential exe-
cution, and that it compares favorably with current versions of XSB. Moreover,
the results showed that OPTYap maintains YapOr’s effective speedups in ex-
ploiting or-parallelism in non-tabled programs. For parallel execution of tabled
programs, OPTYap showed linear speedups for a well known application of XSB,
and quite good results globally. These results emphasize our belief that tabling
and parallelism are a very good match.

On the other hand, there are tabled programs where OPTYap may not
speedup up execution. Parallel execution of tabled programs may have different



characteristics than traditional or-parallel programs. In general, tabling tends to
decrease the height of the search tree, whilst increasing its breadth. We there-
fore believe that improvements in scheduling and on concurrent access to tries
may be fundamental for scalable performance. We plan to investigate this issue
further, also by studying more programs.
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