Towards Effective Parallel Logic Programming

Vitor Santos Costa, Irés de Castro Dutrg
Felipe Franca, Marluce Pereira, Patiicia Vargas
Claudio Geyeff Jorge Barbosa, Cristiano Costa
Priscila Lima, Fatima Dargan, Antonio Branco®
Juarez Muylaert Filho 'Gopal Guptall Enrico Pontelli**
Manuel Correia, Ricardo Lopes, Ricardo Rocha, Fernando Sila'

To Doris Ferraz de Aragon — in memoriam

Abstract

One of the advantages of logic programming (LP) and comsttagic pro-
gramming (CLP) is the fact that one can explwitplicit parallelism in logic
programs. Logic programs have two major forms of implicitglelism: or-
parallelism(ORP) andand-parallelism(ANDP). In this work we survey some of
work that has been taking place within thd.o P™ project towards fast execution
of logic programs. We first briefly present our work in compagriseveral data
representations for ORP: copying, copy-on-write, and {herse binding array.
Next, we demonstrate the usefulness of ORP concepts in tiiextaf an impor-
tant extension of LP, tabling. We then discuss how the pgoésolving a set of
constraints can be dividided by several workers. We corciuith ongoing work
on language issues towards the multiparadigm language Holo

1 Introduction

One of the advantages of logic programming (LP) and comdttagic programming
(CLP) is the fact that one can explaitplicit parallelism in logic programs. Implicit
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parallelism reduces the effort required to speedup logig@ms through parallelism.
Moreover, implicit parallel systems alleviate the usemnirthe actual details of work
management, which can be quite difficult to program for tihegular problems com-
monly addressed in LP applications. Logic programs haventajor forms of implicit
parallelism:or-parallelism(ORP) andand-parallelism{ANDP). Given an initial query
to the logic programming system, ORP results from tryingesalWdifferent alternatives
simultaneously. In contrast, ANDP stems from dividing tr@rkwequired to solve the
alternative between the different processors.

In this work we survey some of work that has been taking plateimthe C LoP"
project towards fast execution of Prolog programs. We chiogaesent four of the
several contributions of the research being performederptioject. As regards ORP,
we first briefly present our work in comparing several dataesentations for ORP:
copying, copy-on-write, and the sparse binding array. Ooarkvshows that the sev-
eral models can perform well, although they have differaopprties and can adapt
well to different forms of parallelism. This work should bees in the context of a
recent revival of ORP, both as a form of parallelism that cariggm well for standard
shared memory machines [24, 1, 37], hardware based shamewmyél5, 35], and
clusters [43] and as a very general form of parallelism inlbBeed, section 3 demon-
strates the usefulness of ORP concepts in the context of poriemt extension of LP,
tabling. We show how ORP can be used with little effort to obtralable speedups
on a novel application of Lnodel checking?8]. Next, in section 4 we show how a
different form of implicit parallelism can be exploited. Naly, we discuss how the
process of solving a set of constraints can be dividided bgrs¢ workers [27], and
present exciting early results for this work in a clusteséx setting. We conclude
with ongoing work on language issues towards optimal exgiion of parallelism in
a distributed setting, and briefly present the multiparadignguage Holo.

2 Or-Parallelism

Arguably, Or-parallel systems, such as Aurora [24] and Muse [1], have been the most
successful parallel logic programming (PLP) systems so @are first reason is the
large number of logic programming applications that regsearch. Examples of
Prolog applications that perform search include structutatabase querying, expert
systems and knowledge discovery applications. Also, [sisihg search can be quite
useful for an important extension of Prolog, the constraeed systems, commonly
used for decision-support applications.

Two major issues must be addressed to exploit ORP. Firstjrarst address the
multiple bindingsproblem. This problem arises because alternatives beiplpited
in parallel may give different values to variables in shaveahches of the search tree.
Several mechanisms have been proposed for addressingdhleqm [17]. Second, the
ORP system itself must be able to divide work between pracssS hisscheduling
problem is made complex by the dynamic nature of work in ORRResys.



2.1 Copying

Most modern parallel LP systems, including SICStus Prold@f Yap [36] use copy-
ing as a solution to the multiple bindings problem. Copyiraswnade popular by the
Muse ORP system, a system derived from an early release &t&$@rolog. The key
idea for copying is that workers work in shared memory, bigeparate stacks. When-
ever a processor, sdy;, wants to give work to another, s&l,, W, simply copies its
own stacks tdV,. As we shall see later, the actual implementation of copy@ogires
quite a few more details.

One major advantage of copying is that it has a low overheadttwe correspond-
ing sequential system. Moreover, the actual overhead ofingpnvas shown to be
quite low in Muse [1]. On the other hand, copying makes it batd exploit sev-
eral forms of parallelism. Also, suspending branches iny@lapbased PLP systems
requires copying the branch to a separate area, and is dhefpensive.

2.2 Copy-On-Write

This model, named COWL, has been proposed by Santos Costa [33] with a view to
overcome limitations of the environment copying model tpgsart and/or parallelism.
The model makes use of the copy-on-write technique that lasep so effective in
Operating Systems.

In the «COWL, and similarly to the environment copying, each conmagent
(worker) maintains a separate environment. As in copyihg, gsharing of work is
represented by or-frames in a separate shared data-are&eYyidea ohCOWL is as
follows: whenever a worke@wants to share work from a different work@rit simply
logically copies all execution stacks

The insight is that although stacks will be logically copi#uey should bghys-
ically copied only on demand. To do so, th€ OWL depends on the availability of
a Copy-On-Write mechanism on the host Operating System. o@WL has two
major advantages. First, it is independent of what we argiogpthat is, we need not
know what to copy, as we logically copy everything. Thusteasl of standard Pro-
log stacks, we may copy the environment for a constraintespbr a set of stacks for
ANDP computations. Second, because copying is done on akmardo not need to
worry about the overheads of copying large stacks. Thisiigsqudarly a problem for
ANDP computations.

The main drawback of the COWL is that the actual setting up of the COW mech-
anism can be itself quite expensive, and in fact, more expetisan just copying the
stacks. In the next sections we discuss an implementatibit@performance results.

2.3 Sparse Binding Arrays

Thesparse binding arraySBA) derives from the binding arrays model. Binding arrays
were originally proposed by Warren for the SRI model [44].this model execution



stacks are distributed over a shared address space, fothargp-called cactus-stack.
In more detail, workers expand the stacks in the part of tregeshspace they own,
and they can directly access the stacks originally creayedtler workers. In BA
based systems, workers initially do not inform the systeat they have created new
alternatives, and thus have exclusive access to them. Fl@lledprivate work At
some point they may be requested to make this work availdliley therefore must
make the workpublic.

Most, but not all, accesses to both private and public waekead-only. The major
updates to public and private work are for bindings of vdaabBindings to the public
part of the tree are temptative, and in fact different alikres of the search tree may
give different values, or even no value, to the same varialitese bindings are called
conditional bindingsand they are also stored in theail data-area, so that they can
later be undone.

Conditional bindings cannot be stored in the shared tree.m#jor contribution of
the Sparse Binding Array (SBA) is that each worker has a privatual address space
that shadows the system shared address space. This adoiesss mapped at the
same fixed location for each worker in the system. Data sirastand unconditional
bindings are still stored in the shared address space. Gomali bindings are stored
in the shadow area, that is consulted before consultingttheed area. The SBA thus
solves the multiple bindings problem.

Note that the shadow area inherits the structure of the dhanea. This simpli-
fies implementation, reduces sequential overheads, amssafiharing of the complex
stack structure created by ANDP. On the other hand, stillireg some modifications
to the original Prolog engine and requires more memory thanoriginal BA, thus
increasing task-switching overhead.

2.4 Evaluation

To address the question of how these systems fare againgngdpr ORP we ex-
perimented with YapOr, an ORP copying system using the Yagnen30], and we
implemented the SBA and theCOWL over the original system. The three alterna-
tive systems share schedulers and the underlying engieg:di only differ in their
binding scheme. We then used a set of well-known ORP alltisolsi benchmarks to
evaluate how did they perform comparatively.

The results for thexCOWL are quite good, considering the very simple approach
we use to share work. TheCOWL performs well for smaller number of proces-
sors and for coarse-grained applications. As granulaetyebses the overhead of the
f or k() operation becomes more costly, and in general system peaiftse decreases
versus other systems. As implemented,&IEOWL is therefore of interest for parallel
workstations or for applications with large running timedjich are indeed the goal
for this study.

Our results also confirm that the SBA is a valid alternativedpying. Although
the SBA is slightly slower than copying and cannot achievgas speedups, it is an
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2 workers 3 workers 4 workers
Programs | YapOr [ aCOWL | SBA | YapOr [ aCOWL | SBA [ YapOr | aCOWL | SBA
queensl2 2.00 1.99| 2.00 3.00 2.87| 2.99 4.00 3.75| 3.99
queensl10 1.98 1.84| 1.99 2.90 1.90| 2.93 3.86 2.03| 3.91
cubes7 2.00 1.99| 2.02 2.99 2.91| 3.03 3.98 3.65| 4.05
cubesb 2.00 1.89| 2.02 2.97 2.52| 3.04 3.95 2.18| 4.02
puzzle 1.98 1.95| 1.91 2.97 2.38| 2.84 3.96 2.74| 3.79
nsort 2.00 2.02| 1.92 3.01 2.95| 2.86 4.02 3.86| 3.82
ham 1.99 1.88| 1.98 2.95 2.70| 2.94 3.90 2.50| 3.85
| Average | 1.99 | 1.94 | 1.98 | 2.97 | 2.60 | 2.95 | 3.95 | 2.96 | 3.92 |

Table 1: Speedups for the three models on the PC Server.

interesting alternative for the applications where copgyiloes not work so well. As
an example we are using the SBA to implement IAP.

3 Parallel Tabling

Ideally, one would want Prolog programs to be written asdabstatements first, and
for control to be tackled as a separate issue. In practieepplerational semantics of
Prolog is given by SLD-resolution with depth-first searchefaitation strategy particu-
larly simple and that matches current stack-based macparsisularly well. Unfortu-
nately, the limitations of SLD-resolution mean that Projwggrammers must be very
aware of the Prolog computation rule throughout progranettesment. For instance,
logically correct programs will may have infinite loops.

Several proposals have been put forth to improve the ddslaress and expres-
siveness of Prolog. One such proposal that has been gamingpiularity is the use
of tabling or memoing In a nutshell, tabling consists of storing intermediatieisons
to a query so that they can be reused during the query execptaress. It can be
shown that tabling-based computational rules can haverbettmination properties
than SLD-based models, and indeed termination can be geacdhfor all programs
with thebounded term-size properid].

Work on SLG-resolution [10], as implemented in the XSB Sys{82], proved the
viability of tabling technology for applications such agural language processing,
knowledge-base systems and data-cleaning, model-cliggckimd program-analysis.
Tabling also facilitates the implementation of severakastons to Prolog, including
support for negation [32] that allows for non-monotonics@aing.

Tabling can work for both deterministic and non-deterntiniprograms, but quite
a few interesting applications of tabling are by nature deterministic. This rises the
guestion of whether further efficiency would be possible loyring several branches
of the search tree in parallel. Freire and colleagues werérst to propose that tabled
goals could be a source of parallelism [16]. In this modethetabled subgoal is
computed independently in a single computational threagireerator threadthat is



responsible for fully exploiting its search tree and obthi@ complete set of answers.
A generator thread dependent on other tabled subgoalssyifichronously consume
answers as the correspondent generator threads will make akiailable. This model
is limitative in that it restricts parallel exploitation taaving several generator threads
running concurrently. Parallelism arising from non-tabsibgoals or from execution
alternatives to tabled subgoals is not exploited.

In contrast, we argue that the same mechanism can be useuldit ex-parallelism
from both tabled and non-tabled subgoals. By doing so we o#tmédxtract more par-
allelism, and we can reuse the technology presented foaiplism and tabling.
Towards this goal, we have proposed two computational nsode¢Or-Parallelism
within Tabling (OPT)andTabling within Or-Parallelism (TOPJ29]. In this paper we
present the implementation of the OPTYap system, basede®BI model. The
OPT model considers tabling as the base component of thersy#iat is, each com-
putational worker behaves like a full sequential tablingiae. The or-parallel compo-
nent of the system is only triggered when a worker runs outtefratives to exploit.
The OPT model gives the highest degree of orthogonality éetvor-parallelism and
tabling, thus simplifying initial implementation issues.

3.1 Or-Parallelism within Tabling

We use the example in Figure 1 in order to illustrate how paliain can be exploited
in the OPT model. The example assumes two workérsand)V,, and it represents
a possible evaluation for a tabled program with a( X) . as the query goal.

Sharing with W Ve N
A . Generator Node

(-
:- table a/l. <> Consuner Node
:EQ ﬁgg O Interior Node
ﬁﬁiﬁ';. Q New Answer
7 alx). ; ; @ Publ i c Branch
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B\
4
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Figure 1. Exploiting parallelism in the OPT model.

Consider that workeVV; executes the query goal. It first inserts an entry for the
tabled subgoah( X) into the table space and creates a generator node for it. X¥he e
ecution of the first alternative leads to a recursive call&6iX) , and thus it creates a
consumer node foa( X) and because there are no available answers, it backtracks.
The next alternative finds a non-tabled subgo@K) for which an interior node is
created. The first alternative ftm( X) succeeds and an answer &irX) is therefore
found: a( 1) . The worker inserts the newly found answer in the table aed 8tarts
exploiting the next alternative fds( X) . At this point, workenV, moves in to share
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work. Consider that workerV, decides to share all of its private nodes. The two work-
ers will share three nodes: the generator nodaf{oX) , the consumer node fa( X)

and the interior node fao( X) . Worker W, takes the next unexploited alternative of
b( X) and from now on, both workers can find further answersafpkX) and any of
them can restart the shared consumer node.

In our model, each worker physically owns a copy of the emuinent, that is,
its stacks, and shares an area storing tabling and schgdidita. A set of indepen-
dent workers executes a tabled program by traversing thregmonding search tree in
search of nodes that are candidate entry points for pasatielTo reduce overheads,
the search tree is implicitly divided into public and prigatgions. Workers in the
private region execute nearly as in sequential tabling. Résr exploiting the public
region of the search tree must to synchronise in order torertbe correctness of the
tabling operations.

When a worker runs out of alternatives to exploit, it enterscheduling mode.
The YapOr scheduler is used to search for busy workers wigxpioited work. Al-
ternatives should be made available for parallel executegardless of whether they
originate from generator, consumer or interior nodes. Akgors said to have sharable
work if it contains private nodes with unexploited altefaas or with unconsumed an-
swers. We use incremental copy technique to share work,ghate only copy the
differencedetween stacks.

Parallel execution requires significant changes to the S¥ABA. Synchronisation
is required when backtracking to a public generator or tors@rior node to take the
next available alternative; when backtracking to a pubtinsumer node to take the
next unconsumed answer; and when inserting new answerthatable space. Par-
allel support changes the completion mechanism, compuataésumption, and the
fixpoint check procedure. First, in parallel systems thatre¢ positions of generator
and consumer nodes are not easily determined, hence negstnore complex algo-
rithms to determine whether a node can be a leader node aretdordne whether a
SCC can be completed. Second, the condition of being a lesxter is not, by itself,
sufficient to perform completion.

3.2 Performance

Table 2 presents the speedups for OPTYap with 2, 4, 6, 8, 1241&nd 32 workers
using batched scheduling. The environment for our experin@asoscar, a Silicon
Graphics Cray Origin2000 parallel computer from the Oxf&@upercomputing Cen-
tre. Oscarconsists of 96 MIPS 195 MHz R10000 processors each with 25addlof
main memory (for a total shared memory of 24 Gbytes) and noitie IRIX 6.5.12
kernel. The first three tabled benchmark programs were btairom the XMC sys-
tem [28]. XMC is a model checker implemented atop the XSBesystvhich verifies
properties written in the alternation-free fragment of thedal p-calculus [18] for
systems specified in XL, an extension of value-passing CG¥ [Phe speedups cor-
respond to the best speedup obtained in a set of 3 runs. Tleeisathivided in two
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main blocks: the upper block groups the benchmarks that si@etential for parallel
execution, whilst the bottom block groups the benchmarétsdbo not show any gains
when run in parallel.

Number of Workers

Prog.am | 2 | 4 | 6 | 8 | 12 | 16 | 24 | 32
sieve 2.00| 3.99| 5,99 7.97| 11.94| 15.87| 23.78| 31.50
leader 2.00| 3.98| 5.97| 7.92| 11.84| 15.78| 23.57| 31.18
iproto 1.72| 3.05| 4.18| 5.08| 7.70| 9.01| 8.81| 7.21
samegen| 1.94| 3.72| 5.50| 7.27| 10.68| 13.91| 19.77| 24.17
Igrid/2 1.88| 3.63| 5.29| 7.19| 10.21| 13.53| 19.93| 24.35
Average | 1.91| 3.67| 5.39| 7.09| 10.47| 13.62| 19.17| 23.68
Igrid 0.46| 0.65| 0.69| 0.68| 0.68| 0.55| 0.46| 0.39
rgrid/2 0.73/0.94| 1.01|1.15| 0.92| 0.72| 0.77| 0.65
Average | 0.60| 0.80| 0.85| 0.92| 0.80| 0.64| 0.62| 0.52

Table 2: OPTYap speedups.

The results show superb speedups for the X8i&veand thdeaderbenchmarks up
to 32 workers. These benchmarks reach speedups of 31.5 at®I8ith 32 workers!
Two other benchmarks in the upper blodamegerandlgrid/2, also show excellent
speedups up to 32 workers. Both reach a speedup of 24 with 82evgo The re-
maining benchmarkiproto, shows a good result up to 16 workers and then it slows
down with 24 and 32 workers. Globally, the results for theerdgock are quite good,
especially considering that they include the three XMC Ibemarks that are more rep-
resentative of real-world applications.

4 Constraints

Finite domain Constraint Satisfaction Problems (CSPsallsdescribe NP-complete
search problems. Algorithms exist, such as arc-consigtalgorithms, that help to
eliminate inconsistent values from the solution space yTda® be used to reduce the
size of the search space, allowing to find solutions for |&@&§es.

Still, there are problems whose instance size make it implest® find a solution
with sequential algorithms. Concurrency and parallelisatan help to minimise this
problem because a constraint network generated by a conigiragram can be split
among processes in order to speed up the arc-consistenmmsdone.

Parallelisation of constraint satisfaction algorithmisigs two advantages: (1) pro-
grams can run faster, and (2) large instances of problembeaiealt with because of
the amount of resources (memory and cpus).

Andino et al [31] implemented a parallel version of the AC-5 algorithn@]4or a
logically shared memory architecture, the Cray T3E, a higtt parallel platform.



Our work is based on Andino’st al implementation. We seek to obtain good
performance on on-the-shelf low cost clusters of PCs. Wetadatheir algorithms
and data structures to run on a distributed-shared mematfopi using TreadMarks,
a software Distributed Shared-Memory (DSM) system [2].

Our results show that arc-consistency algorithms can aehg@od speedups on
distributed-shared memory systems. One of our applicatarhieves superlinear
speedups due to the distributed labeling.

4.1 PCSOS and PCSOS-TMK

PCSOS was implemented on a logically shared memory platfitvenCray T3E.

Our first step on porting the PCSOS to a DSM platform was toysiisdata struc-
tures, understand them, and separate private data froracstata. We also needed to
adapt the data structures to the software DSM we used, diecBESOS system re-
lied on the SHMEM library [39] to access logically sharedadah remote nodes. We
then established the right synchronisation points in theocode in order to obtain
a parallel correct code.

Besides porting the original PCSOS code to a software DSMapia, we imple-
mented two kinds of labelingsequentiabnddistributed and two kinds of partitioning
of indexicals:round-robin andblock The sequential labeling assumes that each pro-
cessor can apply the labeling procedure over any variablee distributed labeling
partitions the set of variables in subsets of equal size gaothi processor can execute
the labeling procedure over its own subset. The round-rphamitioning of indexicals
assumes that each indexical is allocated to each processmaé.a The partition of
indexicals in blocks assumes that a block of consecutivexiedls is allocated to each
process. This partitioning is done in the beginning of thenpatation upon reading
the input data file that contains the constraint network.

4.2 Arithmetic

Arithmetic is a synthetic benchmark. It is formed by sixtdé®ocks of arithmetic re-
lations,{ By, .. ., Bis}. Each block contains fifteen equations and inequationtimgla
six variables. BlocksB; and B;,; are connected by an additional equation between
a pair of variables, one from®; and the other one froms; ;. Coefficients were ran-
domly generated. The goal is to find an integer solution vedtiais kind of constraint
programming is very much used for decomposition of largenoigation problems.
This application has a constraint graph weakly connectedselpattern of con-
nection is regular, i.e., for each pair of blocks there arly ®wo edges connecting
them: one edge connecting a block of equations to the nedtpae edge connecting
the next block to the previous. We explored the structurénisf graph in order to do
a better distribution of indexicals and labeling among pssors. Since the problem
is structured in blocks of equations, we distributed theekidals in blocks. Besides,



each processor labels its own subset of variables, commtimgoonly when pruning a
variable which connects different blocks allocated toati#ht processors.

| Number of Processors Execution Times (sec))

1 4.74
2 0.39
4 0.37
8 0.47

Table 3:Arithmetic Execution Times for 1, 2, 4 and 8 Processors

Table 3 shows the execution times of the applicaithmeticfor 1, 2, 4 and 8
processors. This application presents superlinear spseaslhen we explore the con-
straint graph and distribute the labeling among procesddoge that on parallelising
the sequential algorithm we naturally achieve distributdekeling, because we take
advantage of the constraint graph structure. For two psmrasthe execution time is
12.14 times less than the execution time for one proces$erldwest speedup we ob-
tain with this application is 10.01, for 8 processors redatethe execution time for one
processor. From 2 to 4 processors we obtain a discrete irapremt in performance,
and from 4 to 8 processors we obtain a slowdown. Because afatiee coherence
protocol (invalidate) and the memory consistency model@)Bsed by TreadMarks,
the overheads for this application are too high, when weeia®e the number of pro-
cessors.

4.3 PBCSP

Our second applicatio®arametrizable Binary Constraint Satisfaction ProblgPBCSP),
has a constraint graph that is strongly connected, and dutgsr@sent a regular con-
nection pattern, i.e., the edges are randomly generatedrio the final constraint
graph. Therefore, most of our experiments with this appilice were done using se-
guential labeling. Our choice for the partitioning of indeds was round-robin. We
ran this application with two input data, containing 100iates (PBCSFL), and 200
variables (PBCSR).

Table 4 shows the execution times and speedups, respgaiV€BCSP1 and
PBCSP2. The minimum execution time for PBCSPwas achieved with 2 processors,
which yielded a speedup of 1.31 related to the execution fanene processor. We
manage to keep a discrete speedup related to one procestmduypocessors. The
performance degrades for 8 processors.
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Number of Processors Execution Times (sec.
PBCSFEl\ PBCSP2

26.55 39.36
20.13 29.54
26.38 26.03
65.22 50.41

oA~ DNPRF

Table 4: PBCSPHL. and PBCSP: Execution Times for 1, 2, 4 and 8 Processors

5 The Holoparadigm

The last few years have seen interest in programming lareguticat that can support
several paradigms [3, 4, 5, 11, 26]. The researchers in te&s propose novel lan-
guages that integrate basic paradigms, such as the immerktgic, functional, and
object oriented. Their goals are to overcome the issuesegith individiual paradigm
and to exploit the synergie between different paradigms.

The imperative paradigm difficults the automatic explaiatof parallelism, as it
depends on control commands, memory positions, and vasahht allow for de-
structive updates. Imperative programs may exhibit corgnal data dependencies.
Other basic paradigms display implicit sources of paraite] allowing for automatic
exploitation of parallelism, We have seen the advantagésgid basic languages for
ORP and ANDP. Object-oriented programming also allows lott#r and intra-object
parallelism.

A second motivation for novel languages is the advantgesdrohectronics, which
have reduced hardware cost, and in networking, which alfowtast interconections.
The rapid growth of thdnternethas also made it clear that computational systems
must move towards distributed computing. Novel computetidanguages that can
support distributed computing are therefore of interest.

5.1 The Paradigm

The Holoparadigm is a multiparadigm model dedicated togatdomatic exploitation
of parallelism and distribution. The model assumes as ntiadalnity beingsand as
data unitsymbols Beings may betatic, programs, odynamic execution. Beings are
created through cloning. There are three forms of clonisigtic cloning is similar
to inheriti8ng in object oriented languages, transitiaanahg creates a dynamic being
based on a static being, and dynamic cloning creates a neandgrbeing from a
static being. A further organisationl classification digtiishes being according to
their structure as eithetomicor composed

An atomic being consists of three components, an interfageavior and history.
The interface describes the possible relationships welother beings. The behavior
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contains operations that implement the being’s functibynarhe history is a space of
shared memory within the being. The Holoparadigm proposesyusymboling pro-
cessing as the main technique for information processihg dharacteris is inherited
from logic programming. In this sense, the logic variable #me unification are the
foundations for symbolic processing.

A composed being is organised in much the same way as an abemig. Regard-
less, it supports other beings in its composition (the camepb beings). Each being
has its own history. The history is encapsulated in the bamd) in the case of com-
posed beings, its is shared by all component beings. Weftherallow several levels
of sharing between stories.

A being may assume two states of distribution: it may be ediserd (that is, lo-
cated at a single node of the system), or distributed, thiddated at several nodes. In
the latter case history acts as shared distributed memoBSM. Mobility is the ca-
pacity that allows beings to move. The Holoparadigm sugard forms of mobility:
logical and physical. Logical mobility relates with movemas the modelling level,
that is, regardless of the execution platform. In this ceita being moves when it
crosses one or more borders between beings.phlgsicalmobility relates with mov-
ing between nodes of a distributed computer. Note that aftaring the being is not
allowed further access to the source history, althoughalitsved access to the history
in the target being. Note also that physical mobility regsifor the source and target
beings to be allocated at physically different nodes. Lastremark that a node may
move physically without moving logically.

We propose alackboardas the coordination model. ThHénowledge Sources
(KSs) are beings and tH#ackboardis the history. Our model assumes implicit in-
vocation, meaning, thielackboardperforms communication and synchronisation be-
tween KSs. To address the limitations in implicit invocatiee also allow for explicit
invocation in the Holoparadignm.

5.2 The Language

The Holo Language integrates the imperative, logic andablojgented paradigm. The
language uses a symbolic representation, unification, @andtyped, as in logic pro-
gramming. Holo allows for higher-level programming. A Hgdcogram consists of
descriptions of beings. Each description includes a hedddody.

Holo uses program transformation as an implementatiomigale. We propose
using Java as the ideal intermediate language for buildiegHolo compiler. We
therefore built the HoloJava system, a program transfortinar can from Holo to
Java. HoloJava is based on JavaCC, a compiler generataaviar $Ve also use two
class libraries, JIProlog (a Java Prolog) to implementdabactions and Jada (Java
blackboards) to implement the history.
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6 Conclusions

We have presented four of the main strands of research beirsyigd in the” LoP"
project. From the beginning, the project’s goals were taaahhigh-performance and
scalable performance for logic and constraint programmi@ther research not pre-
sented here due to space limitations includes support tpresgial performance [34,
8], hardware for computation reuse [14, 13], neural netw¢il®, 42], system perfor-
mance analysis [35, 15], independent and-parallelism grahularity-based schedul-
ing [6, 41], and novel computation models for parallelisn3,[22, 21, 20]. One
of the goals of the”'LoP™ project was to support real applications: we discussed
model checking and equation solving, other work includetiibtive Logic Program-
ming [38]. We plan to continue and consolidate this work m st year of the project,
with emphasis on application work.
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