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Abstract

One of the advantages of logic programming (LP) and constraint logic pro-
gramming (CLP) is the fact that one can exploitimplicit parallelism in logic
programs. Logic programs have two major forms of implicit parallelism: or-
parallelism(ORP) andand-parallelism(ANDP). In this work we survey some of
work that has been taking place within theCLoP n project towards fast execution
of logic programs. We first briefly present our work in comparing several data
representations for ORP: copying, copy-on-write, and the sparse binding array.
Next, we demonstrate the usefulness of ORP concepts in the context of an impor-
tant extension of LP, tabling. We then discuss how the process of solving a set of
constraints can be dividided by several workers. We conclude with ongoing work
on language issues towards the multiparadigm language Holo.

1 Introduction

One of the advantages of logic programming (LP) and constraint logic programming
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parallelism reduces the effort required to speedup logic programs through parallelism.
Moreover, implicit parallel systems alleviate the user from the actual details of work
management, which can be quite difficult to program for the irregular problems com-
monly addressed in LP applications. Logic programs have twomajor forms of implicit
parallelism:or-parallelism(ORP) andand-parallelism(ANDP). Given an initial query
to the logic programming system, ORP results from trying several different alternatives
simultaneously. In contrast, ANDP stems from dividing the work required to solve the
alternative between the different processors.

In this work we survey some of work that has been taking place within theCLoP n
project towards fast execution of Prolog programs. We choseto present four of the
several contributions of the research being performed in the project. As regards ORP,
we first briefly present our work in comparing several data representations for ORP:
copying, copy-on-write, and the sparse binding array. Our work shows that the sev-
eral models can perform well, although they have different properties and can adapt
well to different forms of parallelism. This work should be seen in the context of a
recent revival of ORP, both as a form of parallelism that can perform well for standard
shared memory machines [24, 1, 37], hardware based shared memory [15, 35], and
clusters [43] and as a very general form of parallelism in LP.Indeed, section 3 demon-
strates the usefulness of ORP concepts in the context of an important extension of LP,
tabling. We show how ORP can be used with little effort to obtain scalable speedups
on a novel application of LP,model checking[28]. Next, in section 4 we show how a
different form of implicit parallelism can be exploited. Namely, we discuss how the
process of solving a set of constraints can be dividided by several workers [27], and
present exciting early results for this work in a cluster-based setting. We conclude
with ongoing work on language issues towards optimal exploitation of parallelism in
a distributed setting, and briefly present the multiparadigm language Holo.

2 Or-Parallelism

Arguably,Or-parallel systems, such as Aurora [24] and Muse [1], have been the most
successful parallel logic programming (PLP) systems so far. One first reason is the
large number of logic programming applications that require search. Examples of
Prolog applications that perform search include structured database querying, expert
systems and knowledge discovery applications. Also, parallelising search can be quite
useful for an important extension of Prolog, the constraint-based systems, commonly
used for decision-support applications.

Two major issues must be addressed to exploit ORP. First, onemust address the
multiple bindingsproblem. This problem arises because alternatives being exploited
in parallel may give different values to variables in sharedbranches of the search tree.
Several mechanisms have been proposed for addressing this problem [17]. Second, the
ORP system itself must be able to divide work between processors. Thisscheduling
problem is made complex by the dynamic nature of work in ORP systems.
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2.1 Copying

Most modern parallel LP systems, including SICStus Prolog [7] or Yap [36] use copy-
ing as a solution to the multiple bindings problem. Copying was made popular by the
Muse ORP system, a system derived from an early release of SICStus Prolog. The key
idea for copying is that workers work in shared memory, but inseparate stacks. When-
ever a processor, sayW1, wants to give work to another, sayW2, W1 simply copies its
own stacks toW2. As we shall see later, the actual implementation of copyingrequires
quite a few more details.

One major advantage of copying is that it has a low overhead over the correspond-
ing sequential system. Moreover, the actual overhead of copying was shown to be
quite low in Muse [1]. On the other hand, copying makes it harder to exploit sev-
eral forms of parallelism. Also, suspending branches in Copying-based PLP systems
requires copying the branch to a separate area, and is therefore expensive.

2.2 Copy-On-Write

This model, named�COWL, has been proposed by Santos Costa [33] with a view to
overcome limitations of the environment copying model to support and/or parallelism.
The model makes use of the copy-on-write technique that has proven so effective in
Operating Systems.

In the�COWL, and similarly to the environment copying, each computing agent
(worker) maintains a separate environment. As in copying, the sharing of work is
represented by or-frames in a separate shared data-area. The key idea of�COWL is as
follows: whenever a workerQwants to share work from a different workerP, it simply
logically copies all execution stacksP.

The insight is that although stacks will be logically copied, they should bephys-
ically copied only on demand. To do so, the�COWL depends on the availability of
a Copy-On-Write mechanism on the host Operating System. The�COWL has two
major advantages. First, it is independent of what we are copying, that is, we need not
know what to copy, as we logically copy everything. Thus, instead of standard Pro-
log stacks, we may copy the environment for a constraint solver, or a set of stacks for
ANDP computations. Second, because copying is done on demand, we do not need to
worry about the overheads of copying large stacks. This is particularly a problem for
ANDP computations.

The main drawback of the�COWL is that the actual setting up of the COW mech-
anism can be itself quite expensive, and in fact, more expensive than just copying the
stacks. In the next sections we discuss an implementation and its performance results.

2.3 Sparse Binding Arrays

Thesparse binding array(SBA) derives from the binding arrays model. Binding arrays
were originally proposed by Warren for the SRI model [44]. Inthis model execution
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stacks are distributed over a shared address space, formingthe so-called cactus-stack.
In more detail, workers expand the stacks in the part of the shared space they own,
and they can directly access the stacks originally created by other workers. In BA
based systems, workers initially do not inform the system that they have created new
alternatives, and thus have exclusive access to them. This is calledprivate work. At
some point they may be requested to make this work available.They therefore must
make the workpublic.

Most, but not all, accesses to both private and public work are read-only. The major
updates to public and private work are for bindings of variables. Bindings to the public
part of the tree are temptative, and in fact different alternatives of the search tree may
give different values, or even no value, to the same variable. These bindings are called
conditional bindings, and they are also stored in theTrail data-area, so that they can
later be undone.

Conditional bindings cannot be stored in the shared tree. The major contribution of
the Sparse Binding Array (SBA) is that each worker has a private virtual address space
that shadows the system shared address space. This address space is mapped at the
same fixed location for each worker in the system. Data structures and unconditional
bindings are still stored in the shared address space. Conditional bindings are stored
in the shadow area, that is consulted before consulting the shared area. The SBA thus
solves the multiple bindings problem.

Note that the shadow area inherits the structure of the shared area. This simpli-
fies implementation, reduces sequential overheads, and allows sharing of the complex
stack structure created by ANDP. On the other hand, still requires some modifications
to the original Prolog engine and requires more memory than the original BA, thus
increasing task-switching overhead.

2.4 Evaluation

To address the question of how these systems fare against copying for ORP we ex-
perimented with YapOr, an ORP copying system using the Yap engine [30], and we
implemented the SBA and the�COWL over the original system. The three alterna-
tive systems share schedulers and the underlying engine: they do only differ in their
binding scheme. We then used a set of well-known ORP all-solutions benchmarks to
evaluate how did they perform comparatively.

The results for the�COWL are quite good, considering the very simple approach
we use to share work. The�COWL performs well for smaller number of proces-
sors and for coarse-grained applications. As granularity decreases the overhead of the
fork() operation becomes more costly, and in general system performance decreases
versus other systems. As implemented, the�COWL is therefore of interest for parallel
workstations or for applications with large running times,which are indeed the goal
for this study.

Our results also confirm that the SBA is a valid alternative tocopying. Although
the SBA is slightly slower than copying and cannot achieve asgood speedups, it is an
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2 workers 3 workers 4 workers
Programs YapOr �COWL SBA YapOr �COWL SBA YapOr �COWL SBA

queens12 2.00 1.99 2.00 3.00 2.87 2.99 4.00 3.75 3.99
queens10 1.98 1.84 1.99 2.90 1.90 2.93 3.86 2.03 3.91
cubes7 2.00 1.99 2.02 2.99 2.91 3.03 3.98 3.65 4.05
cubes5 2.00 1.89 2.02 2.97 2.52 3.04 3.95 2.18 4.02
puzzle 1.98 1.95 1.91 2.97 2.38 2.84 3.96 2.74 3.79
nsort 2.00 2.02 1.92 3.01 2.95 2.86 4.02 3.86 3.82
ham 1.99 1.88 1.98 2.95 2.70 2.94 3.90 2.50 3.85

Average 1.99 1.94 1.98 2.97 2.60 2.95 3.95 2.96 3.92

Table 1: Speedups for the three models on the PC Server.

interesting alternative for the applications where copying does not work so well. As
an example we are using the SBA to implement IAP.

3 Parallel Tabling

Ideally, one would want Prolog programs to be written as logical statements first, and
for control to be tackled as a separate issue. In practice, the operational semantics of
Prolog is given by SLD-resolution with depth-first search, arefutation strategy particu-
larly simple and that matches current stack-based machinesparticularly well. Unfortu-
nately, the limitations of SLD-resolution mean that Prologprogrammers must be very
aware of the Prolog computation rule throughout program development. For instance,
logically correct programs will may have infinite loops.

Several proposals have been put forth to improve the declarativeness and expres-
siveness of Prolog. One such proposal that has been gaining in popularity is the use
of tablingor memoing. In a nutshell, tabling consists of storing intermediate solutions
to a query so that they can be reused during the query execution process. It can be
shown that tabling-based computational rules can have better termination properties
than SLD-based models, and indeed termination can be guaranteed for all programs
with thebounded term-size property[9].

Work on SLG-resolution [10], as implemented in the XSB System [32], proved the
viability of tabling technology for applications such as natural language processing,
knowledge-base systems and data-cleaning, model-checking, and program-analysis.
Tabling also facilitates the implementation of several extensions to Prolog, including
support for negation [32] that allows for non-monotonic reasoning.

Tabling can work for both deterministic and non-deterministic programs, but quite
a few interesting applications of tabling are by nature non-deterministic. This rises the
question of whether further efficiency would be possible by running several branches
of the search tree in parallel. Freire and colleagues were the first to propose that tabled
goals could be a source of parallelism [16]. In this model, each tabled subgoal is
computed independently in a single computational thread, agenerator thread, that is
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responsible for fully exploiting its search tree and obtainthe complete set of answers.
A generator thread dependent on other tabled subgoals will asynchronously consume
answers as the correspondent generator threads will make them available. This model
is limitative in that it restricts parallel exploitation tohaving several generator threads
running concurrently. Parallelism arising from non-tabled subgoals or from execution
alternatives to tabled subgoals is not exploited.

In contrast, we argue that the same mechanism can be used to exploit or-parallelism
from both tabled and non-tabled subgoals. By doing so we can both extract more par-
allelism, and we can reuse the technology presented for or-parallelism and tabling.
Towards this goal, we have proposed two computational models, theOr-Parallelism
within Tabling (OPT)andTabling within Or-Parallelism (TOP)[29]. In this paper we
present the implementation of the OPTYap system, based on the OPT model. The
OPT model considers tabling as the base component of the system, that is, each com-
putational worker behaves like a full sequential tabling engine. The or-parallel compo-
nent of the system is only triggered when a worker runs out of alternatives to exploit.
The OPT model gives the highest degree of orthogonality between or-parallelism and
tabling, thus simplifying initial implementation issues.

3.1 Or-Parallelism within Tabling

We use the example in Figure 1 in order to illustrate how parallelism can be exploited
in the OPT model. The example assumes two workers,W1 andW2, and it represents
a possible evaluation for a tabled program with?- a(X). as the query goal.

Generator Node

Consumer Node

Interior Node

Public Branch

New Answer

Exploited Branch
W1

a(X)

X = 1

a(X) b(X)

a(1)

W1

a(X)

a(X) b(X)

W2

Sharing with W2

X = 1

a(1)

:- table a/1.

a(X) :- a(X).
a(X) :- b(X).

b(1).
b(X) :- ...

?- a(X).

Figure 1: Exploiting parallelism in the OPT model.

Consider that workerW1 executes the query goal. It first inserts an entry for the
tabled subgoala(X) into the table space and creates a generator node for it. The ex-
ecution of the first alternative leads to a recursive call fora(X), and thus it creates a
consumer node fora(X) and because there are no available answers, it backtracks.
The next alternative finds a non-tabled subgoalb(X) for which an interior node is
created. The first alternative forb(X) succeeds and an answer fora(X) is therefore
found: a(1). The worker inserts the newly found answer in the table and then starts
exploiting the next alternative forb(X). At this point, workerW2 moves in to share
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work. Consider that workerW1 decides to share all of its private nodes. The two work-
ers will share three nodes: the generator node fora(X), the consumer node fora(X)
and the interior node forb(X). WorkerW2 takes the next unexploited alternative of
b(X) and from now on, both workers can find further answers fora(X) and any of
them can restart the shared consumer node.

In our model, each worker physically owns a copy of the environment, that is,
its stacks, and shares an area storing tabling and scheduling data. A set of indepen-
dent workers executes a tabled program by traversing the corresponding search tree in
search of nodes that are candidate entry points for parallelism. To reduce overheads,
the search tree is implicitly divided into public and private regions. Workers in the
private region execute nearly as in sequential tabling. Workers exploiting the public
region of the search tree must to synchronise in order to ensure the correctness of the
tabling operations.

When a worker runs out of alternatives to exploit, it enters in scheduling mode.
The YapOr scheduler is used to search for busy workers with unexploited work. Al-
ternatives should be made available for parallel execution, regardless of whether they
originate from generator, consumer or interior nodes. A worker is said to have sharable
work if it contains private nodes with unexploited alternatives or with unconsumed an-
swers. We use incremental copy technique to share work, thatis, we only copy the
differencesbetween stacks.

Parallel execution requires significant changes to the SLG-WAM. Synchronisation
is required when backtracking to a public generator or to an interior node to take the
next available alternative; when backtracking to a public consumer node to take the
next unconsumed answer; and when inserting new answers intothe table space. Par-
allel support changes the completion mechanism, computation resumption, and the
fixpoint check procedure. First, in parallel systems the relative positions of generator
and consumer nodes are not easily determined, hence resulting in more complex algo-
rithms to determine whether a node can be a leader node and to determine whether a
SCC can be completed. Second, the condition of being a leadernode is not, by itself,
sufficient to perform completion.

3.2 Performance

Table 2 presents the speedups for OPTYap with 2, 4, 6, 8, 12, 16, 24 and 32 workers
using batched scheduling. The environment for our experiments wasoscar, a Silicon
Graphics Cray Origin2000 parallel computer from the OxfordSupercomputing Cen-
tre. Oscarconsists of 96 MIPS 195 MHz R10000 processors each with 256 Mbytes of
main memory (for a total shared memory of 24 Gbytes) and running the IRIX 6.5.12
kernel. The first three tabled benchmark programs were obtained from the XMC sys-
tem [28]. XMC is a model checker implemented atop the XSB system which verifies
properties written in the alternation-free fragment of themodal�-calculus [18] for
systems specified in XL, an extension of value-passing CCS [25]. The speedups cor-
respond to the best speedup obtained in a set of 3 runs. The table is divided in two
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main blocks: the upper block groups the benchmarks that showed potential for parallel
execution, whilst the bottom block groups the benchmarks that do not show any gains
when run in parallel.

Number of Workers
Program 2 4 6 8 12 16 24 32
sieve 2.00 3.99 5.99 7.97 11.94 15.87 23.78 31.50
leader 2.00 3.98 5.97 7.92 11.84 15.78 23.57 31.18
iproto 1.72 3.05 4.18 5.08 7.70 9.01 8.81 7.21
samegen 1.94 3.72 5.50 7.27 10.68 13.91 19.77 24.17
lgrid/2 1.88 3.63 5.29 7.19 10.21 13.53 19.93 24.35
Average 1.91 3.67 5.39 7.09 10.47 13.62 19.17 23.68

lgrid 0.46 0.65 0.69 0.68 0.68 0.55 0.46 0.39
rgrid/2 0.73 0.94 1.01 1.15 0.92 0.72 0.77 0.65
Average 0.60 0.80 0.85 0.92 0.80 0.64 0.62 0.52

Table 2: OPTYap speedups.

The results show superb speedups for the XMCsieveand theleaderbenchmarks up
to 32 workers. These benchmarks reach speedups of 31.5 and 31.18 with 32 workers!
Two other benchmarks in the upper block,samegenand lgrid/2, also show excellent
speedups up to 32 workers. Both reach a speedup of 24 with 32 workers. The re-
maining benchmark,iproto, shows a good result up to 16 workers and then it slows
down with 24 and 32 workers. Globally, the results for the upper block are quite good,
especially considering that they include the three XMC benchmarks that are more rep-
resentative of real-world applications.

4 Constraints

Finite domain Constraint Satisfaction Problems (CSPs) usually describe NP-complete
search problems. Algorithms exist, such as arc-consistency algorithms, that help to
eliminate inconsistent values from the solution space. They can be used to reduce the
size of the search space, allowing to find solutions for largeCSPs.

Still, there are problems whose instance size make it impossible to find a solution
with sequential algorithms. Concurrency and parallelisation can help to minimise this
problem because a constraint network generated by a constraint program can be split
among processes in order to speed up the arc-consistency procedure.

Parallelisation of constraint satisfaction algorithms brings two advantages: (1) pro-
grams can run faster, and (2) large instances of problems canbe dealt with because of
the amount of resources (memory and cpus).

Andino et al [31] implemented a parallel version of the AC-5 algorithm [40] for a
logically shared memory architecture, the Cray T3E, a high cost parallel platform.
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Our work is based on Andino’set al implementation. We seek to obtain good
performance on on-the-shelf low cost clusters of PCs. We adapted their algorithms
and data structures to run on a distributed-shared memory platform using TreadMarks,
a software Distributed Shared-Memory (DSM) system [2].

Our results show that arc-consistency algorithms can achieve good speedups on
distributed-shared memory systems. One of our applications achieves superlinear
speedups due to the distributed labeling.

4.1 PCSOS and PCSOS-TMK

PCSOS was implemented on a logically shared memory platform, the Cray T3E.
Our first step on porting the PCSOS to a DSM platform was to study its data struc-

tures, understand them, and separate private data from shared data. We also needed to
adapt the data structures to the software DSM we used, since the PCSOS system re-
lied on the SHMEM library [39] to access logically shared data on remote nodes. We
then established the right synchronisation points in the source code in order to obtain
a parallel correct code.

Besides porting the original PCSOS code to a software DSM platform, we imple-
mented two kinds of labeling:sequentialanddistributed, and two kinds of partitioning
of indexicals:round-robin, andblock. The sequential labeling assumes that each pro-
cessor can apply the labeling procedure over any variable. The distributed labeling
partitions the set of variables in subsets of equal size, andeach processor can execute
the labeling procedure over its own subset. The round-robinpartitioning of indexicals
assumes that each indexical is allocated to each process at atime. The partition of
indexicals in blocks assumes that a block of consecutive indexicals is allocated to each
process. This partitioning is done in the beginning of the computation upon reading
the input data file that contains the constraint network.

4.2 Arithmetic

Arithmetic is a synthetic benchmark. It is formed by sixteenblocks of arithmetic re-
lations,fB1; : : : ; B16g. Each block contains fifteen equations and inequations relating
six variables. BlocksBi andBi+1 are connected by an additional equation between
a pair of variables, one fromBi and the other one fromBi+1. Coefficients were ran-
domly generated. The goal is to find an integer solution vector. This kind of constraint
programming is very much used for decomposition of large optimisation problems.

This application has a constraint graph weakly connected whose pattern of con-
nection is regular, i.e., for each pair of blocks there are only two edges connecting
them: one edge connecting a block of equations to the next, and one edge connecting
the next block to the previous. We explored the structure of this graph in order to do
a better distribution of indexicals and labeling among processors. Since the problem
is structured in blocks of equations, we distributed the indexicals in blocks. Besides,
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each processor labels its own subset of variables, communicating only when pruning a
variable which connects different blocks allocated to different processors.

Number of Processors Execution Times (sec.)

1 4.74
2 0.39
4 0.37
8 0.47

Table 3:Arithmetic: Execution Times for 1, 2, 4 and 8 Processors

Table 3 shows the execution times of the applicationArithmeticfor 1, 2, 4 and 8
processors. This application presents superlinear speedups when we explore the con-
straint graph and distribute the labeling among processors. Note that on parallelising
the sequential algorithm we naturally achieve distributedlabeling, because we take
advantage of the constraint graph structure. For two processors, the execution time is
12.14 times less than the execution time for one processor. The lowest speedup we ob-
tain with this application is 10.01, for 8 processors related to the execution time for one
processor. From 2 to 4 processors we obtain a discrete improvement in performance,
and from 4 to 8 processors we obtain a slowdown. Because of thecache coherence
protocol (invalidate) and the memory consistency model (LRC) used by TreadMarks,
the overheads for this application are too high, when we increase the number of pro-
cessors.

4.3 PBCSP

Our second application,Parametrizable Binary Constraint Satisfaction Problem(PBCSP),
has a constraint graph that is strongly connected, and does not present a regular con-
nection pattern, i.e., the edges are randomly generated to form the final constraint
graph. Therefore, most of our experiments with this application, were done using se-
quential labeling. Our choice for the partitioning of indexicals was round-robin. We
ran this application with two input data, containing 100 variables (PBCSP1), and 200
variables (PBCSP2).

Table 4 shows the execution times and speedups, respectively of PBCSP1 and
PBCSP2. The minimum execution time for PBCSP1 was achieved with 2 processors,
which yielded a speedup of 1.31 related to the execution timefor one processor. We
manage to keep a discrete speedup related to one processor upto 4 processors. The
performance degrades for 8 processors.
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Number of Processors Execution Times (sec.)
PBCSP1 PBCSP2

1 26.55 39.36
2 20.13 29.54
4 26.38 26.03
8 65.22 50.41

Table 4: PBCSP1 and PBCSP2: Execution Times for 1, 2, 4 and 8 Processors

5 The Holoparadigm

The last few years have seen interest in programming languages that that can support
several paradigms [3, 4, 5, 11, 26]. The researchers in this area propose novel lan-
guages that integrate basic paradigms, such as the imperative, logic, functional, and
object oriented. Their goals are to overcome the issues witheach individiual paradigm
and to exploit the synergie between different paradigms.

The imperative paradigm difficults the automatic exploitation of parallelism, as it
depends on control commands, memory positions, and variables that allow for de-
structive updates. Imperative programs may exhibit control and data dependencies.
Other basic paradigms display implicit sources of parallelism, allowing for automatic
exploitation of parallelism, We have seen the advantages oflogic basic languages for
ORP and ANDP. Object-oriented programming also allows bothinter and intra-object
parallelism.

A second motivation for novel languages is the advantges in microlectronics, which
have reduced hardware cost, and in networking, which allowsfor fast interconections.
The rapid growth of theInternet has also made it clear that computational systems
must move towards distributed computing. Novel computational languages that can
support distributed computing are therefore of interest.

5.1 The Paradigm

The Holoparadigm is a multiparadigm model dedicated towards automatic exploitation
of parallelism and distribution. The model assumes as modelling unity beingsand as
data unitsymbols. Beings may bestatic, programs, ordynamic, execution. Beings are
created through cloning. There are three forms of cloning:static cloning is similar
to inheriti8ng in object oriented languages, transition cloning creates a dynamic being
based on a static being, and dynamic cloning creates a new dynamic being from a
static being. A further organisationl classification distinguishes being according to
their structure as eitheratomicor composed.

An atomic being consists of three components, an interface,behavior and history.
The interface describes the possible relationships with the other beings. The behavior
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contains operations that implement the being’s functionality. The history is a space of
shared memory within the being. The Holoparadigm proposes using symboling pro-
cessing as the main technique for information processing. This characteris is inherited
from logic programming. In this sense, the logic variable and the unification are the
foundations for symbolic processing.

A composed being is organised in much the same way as an atomicbeing. Regard-
less, it supports other beings in its composition (the component beings). Each being
has its own history. The history is encapsulated in the beingand, in the case of com-
posed beings, its is shared by all component beings. We therefore allow several levels
of sharing between stories.

A being may assume two states of distribution: it may be centralised (that is, lo-
cated at a single node of the system), or distributed, that is, located at several nodes. In
the latter case history acts as shared distributed memory, or DSM. Mobility is the ca-
pacity that allows beings to move. The Holoparadigm supports two forms of mobility:
logical and physical. Logical mobility relates with movement as the modelling level,
that is, regardless of the execution platform. In this context, a being moves when it
crosses one or more borders between beings. Thephysicalmobility relates with mov-
ing between nodes of a distributed computer. Note that aftermoving the being is not
allowed further access to the source history, although it isallowed access to the history
in the target being. Note also that physical mobility requires for the source and target
beings to be allocated at physically different nodes. Last,we remark that a node may
move physically without moving logically.

We propose ablackboardas the coordination model. TheKnowledge Sources
(KSs) are beings and theblackboardis the history. Our model assumes implicit in-
vocation, meaning, theblackboardperforms communication and synchronisation be-
tween KSs. To address the limitations in implicit invocation we also allow for explicit
invocation in the Holoparadignm.

5.2 The Language

The Holo Language integrates the imperative, logic and object oriented paradigm. The
language uses a symbolic representation, unification, and is untyped, as in logic pro-
gramming. Holo allows for higher-level programming. A Holoprogram consists of
descriptions of beings. Each description includes a head and a body.

Holo uses program transformation as an implementation technique. We propose
using Java as the ideal intermediate language for building the Holo compiler. We
therefore built the HoloJava system, a program transformerthat can from Holo to
Java. HoloJava is based on JavaCC, a compiler generator for Java. We also use two
class libraries, JIProlog (a Java Prolog) to implement logical actions and Jada (Java
blackboards) to implement the history.
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6 Conclusions

We have presented four of the main strands of research being pursued in theCLoP n
project. From the beginning, the project’s goals were to achieve high-performance and
scalable performance for logic and constraint programming. Other research not pre-
sented here due to space limitations includes support for sequential performance [34,
8], hardware for computation reuse [14, 13], neural networks [19, 42], system perfor-
mance analysis [35, 15], independent and-parallelism [12], granularity-based schedul-
ing [6, 41], and novel computation models for parallelism [23, 22, 21, 20]. One
of the goals of theCLoP n project was to support real applications: we discussed
model checking and equation solving, other work included Inductive Logic Program-
ming [38]. We plan to continue and consolidate this work in the last year of the project,
with emphasis on application work.
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[4] Jorge Luis Victória Barbosa and Cláudio Fernando Resin Geyer. Software Multiparadigma Dis-
tribuı́do. Revista de Inforḿatica Téorica e Aplicada (RITA), December 1999.
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