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Abstract

Logic programming languages, such as Prolog, provide a high-level, declarative ap-

proach to programming. They offer a great potential for implicit parallelism and thus

allow parallel systems to automatically reduce a program’s execution time without

any programmer intervention. For complex applications that take several hours, if not

days, to return an answer, even modest parallel execution speedups can be directly

translated to very significant productivity gains.

Despite the power, flexibility and good performance that Prolog has achieved, the past

years have seen wide effort at increasing Prolog’s declarativeness and expressiveness.

Unfortunately, some deficiencies in Prolog’s evaluation strategy – SLD resolution –

limit the potential of the logic programming paradigm. Tabling has proved to be

a viable technique to efficiently overcome SLD’s susceptibility to infinite loops and

redundant subcomputations.

With this research we aim at demonstrating that implicit or-parallelism is a natural

fit for logic programs with tabling. To substantiate this belief, we propose novel

computational models that integrate tabling with or-parallelism, we design and imple-

ment an or-parallel tabling engine – OPTYap – and we use a shared memory parallel

machine to evaluate its performance. To the best of our knowledge, OPTYap is the first

implementation of a parallel tabling engine for logic programming systems. OPTYap

builds on Yap’s efficient sequential Prolog engine. Its execution model is based on the

SLG-WAM for tabling, and on the environment copying for or-parallelism.

The results in this thesis make it clear that the mechanisms proposed to parallelize

search in the context of SLD resolution can indeed be effectively and naturally gener-

alized to parallelize tabled computations, and that the resulting systems can achieve

good performance on shared memory parallel machines. More importantly, it empha-

sizes our belief that through applying or-parallelism and tabling to logic programs we

can contribute to increase the range of applications for Logic Programming.
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Resumo

Uma das vantagens do Prolog, como linguagem de Programação Lógica, é possuir uma

semântica que possibilita a exploração de paralelismo impĺıcito. Esta caracteŕıstica

permite reduzir o tempo de execução de um programa, sem que para isso sejam neces-

sárias anotações adicionais do programador. Para aplicações complexas, que demoram

várias horas, senão dias, a calcular uma solução, mesmo ganhos de velocidade modestos

em execução paralela, podem traduzir-se em significantes ganhos de produtividade.

Apesar do poder, da flexibilidade e dos bons resultados que o Prolog tem demonstrado

desde o aparecimento da WAM, um amplo esforço tem vindo a ser desenvolvido para

aumentar o seu poder declarativo e expressivo. A estratégia de resolução SLD, na qual

o Prolog se baseia, é limitadora do potencial inerente ao paradigma da Programação

Lógica. Uma das mais bem sucedidas técnicas para solucionar a incapacidade da reso-

lução SLD no que respeita a ciclos infinitos e computações redundantes é a Tabulação.

Com este trabalho pretende-se demonstrar que a exploração impĺıcita de paralelismo-

Ou em programas lógicos com tabulação pode ser tão eficaz como o é em programas

lógicos comuns. Para tal, propõem-se novos modelos para integrar paralelismo-Ou com

tabulação, desenvolve-se um novo sistema, o OPTYap, e avalia-se o seu desempenho.

Tanto quanto é do nosso conhecimento, o OPTYap é o primeiro sistema a explorar

paralelismo em programas lógicos com tabulação. O OPTYap foi desenvolvido tendo

por base o sistema Yap, um dos mais rápidos sistemas de execução sequencial de

Prolog. O seu modelo de execução é baseado na SLG-WAM, para tabulação, e em

cópia de ambientes, para paralelismo-Ou.

Os resultados mostram que os mecanismos para execução paralela de programas lógicos

podem generalizar-se para computações que usam tabulação, e que os sistemas dáı

resultantes obtêm igualmente bons desempenhos em máquinas paralelas de memória

partilhada. Este trabalho reforça a convicção de que paralelismo e tabulação podem

contribuir para expandir o leque de aplicações alvo da Programação Lógica.
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Résumé

Les langages de Programmation Logique, tels que le Prolog, fournissent une approche

déclarative de niveau élevé à la programmation. Ils offrent un grand potentiel pour

l’exploration implicite du parallélisme et permettent ainsi, aux systèmes parallèles, de

réduire automatiquement le temps d’exécution d’un programme, sans interposition du

programmeur. Pour des applications complexes qui prennent plusieurs heures, sinon

des jours, pour renvoyer une réponse, même modestes gains de vélocité peuvent être

directement traduits aux gains très significatifs de productivité.

En dépit de la puissance, de la flexibilité et des bons résultats que le Prolog a réalisé,

les dernières années ont vu un large effort pour augmenter son pouvoir déclaratif

et expressif. Malheureusement, quelques insuffisances dans la stratégie d’évaluation

du Prolog, résolution SLD, limitent le potentiel du paradigme de Programmation

Logique. Tabulation a montré être une technique viable pour surmonter efficacement

la susceptibilité de SLD aux calculs infinis et aux computations redondantes.

Avec cette recherche nous visons démontrer que l’exploration implicite du parallélisme-

Ou est un ajustement naturel pour des programmes logiques avec la tabulation. Pour

justifier cette croyance, nous proposons des nouveaux modèles pour intégrer par-

allélisme-Ou avec tabulation, nous concevons un nouveau système, l’OPTYap, et nous

évaluons son exécution. Au meilleur de notre connaissance, OPTYap est la première

mise en place d’un système parallèle de tabulation. OPTYap a été développé ayant

pour base le système Yap, l’un des plus rapides systèmes d’exécution séquentielle de

Prolog. Son modèle d’exécution est basé sur la SLG-WAM, pour tabulation, et sur

copie d’ambiants, pour parallélisme-Ou.

Les résultats indiquent que les mécanismes proposés pour exécution parallèle, dans le

contexte de la résolution SLD, peuvent être généralisés pour la tabulation, et que les

systèmes résultants peuvent obtenir aussi des bons résultats aux systèmes parallèles de

mémoire partagée. Cette thèse souligne notre croyance qu’en appliquant parallélisme-
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Ou et tabulation aux programmes de logique nous pouvons contribuer à l’augmentation

de l’ensemble des applications pour la Programmation Logique.
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Résumé 11
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Chapter 1

Introduction

Logic programming provides a high-level, declarative approach to programming. Ar-

guably, Prolog is the most popular and powerful logic programming language. Through-

out its history, Prolog has demonstrated the potential of logic programming in appli-

cation areas such as Artificial Intelligence, Natural Language Processing, Knowledge

Based Systems, Machine Learning, Database Management, or Expert Systems. Pro-

log’s popularity was sparked by the success of the sequential execution model presented

in 1983 by David H. D. Warren, the Warren Abstract Machine (WAM ) [110]. The

WAM compilation technology proved to be highly efficient and Prolog systems have

been shown to run logic programs nearly as fast as equivalents C programs [86].

Prolog programs are written in a subset of First-Order Logic, Horn clauses, that has an

intuitive interpretation as positive facts and rules. Programs use the logic to express

the problem, whilst questions are answered by a resolution procedure with the aid of

user annotations. The combination was summarized by Kowalski’s motto [60]:

algorithm = logic + control

Ideally, one would want Prolog programs to be written as logical statements first, and

for control to be tackled as a separate issue. In practice, the operational semantics

of Prolog is given by SLD resolution [62], a refutation strategy particularly simple

that matches current stack based machines particularly well. Unfortunately, the

limitations of SLD resolution mean that Prolog programmers must be concerned with

SLD semantics throughout program development. For instance, it is in fact quite

possible that logically correct programs will enter infinite loops.
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Several proposals have been put forth to overcome some of the SLD limitations and

therefore improve the declarativeness and expressiveness of Prolog. One such proposal

that has been gaining in popularity is the use of tabling (or tabulation or memoing [66]).

In a nutshell, tabling consists of storing intermediate answers for subgoals so that they

can be reused when a repeated subgoal appears during the resolution process. It can

be shown that tabling based models are able to reduce the search space, avoid looping,

and have better termination properties than SLD based models. In fact, it has been

proven that termination can be guaranteed for all programs with the bounded term-size

property [21].

Work on SLG resolution [21], as implemented in the XSB logic programming sys-

tem [46], proved the viability of tabling technology for applications such as Natural

Language Processing, Knowledge Based Systems and Data Cleaning, Model Checking,

and Program Analysis. SLG resolution also includes several extensions to Prolog,

namely support for negation [10], hence allowing for novel applications in the areas of

Non-Monotonic Reasoning and Deductive Databases.

One of the major advantages of logic programming is that it is well suited for parallel

execution. The interest in the parallel execution of logic programs mainly arose from

the fact that parallelism can be exploited implicitly from logic programs. This means

that parallel execution can occur automatically, that is, without input from the pro-

grammer to express or manage parallelism, hence making parallel logic programming

as easy as logic programming.

Logic programming offers two major forms of implicit parallelism, Or-Parallelism

and And-Parallelism. Or-parallelism results from the parallel execution of alterna-

tive clauses for a given predicate goal, while and-parallelism stems from the parallel

evaluation of subgoals in an alternative clause. Arguably, or-parallel systems, such as

Aurora [63] and Muse [6], have been the most successful parallel logic programming

systems so far. Experience has shown that or-parallel systems can obtain very good

speedups for applications that require search. Examples can be found in application

areas such Parsing, Optimization, Structured Database Querying, Expert Systems and

Knowledge Discovery applications. Parallel search can be also useful in Constraint

Logic Programming.

Tabling works for both deterministic and non-deterministic applications, but it has

frequently been used to reduce the search space. This rises the question of whether
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further efficiency improvements may be achievable through parallelism. Freire and

colleagues were the first to propose that tabled goals could indeed be a source of im-

plicit parallelism [40]. In their model, each tabled subgoal is computed independently

in a separate computational thread, a generator thread. Each generator thread is the

sole responsible for fully exploiting its subgoal and obtain the complete set of answers.

We argue that this model is limitative in that it restricts parallelism to concurrent

execution of generator threads. Parallelism arising from non-tabled subgoals or from

alternative clauses to tabled subgoals should also be exploited.

1.1 Thesis Purpose

Ideally, we would like to exploit maximum parallelism and take maximum advantage of

current technology for tabling and parallel systems. An interesting observation is that

tabling is still about exploiting alternatives to find answers for goals. Our suggestion is

that we should aim at using the same technique to exploit parallelism from both tabled

and non-tabled subgoals. By doing so we can both extract more parallelism, and reuse

the mature technology for tabling and parallelism. Towards this goal, we designed

two new computational models [80], the Or-Parallelism within Tabling (OPT ) and

Tabling within Or-Parallelism (TOP) models. The models combine tabling with

or-parallelism by considering all open alternatives to subgoals as being amenable to

parallel exploitation, be they from tabled or non-tabled subgoals.

This thesis addresses the design, implementation and evaluation of OPTYap [85].

OPTYap is an or-parallel tabling system based on the OPT model [81] that, to the best

of our knowledge, is the first available system that can exploit parallelism from tabling

applications. The OPT model considers tabling as the base component of the parallel

system. Each worker 1 behaves like a sequential tabling engine that fully implements all

the tabling operations. The or-parallel component of the system is triggered to allow

synchronized access to common parts of the search space or to schedule workers running

out of alternatives to exploit. We take advantage of the hierarchy of or-parallelism

within tabling to structure OPTYap’s design and thus simplify its implementation.

1The term worker is widely used in the literature to designate each computational unit or agent

involved in the parallel environment. A worker is the abstract notion that represents, at the machine

level, a system processor or process.
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We validate our design through a performance study of the OPTYap system builds on

the YapOr [79, 82] and YapTab [84, 83] engines. YapOr is an or-parallel engine that

extends Yap’s efficient sequential engine [30] to exploit implicit or-parallelism in Prolog

programs. It is based on the environment copy model, as first implemented in the

Muse system [5]. YapTab is a sequential tabling engine that extends Yap’s execution

model to support tabled evaluation for definite programs, that is, for programs not

including negation. YapTab’s implementation is largely based on the ground-breaking

work for the XSB system [89, 77], and specifically on the SLG-WAM [87, 90, 88].

YapTab has been designed from scratch and its development was done taking into

account the major purpose of further integrate it to achieve an efficient parallel

tabling computational model, whilst comparing favorably with current state of the art

technology. In other words, we aim at developing an or-parallel tabling system that,

when executed with a single worker, runs as fast or faster than the current available

sequential tabling systems. Otherwise, the parallel performance results would not be

significant and fair, and thus it would be hard to evaluate the efficiency of the parallel

implementation.

We intend with our work to study and understand the implications of combining

tabling with or-parallelism and thereby develop an efficient execution framework to

exploit maximum parallelism and obtain good performance results. Accordingly, the

thesis presents novel data structures, algorithms and implementation techniques that

efficiently solve some difficult problems arising with the integration of both paradigms.

Our major contributions include the dependency frame data structure; the generator

dependency node concept and a novel algorithm to compute and detect leader nodes; a

novel termination detection scheme to allow public completion; support for suspension

of strongly connected components; improvements to scheduling technology; implemen-

tation techniques to deal with concurrent table access; and support for speculative

tabled answers.

In order to substantiate our claims we studied in detail the performance of our or-

parallel tabling engine, OPTYap, up to 32 workers. First, we evaluate the sequential

and parallel behavior of OPTYap for non-tabled programs and compare it with that of

Yap and YapOr. We then evaluate OPTYap with tabled programs and study its perfor-

mance for sequential and parallel execution. The gathered results show that OPTYap

introduces low overheads for sequential execution and that it compares favorably
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with current versions of XSB. Furthermore, the results show that OPTYap maintains

YapOr’s speedups for parallel execution of non-tabled programs, and that there are

tabled applications that can achieve very high performance through parallelism. In

our study we gathered detailed statistics on the execution of each benchmark program

to help us in understanding and explaining some of the parallel execution results.

Ultimately, this thesis aims at substantiating our belief that tabling and parallelism

can together contribute to increasing the range of applications for Logic Programming.

1.2 Thesis Outline

The thesis is structured in nine major chapters that, in some way, reflect the different

phases of the work. We provide a brief description of each chapter next.

Chapter 1: Introduction. Is this chapter.

Chapter 2: Logic Programming, Parallelism and Tabling. Provides a brief in-

troduction to the concepts of logic programming, parallel logic programming,

and tabling, focusing on Prolog, or-parallelism, SLG resolution, and abstract

machines for standard Prolog and tabling, namely the WAM and the SLG-WAM.

Chapter 3: YapOr: The Or-Parallel Engine. Presents the design and implemen-

tation of the YapOr Prolog system. It introduces the general concepts of the

environment copying model, and then describes the major implementation issues

to extend the Yap Prolog system to support the model. Most of YapOr’s

development was prior to the present work.

Chapter 4: YapTab: The Sequential Tabling Engine. First, it briefly describes

the fundamental aspects of the SLG-WAM abstract machine, and then details

YapTab’s implementation. This includes discussing the motivation and major

contributions of the YapTab design, and presenting the main data areas, data

structures and algorithms to extend the Yap Prolog system to support sequential

tabling. YapTab has been designed and implemented from scratch and its

development was the first step towards the current or-parallel tabling system.

Chapter 5: Parallel Tabling. In this chapter we propose two new computational

models, OPT and TOP, to efficiently implement the parallel evaluation of tabled
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logic programs. Initially, we describe related work to get an overall view of

alternative approaches to parallel tabling. Next, we introduce and detail the

fundamental aspects underlying the new computational models, and then we

discuss their advantages and disadvantages. At last, we focus on the OPT

computational model in order to discuss its implementation framework.

Chapter 6: OPTYap: The Or-Parallel Tabling Engine. Presents the imple-

mentation details for the OPTYap engine. We start by presenting an overall

view of the main issues involved in the implementation of the or-parallel tabling

engine and then we introduce and detail the new data areas, data structures and

algorithms used to implement it.

Chapter 7: Speculative Work. Discusses the problems arising with speculative

computations and introduces the mechanisms used in YapOr and OPTYap to

deal with them. Initially, we introduce the cut semantics and its particular be-

havior within or-parallel systems. Next, we present the cut scheme implemented

in YapOr and then discuss speculative tabling execution and present the support

currently implemented in OPTYap.

Chapter 8: Performance Analysis. In this chapter we assess the efficiency of the

or-parallel tabling implementation by presenting a detailed performance analysis.

We start by reporting an overall view of the overheads of supporting the several

Yap extensions: YapOr, YapTab and OPTYap. Next we compare OPTYap’s

performance with that of YapOr on a similar set of non-tabled programs. Then

we use a set of tabled programs to measure the sequential behavior of YapTab,

OPTYap and XSB, and to assess OPTYap’s performance when running the

tabled programs in parallel. At last, we study the impact of using different lock-

ing schemes to deal with concurrent accesses to the table space data structures.

Chapter 9: Concluding Remarks. Discusses the research, summarizes the contri-

butions and suggests directions for further work.

Chapters 4, 6 and 7 include pseudo-code for some important procedures. In order to

allow an easier understanding of the algorithms being presented in such procedures, the

code corresponding to potential optimizations or synchronizations is never included,

unless its inclusion was essential for the description. The Prolog code for the set of

benchmarks used in Chapter 8 is included, at the end of the thesis, as Appendix A.



Chapter 2

Logic Programming, Parallelism

and Tabling

The aim of this chapter is to provide a brief overview of the research areas embraced

by this thesis, highlighting the main ideas behind the key aspects of each area. We

discuss logic programming, parallel logic programming and tabling. Throughout, we

focus on Prolog, or-parallelism, SLG resolution, and abstract machines for standard

Prolog and tabling, namely in the WAM and the SLG-WAM.

2.1 Logic Programming

Logic programming languages, together with functional programming languages, form

a major class of languages called declarative languages. A common characteristic

of both groups of languages is that they have a strong mathematical basis. Logic

programming languages are based on the predicate calculus, while functional pro-

gramming languages are based on the lambda calculus.

Declarative languages are considered to be very high-level languages when compared

with conventional imperative languages because, generally, they allow the programmer

to concentrate more on what the problem is, leaving much of the details of how to

solve the problem to the computer. The mathematical basis of such languages makes

programming an easier task. The programmer can specify the problem at a more

application-oriented level and thus simplify the formal reasoning about it.
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Logic programming [62] is a programming paradigm based on Horn Clause Logic, a

subset of First Order Logic. Logic programming is a simple theorem prover that given

a theory (or program) and a query, uses the theory to search for alternative ways

to satisfy the query. Logic programming is often mentioned to include the following

major features [57]:

• Variables are logical variables which can be instantiated only once.

• Variables are untyped until instantiated.

• Variables are instantiated via unification, a pattern matching operation finding

the most general common instance of two data objects.

• At unification failure the execution backtracks and tries to find another way to

satisfy the original query.

Carlsson [18] claims that Logic programming languages, such as Prolog, are cited to

include the following advantages:

Simple declarative semantics. A logic program is simply a collection of predicate

logic clauses.

Simple procedural semantics. A logic program can be read as a collection of re-

cursive procedures. In Prolog, for instance, clauses are tried in the order they

are written and goals within a clause are executed from left to right.

High expressive power. Logic programs can be seen as executable specifications

that despite their simple procedural semantics allow for designing complex and

efficient algorithms.

Inherent non-determinism. Since in general several clauses can match a goal, prob-

lems involving search are easily programmed in these kind of languages.

These advantages lead to compact code that is easy to understand, program and

transform. Furthermore, they make logic programming languages very attractive for

the exploitation of implicit parallelism.
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2.1.1 Logic Programs

A logic program consists of a collection of Horn clauses. Using Prolog’s notation, each

clause may be a rule of the form

A : − B1, ..., Bn.

where A is the head of the rule and the B1, ..., Bn are the body subgoals, or it may

be a fact and simply written as

A.

Rules represent the logical implication

∀ (B1 ∧ ... ∧ Bn → A)

while facts assert A as true. A separate type of clauses is that where the head goal is

false. These type of clauses are called queries and, in Prolog, they are written as

: − B1, ..., Bn.

A goal is a predicate applied to a number of terms (or arguments) of the form

p (t1, ..., tn)

where p is the predicate name, and the t1, ..., tn are the terms used as arguments. Each

term can be either a variable, an atom, or a compound term of the form f(u1, ..., um)

where f is a functor and the u1, ..., um are themselves terms. Terms in a program

represent world objects while predicates represent relationships among those objects.

Variables represent unspecified terms while atoms represent symbolic constants.

Information from a logic program is retrieved through query execution. The execution

of a query Q against a logic program P , leads to consecutive assignments of terms

to the variables of Q till a substitution θ satisfied by P is found. A substitution is a

function that given a variable of Q returns a term assignment. Answers (or solutions)

for Q are retrieved by reporting for each variable X in Q the corresponding assignment

θ(X). When a variable X is assigned a term T , then X is said to be bound and T is

called the binding of X. A variable can be bound to another different variable or to a

non-variable term.

Execution of a query Q with respect to a program P proceeds by reducing the initial

conjunction of subgoals of Q to subsequent conjunctions of subgoals according to a
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refutation procedure. The refutation procedure of interest here was first described

by Kowalski [59]. It was called Selective Linear Definite resolution (SLD resolution)

in [11]. SLD resolution is a simplified version of the general inference rule that results

from the pioneering work on resolution by Robinson [78]. In a nutshell, SLD resolution

proceeds as follows:

• Let us assume that

: − G1, ..., Gn.

is the current conjunction of subgoals. Initially and according to a predefined

selectliteral rule, a subgoal (or literal) Gi is selected.

• Assuming that Gi is the selected subgoal, then the program is searched for a

clause whose head goal unifies with Gi. If there are such clauses then, according

to a predefined selectclause rule, one is selected.

• Consider that

A : − B1, ..., Bm.

is the selected clause that unifies with Gi. The unification process has determined

a substitution θ to the variables of A and Gi such that Aθ = Giθ. Execution

may proceed by replacing Gi with the body subgoals of the selected clause and

by applying θ to the variables of the resulting conjunction of subgoals, leading

to:

: − (G1, ..., Gi−1, B1, ..., Bm, Gi+1, ..., Gn)θ.

Notice that if the selected clause, Gi, is a fact it is simply removed from the

conjunction of subgoals, thus resulting in:

: − (G1, ..., Gi−1, Gi+1, ..., Gn)θ.

• A (finite or infinite) sequence of the previous reductions is called an SLG deriva-

tion. Finite SLD derivations may be successful or failed. A successful SLD

derivation is found whenever the conjunction of subgoals is reduced to the true

subgoal, which therefore corresponds to the determination of a query substitution

(answer) satisfied by the program. A successful SLD derivation is just a SLD

refutation.
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• When there are no clauses unifying with a selected subgoal, then a failed SLD

derivation is found. In Prolog, failed SLD derivations are resolved through

applying a backtracking mechanism. Backtracking exploits alternative execution

paths by (i) undoing all the bindings made since the preceding selected subgoal

Gp, and by (ii) reducing Gp with the next available clause unifying with it. The

computation stops either when all alternatives have been exploited or when an

answer is found.

In [60], Kowalski stated that logic programming is about expressing problems as logic

and using a refutation procedure to obtain answers from the logic. Therefore, in a

computer implementation, the selectliteral and selectclause rules must be specified. Dif-

ferent specifications lead to different algorithms and different languages (or semantics)

can thus be obtained. Next, we introduce the logic programming language Prolog.

2.1.2 The Prolog Language

Prolog is the most popular logic programming language. The name Prolog was

invented by Colmerauer as an abbreviation for PROgramation en LOGic to refer to a

software tool designed to implement a man machine communication system in natural

language [25].

The pioneering work on resolution by Robinson, culminated in 1965 with the publica-

tion of his historical paper [78] describing the now well known general inference rule,

Resolution with Unification. Starting from Robinson’s work, it was Kowalski [59] and

Colmerauer and colleagues [25] who first recognized the procedural semantics of Horn

clauses and provided some theoretical background showing that Prolog can be read

both procedurally and logically.

In 1977, David H. D. Warren made Prolog a viable language by developing the first

compiler for Prolog [109]. This helped to attract a wider following to Prolog and

made the syntax used in this implementation the de facto Prolog standard. In 1983,

Warren proposed a new abstract machine for executing compiled Prolog code [110]

that has come to be known as the Warren Abstract Machine, or simply WAM. The

WAM became the most popular way of implementing Prolog and almost all current

Prolog systems are based on WAM’s technology.
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The interest in logic programming has increased considerably when the Japanese

announced their Fifth Generation project. As a result, since then, many different

sequential and parallel models were proposed and implemented. The advances made

in the compilation technology of sequential implementations of Prolog proved to be

highly efficient which has enabled Prolog compilers to execute programs nearly as fast

as the conventional programming languages like C [86].

The operational semantics of Prolog is based on SLD resolution. Prolog applies SLD

resolution by specifying that the selectliteral rule chooses the leftmost subgoal in a

query, and that the selectclause rule follows the textual order of the clauses in the

program. To make Prolog a useful programming language for real world problems,

some additional features not found within first order logic were introduced. These

features include:

Meta-logical predicates. These predicates inquire the state of the computation and

manipulate terms.

Cut predicate. This predicate adds a limited form of control to the execution. It

prunes unexploited alternatives from the computation.

Extra-logical predicates. These are predicates which have no logical meaning at all.

They perform input/output operations and manipulate the Prolog database, by

adding or removing clauses from the program being executed.

Other predicates. These include arithmetic predicates to perform arithmetic oper-

ations, term comparison predicates to compare terms, extra control predicates

to perform simple control operations, and set predicates that give the complete

set of answers for a query.

An important aspect of many of these predicates is that their behavior is order-

sensitive. This means that they can potentially produce different outcomes if different

selectliteral or selectclause rules are specified. Moreover, the use of some of these

predicates relies on a deep knowledge of Prolog execution. For readers not familiar

with Prolog, a more detailed presentation of these topics can be found in some of the

standard textbooks on Prolog, such as [24, 62, 96].
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2.1.3 The Warren Abstract Machine

Prolog became the most popular logic programming language largely due to the success

of its efficient implementations based on the Warren Abstract Machine (WAM) [110].

Currently, most of the state of the art systems for logic programming languages still

rely on WAM’s technology.

The WAM is a stack-based architecture with simple data structures and a low-level

instruction set. At any time, the state of a computation is obtained from the contents

of the WAM data areas, data structures and registers. See Figure 2.1 for a detailed

illustration of the WAM’s organization.
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Figure 2.1: WAM memory layout, frames and registers.

The WAM defines the following execution stacks:

PDL: The PDL is a push down list used by the unification process.

Trail: Organized as an array of addresses, it stores the addresses of the (stack or

heap) variables which must be reset upon backtracking. The TR register always

points to the top of this stack.
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Stack: Also mentioned as local stack, it stores the environment and choice point

frames:

• Environments track the flow of control in a program. An environment is

pushed onto the stack whenever a clause containing several body subgoals

is picked for execution, and it is popped off before the last body subgoal

gets executed. An environment frame consists of the stack address of the

previous environment, to reinstate if popped off; the code address of the

next instruction, to execute upon successful return from the invoked clause;

and a sequence of cells, as many as the number of permanent variables1 in

the body of the invoked clause. The E register points to the current active

environment.

• Choice points store open alternatives. A choice point contains the necessary

data to restore the state of the computation back to when the clause was

entered; plus a pointer to the next clause to try, in case the current one

fails. A choice point frame is pushed onto the stack when a goal is called for

execution and has more than one candidate clause. It is popped off when

the last alternative clause is taken for execution. The B register points to

the current active choice point, which is always the last.

Note that some WAM implementations, like XSB [46] and SICStus Prolog [19],

use separate execution stacks to store environments and choice points.

Heap: Sometimes also referred as global stack, it is an array of data cells used to store

variables and compound terms that cannot be stored in the stack. The H register

points to the top of this stack.

Code Area: Contains the WAM instructions comprising the compiled form of the

loaded programs.

Figure 2.1 mentions other important WAM registers: the S register that is used during

unification of compound terms; the HB register that is used to determine if a binding

is conditional or not2; the P register that points to the current WAM instruction being

executed; and the CP register points to where to return to after successful execution

of the current invoked call.
1A permanent variable is a variable which occurs in more than one body subgoal [1].
2Conditional bindings are discussed next in subsection 2.2.1.
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Four main groups of instructions can be enumerated in the WAM instruction set:

Choice point instructions: As the name indicates these instructions manipulate

choice points. They allow to allocate/remove choice points and to recover the

state of a computation through the data stored in choice points.

Control instructions: allocate/remove environments and manage the call/return

sequence of subgoals.

Unification instructions: These instructions implement specialized versions of the

unification algorithm according to the position and type of the arguments. There

are proper unification instructions to perform head unification, to perform sub-

argument unification, and to prepare arguments for subgoals. These three major

classes are further subdivided in specialized versions to treat first occurrence of

variables in a clause, non-first occurrences, constants in the clause, lists, and

other compound terms.

Indexing instructions. These type of instructions accelerate the process of deter-

mining which clauses unify with a given subgoal call. Depending on the first

argument of the call, they jump to specialized code that can directly index the

unifying clauses.

The apparent simplicity of WAM hides several intricate implementation issues. Com-

plete books, such as Äıt-Kaci’s tutorial on the WAM [1], discuss these topics.

2.2 Parallelism in Logic Programs

Traditional implementations of Prolog were designed for common, general-purpose

sequential computers. In fact, WAM based Prolog compilers proved to be highly effi-

cient for standard sequential architectures and have helped to make Prolog a popular

programming language. The efficiency of sequential Prolog implementations and the

declarativeness of the language have kindled interest on implementation for parallel

architectures. In these systems, several processors work together to speedup the

execution of a program. Parallel implementations of Prolog should obtain better

performance for current programs, whilst expanding the range of applications we can

solve with this language.
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The following main forms of implicit parallelism can be identified in logic programs:

Or-parallelism: Appears from the non-determinism of the selectclause rule, when

a subgoal call unifies with more than one of the clauses defining the subgoal

predicate. It corresponds to the parallel execution of the bodies of the alterna-

tive matching clauses. Or-parallelism is thus an efficient way of searching for

alternative answers to the query.

And-parallelism: Appears from the non-determinism of the selectliteral rule, when

more than one subgoal is present in the query or in the body of a clause. It

corresponds to the parallel execution of such subgoals. Two main forms of and-

parallelism are known [50]:

• Independent and-parallelism: Occurs when the subgoals, in the query

or in the body of a clause, do not share variables. This guarantees that

potential bindings for the variables in each subgoal are compatible with the

outcome bindings from the other subgoals.

• Dependent and-parallelism. Occurs when the subgoals, in the query or

in the body of a clause, have common unbound variables. Notice that the

parallel execution of such subgoals can lead to incompatible bindings to the

common variables. Two major approaches arise: (i) the dependent subgoals

only execute simultaneously until one of them binds a common variable. As

an alternative, it is possible to continue executing the subgoals even after a

common variable has been bound, but in such case, the bindings produced

have to be checked for compatibility at the end; or (ii) the dependent

subgoals are executed independently and once a common variable is bound

by a subgoal, called the producer, the other subgoals, called the consumers,

read the binding as an input argument for the variable. Parallelism can be

further exploited by having the producer computing alternative bindings

for the common variable and the consumers computing with a particular

binding.

Unification parallelism. Appears during the process of unifying the arguments of

a subgoal with those of a head clause for the predicate with the same name and

arity. The different argument terms can be unified in parallel as can the different
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sub-terms in a term [12]. Unification parallelism is very fine grained and has not

been the major focus of research in parallel logic programming.

Original research on the area resulted in several different proposals that successfully

supported these forms of parallelism. Arguably, some of the most well-known systems

are: Aurora [63] and Muse [6] for or-parallelism; &-Prolog[55] and &ACE [69, 70] for

independent and-parallelism; DASWAM [92, 91] and ACE [68] for dependent and-

parallelism; and Andorra-I [34, 114] for or-parallelism together with dependent and-

parallelism. A complete and detailed presentation of such systems and the challenges

and problems in their implementation can be found in [50].

Intuitively, as each form of parallelism explores different points of non-determinism in

the operational semantics of the language, it should be possible to exploit all of them

simultaneously. The overall principle in the design of a parallel system that exploits

several forms of parallelism simultaneously is orthogonality [28]. In an orthogonal

design, each form of parallelism should be exploited without affecting the exploitation

of the other. However, no efficient parallel system has been built yet that achieves

this, because practical experience has shown that this orthogonality is not so easily

translatable to the implementation level. A system extracting maximum parallelism

from logic programs while achieving the best possible performance is the ultimate goal

of researchers in parallel logic programming.

2.2.1 Or-Parallelism

Of the forms of parallelism available in logic programs, or-parallelism is arguably one

of the most successful. Intuitively, in a first step, or-parallelism seems easier and more

productive to exploit implicitly than and-parallelism. As referred by Lusk et al. [63]

the main advantages of exploiting or-parallelism are:

Generality. It is relatively straightforward to exploit or-parallelism without restrict-

ing the power of the logic programming language. In particular, or-parallelism

can profit from Prolog’s adequacy to generate all answers to a query.

Simplicity. Or-parallelism can be exploited without requiring any extra programmer

annotation or any complex compile-time analysis.
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Closeness to Prolog. Implementation technology for Prolog sequential execution

can be easily extended to cope with or-parallelism. This means that one can

easily preserve the language semantics and take full advantage of existing imple-

mentation technology to achieve high performance for a single worker.

Granularity. Or-parallelism offers good potential to be exploited in Prolog programs.

For a large class of Prolog programs, the grain size of an or-parallel computation,

that is, the potential amount of or-parallel work that can be performed without

interaction with other pieces of work proceeding in parallel, is coarse grain [101,

57].

Applications. Or-parallelism arises in a wide range of applications, namely for ap-

plications in the general area of Artificial Intelligence involving detection of all

answers or large searches, whether it be exercising the rules of an expert system,

proving a theorem, parsing a natural language sentence, or answering a database

query.

These are arguably the main reasons why most of the research towards implicit parallel

Prolog systems starts from or-parallelism. The issues raised in attempting to exploit

several forms of parallelism are sufficiently complex that most research efforts are

focusing primarily on one single form. The least complexity of or-parallelism makes

its implementation more attractive as a first step.

Intuitively, or-parallelism seems easy to implement as the various alternative branches

of the search tree are independent of each other, therefore requiring minimum syn-

chronization between them. However, practice has shown that implementation of

or-parallelism is not an easy task. Two major problems must be addressed when

exploiting or-parallelism: (i) multiple binding representation and (ii) work scheduling.

Multiple Binding Representation

The multiple binding representation is a crucial problem for the efficiency of an or-

parallel system. The concurrent execution of alternative branches of the search tree

can result in several conflicting bindings for shared variables. The environments of

alternative branches have to be organized in such a way that conflicting bindings can

easily be discernible. A binding of a variable is said to be conditional if the variable
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was created before the last choice point, otherwise it is said unconditional The main

problem in the management of multiple environments is that of efficiently representing

and accessing conditional bindings, since unconditional bindings can be treated as in

normal sequential execution.

Essentially, the problem of multiple environment management is solved by devising a

mechanism where each branch has some private area where it stores its conditional

bindings. A number of approaches have been proposed to tackle this problem [111, 51].

However, each approach has associated costs that are incurred at the time of node3

creation, at the time of variable access, at the time of variable binding, or at the time

of environment switching to start executing a new branch. Gupta and Jayaraman [51]

claim that, for an ideal or-parallel system, the cost of all these operations should

be constant time. The term constant time is used to mean that the time for these

operations is independent of the number of nodes in the or-parallel search tree, as

well as the number of goals and the size of terms that appear in goals [49]. However,

Gupta and Jayaraman [51] conjectured that it is impossible to executed all operations

in constant time because the cost of at least one of this operations will increase by a

non-constant overhead. More recently, this intuitive result has been formally proved

to hold by Ranjan et al. [76].

Work Scheduling

Even though the cost of managing multiple environments cannot be completely avoided,

it may be minimized by the or-parallel system if it is able to divide efficiently the

available work during execution. The system component responsible for finding and

distributing parallel work to available workers is known as the scheduler. Work

scheduling is a complex problem because of the dynamic nature of work in or-parallel

systems, as in fact, unexploited branches arise irregularly. To efficiently deal with this

irregularity, careful scheduling strategies are required. Several different strategies have

been proposed to tackle this problem [17, 5, 13, 95, 94].

Two major policies are known to dispatch work for or-parallel execution: (i) topmost

and (ii) bottommost. In the topmost policy, when an idle worker asks for work, only

a restricted number of nodes with available work is made public4. The nodes are made

3A node is the abstract notion that is implemented at the engine level as a choice point.
4A node is called public when it is shared by several workers. Otherwise, when belonging to a
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public in sequence, starting from the root node, and the number of nodes is selected

according to the scheduler’s strategy. The topmost policy leads to bigger private

regions of the search tree, which intuitively one would expect to correspond to an

increase in the granularity of an or-parallel computation. In contrast, the bottommost

policy turns public the whole private region of a worker when it shares work. This

maximizes the amount of shared work and possibly avoids that the requesting worker

runs out of work too early and therefore invokes the scheduler too often. Practice

showed that, for shared memory parallel systems, bottommost is the best policy

to dispatch work for or-parallel execution and thus achieve higher granularity of or-

computations.

A major problem for scheduling is the presence of pruning operators like the cut

predicate. When a cut predicate is executed, all alternatives to the right of the cut

are pruned, therefore never being executed in a sequential system. However, in a

parallel system, the work corresponding to these alternatives can be early picked for

parallel execution, therefore resulting in wasted computational effort when pruning

takes place. This form of work is known as speculative work. Giving higher scheduling

priority to work on the left part of the search tree is a way of reducing the probability

of speculative work. An advanced scheduler must be able to reduce to a minimum the

speculative computations and at the same time maintain the granularity of the work

scheduled for execution [8, 14, 95]. The speculative work problem is discussed in detail

in Chapter 7.

2.2.2 Or-Parallel Execution Models

A number of execution models have been proposed in the literature towards exploiting

or-parallelism (a detailed analysis of about 20 models can be found in [51]). These mod-

els mainly differ in the mechanism employed for solving the problem of environment

representation. Arguably, the two most successful ones are environment copying [6, 5],

as implemented in the Muse system, and binding arrays [113, 112], as implemented in

the Aurora system.

In the environment copying model each worker maintains its own copy of the envi-

ronment in which it can write without causing binding conflicts. In this model even

unique worker, it is called private.
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unconditional bindings are not shared. When a variable is bound, the binding is stored

in the private environment of the worker doing the binding.

When an idle worker picks work from another worker, it copies all the stacks from

the sharing worker. Copying of stacks is made efficient through the technique of

incremental copying. The idea of incremental copying is based on the fact that the

idle worker could have already traversed a part of the search tree that is common to

the sharing worker, and thus it does not need to copy this part of stacks. Furthermore,

copying of stacks is done from the virtual memory addresses of the sharing worker to

exactly the same virtual memory addresses of the idle worker, which therefore avoids

potential reallocation of address values.

As a result of copying, each worker can carry out execution exactly like a sequential

system, requiring very little synchronization with other workers. Synchronization

between workers is achieved through a single auxiliary data structure associated with

the choice points. In section 3.1 we analyze in detail the environment copying approach

to or-parallelism, including its implementation.

On the other hand, in the binding arrays model each worker maintains a private

array data structure, called the binding array, where it stores its conditional bindings.

Each variable along a branch is assigned to a unique number that identifies its offset

entry in the binding array. The numbering of variables is done so that it forms a

strict increasing sequence. This is achieved by maintaining a private counter. New

variables are always marked with the current value of the counter. Next, the counter is

incremented. The counter is saved at every choice point so that whenever a worker gets

an alternative branch it can get a copy of the counter and continue its own numbering.

Bindings for a variable are conditional when the variable’s number is smaller than the

counter stored in the current choice point.

Conditional bindings are stored in the private binding array of the worker doing the

binding, at the offset location given by the offset value of that conditional variable. In

addition, the conditional binding together with the address of the conditional variable

are stored in a global binding tree, that is, the WAM’s trail stack. This global binding

tree is then used to ensure consistency when a worker switches from one branch to

another, as in such cases, the switching worker has to update its binding array to

reflect the bindings of the new branch.
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Both models allow constant-time cost for node creation, variable access and for variable

binding, but induce non-constant time cost for environment switching.

The success of these models is partly due to the fact that their corresponding systems

do support sequential Prolog semantics. A parallel system is said to support sequential

Prolog semantics when it achieves the same effect of sequential execution and supports

all the additional features not found within pure Horn Clause Logic [22] (refer to the

meta-logical, extra-logical and other predicates of subsection 2.1.2). The advantage of

such an approach is that all existing Prolog programs can be taken and executed in

parallel without any modifications.

Arguably, copying is the most efficient way to maintain or-parallel environments.

Most modern parallel logic programming systems, including SICStus Prolog [19],

ECLiPSe [108], and YAP [32] use copying as a solution to the multiple bindings

problem. Copying was made popular by the Muse or-parallel system, a system de-

rived from an early release of SICStus Prolog. Muse showed excellent performance

results [8, 9, 7, 31, 27, 33] and in contrast to other approaches, it also showed low

overhead over the corresponding sequential system. On the other hand, copying has

a few drawbacks. First, it can be expensive to exploit more than just or-parallelism

with copying, as the efficiency of copying largely depends on copying large contiguous

blocks of memory, which is difficult to guarantee in the presence of and-parallelism [52].

A second issue is that copying makes it more expensive to suspend branches during

execution, which can be a problem when implementing cuts and side-effects, although

Ali and Karlsson [8] proposed solutions to efficiently solve this problem.

2.3 Tabling for Logic Programs

Prolog execution is based on SLD resolution for Horn clauses. This strategy allows

efficient implementation, but suffers from fundamental limitations, such as in dealing

with infinite loops and redundant subcomputations. These limitations make Prolog

unsuitable to important applications such as, for example, Deductive Databases. The

limitations of SLD resolution are well known, and extensive efforts have been made

to remedy them. On approach is to use resolution strategies similar to SLD, but

that can avoid redundant computations by remembering subcomputations and reusing

their results in order to respond to later requests. This process of remembering and
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reuse has been widely called tabling, tabulation or memoing [66]. Tabling methods

have been proposed from a number of different starting points and given a number

of different names: OLDT [104], SLD-AL [106], Extension Tables [38], and Backchain

Iteration [107] are the better known. The tabling concept also forms the basis of

a transformation used with bottom-up evaluation to compute answers for deductive

database queries, that is known by the generic name of magic [15, 74].

Another major research direction followed during the past years in order to increase the

expressiveness of logic programming, was concerned with the introduction of negation

on the body subgoals of clauses. Although the inclusion of negation seems simple, the

definition of the declarative semantics of logic programs including negative subgoals

is a major problem [10]. One of the most popular resolution methods that includes

negation is SLDNF [23], an extension to SLD resolution that supports negation as finite

failure. However, this method has not proved to be sufficient for important areas of

application, such as Deductive Databases, Non-Monotonic Reasoning and models for

executable specifications, such as Model Checking.

A strong drawback of SLDNF results from its inadequacy in handling positive and

negative loops. Because tabling methods already address the handling of positive

loops, it is natural, then, to extend them to handle negative loops and thereby support

frameworks such as the well-founded semantics [44]. The well-founded semantics

provides a natural and robust declarative meaning to all logic programs with negation.

However, practical use of the well-founded semantics depends upon the implementation

of an effective and efficient evaluation procedure.

Although various procedural semantics have been proposed for the well-founded se-

mantics, one such proposal that has been gaining in popularity is Linear resolution with

Selection function for General logic programs (SLG resolution) [21]. SLG resolution is

a tabling based method of resolution that has polynomial time data complexity and is

sound and search space complete for all non-floundering queries under the well-founded

semantics. SLG resolution can thus reduce the search space for logic programs and in

fact it has been proven that it can avoid looping and thus terminate for all programs

with the bounded-term-size property [21]. SLG’s popularity is largely due to the work

done on the XSB system [89, 77], and namely on the SLG-WAM [87, 90, 88], the

original engine of the XSB system.

Next, we further motivate the need for tabling (or memoing) in a logic programming
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framework, and then we briefly review the underlying features of SLG resolution and

SLG-WAM. At the end, we overview other related implementations of tabling.

2.3.1 Examples of Tabled Evaluation

The basic idea behind tabling is straightforward: programs are evaluated by storing

newly found answers of current subgoals in a proper data space, called the table space.

The method then uses this table to verify for repeated calls to subgoals. Whenever such

a repeated subgoal is found, the subgoal’s answers are recalled from the table instead

of being re-evaluated against the program clauses. In the following, we illustrate the

advantage of tabling through an example.

Consider the Prolog program of Figure 2.2 that defines a small directed graph (rep-

resented by the arc/2 predicate) with a relation of reachability (given by the path/2

predicate), and the query goal ?- path(a,Z).

?- path(a,Y), path(Y,Z)

path(X,Z) :- path(X,Y), path(Y,Z).
path(X,Z) :- arc(X,Z).

arc(a,b).
arc(b,c).

           ?- path(a,Z).

?- path(a,Z)

?- arc(a,Z)

?- arc(a,Y), path(Y,Z) Z = b

fail?- path(b,Z)

fail

...

...positive loop...

SLD evaluation

Figure 2.2: An infinite SLD evaluation.

Applying SLD evaluation to solve the given query goal will lead to an infinite SLD tree

due to the existence of positive loops. Regard, for example, what happens when the

leftmost branch of the corresponding search tree is exploited. In contrast, if tabling
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is applied then the search tree is finite, hence termination is ensured. Figure 2.3

illustrates the evaluation sequence for the same program and query goal using tabling.

:- table path/2.

path(X,Z) :- path(X,Y), path(Y,Z).
path(X,Z) :- arc(X,Z).

arc(a,b).
arc(b,c).

           ?- path(a,Z).

0. path(a,Z)

1. path(a,Y), path(Y,Z) 2. arc(a,Z)

18. path(c,Z) 3. Z = b 4. fail

10. Z = c 19. fail

5. path(b,Z)

5. path(b,Z)

6. path(b,Y), path(Y,Z) 7. arc(b,Z)

8. fail11. path(c,Z) 9. Z = c

17. fail

11. path(c,Z)

12. path(c,Y), path(Y,Z) 13. arc(c,Z)

14. fail16. fail 15. fail

Tabled evaluation

0. path(a,Z)

5. path(b,Z)

11. path(c,Z)

3. Z = b

9. Z = c

10. Z = c

subgoal answers

Figure 2.3: A finite tabled evaluation.

The figure depicts the evaluation sequence for the given query goal. At the top,

the figure illustrates the program code and the appearance of the table space at the

end of the evaluation. Declaration :- table path/2 in the program code indicates

that predicate path/2 should be tabled, therefore tabling will be applied to solve its

subgoals calls. The bottom block shows the resulting forest of trees for the three tabled
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subgoal calls. The numbering of nodes denotes the evaluation sequence.

Whenever a tabled subgoal is first called, a new tree is added to the forest of trees and

a new entry is added to the table space. On the other hand, variant calls5 to tabled

subgoals start, instead, by consuming the answers already stored in the table space for

the corresponding subgoal. When all currently available answers are consumed, the

execution of the variant subgoal is suspended until new answers arise. In Figure 2.3,

the former situation is depicted by white oval boxes surrounding the subgoal calls,

while the latter is depicted by gray oval boxes.

Let us examine the evaluation in more detail. The evaluation begins by creating a

new tree rooted by path(a,Z) and by inserting a new entry in the table space for

it. Next, path(a,Z) is first resolved against the first clause for path/2, creating node

1. Execution proceeds with path(a,Y) and in principle the same procedure should

be applied again. However, since path(a,Y) is a variant of the initially encountered

subgoal path(a,Z), no new tree is created, and instead, the execution of node 1

suspends. This happens because currently the subgoal has no answers stored in the

table space. Therefore, the only resolution applicable is to node 0 where the second

path/2 clause is tried, thus leading to a first answer for path(a,Z). After exhausting

all alternatives in node 2, the computation is resumed at node 1 with the newly found

answer, which in turn leads to a first call to subgoal path(b,Z). The evaluation creates

a new tree rooted by path(b,Z), inserts a new entry in the table space for it, and

proceeds as for the latter case. The process continues, giving rise to one more tree,

for subgoal path(c,Z), and to more answers, one for path(a,Z) and the other for

path(b,Z).

By avoiding the recomputation of p(a,Y), p(b,Y) and p(c,Y) in nodes 1, 5 and

11, respectively, tabling ensures the termination of the given query. Besides avoiding

infinite loops, tabling also reduces the number of steps we need to perform and may

reduce the complexity of a program. This later property is better clarified next.

Consider, for example, the well-known Fibonacci program as defined in Figure 2.4.

The figure presents, by using a tree structure, the number of calls to the fib/2

predicate given the query ?- fib(5,Z), for the cases where SLD or tabled evaluation

are applied. As predicate fib/2 is declared as tabled, each different subgoal call is

5A call is a variant of another call if the two calls are the same up to variable renaming.
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:- table fib/2.

fib(0,1).
fib(1,1).
fib(N,Z) :- P is N - 1,
            Q is N - 2,
            fib(P,X),
            fib(Q,Y),
            Z is X + Y.

      ?- fib(5,Z).    

fib(5)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)

fib(2)

fib(0)fib(1)

fib(4)

fib(2)

fib(0)fib(1)

fib(3)

fib(1)

fib(4)

fib(2)

fib(5)

fib(3)

SLD evaluation Tabled
evaluation

Figure 2.4: Fibonacci complexity for SLD and tabled evaluation.

only computed once, as for repeated calls, the corresponding answer is already stored

in the table space. To compute fib(n) for some integer n, SLD will search a tree whose

size is exponential in n. Because tabling remembers subcomputations, the number of

resolution steps for this example is linear in n.

2.3.2 SLG Resolution for Definite Programs

Restricted to the class of definite programs, that is, to the class of programs not includ-

ing negation, SLG resolution reduces to SLD with tabling, and does not significantly

differ from the other tabling evaluation methods previously referred. Remember that

the aim of this thesis is to address the problem of or-parallel tabling, focusing on

traditional tabling, that is, tabling not extended to include negation.

In the following, we offer a brief review of SLG resolution for definite programs using

the simplified definitions from Sagonas and Swift [88]. For a more detailed discussion,

the reader is referred to Chen and Warren [21].

Definition 2.1 (SLG System) An SLG system is a forest of SLG trees, along
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with an associated table. Root nodes of SLG trees are subgoals of tabled predicates.

Non-root nodes either have the form fail or

Answer Template : − Goal List

The Answer Template is a positive literal, and Goal List is a possibly empty sequence

of subgoals. The table is a set of ordered triples of the form

〈Subgoal, Answer Set, State〉

where the first element is a subgoal, the second a set of positive literals, and the third

either the constant complete or incomplete. �

Definition 2.2 (SLG Evaluation) Given a tabled program P , an SLG evaluation θ

for a subgoal G of a tabled predicate is a sequence of systems S0, S1, ..., Sn such that:

• S0 is the forest consisting of a single SLG tree rooted by G and the table

{〈G, ∅, incomplete〉};

• for each finite ordinal k, Sk+1 is obtained from Sk by an application of one of

the operations in definition 2.3.

If no operation is applicable to Sn, Sn is called a final system of θ. �

In a SLG system, the nodes of an SLG tree are often described by its status. The root

node of an SLG tree has status generator. Non-root nodes may have status answer,

if its Goal List is empty; interior, if its selected subgoal is non-tabled; or consumer if

its selected subgoal is tabled. Using this terminology, the SLG operations for definite

programs are defined as follows.

Definition 2.3 (SLG Operations for Definite Programs) Given a tabled pro-

gram P and a system Sk of an SLG evaluation θ, Sk+1 may be produced by one

of the following operations.

New Tabled Subgoal Call. Given a consumer node N with selected subgoal S,

where S is not present in the table of Sk, create a new SLG tree with root S and

add the entry 〈S, ∅, incomplete〉 to the table.
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Program Clause Resolution. Let N be a node in Sk that is either a generator node

S or an interior node of the form

Answer Template : − S, Goals.

Let

C = Head : − Body

be a program clause such that Head unifies with S with substitution θ and

assume that C has not been used for resolution at node N . Then

• if N is a generator node, produce a child of N

(S : − Body)θ.

• if N is an interior node, produce a child of N

(Answer Template : − Body, Goals)θ.

Answer Resolution. Let N be a consumer node

Answer Template : − S, Goals.

Let A be an answer for S in Sk and assume that A has not been used for

resolution against N . Then produce a child of N

(Answer Template : − Goals)θ.

where θ is the substitution unifying S and A.

New Answer. Let

A : −

be a node in a tree rooted by a subgoal S, such that A is not an answer in the

table entry for S in Sk. Then add A to the set of answers for S in the table.

Completion. If C is a set of subgoals that is completely evaluated (according to

definition 2.5), remove all trees whose root is a subgoal in C, and change the

state of all table entries for subgoals in C from incomplete to complete. �
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Definition 2.4 (Subgoal Dependency Graph) Let Sk be an SLG system and F

its SLG forest. We say that a tabled subgoal S directly depends on a tabled subgoal

S ′ if and only if the tree rooted by S contains a consumer node whose selected subgoal

is S ′.

The Subgoal Dependency Graph of Sk

SDG(Sk) = (V, E)

is a directed graph in which V is the set of root goals for trees in F and (S, S ′) belongs

to E if and only if subgoal S directly depends on subgoal S ′. �

Since the subgoal dependency graph of a given system is a directed graph, it can be

partitioned into Strongly Connected Components, or SCCs. As an artifact of the SLG-

WAM, it can happen that the stack segments for a SCC S remain within the stack

segments for another SCC S ′. In such cases, S cannot be recovered in advance when

completed, and thus, its recovering is delayed until S ′ also completes. To approximate

SCCs in SLG-WAM’s stack-based implementation of SLG resolution, Sagonas [87]

denotes a set of SCCs that can be recovered together as an Approximate SCC or

ASCC. An ASCC is termed independent if it depends on no other ASCC which it

does not contain. This terminology leads to the following operational definition of

when a set of subgoals has been completely evaluated.

Definition 2.5 (Completely Evaluated Set of Subgoals) Given an SLG system

Sk, a set C of subgoals is completely evaluated if and only if either of the following

conditions is satisfied:

1. C is an independent ASCC of SDG(Sk) and for each subgoal S in C all applicable

SLG operations other than Completion have been performed for nodes in the

tree rooted by S according to definition 2.3.

2. C = {S} and S contains an answer identical to itself in the table entry for S.

We say that a subgoal S is completely evaluated if and only if C is a completely

evaluated set of subgoals and S belongs to C. �
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For simplicity, throughout the thesis we will not distinguish between SCCs and ASCCs

and we will use the SCC notation to refer the approximation resulting from the

stack organization. The correct distinction between both notations is necessary when

determining negative loops among subgoals in programs with negation, which is not

our case.

2.3.3 SLG-WAM: an Abstract Machine for SLG Resolution

SLG resolution has been firstly implemented in the XSB system by extending the

WAM into the SLG-WAM, an abstract machine designed to fully integrate Prolog

SLD code and tabling SLG code with minimal overhead. The SLG-WAM extends

the WAM layout both to include a representation of tables, and to operate over a

forest of SLG trees rather than over a single SLD tree. Performance evaluation of the

SLG-WAM, as reported in [89, 100], showed that it can compute in-memory recursive

queries an order of magnitude faster than current deductive databases systems.

The data structures, data areas, instructions set, and algorithms used by the SLG-

WAM for definite programs are described in [99], while extensions to handle normal

logic programs according to the well-founded semantics are discussed in [87, 90, 88].

Here, we briefly summarize the main extensions made by the SLG-WAM to the WAM

in order to support SLG resolution for definite programs.

1. The SLG-WAM includes a proper space for tables, and the table access methods

are tightly integrated with WAM data structures.

2. The SLG-WAM is able to suspend computations when it encounters consumer

subgoals and to resume them at a later point to consume newly found answers.

The need for suspending and resuming requires efficient mechanisms to restore an

environment to the same computational state as it was before being suspended.

3. Since a computation can be resumed in suspended consumer nodes, space for

these nodes cannot be reclaimed upon backtracking, but only when the SCC

to which they belong is completed. A mechanism was developed to detect

completion of SCCs in order to allow early space reclamation.

4. The decision of applying a certain SLG operation to continue an evaluation gives

rise to possible alternative scheduling strategies. Such alternatives can influence
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differently the architecture and performance of the abstract machine. Originally,

SLG-WAM had a simple scheduling mechanism, named single stack scheduling,

which formed the basis of the XSB system as described in [99]. A detailed

description of the operational semantics of single stack scheduling can be found

in [98]. Meanwhile, practice showed that single stack scheduling was expensive

in terms of trailing and choice point creation, and thus, Freire and colleagues

proposed two more sophisticated scheduling strategies, named batched scheduling

and local scheduling [41], to overcome these problems. Since version 1.5, XSB

had used batched scheduling as the default strategy, although the last version

of XSB (version 2.4 released in July 2001) has adopted local scheduling as the

default. Another scheduling strategy that has been evaluated in SLG-WAM was

breadth-first scheduling [42]. Breadth-first scheduling was proposed by Freire [39]

to address the inability of resolution-based systems to deal with applications that

require massive amounts of data residing in external databases.

5. The preceding features are implemented by using WAM-like instructions.

We return to these topics in section 4.1 where a complete description of the funda-

mental aspects underlying the SLG-WAM abstract machine is given.

2.3.4 Other Related Implementations

More recently, other related mechanisms for tabling have been implemented. Ramesh

and Chen [75] implemented a technique based on program transformation to incor-

porate tabled evaluation into existing Prolog systems. Their approach uses the C

language interface, available in most Prolog systems, to implement external tabling

primitives that provide direct control over the search strategies for a transformed

program. A tabled logic program is transformed to include the tabling primitives

through source level transformations, and only the resulting transformed program is

compiled. The mechanism is independent from the Prolog’s engine which makes it

easily portable to any Prolog system with a C language interface.

Demoen and Sagonas proposed a copying approach to deal with tabled evaluations

and implemented two different models, the CAT [36] and the CHAT [37]. The main

idea of the CAT implementation is that it replaces SLG-WAM’s freezing of the stacks
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by copying the state of suspended computations to a proper separate stack area.

The CHAT implementation improves the CAT design by combining ideas from the

SLG-WAM with those from the CAT. It avoids copying all the execution stacks that

represent the state of a suspended computation by introducing a technique for freezing

stacks without using freeze registers. We discuss CAT and CHAT in more detail in

subsection 5.2.4.

Zhouet al. [115] and Guo and Gupta [48] implemented tabling mechanisms that work

on a single SLD tree without requiring suspensions/resumptions of computations and

mechanisms to preserve the state of suspended computations. Zhou et al. implements

a linear tabling mechanism whose main idea is to let variant calls execute from the

remaining clauses of the former first call. The main idea is as follows: when there are

answers available in the table, the call consumes the answers; otherwise, it uses the

predicate clauses to produce answers. Meanwhile, if a call that is a variant of some

former call occurs, it takes the remaining clauses from the former call and tries to

produce new answers by using them. The variant call is then repeatedly re-executed,

until all the available answers and clauses have been exhausted, that is, until a fixpoint

is reached. The Guo and Gupta approach [48] is similar. It is based on dynamic

reordering of alternatives with variant calls and it uses the alternatives leading to

variant calls to repeatedly recompute them until a fixpoint is reached. This approach

is discussed in more detail in subsection 5.1.

None of these approaches showed to outperform SLG-WAM performance. The only

candidate that actually competes against SLG-WAM is CHAT [37], that showed

comparable (and for some programs better) execution time performance to those

of SLG-WAM. However, as will be discussed in subsection 5.2.4 we believe that,

considering the further integration with or-parallelism, SLG-WAM is still the better

choice for sequential tabling.

2.4 Chapter Summary

In order to make this thesis as self-contained as possible, we presented in this chapter

a short survey on logic programming, parallel logic programming and tabling.

We gave a brief description of logic programs, the Prolog language and its implemen-
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tation in the WAM. We discussed parallelism and focused on or-parallelism. We gave

emphasis to the problems that must be addressed when exploiting or-parallelism and

introduced the environment copying and binding arrays proposals to solve those prob-

lems. We motivated for the advantages of tabling in a logic programming framework,

and briefly reviewed the underlying features of SLG resolution and SLG-WAM. At the

end, we presented other related implementations of tabling.



Chapter 3

YapOr: The Or-Parallel Engine

This chapter describes the design and implementation of the YapOr engine. YapOr is

an or-parallel Prolog system that extends the Yap Prolog system to support implicit

or-parallelism in Prolog programs. YapOr is based on the environment copying model,

as first implemented in the Muse system [6]. The YapOr engine is the basis for the

or-parallel component of our combined or-parallel tabling engine.

We start by introducing in further detail the general concepts of the environment copy-

ing model, and then we describe the major implementation issues that we addressed

in order to extend the Yap Prolog system to support the model.

3.1 The Environment Copying Model

The environment copying model is based on the multi-sequential approach [2, 111].

In this approach, a set of workers are expected to spend most of their computational

time performing reductions as sequential engines. When a worker fully exploits its set

of available alternatives, it starts looking for unexploited work from fellow workers.

Which workers it asks for work and which work it receives is up to the scheduler to

decide.

59
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3.1.1 Basic Execution Model

In more detail, a set of workers performs parallel execution of a program. Initially,

all but one worker are idle, that is, looking for their first work assignment. A single

worker, say P, starts executing the initial query as a normal Prolog engine. Whenever

P executes a goal that matches several clauses, it creates a private choice point in its

local stack to save the state of the computation at predicate entry. This choice point

marks the presence of potential work to be performed in parallel.

As soon as an idle worker finds that there is available work in the system, it will

request that work directly from the worker owning it. Consider, for example, that

worker Q requests work from worker P. If P has unexploited work, it will share its

private choice points with Q. To do so, worker P must turn the choice points public

first. In Muse this operation is implemented by allocating special data structures,

named or-frames, in a shared space to permit synchronized access to the newly shared

choice points. After concluding this operation, worker P will hand Q a pointer to the

bottom shared choice point.

The next step is taken by worker Q. In order for Q to take a new task, it must copy

the computation state from worker P up to the bottom shared choice point. After

copying, worker Q must synchronize its status with the newly copied computation

state. This is done first by simulating a failure to the bottom choice point, and then

by backtracking to the next available alternative within that branch. Worker Q will

then start its execution as a normal sequential Prolog engine would.

At some point, a worker will fully explore its subtree and will become idle again. At

this point, it will return into the scheduler loop and start looking for busy1 workers

with available work in order to request unexploited work from them. It thus enters

the behavior just described for Q. Eventually, the execution tree will be fully explored

and execution will terminate with all workers idle.

1A worker is said to be busy when it is exploiting alternatives. A busy worker is a potential source

of unexploited alternatives.
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3.1.2 Incremental Copying

The sharing work operation poses a major overhead to the system as it involves copying

the full execution stacks between workers. Hence, an incremental copying strategy [6]

has been devised to minimize this source of overhead.

The main goal of sharing work is to position the workers involved in the operation at

the same node of the search tree, leaving them with the same computational state.

Incremental copying achieves this goal by allowing the receiving worker to keep the

part of its state that is consistent with that of the giving worker. Only the differences

between them are copied.

This strategy can be better understood through Figures 3.1 and 3.2. Suppose that

worker Q does not find any available work in its branch2 (nodes N1, N2 and N5),

and that there is a worker P with unexploited alternatives (in nodes N3 and N4). Q

asks P for sharing and backtracks up to the lowest node (N2) that is common to P,

therefore becoming partially consistent with part of P.

N1

N2

N5 N3

N4

Q

P

ALT 1

ALT 2

ALT 3

ALT 1

ALT 2

ALT 3

Public Nodes 

Private Nodes

Node without
alternatives

Node with
alternatives

Figure 3.1: Backtracking to the bottom common node.

If worker P decides to share its private nodes (N3 and N4) with Q, then worker Q

only has to copy the stacks differences between both. These differences are calculated

through the register information stored in the common choice point found by Q and

2When we say a worker branch, we mean the current set of nodes of that worker.
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through the top registers of the local, heap and trail stacks of P. In Figure 3.2 the

stack segments representing the differences to be copied are colored gray. Note that to

fully synchronize the computational state between the two workers, worker Q further

needs to install from P the conditional bindings made to variables belonging to the

maintained segments (this is the case of binding VAL 1 made to variable VAR 1). The

references to such variables are obtained through consulting the trail entries of the

copied trail segment.

N1

N2

N3

N4

Q

P

VAR 1

VAR 2

VAR 1 <- VAL 1

VAR 2 <- VAL 2

Incremental
Copying

N1
Choice
Point

N2
Choice
Point

N3
Choice
Point

N4
Choice
Point

Common Stacks
with Q

Local Stack Heap Stack Trail Stack

Worker P Local Space

VAR 1

VAR 2

VAL 1

VAL 2

Stack
segments

to be copied

Figure 3.2: Incremental Copying.

3.2 The Muse Approach for Scheduling Work

We can divide the execution time of a worker in two modes: scheduling mode and

engine mode. A worker enters in scheduling mode whenever it runs out of work and

starts searching for available work. As soon as it gets a new piece of work, it enters in

engine mode. In this mode, a worker runs like a standard Prolog engine.

The scheduler is the system component that is responsible for distributing the available
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work between the various workers. The scheduler must arrange the workers in the

search tree in such a way that the total parallel execution time will be the least possible.

The scheduler must also maintain the correctness of sequential Prolog semantics. To

obtain best performance the scheduler must minimize the scheduling overheads present

in operations such as sharing nodes, copying segments of the stacks, backtracking,

restoring and undoing previous variable bindings.

3.2.1 Scheduler Strategies

Ali and Karlsson [5] proposed the following scheduler strategies for the Muse imple-

mentation:

• When a busy worker shares work, it must share all the private nodes it has at

that moment. This will maximize the amount of shared work and possibly avoid

that the requesting worker runs out of work too early.

• The scheduler should select the busy workers that are nearest to the idle worker,

and from these select the one that holds the highest work load. Being near

corresponds to the closest position in the search tree. The work load is a measure

of the amount of unexplored private alternatives. This strategy minimizes the

stacks parts to be copied and maximizes the amount of shared work.

• To guarantee the correctness of a sharing operation, it is necessary that the idle

worker is positioned at a node that belongs to the branch on which the busy

worker is working. To minimize overheads, the idle worker backtracks to the

bottommost common node before requesting work. This reduces the time spent

by the busy worker in the sharing operation.

• If at a certain point in time the scheduler does not find any available work in

the system, it moves the idle worker to a better position in the search tree, if

there is one. A better position corresponds to a position where the overheads of

a future sharing operation should be lower.

We can resume the scheduler algorithm as follows: when a worker runs out of work

it searches for the nearest unexploited alternative in its branch. If there is no such

alternative, it selects a busy worker with excess of work load to share work with,



64 CHAPTER 3. YAPOR: THE OR-PARALLEL ENGINE

according to the strategies above. If there is no such worker, the idle worker tries to

move to a better position in the search tree.

3.2.2 Searching for Busy Workers

There are two alternative searches for busy workers in the execution tree: search within

the current subtree or search outside the current subtree3. Idle workers always start

to search within the current subtree, and only if they do not find any busy worker

there, will they search outside. The advantages of selecting a busy worker within the

current subtree instead of outside are mainly two. One is that the idle worker can

immediately make the sharing request, as its current node is already common to the

busy worker. This avoids backtracking in the tree and undoing variable bindings. The

second advantage is that the idle worker will maintain its relative position in the search

tree. This maximizes the portion of the stacks that are common to both workers, as the

current stacks of the idle worker are fully common with those of the busy worker, which

should minimize the stack segments to be copied. Note that this scheduling strategy

corresponds to the bottommost policy of dispatching work for or-parallel execution.

Figures 3.3 and 3.4 present different situations in order to better illustrate the scheduler

strategies to select busy workers positioned respectively within and outside the idle

worker current subtree. In these figures, Q represents the idle worker, P the busy

worker, and the different Qi’s other idle workers.

The algorithm to select a busy worker within the current subtree of an idle worker

Q can be resumed as follows. Initially, the scheduler determines the set SB of busy

workers within the current subtree of Q. Then, it removes from SB each worker P

whose nearest idle worker in P’s branch is not Q. This guarantees that SB remains

only with busy workers whose nearest idle worker is Q. Finally, from the remaining

workers in SB, the scheduler selects the one with the highest work load.

Applying this algorithm to the four situations presented in Figure 3.3, Q can request

work from P in all situations except (b). In situation (a) despite Q1 being in a deeper

position than Q, Q1 is not in P’s branch, and thus Q is the nearest idle worker to

P. However, this will stop being the case if Q1 backtracks to the previous node. We

3When we say a worker subtree, we mean the subtree rooted by the current node of that worker.
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Q can not request
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Figure 3.3: Requesting work from workers within the current subtree.

allow Q to request work from P because in a more complex case it will be difficult to

predict what will be the behavior of the potentially idle workers in the same situation

as Q1. In situation (b), Q2 is closer to the busy worker P than Q, and thus, Q2 is the

one that should request work from P. In situation (c), Q is the nearest worker to P

and in situation (d), Q and Q4 are equally distant from P. Thus, both workers can

request work from P. As a worker can only answer a request at a time, the first one

making the request is the one that is served.

As mentioned before, an idle worker Q searches outside its current subtree only if it

cannot request work within. To select busy workers outside, the scheduler verifies first

if there are other idle workers positioned above4 in Q’s branch. If this is the case, it

immediately aborts the search. This condition benefits the idle workers in upper nodes,

because they are closer to the busy workers positioned outside the current subtree of

Q, and hence they should be the ones requesting work.

4Throughout the thesis, it is assumed that root nodes are always the topmost nodes of the search

tree and that leaf nodes are always the bottommost. Therefore, and considering a node N and a

node M positioned between N and the root node of the search tree, the following terminology can

be correctly used: M is above N (N is below M); M is in a upper position than N (N is in a lower

position than M); or M is older than N (N is younger than M).
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When the previous condition fails, then the scheduler determines the set SB of busy

workers outside the current subtree of Q. Next, from SB it removes each worker P

that has idle workers in its branch. From the remaining workers in SB, the scheduler

selects the one with the highest work load.

P

Q1

P

Q2

P
(a)

Q can not request
work from P

(c)
Q can request
work from P

(b)
Q can not request

work from P

Q

Q

Q

Q3

Figure 3.4: Requesting work from workers outside the current subtree.

Figure 3.4 presents three different situations when worker Q is searching for busy

workers outside its current subtree. It can request work from P only in situation

(c). In situation (a), Q has Q1 above in its branch and in situation (b), Q2 is in

P’s branch. In situation (c) none of the previous circumstances hold, and both idle

workers, Q and Q3, can request work from P.

3.2.3 Distributing Idle Workers

The third step of the main scheduler algorithm says that when the scheduler neither

finds unexplored alternatives nor busy workers, it tries to move the idle worker to

a better position in the search tree. This scheduling strategy aims to distribute the

idle workers in such a way as that the probability of finding, as soon as possible,

busy workers with excess of work within the corresponding idle workers’ subtrees is

substantially increased.
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An idle worker Q moves to a better position in one of the following two cases: (i)

there are busy workers outside Q’s subtree and Q is not within the subtree of any

other idle worker; or (ii) all workers within Q’s subtree are idle. In the first situation,

Q backtracks until it reaches the first node that is above all the busy workers that

are not within the subtree of any other idle worker. In the second one, Q backtracks

until it reaches a node where there is at least one busy worker. Figure 3.5 shows an

example that illustrates this scheme. The left figure shows the initial workers’ positions

and the right figure shows their positions after moving. From the two situations that

induce an idle worker to move to a better position, worker Q1 fits the first one, Q2

the second, and Q3 none. Q1 moves up because it is a topmost idle worker that has a

busy worker, P1, outside its subtree. Q2 moves up because there is no available work

within its subtree. On the other hand, Q3 maintains its relative position because it

has Q1 idle above and P3 busy below.

P3

Q1

(a)
Initial situation

Q2 Q3

P1

P2

P3
(b)

After moving

Q1

Q3

P1

P2

Q2

Figure 3.5: Scheduling strategies to move idle workers to better positions.

Our goal is for idle workers to move closest to busy workers so that sharing overheads

decrease. The first situation moves idle workers to cover all possible sources of work.

This is done by only moving up topmost idle workers, therefore preventing other idle

workers of losing their positions. The second situation releases idle workers from closed

work positions and moves them to parts of the tree that still have work.
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3.3 Extending Yap to Support Or-Parallelism

The extensions required to implement support for or-parallelism in Yap can be divided

in three major areas: (i) those related to the environment copying model; (ii) those

related to the scheduling policy; and (iii) those related to scheduling support.

To implement environment copying major changes were required on the memory

organization and its management. Other extensions were also introduced to support

the process of sharing work. Regarding the scheduling policy, YapOr implements the

Muse approach described in the previous section. To support this approach, YapOr

introduces changes in choice point manipulation and in code compilation. Further, it

introduces new mechanisms to synchronize workers when exploiting shared branches

and to compute work load. We next describe those extensions.

3.3.1 Memory Organization

Following the original WAM definition [110], the Yap Prolog system includes four main

memory areas: code area, heap, local stack and trail. The local stack contains both

environment frames and choice points. Yap also includes an auxiliary area used to

support some internal operations.

The YapOr memory is divided into two major addressing spaces: the global space and

a collection of local spaces, as illustrated in Figure 3.6. The global space is further

divided in two major areas. One contains the code area inherited from Yap and the

other includes all the data structures necessary to support parallelism. Each local

space represents one system worker and it contains the four WAM execution stacks

inherited from Yap: heap, local, trail, and auxiliary stack. The relative position of the

memory areas presented in the figure does not necessary imply an identical memory

mapping implementation.

In order to efficiently meet the requirements of incremental copy, we follow the prin-

ciples used in Muse to map the set of memory local spaces. The starting worker, that

is worker0, asks for shared memory in the system’s initialization phase. Afterwards,

the remaining workers are created, through the use of the fork 5 function [97], and

inherit the previously mapped addressing space. Then, each new worker rotates the

5The fork function belongs to the UNIX libraries and it allows to create child processes equal to
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Figure 3.6: Memory organization in YapOr.

local spaces, in such a way that all workers will see their own spaces at the same

virtual memory addresses. Figure 3.7 helps to understand this remapping scheme.

It considers 3 workers and it illustrates the resulting mapping address view of each

worker after rotating the inherited local spaces. It can been seen that each worker

accesses its own local space starting from the Addr0 virtual memory address.

This mapping scheme allows for efficient memory copying operations during incre-

mental copying. To copy a stack segment between two workers, we simply copy

directly from one worker space to the relative virtual memory address in the other

worker’s space. Suppose, for instance, that worker2 wants to copy to worker1 stacks

a segment of its stacks that starts at address Addrx (from worker2’s view). Using

the mappings from Figure 3.7 the target memory address for this copying operation is

Addrx+(Addr2−Addr0) (from worker2’s view). The major advantage of this scheme

is that no reallocation of address values in the copied segments is necessary.

In YapOr, this memory scheme is implemented through two different and alterna-

tive UNIX shared memory management functionalities, the mmap and shmget func-

tions [97]. These functions let us map shared memory segments at given addresses,

and unmap and remap them later at new addresses.

the caller parent.
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Figure 3.7: Remapping the local spaces.

3.3.2 Choice Points and Or-Frames

The bottommost policy of dispatching work for parallel execution requires that a

busy worker releases all of its current private choice points when sharing work. This

maximizes the amount of shared work with the requesting worker and induces coarse

grain tasks which has proven to be very successful within environment copying.

In order to correctly exploit a shared branch, we need to synchronize workers in

such a way that we avoid executing twice the same alternative, as different workers

referencing a choice point might pick the same alternative for work. To do so, the

worker making a choice point public adds an or-frame data structure to the shared

space per public choice point. The or-frames form a tree that represents the public

search tree. Figure 3.8 illustrates how a private choice point is made public.

From the figure we can see the extended structure of a choice point. The first six fields

are inherited from Yap, while the last two were introduced in YapOr. The inherited
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Figure 3.8: Sharing a choice point.

CP ALT, CP CP, CP TR, CP H, CP B and CP ENV choice point fields store, respectively,

the next unexploited alternative; success continuation program counter; top of trail at

choice point creation; top of global stack at choice point creation; failure continuation

choice point; and current environment [1]. The CP OR FR field stores the pointer

to the correspondent or-frame when the choice point is shared. Otherwise, it not

used. The CP LUB field stores the local untried branches and reflects the number

of private unexplored alternatives above. It is used for computing worker load (see

subsection 3.3.3).

As an optimization, we can reduce the two introduced new fields to just one. While

the choice point is private, the field should act like the CP LUB one, storing the local

untried branches. When it is made public it can act like the CP OR FR field because the

information in CP LUB becomes unnecessary, as all unexplored alternatives in upper

choice points have been made public.

Figure 3.8 presents the choice point data structure before and after a sharing operation.

Sharing a choice point involves updating the CP ALT field to point at the getwork

pseudo-instruction (see subsection 3.3.5) and storing the pointer to a newly allocated

or-frame in the CP OR FR field.

We next briefly introduce the functionality of each or-frame data field and describe

how they are initialized. The OrFr lock field supports a busy-wait locking mutex

mechanism that guarantees atomic updates to the or-frame data. It is initially set to
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unlocked. The OrFr alt field stores the pointer to the next available alternative as

previously stored in the CP ALT choice point field. OrFr members is a bitmap that stores

the set of workers for which their current branch contains the choice point. OrFr node

is a back pointer to the correspondent choice point. OrFr nearest livenode is a

pointer to the or-frame that corresponds to the nearest choice point above with

unexploited alternatives. Hence, if a worker reaches a public choice point with a

NULL pointer in the OrFr nearest livenode field, it knows it is out of work. Last,

the OrFr next field is a pointer to the parent or-frame on the current branch.

To delimit the private from the public region, each worker holds a TOP OR FR register

that points to the or-frame corresponding to the bottom shared choice point on the

current branch.

3.3.3 Worker Load

Each worker maintains a local register, LOCAL load, that estimates the number of

private unexploited alternatives. The LOCAL load register helps the scheduler when

searching for a busy worker to request work from. There is a compromise thus between

its correct value and the efficiency of the parallel process. Our implementation updates

the LOCAL load register only when creating a new choice point. With this scheme it

is possible to maintain a very good approximation of its correct value avoiding regular

actualizations, as we show next.

In subsection 3.3.2 we said that the CP LUB choice point field is used to compute the

worker’s load. We also said that the CP LUB field stores the number of local untried

branches in the choice points above. This number does not include branches starting

at the current choice point in order to avoid regular actualizations when backtracking

occurs. Computing LOCAL load is thus achieved by adding the value of CP LUB with

the number of the alternative branches in the newly created choice point.

The number of unexploited alternatives in a choice point is found by consulting

the or arg argument of the next available alternative. The or arg argument holds

the number of available alternatives starting from the current alternative, and it is

generated by the compiler. Consider, for instance, a predicate with three alternative

clauses. To represent the three alternatives, the first clause is compiled with a value

of three in the or arg argument. The second clause is compiled with a value of two
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to represent the two remaining clauses, and the last clause is always compiled with a

value of one.

A worker has shareable work if the value in the LOCAL load register is positive.

Nevertheless, a great number of Prolog programs contain predicates that generate

relatively small tasks. To attain good performance it is fundamental to avoid sharing

such fine grained work. In YapOr, the scheduler only considers that a worker has

shareable work when its load register is greater than a certain threshold value (the

threshold value is dynamically configurable in the system’s initialization phase). This

introduces some delay in propagating work, avoiding eager sharing, therefore allowing

a worker to build up a reserve of local work which may increase task granularity.

3.3.4 Sharing Work Process

The process of sharing work makes parallel execution of goals possible. This process

takes place when an idle worker Q makes a sharing request to a busy worker P and

receives a positive answer. P can refuse a sharing request if (i) Q is not above P, or

(ii) if P has a load value above the threshold value and the OrFr nearest livenode

of its current top shared or-frame is NULL. The latter case happens when P does not

have any unexploited alternatives except the one it is executing. When Q receives a

negative answer it returns to scheduler mode.

Sharing is implemented by two model dependent functions: p share work(), for the

busy worker, and q share work(), for the idle one. In copying, the sharing process

can be divided in four main steps. The initial step is where the auxiliary variables are

initialized and the limits of stack segments to be copied are computed. The sharing

step is where the private choice points are turned into public ones. The copy step

is where the computed segments are copied from the busy worker stacks to the idle

worker ones. Finally, the installation step is where the bindings trailed in the copied

trail segment that refer to conditional variables stored in the maintained segments are

copied to the idle worker stacks. To minimize overheads, both workers cooperate in

the execution of the four steps. The sharing work algorithm is detailed in Figure 3.9.

Initially, the idle worker Q waits for a sharing signal while the busy worker P computes

the stacks to copy. After that, P prepares its private nodes for sharing whilst Q

performs incremental copying. Q copies the stacks from P in the following order:
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p_share_work() Signals q_share_work()
________________________ ___________________ ________________________
. .
Compute stacks to copy Wait sharing signal
. -----sharing----> .
Share private nodes Copy trail ?
. Copy heap ?
. Wait nodes_shared signal
. --nodes_shared--> .
Help Q in copy ? Copy local stack ?
. <---copy_done---- .
. ----copy_done---> .
Wait copy_done signal Wait copy_done signal
Back to Prolog execution Install bindings
. <-----ready------ .
Release shared node ? Fail to top shared node
Wait ready signal .
. .

Figure 3.9: The sharing work process.

trail, heap and local stack. The local stack can only be copied after P finishes the

sharing step. P may help in the copying process to speed it up. It copies the stacks

to Q but in a reverse order. This scheme has proved to be efficient as it avoids some

useless variables checks and locks. The two workers then synchronize to determine the

end of copying. At last, P goes back to Prolog execution and Q installs the bindings

referring variables in the maintained part of the stacks and restarts a new task from

the recently installed work. To avoid possible undoing of bindings, P cannot release a

shared node from its stacks until Q does not complete the installation step.

3.3.5 New Pseudo-Instructions

YapOr introduces four new instructions over Yap, namely, getwork first time,

getwork, getwork sequential, and synch. These instructions are never generated

by the compiler. The former three are introduced according to the progress of parallel

execution, while the latter is called before a side effect instruction gets executed. Next,

we briefly describe how each instruction fits the YapOr execution model.

Whenever the search tree for the top level goal is fully exploited, all workers, except

worker0, execute the getwork first time instruction. This instruction blocks the

workers. They will wait for a signal from worker0, that indicates the beginning of a

new query goal. worker0 is further responsible to present the answers encountered for
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the last exploited query and to control the interface with the user until he asks for a

new query goal.

As mentioned in the previous subsection, the CP ALT choice point fields are updated to

point to the getwork instruction when they are being shared. This sharing procedure

forces the future execution of the getwork instruction every time a worker backtracks

to a shared choice point. The execution of this instruction allows the workers sharing

the correspondent or-frame synchronized access to unexploited alternatives, guaran-

teeing that every alternative is exploited only once.

Sometimes it may be advantageous to declare a predicate as sequential [58] to force

the scheduler to traverse its alternatives in a left to right fashion. A :- sequential

pred/n declaration can be useful when the programmer wants to guarantee that

only after an alternative is fully exploited the next one should be taken. Sequential

predicates are implemented in YapOr by using the getwork sequential instruction

instead of a getwork instruction when sharing a choice point for a predicate declared

as sequential. This variant of the getwork instruction ensures that the alternatives

are taken one at a time according to its left to right order. Note that the subtree

corresponding to each alternative can still be exploited in parallel.

A major problem when implementing parallel Prolog systems is the support for cuts

and side effects. For cuts, YapOr currently implements a scheme based on the strate-

gies described in [8] that prunes useless work as early as possible. A complete de-

scription of this scheme can be found is section 7.2. For side effects, the current

implementation of YapOr is very simple. As soon as a worker reaches the execution

of a side effect, it enters the synch instruction. The synch instruction implements a

delaying procedure that waits until the worker’s current branch becomes the leftmost

one in the search tree. Only when the worker becomes leftmost synch returns and the

side effect execution proceeds. If the worker, while waiting, is pruned by a left branch

then the side effect is never executed. This ensures that side effects are executed in

the same way and in the same order as in sequential execution.
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3.4 Chapter Summary

This chapter introduced the YapOr or-parallel engine. YapOr extends the Yap Prolog

system to support implicit or-parallelism in Prolog programs. YapOr’s implementation

is largely based on the Muse approach for or-parallelism. We presented the environ-

ment copying model, as first implemented in the Muse system, and described the Muse

strategies to scheduling work for or-parallel execution.

Next, we described the main issues in extending the Yap Prolog system to support

or-parallelism. These included the extensions related with the environment copying

model, such as, memory organization and work sharing; those related with the schedul-

ing policy and the scheduling strategies; and those related with scheduling support,

such as, code compilation, choice point manipulation, and work load.



Chapter 4

YapTab: The Sequential Tabling

Engine

YapTab is a sequential tabling engine that extends the Yap Prolog system to support

tabling. YapTab is based on the SLG-WAM engine [87, 90, 88] as first implemented

in the XSB Prolog system. YapTab is also the base tabling engine for the combined

or-parallel tabling engine that we address later.

First, we briefly describe the fundamental aspects of the SLG-WAM abstract machine,

and then we detail the YapTab implementation. This includes discussing the moti-

vation and major contributions of the YapTab design, and presenting the main data

areas, data structures and algorithms to extend the Yap Prolog system to support

tabling.

4.1 The SLG-WAM Abstract Machine

Remember that the scope of this thesis is to address the problem of combining or-

parallelism and tabling for logic programs not including negation. Hence, we will only

consider those aspects of the SLG-WAM abstract machine that are relevant for the

support of variant-based tabling of definite programs.

77
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4.1.1 Basic Tabling Definitions

Tabling is about storing and reusing intermediate answers for goals. Whenever a tabled

subgoal S is called for the first time, an entry for S is allocated in the table space.

This entry will collect all the answers generated for S. Repeated calls to variants of

S are resolved by consuming the answers already stored in the table. Meanwhile, as

new answers are generated for S, they are inserted into the table and returned to all

variant subgoals. Within this model, the nodes in the search space are classified as

follows:

Generator nodes: nodes corresponding to first calls to tabled subgoals. They use

program clause resolution to produce answers.

Consumer nodes: nodes corresponding to variant calls to tabled subgoals. They

consume answers from the table space.

Interior nodes: nodes corresponding to non-tabled predicates. These nodes are

evaluated by standard SLD resolution.

For definite programs, tabling based evaluation has four main types of operations:

Tabled Subgoal Call: looks up if the subgoal is in the table and if not, inserts it

and allocates a new generator node. Otherwise, allocates a consumer node and

starts consuming the available answers.

New Answer: verifies whether a newly generated answer is already in the table, and

if not, inserts it.

Answer Resolution: consumes the next found answer, if any.

Completion: determines whether a SCC is completely evaluated, and if not, sched-

ules a possible resolution to continue the execution.

Space for a subgoal can be reclaimed when the subgoal has been completely evaluated.

A subgoal is said to be completely evaluated when all its possible resolutions have

been performed, that is, when all available alternatives have been exploited and the

variant subgoals have consumed all the available answers. Remember that a number
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of subgoals may be mutually dependent, forming a strongly connected component (or

SCC ), and therefore can only be completed together. The completion operation is

then performed at the leader of the SCC, that is, at the oldest subgoal in the SCC,

when all possible resolutions have been made for all subgoals in the SCC [88].

4.1.2 SLG-WAM Overview

The SLG-WAM extends the WAM to fully integrate Prolog and tabling. In short, the

SLG-WAM introduces a new set of instructions to deal with the tabling operations,

a special mechanism to allow suspension and resumption of computations, and two

new memory areas: a table space, used to save the answers for tabled subgoals; and a

completion stack, used to detect when a set of subgoals is completely evaluated.

Further, whenever a consumer node gets to a point in which it has consumed all

available answers, but the correspondent tabled subgoal has not yet completed and

new answers may still be generated, the current computation must be suspended. The

SLG-WAM implements the suspension mechanism through a new set of registers, the

freeze registers, which protect the WAM stacks at the suspension point so that all data

belonging to the suspended branch cannot be erased. To later resume a suspended

branch, the bindings belonging to the branch must be restored. SLG-WAM achieves

this by using an extension of the standard trail, the forward trail, to keep track of the

bindings values.

4.1.3 Batched Scheduling

Usually it is possible to apply more than one strategy to continue after suspending a

computation. For instance, there may be alternative clauses to resolve with generator

or interior nodes, answers to be returned to consumer nodes, or completion operations

to be performed. The decision of which operation to perform is determined by the

scheduling strategy. The SLG-WAM default scheduling strategy (for versions 1.5 and

higher of XSB) is called Batched Scheduling [41].

Batched scheduling takes its name because it tries to minimize the need to move around

the search tree by batching the return of answers. When new answers are found for

a particular tabled subgoal, they are added to the table space and the evaluation
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continues until it resolves all program clauses for the subgoal in hand. Only then the

newly found answers will be returned to consumer nodes.

Batched scheduling schedules the program clauses in a depth-first manner as does

the WAM. Calls to non-tabled subgoals allocate interior nodes. First calls to tabled

subgoals allocate generator nodes and variant calls allocate consumer nodes. However,

if we call a variant tabled subgoal, and the correspondent subgoal is already completed,

we can avoid consumer node allocation and instead perform what is called a completed

table optimization [88]. This optimization allocates a node, similar to an interior node,

that will consume the set of found answers executing compiled code directly from the

trie data structure associated with the completed subgoal. In [72, 73], I. V. Ramakr-

ishnan et al. shows that the built-in set of SLG-WAM instructions introduced to

execute the compiled answer tries can outperform standard WAM compiled code.

When backtracking we may encounter three situations: (i) if backtracking to a gen-

erator or interior node with available alternatives, the next program clause is taken;

(ii) if backtracking to a consumer node, we take the next unconsumed answer from

the table space; (iii) if there are no available alternatives or no unconsumed answers,

we simply backtrack to the previous node on the current branch. Note however that,

in case (iii), if the node without alternatives is a leader generator node, then we must

check for completion.

4.1.4 Fixpoint Check Procedure

In order to perform completion, the scheduler must ensure that all answers have been

returned to all consumer subgoals in the SCC. The process of resuming a consumer

node, consuming the available set of answers, suspending and then resuming another

consumer node can be seen as an iterative process which repeats until a fixpoint is

reached. This fixpoint is reached when the SCC is completely evaluated.

At engine level, the fixpoint check procedure is controlled by the leader of the SCC.

The procedure traverses the consumer nodes in the SCC in a bottom-up manner to

determine whether the subgoals in a SCC have been completely evaluated or whether

further answers need to be returned to consumer nodes. Initially, it searches for the

bottom consumer node with unresolved answers. If there is such a node, it is resumed

and as long as there are newly found answers, it will consume them. After consuming
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the available set of answers, the consumer suspends and fails into the next consumer

node with unresolved answers. This process repeats until it reaches the last consumer

node, in which case it fails into the leader node in order to allow the re-execution of

the fixpoint check procedure. When a fixpoint is reached, all subgoals in the SCC are

marked completed, the stack segments belonging to the completed subtree are released

and the freeze registers are updated.

Please refer to subsection 2.3.1 and to Figure 2.3 for an example of a tabling evaluation

sequence.

4.1.5 Incremental Completion

Incremental completion was first introduced in [20]. Instead of performing completion

at the very end it reclaims the stack space occupied by sets of subgoals when they

are determined to be completely evaluated. Incremental completion is necessary for

the SLG-WAM to be efficient in terms of space and therefore to be effective on large

programs. Incremental completion further enables the completed table optimization

to be performed.

To implement incremental completion, the SLG-WAM introduces a new memory

area, the completion stack. A completion frame is pushed onto the completion stack

whenever a new tabled subgoal is first called, and is popped off when incremental

completion is performed over that subgoal.

A completion frame for subgoal S is assigned to a unique depth-first number (DFN ),

through the use of a global counter. Furthermore, the frame maintains a representation

of the oldest subgoal upon which S may depend. This representation results from

computations involving the DFNs of the frames on which S or any subgoal younger

than S have dependencies. The number it is updated when a variant subgoal is

called or when checking for completion. If S depends on no older subgoals, then S

is a leader subgoal. Being leader, it can be checked for completion and if S and all

younger subgoals are completely evaluated then incremental completion takes place.

If S depends upon older subgoals, it is not a leader subgoal and therefore it cannot

perform completion. A detailed description of these algorithms can be found in [87, 88].
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4.1.6 Instruction Set for Tabling

The SLG-WAM provides a new set of instructions in order to implement the four main

tabling operations. Tabled predicates defined by several clauses are compiled using

the table try me, table retry me, and table trust me SLG-WAM instructions, in

a similar manner to the WAM’s try me, retry me, and trust me sequence.

The table try me instruction extends the WAM’s try me instruction to support the

tabled subgoal call operation. When table try me corresponds to a first call to a

tabled subgoal, it inserts the subgoal at hand into the table space, by allocating the

necessary data structures; pushes a new generator choice point and a new environment

onto the local stack; pushes a completion frame onto the completion stack; and

initializes all cells in these structures.

On the other hand, if the call is a variant call, then the subgoal is already in the

table space, and two different situations may occur, depending on whether the sub-

goal is completed or not. If the subgoal is completed, the table try me instruc-

tion implements the completed table optimization. Otherwise, a consumer choice

point is allocated, the freeze registers are updated to the current top stack point-

ers, and the available answers start being consumed. The answer resolution opera-

tion is supported through setting the CP ALT consumer choice to point to the SLG-

WAM answer resolution instruction. This instruction is responsible for guaran-

teeing that all answers are given once and just once to each variant subgoal. The

answer resolution instruction gets executed through backtracking or through direct

failure to a consumer node in the fixpoint check procedure.

The table retry me and table trust me differ from the retry me WAM instruction

in that they always restore a generator choice point, rather than an interior (WAM-

style) choice point. The only difference between both instructions is in the way they

update the CP ALT generator choice point field. In the table retry me implementa-

tion, the CP ALT field is made to point to the compiled code for the next clause, while

in the table trust me it is updated to the completion instruction. The completion

instruction implements the completion operation in order to ensure the complete and

correct evaluation of the subgoal search space. It gets executed through backtracking

or through direct failure from the last node on the chain of consumer nodes as described

in the fixpoint check procedure.
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Tabled predicates defined by a single clause are compiled using the SLG-WAM

table try me single instruction. This instruction optimizes the table try me in-

struction for the case when the tabled predicate is defined by a single clause. Similarly

to the table trust me instruction, the CP ALT generator choice point field is made to

point to the completion instruction.

The SLG-WAM introduces a new answer instruction to implement the new answer

operation. This instruction is produced by the compiler when compiling a clause

for a tabled predicate. It is the final instruction of the clause’s compiled code and

it includes the functionalities of the deallocate and proceed WAM instructions.

As the new answer instruction is the final instruction of a compiled tabled clause,

the arguments from the body of the clause have been resolved when the instruction

is reached. Thus, by dereferencing them we obtain the binding substitution which

identifies the answer for the subgoal.

To give a flavor of what to expect from the compiled code of a tabled predicate,

consider the following path/2 definition:

:- table path/2.

path(X,Z) :- path(X,Y), arc(Y,Z).
path(X,Z) :- arc(X,Z).

Figure 4.1 shows the resulting compiled code for the two clauses of the tabled predicate

path/2, using the just described instruction set. As path/2 is defined by several

clauses, a table try me instruction begins the code for its first clause, with the label

pointing at the start of the second clause as an argument. On the other hand, as the

second clause is the last clause for path/2, its code begins with a table trust me

instruction. The code for both clauses follows the usual WAM code for the head

and body subgoals of the clauses. The exception is that at the end a new answer

instruction closes each block.

4.2 Extending Yap to Support Tabling

YapTab has been designed to achieve an efficient tabling computational model that

can be integrated with an or-parallel component. To achieve high performance, we

are very interested in developing a sequential tabling implementation that compares
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path/2_1:
table_try_me path/2_2 // path
get_variable Y1, A2 // (X,Z) :-
put_variable Y2, A2 // path(X,Y
call path/2 // ),
put_value Y2, A1 // arc(Y,
put_value Y1, A2 // Z
call arc/2 // )
new_answer // .

path/2_2:
table_trust_me // path(X,Z) :-
call arc/2 // arc(X,Z)
new_answer // .

Figure 4.1: Compiled code for a tabled predicate.

favorably with the current state of the art technology. In other words, we want the

parallel tabling system, when executed with a single worker, to run as fast or faster

than the current available sequential systems. Otherwise, the parallel performance

results would not be significant and fair, and thus it would be hard to evaluate the

efficiency of the parallel implementation.

4.2.1 Overview

The YapTab design is WAM based, as is the SLG-WAM. It implements two tabling

scheduling strategies, batched and local [41]. Our initial design only considers positive

programs. As in the original SLG-WAM, it extends the WAM with a new data area, the

table space; a new set of registers, the freeze registers; an extension of the standard

trail, the forward trail; and support for the four main tabling operations: tabled

subgoal call, new answer, answer resolution and completion.

The major differences between both designs, and corresponding implementations,

reside in the issues that can be a potential source of overheads when the tabling

engine is extended to a parallel model. In a parallel environment, duplication of items

is a major source of overhead. It requires synchronization mechanisms when updating

common items and when replicating the new values. To efficiently integrate tabling

with parallelism we should minimize this duplication.

To address this need, YapTab introduces a new data structure, the dependency frame,

that resides in a single shared space that we name the dependency space. The de-
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pendency frame data structures maintain in a single space all data concerning tabling

suspensions. By data related with tabling suspension we mean the data involved

in the fixpoint check procedure and in the resumption of suspended nodes. The

introduction of this new data structure allows us to reduce the number of extra fields in

tabled choice points and eliminates the need for a separate completion stack, avoiding

potential synchronization points, and thus simplifying the complexity in managing

shared tabling suspensions.

To benefit from the philosophy behind the dependency frame data structure, all the

algorithms related with suspension, resumption and completion were redesigned. We

next present the main data areas, data structures and algorithms implemented to

extend the Yap system to support tabling. The algorithms described assume a batched

scheduling strategy implementation, we discuss local scheduling later.

4.2.2 Table Space

The table space can be accessed in different ways: to look up if a subgoal is in the

table, and if not insert it; to verify whether a newly found answer is already in the

table, and if not insert it; to pick up answers to consumer nodes; and to mark subgoals

as completed. Hence, a correct design of the algorithms to access and manipulate the

table data is a critical issue to obtain an efficient tabling system implementation.

Our implementation uses tries as the basis for tables, as proposed by I. V. Ramakr-

ishnan et al. [72, 73]. Tries provide complete discrimination for terms and permit

lookup and possibly insertion to be performed in a single pass through a term. In

later chapters, we shall discuss the performance of tries on the parallel environment.

Figure 4.2 shows the general tries structure for a tabled predicate. At the entry point

we have the table entry data structure. This structure is allocated when a predicate

declared as tabled is being compiled, so that a pointer to the table entry can be

included in the compiled code. This guarantees that further calls to the predicate will

access the table starting from the same point.

Below the table entry, we have the subgoal trie structure. Each different tabled subgoal

call to the predicate in hand corresponds to a unique path through the subgoal trie

structure, always starting from the table entry, passing by several subgoal trie data
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Figure 4.2: Using tries to organize the table space.

units, the subgoal trie nodes, and reaching a leaf data structure, the subgoal frame. The

subgoal frame acts like an entry point to the answer trie structure and stores additional

information about the subgoal. Each unique path through the answer trie data units,

the answer trie nodes, corresponds to a different answer to the entry subgoal.

Figure 4.3 details the tries structure by presenting an example for a concrete predicate

t/2 after the execution of several table try me single and new answer instructions.

Each invocation of table try me single leads to either finding a path through the

subgoal trie nodes until a matching subgoal frame is reached, or creating a new path

when one does not exist. This happens, respectively, when we are in the presence

of either variant or first subgoal calls. In a similar fashion, each invocation of the

new answer instruction corresponds to finding or creating a new path through the

answer trie nodes, starting from the corresponding subgoal frame.

Searching through a chain of sibling nodes that represent alternative paths is done

sequentially. However, if the chain becomes larger then a threshold value, we dynami-

cally index the nodes through a hash table to provide direct node access and therefore

optimize the search.

Analyzing the figure, it can be observed that the answer trie for call t(X,w) stores only

the binding a to the unbound variable, and avoids storing the complete answer (a,w).

This optimization is called substitution factoring [72, 73]. The core idea behind this
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compiled code
for t/2

table_try_me_single t(X,w)
...
new_answer t(X,a) -> X = a
...
table_try_me_single t(Y,Z)
...
new_answer t(Y,Z) -> Y = b ; Z = c
...
new_answer t(Y,Z) -> Y = b ; Z = d
...
new_answer t(Y,Z) -> Y = e ; Z = f

table entry
for t/2

var 0

var 1

subgoal frame
for call

t(var 0,var 1)

e

f

b

d c

w

subgoal frame
for call
t(var 0,w)

a

SgFr_last_answer

SgFr_first_answer

Figure 4.3: Detailed tries structure relationships.

optimization is to only store in the answer trie substitutions for the unbound variables

in the subgoal call.

Each subgoal frame includes two pointers to provide access to the answers already

stored in table. The SgFr first answer pointer provides access to the first found

answer, while the SgFr last answer pointer provides access to the last. Furthermore,

the leaves’ answer nodes are chained together in insertion time order, in such a way

that, starting from the SgFr first answer pointer, and following the chain of leaf

nodes, we reach the node pointed by the SgFr last answer pointer once and only

once.

Using this chain, a consumer node can ensure that no answer is skipped or consumed

twice. This is done by holding a private pointer to the leaf node of its last consumed

answer and following the chain of leaves to consume new answers. To load an answer,

the trie nodes for the answer in hand are traversed in bottom-up order, starting from

the pointer to the leaf node and following the parent pointer to the preceding node on

the path until reaching the subgoal frame.
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The answer trie structure is not traversed in a top-down manner because the insertion

and consumption of answers is an asynchronous process. Since new trie nodes may be

inserted at anytime and anywhere in the answer trie structure, this induces complex

dependencies that may limit the efficiency of possible top-down control schemes. Note

that the completed table optimization allows us to efficiently traverse the answer trie

structure in a top-down way. However, it is only performed when the subgoal is

completed, which ensures that no more nodes will be added. A field of the subgoal

frames marks subgoals as completed.

4.2.3 Generator and Consumer Nodes

Generator and consumer nodes correspond, respectively, to first and variant calls

to tabled subgoals, while interior nodes correspond to normal, not tabled, subgoals.

The abstract notion of a node is implemented at the engine level as a choice point.

Figure 4.4 details YapTab’s choice point structure for these nodes.

CP_ALT

Interior CP

CP_CP

CP_TR

CP_H

CP_B

CP_ENV

CP_ALT

Generator CP

CP_CP

CP_TR

CP_H

CP_B

CP_ENV

CP_ALT

Consumer CP

CP_CP

CP_TR

CP_H

CP_B

CP_ENV

CP_SG_FR CP_DEP_FR

Figure 4.4: Structure of interior, generator and consumer choice points.

Remember that interior nodes are implemented as normal WAM choice points and that

the CP ALT, CP CP, CP TR, CP H, CP B and CP ENV choice point fields store respectively,

the next unexploited alternative; success continuation program counter; top of trail;

top of global stack; failure continuation choice point; and current environment. Gen-

erator and consumer nodes are also implemented as WAM choice points, but extended

with an extra field, respectively, the CP SG FR and CP DEP FR fields.

The SLG-WAM implements the generator nodes as WAM choice points extended

with several extra fields. One of those fields stores the pointer to the correspondent
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subgoal frame, the others hold the top freeze registers at choice point creation. Our

implementation only requires the subgoal frame pointer because we adjust the freeze

registers by using the top of stack values kept in the consumer choice points (see

subsection 4.2.5 for details).

Regarding consumer nodes, SLG-WAM also implements them as WAM choice points

with several extra fields. In YapTab, we move consumer information to a dependency

frame and leave the pointer to this frame in the CP DEP FR field. Figure 4.5 illustrates

the relationships between the novel choice points fields and the table and dependency

spaces.

Interior Node

Consumer Node

Generator Node

Consumer Node

WAM

choice

point

Local Stack

Table Space Dependency Space

Subgoal

Frame

Answer
Trie

Sructure

Dependency

Frame

WAM

choice

point

WAM

choice

point

WAM

choice

point

Dependency

Frame

Figure 4.5: The nodes and their interaction with the table and dependency spaces.

The dependency frames are linked together to form a dependency graph between con-

sumer nodes. Additionally, they store information to efficiently check for completion

points, and to efficiently move across the dependency graph. As we shall see, this

functionality replaces the need for a completion stack.

To take advantage of substitution factoring, we create in the local stack a substitution

factor where we store references to the set of unbound variables in the subgoal call.
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The substitution factor is created when traversing the subgoal trie structure to check

for/insert the subgoal call, the dereferenced pointers to unbound variables from the

subgoal are pushed onto the local stack. The substitution factor thus points to

variables on the local or heap stack. A generator choice point executing a new

answer operation determines the answer substitution simply through dereferencing

the substitution factor. A consumer choice point can correctly load an answer from

the table space by unifying the substitution factor pointers with the meanwhile copied

answer substitution.

4.2.4 Subgoal and Dependency Frames

The subgoal and dependency frames are the main data structures required to control

the flow of a tabled computation. As mentioned before, the subgoal frames provide

access to the answer trie structure and to check for and mark the completion of a

subgoal. The dependency frames synchronize suspension, resumption and completion

of subcomputations. Figure 4.6 details the subgoal and dependency frame structures.

SgFr_gen_cp

Subgoal Frame

SgFr_answer_trie

SgFr_first_answer

SgFr_last_answer

SgFr_completed

SgFr_next

DepFr_back_cp

Dependency Frame

DepFr_leader_cp

DepFr_cons_cp

DepFr_sg_fr

DepFr_last_ans

DepFr_next

Figure 4.6: Structure of subgoal and dependency frames.

A subgoal frame includes six fields. The SgFr gen cp is a back pointer to the cor-

respondent generator choice point; the SgFr answer trie points to the top answer

trie node, and is mainly used to access the answer trie structure to check for/insert

new answers; the SgFr first answer points to the leaf answer trie node of the first

available answer; the SgFr last answer points to the leaf answer trie node of the

last available answer; the SgFr completed is a flag that indicates if the subgoal is

completed or not; and the SgFr next points to the next subgoal frame, that is, to the

subgoal frame for the youngest generator older than the current choice point. It is



4.2. EXTENDING YAP TO SUPPORT TABLING 91

used to traverse subgoal frames when performing completion. To access the subgoal

frames chain, we use a TOP SG FR register that points to the youngest subgoal frame.

Each dependency frame is also a six field data structure. The DepFr back cp points to

the generator choice point involved in the last unsuccessful completion operation, and

is used by the fixpoint check procedure to schedule for a backtracking node (see 4.2.8 for

details); the DepFr leader cp points to the leader choice point and it is used to check

for completion points; the DepFr cons cp is a back pointer to the consumer choice

point; the DepFr sg fr and the DepFr last ans point to the correspondent subgoal

frame and to the last consumed answer, respectively, and they provide access to the

table space in order to search for and to pick up new answers; and the DepFr next

is a pointer to the next dependency frame, that is, to the dependency frame for the

youngest consumer older than the current choice point. It is used to form a dependency

graph between consumer nodes to efficiently check for leader nodes and to efficiently

implement the completion and fixpoint check procedures. To access the dependency

graph, we use a TOP DEP FR register that points to the youngest dependency frame.

Figure 4.7 shows an example of how the data structures presented are used in a

particular evaluation. The leftmost sub-figure presents the execution tree dependencies

between the predicates involved in the example.
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Figure 4.7: Dependencies between choice points, subgoal and dependency frames.
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The first instance of table try me searches the table space for the corresponding

subgoal t(X). As this is the first call to the subgoal, it must allocate a subgoal frame

and store a generator choice point. Assuming that t/1 is a three clause predicate, the

CP ALT field of the generator choice point will point to the table retry me instruction

that starts the compiled code of the second clause. Assuming that v/1 is a two clause

predicate, an analogous situation occurs with the first call to subgoal v(Y). The only

difference is that the CP ALT field will now point to a table trust me instruction (note

that this initialization is not illustrated in the figure).

Following the example, the second call to v(Y) searches the table space and finds that

it is a variant call of the subgoal v(var 0). Thus, it allocates a dependency frame

and stores a consumer choice point. A consumer choice point is initialized with its

CP ALT field pointing to the answer resolution pseudo instruction. Assuming that

no answers were found for subgoal v(var 0), the computation will backtrack to the

previous choice point CP2. The table trust me instruction gets executed, and the

CP ALT field is updated to the completion pseudo instruction. The second call to

t(X) is similar to the second call to v(Y).

The dependency frame fields DepFr back cp and DepFr leader cp and the pseudo

instructions answer resolution and completion are detailed next.

4.2.5 Freeze Registers

A tabled evaluation can be seen as a sequence of subcomputations that suspend and

later resume. The SLG-WAM preserves the environment of a suspended computation

by freezing stacks. A set of freeze registers, one per stack, says where stacks are frozen.

Freeze registers protect therefore the space belonging to the suspended branch until

the completion of the appropriate subgoal call takes place. It is only upon completion

that we can release the space previously frozen and adjust the freeze registers.

The SLG-WAM extends the generator choice points to store the freeze registers at

choice point creation, so that they can be adjusted if completion takes place. In

YapTab, we adjust the freeze registers by using the top stack values kept in the

youngest consumer choice point, after completion. We access that choice point through

the top dependency frame as given by the TOP DEP FR register. Figure 4.8 shows the

pseudo-code that adjusts the freeze registers.
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adjust_freeze_registers() {
B_FZ = DepFr_cons_cp(TOP_DEP_FR) // B_FZ is the stack freeze register
H_FZ = CP_H(B_FZ) // H_FZ is the heap freeze register
TR_FZ = CP_TR(B_FZ) // TR_FZ is the trail freeze register

}

Figure 4.8: Pseudo-code for adjust freeze registers().

The introduction of freeze registers creates situations where the current stack registers

can point to older positions than those given by the freeze registers. To guarantee that

frozen segments are safe from being overwritten, we need to guarantee that new data

always is placed at the younger position of both registers. Several schemes may be

followed to ensure that: (i) we always compare the top stack register with the freeze

register and determine the youngest; (ii) we have an additional register that always

holds the youngest; or (iii) we ensure that, when writing, the top stack register is

always younger than the freeze register and thus proceed as usual. Scheme (iii) is

the one which introduces the least overheads for the execution. However, it cannot

be applied to the local stack because tabled evaluation leads to situations where B is

necessarily older than B FZ.

By default, YapTab implements scheme (i) to deal with the local stack and scheme

(iii) to deal with the heap and trail stacks. As a configuration option, it is possible to

execute YapTab using scheme (ii) for the local stack. The following subsection details

the implementation of scheme (iii) for the trail stack.

4.2.6 Forward Trail

To resume the computation to a suspended consumer node, we have to restore all the

variable bindings to their state at the time the node was suspended. The forward trail

is a data structure that extends the standard WAM trail entries to record variable

bindings. In the SLG-WAM, each forward trail frame has three fields: the address of

the trailed variable, as in the WAM; the value to which the variable was bound, so

that it can be restored later; and a pointer to the parent trail frame, used to correctly

move across the variables in a branch, hence avoiding variables in frozen segments [88].

In YapTab, the forward trail is implemented without parent trail frame pointers.

Yap already uses the trail to store information beyond the normal variable trailing,

say to control dynamic predicates and to implement multi-assignment variables. We
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extend this information to also control the chain between frozen segments. In terms

of computation complexity the two approaches are equivalent. The main advantage

of our scheme is that we only need two fields.

Figure 4.9 illustrates our implementation scheme. Consider that the execution has

reached the consumer node marked as (a) and that the computation is suspended as

there are no available answers to be consumed. At this point, the trail freeze register

TR FZ is set to the trail register TR.

(a)

X = a

Y = b

Z = c
TR

(b)

X = a

Y = b

Z = cTR_FZ

TR

(c)
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segment

TR_FZ
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suspended

suspended

Consumer Node

   TR: trail register
TR_FZ: trail freeze register
  TR1: trail register at first suspension
  TR2: trail register at second suspension

TR_FZ

Figure 4.9: The forward trail implementation.

Now if backtracking takes place up to the node marked as (b), the bindings belonging

to the backtracked segment are untrailed and TR is made to point to the next untrailed

frame. At this point, TR points to a position above the one pointed by TR FZ. To ensure

that the trail segment corresponding to the frozen branch is not erased, and is not

used by untrailing operations corresponding to different branches, we use a special trail

frame to mark the existence of a frozen segment just above it (see illustration (c)).

This frame records the continuation trail frame that allows for the frozen segment to

be ignored in a future untrailing operation. The trail register TR is updated to point

to this new trail frame.

Suppose that the execution has evolved to situation (d), in which the trail shows a

more complex chaining of segments, and assume that the computation is being resumed

to the first suspended node. To accomplish the correct restoration of the variable

environment, the bindings belonging to the current branch need to be unbound and the

bindings belonging to the branch being resumed need to be restored. Similarly to other
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strategies presented previously, we can minimize the overhead of these operations by

only unbinding/rebinding up to the youngest frame common to both branches, X = a

in this case. By following TR, and visiting Z = f and Y = d, we unbind variables Z

and Y, and by following TR1, and visiting Z = c and Y = b, we bind Z and Y to c and

b, respectively.

Figure 4.10 shows the pseudo-code for restoring a variable environment given the top

trail frame for the current branch (argument unbind fr) and the top trail frame for

the branch being resumed (argument rebind fr).

restore_bindings(trail frame unbind_fr, trail frame rebind_fr) {
common_fr = rebind_fr
while (unbind_fr != common_fr) {

while (unbind_fr > common_fr) { // rewind loop
ref = Trail_Addr(--unbind_fr)
if (ref is a variable)

unbind_variable(ref)
else if (ref is a frozen segment pointer)

unbind_fr = ref
}
while (unbind_fr < common_fr) { // search a common frame
ref = Trail_Addr(--common_fr)
if (ref is a frozen segment pointer)

common_fr = ref
}

}
while (rebind_fr != common_fr) { // rebind loop

ref = Trail_Addr(--rebind_fr)
if (ref is a variable)
bind_variable(ref, Trail_Value(rebind_fr))

else if (ref is a frozen segment pointer)
rebind_fr = ref

}
}

Figure 4.10: Pseudo-code for restore bindings().

The procedure starts with both unbind fr and common fr following their chains until

a common frame is reached, with unbind fr unbinding variables as it goes. Then,

rebind fr follows its chain till the just found common frame, restoring the variables

on the way. Note that the frames traversed by common fr and rebind fr are the

same. However, variables are not restored when first searching for the common frame

because they can be later unbound in the rewind loop. Note also that the rebind loop

applies the bindings in the opposite order in which they were trailed. This is safe since

no branch can have more than one trail entry for the same variable.
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4.2.7 Completion and Leader Nodes

The completion operation takes place when a generator node exhausts all alternatives

and finds itself as a leader node. We designed novel algorithms to quickly determine

whether a generator node is a leader node. The key idea is that each dependency frame

holds a pointer to the presumed leader node of its SCC1. Using the leader node from

the dependency frames, a generator node can quickly determine whether it is a leader

node. A generator finds itself as a leader node when there are no younger dependencies,

that is, no younger consumer nodes, or when it is the leader node referred in the top

dependency frame.

The algorithm requires computing leader node information when allocating a depen-

dency frame for a new consumer node C. To do so, we first hypothesize that the leader

node is the generator node for the variant subgoal call relative to C, say G. Next, for

all consumer nodes on stack between C and G, we check whether they depend on an

older generator node. Consider that the oldest dependency is for the generator node

G′. If this is the case, then G ′ is the leader node, otherwise our hypothesis was correct

and the leader is indeed the initially found generator node G.

Figure 4.11 presents a small example that illustrates how the current leader node

changes during evaluation. By current leader node we mean the leader of the current

SCC. In situation (a), the generator node N3 is the current leader node because there

are no younger consumer nodes. Moving to situation (b), a new consumer node is

created and a new dependency frame is allocated. Because N4 is a variant subgoal a

for the generator node N1 and there are no other consumer nodes in between, N1 is

the leader node for N4’s dependency frame. As a result, the current leader node for

the new set of nodes including N4 becomes N1. Situation (c) is similar to (a), and N5

becomes the new current leader node. The consumer node N6, from situation (d), is

a variant subgoal c for generator node N3. Since consumer node N4 is between nodes

N6 and N3 and depends on an older generator node, N1, the leader node information

for N6’s dependency frame is also N1. This turns again N1 as the current leader node.

Figure 4.12 shows the procedure that computes the leader node information for the

current consumer node. The procedure traverses the dependency frames for the

1Remember that, for simplicity of description, we do not distinguish between SCCs and ASCCs

and that we use the SCC notation to refer the approximation resulting from the stack organization.
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Figure 4.11: Spotting the current leader node.

consumer nodes between the current consumer and its generator in order to check

for older dependencies. As an optimization it only searches until it finds the first

dependency frame holding an older reference (the DepFr leader cp field). The nature

of the procedure ensures that the remaining dependency frames cannot hold older

references.

compute_leader_node(dependency frame dep_fr) {
leader_cp = SgFr_gen_cp(DepFr_sg_fr(dep_fr))
df = TOP_DEP_FR
while (DepFr_cons_cp(df) is younger than leader_cp ) {

// searching for an older dependency
if (leader_cp is equal or younger than DepFr_leader_cp(df)) {
leader_cp = DepFr_leader_cp(df)
break

}
df = DepFr_next(df)

}
DepFr_leader_cp(dep_fr) = leader_cp

}

Figure 4.12: Pseudo-code for compute leader node().

We next give an argument on the correctness of the algorithm. Consider a consumer

node with generator node G and assume that its leader node D is found in the
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dependency frame for consumer node C. Now hypothesize that there is a consumer

node N younger than G with a reference D′ older than D. Therefore, when previously

computing the leader node for C one of the following situations occurred: (i) D is the

generator node for C or (ii) D was found in a dependency frame for a consumer node

C′. Situation (i) is not possible because N is younger than D and it holds a reference

older than D. Regarding situation (ii), C′ is necessarily younger than N as otherwise

the reference found for C had been D′. By recursively applying the previous argument

to the computation of the leader node for C′ we conclude that our initial hypothesis

cannot hold because the number of nodes between C and N is finite.

Figure 4.13 presents the pseudo-code that implements the completion() procedure.

It gets executed when the computation fails to a generator choice point with no

alternatives left.

completion(generator node G) {
if (G is the current leader node) {

df = TOP_DEP_FR
while (DepFr_cons_cp(df) is younger than G)) {
if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {

// dependency frame with unconsumed answers
DepFr_back_cp(df) = G
C = DepFr_cons_cp(df)
restore_bindings(CP_TR(G), CP_TR(C))
goto answer_resolution(C)

}
df = DepFr_next(df)

}
perform_completion()
adjust_freeze_registers()

}
backtrack_to(CP_B(G))

}

Figure 4.13: Pseudo-code for completion().

Whenever a generator node finds out that it is the current leader node, it checks

whether there are younger consumer nodes with unconsumed answers. This can be

implemented by going through the chain of dependency frames looking for a frame

with unconsumed answers. If there is such a frame, it resumes the computation to

the corresponding consumer node. However, before resuming it must update the

DepFr back cp dependency frame field (more details in 4.2.8) and use the forward

trail to restore bindings.

Otherwise, it can perform completion. This includes marking as completed all the
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subgoals in the SCC, using the TOP SG FR to go through the subgoals frames, and

deallocating all the younger dependency frames, using the TOP DEP FR register to go

through the dependency frames. At last, the algorithm must adjust the freeze registers

and backtrack to the previous node to continue the execution.

In order to make the pseudo-code for procedures more intuitive and less verbose,

throughout the thesis, we will frequently use goto statements like the one on Fig-

ure 4.13. With a goto statement we intend to denote that the flow of execution

continues within the called procedure and that there is no return to the caller.

4.2.8 Answer Resolution

When a consumer choice point is allocated, its CP ALT field is made to point to

the answer resolution instruction. This instruction is responsible for resuming the

computation and guaranteeing that every answer is consumed once and just once.

Figure 4.14 shows the procedure that implements the answer resolution instruction.

The procedure gets executed either when the computation fails or is resumed to a

consumer choice point.

The answer resolution() procedure first checks the table space for unconsumed

answers for the subgoal in hand. If there are new answers, it loads the next available

answer and proceeds the execution. Otherwise, it schedules for a backtracking node.

If this is the first time that backtracking from that consumer node takes place, then it

is performed as usual to the previous node. This is the case when the DepFr back cp

dependency frame field is NULL. Otherwise, we know that DepFr back cp points to

the generator node G from where the computation has been resumed during the

last unsuccessful completion operation. Therefore, backtracking must retry the next

consumer node that has unconsumed answers and that is younger than G. If there is

no such a consumer node then backtracking must be done to the generator node G.

Figure 4.15 presents two different situations that illustrate the functionality of the

DepFr back cp field in the process of scheduling for a backtracking node. In both

situations, the illustration sequence starts with the computation in a leader node

position and assuming that all younger consumer nodes have unconsumed answers. A

W is used to mark the node where the computation is positioned in each illustration.
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answer_resolution(consumer node C) {
dep_fr = CP_DEP_FR(C)
if (DepFr_last_ans(dep_fr) != SgFr_last_answer(DepFr_sg_fr(dep_fr))) {

// unconsumed answers in current dependency frame
load_next_answer_from_subgoal(DepFr_sg_fr(dep_fr))
proceed

}
back_cp = DepFr_back_cp(dep_fr)
if (back_cp == NULL)

backtrack_to(CP_B(C))
df = DepFr_next(dep_fr)
while (DepFr_cons_cp(df) is younger than back_cp)) {

if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
// dependency frame with unconsumed answers
DepFr_back_cp(df) = back_cp
back_cp = DepFr_cons_cp(df)
restore_bindings(CP_TR(C), CP_TR(back_cp))
goto answer_resolution(back_cp)

}
df = DepFr_next(df)

}
restore_bidings(CP_TR(C), CP_TR(back_cp))
goto completion(back_cp)

}

Figure 4.14: Pseudo-code for answer resolution().

The vertical dashed line in between the nodes denotes the possible existence of other

nodes not related to execution of tabled predicates.

In situation (a), the execution of the completion() procedure in the leader node

L leads the computation to be resumed to the younger consumer node C2. Before

resuming, the DepFr back cp field of the dependency frame relative to C2 is updated

to L. Then, after all available unconsumed answers for C2 have been consumed,

answer resolution() schedules for a backtracking node. As there is a consumer

node C1 younger than the generator given by the DepFr back cp field of C2, then

backtracking is done to C1 and the DepFr back cp field of the dependency frame

relative to C1 is updated to L. As there is no consumer nodes between L and C1,

L is scheduled for backtracking when all available unconsumed answers for C1 have

been consumed.

Situation (a) corresponds to a complete loop step for the fixpoint check procedure.

Starting from a leader node, it goes through the younger consumer nodes and ends

eventually returning to the leader node. Situation (b) presents a slightly different

sequence. It also starts from a leader node position, L2, and resumes the computation
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Figure 4.15: Scheduling for a backtracking node.

to a consumer node C2. However, when exploiting an unconsumed answer for C2, a new

consumer node is allocated and in consequence the current leader node changes and

becomes L1. Despite this leader modification, the backtracking sequence is similar to

the one of situation (a). After consuming all the available unconsumed answers for

C2, C1 is scheduled for backtracking, and after consuming all the available unconsumed

answers for C1, L2 is scheduled for backtracking.

At that point, we may question why waste time backtracking to the previous leader

node L2 if there is a new leader node L1. Note that completion only resumes the

computation to younger consumer nodes because all younger generator and interior

nodes are necessarily exploited, that is, without alternatives. As DepFr back cp points

to L2, this allows us to conclude that all younger generator and interior nodes than L2
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are exploited. However, nothing can be said about the generator and interior nodes

older than L2. Hence, despite L1 becoming the current leader node in the sequence of

situation (b), between L1 and L2 may exist other nodes not exploited, and therefore

we still have to backtrack to L2.

4.2.9 A Comparison with the SLG-WAM

The major difference between YapTab and the original SLG-WAM design resides in

the way YapTab handles suspensions. The SLG-WAM considers that the control of

leader detection and scheduling of unconsumed answers should be done at the level

of the data structures corresponding to first calls to tabled subgoals, and it does

so through associating completion frames to generator nodes. On the other hand,

YapTab considers that such control should be performed through the data structures

corresponding to variant calls to tabled subgoals, and thus it associates dependency

frames to consumer nodes. We argue that managing dependencies at the level of the

consumer nodes is a more intuitive approach that we can take advantage of.

The SLG-WAM’s design presents therefore some differences when compared with

YapTab. First, the SLG-WAM uses an auxiliary data space, the completion stack,

in order to determine when a generator node is a leader node. Each completion

frame corresponds to a different subgoal call and a new completion frame is allocated

whenever a new generator node is created. The dependencies introduced by variant

subgoal calls update the top completion frame in the completion stack according to

a proper rule (for details about the completion stack please consult [87, 88]). The

process of determining if a generator node is a leader node requires, in the worst case,

consulting the completion frames of all younger subgoal calls.

YapTab uses dependency frames to determine when a node is a leader node. In order

to motivate for the implementation required for the or-parallel tabling engine, we also

assumed an auxiliary data space, the dependency space, where dependency frames are

stored. However, for a strictly sequential engine, we can simplify the implementation

by moving the data from the dependency space to the local stack and by storing

dependency frames as extensions of consumer nodes. A dependency frame is allocated

for each new consumer node and the leader node for the resulting SCC is computed in

advance and stored in the dependency frame. By consulting the leader data stored in
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the youngest dependency frame, a generator node can thus determine in constant-time

if it is the current leader node.

Another relevant difference is how consumer nodes with unconsumed answers are

scheduled for execution. Consider a leader node with several different groups of

consumer nodes within its SCC, with each group corresponding to variant calls to

a common subgoal. The SLG-WAM proceeds as follows. The groups are scheduled

one at a time, starting from the group corresponding to the oldest subgoal call until

reaching the group corresponding to the youngest subgoal call. If there are unconsumed

answers for a particular group, the process is aborted by causing the evaluation to be

resumed at the nodes with unconsumed answers. After such a batch of answers has

been consumed, the evaluation returns to the leader node. When returning to the

leader node, the process repeats until no unconsumed answers are found in a single

pass through the whole set of groups. In this case, a fixpoint is reached and the SCC

is completely evaluated.

YapTab simplifies the process by considering the whole set of consumer nodes within a

SCC as a single group, independently of the subgoal call associated with each one. By

following the chain of dependency frames, YapTab traverses in a single pass the whole

set of consumer nodes which we argue may therefore reduce the overhead of scheduling

consumer nodes with unconsumed answers and of controlling the loop procedure.

In short, the YapTab’s resolution scheme attained with the previously presented

compute leader node, completion and answer resolution procedures, improves

SLG-WAM’s scheme in that it: (i) replaces the need for a completion stack; (ii)

quickly determines when a generator node is a leader node; and (iii) automatically

schedules the set of consumer nodes with unconsumed answers within a SCC.

Furthermore, in practice, we found that this solution simplifies the implementation

of fundamental aspects that may influence the parallel system’s efficiency. Sharing

tabling suspensions is straightforward, as the worker requesting work only needs to

update its private top dependency frame pointer to the one of the sharing worker.

Concurrent accesses or updates to the shared suspension data can be synchronized

through the use of a locking mechanism at the dependency frame level. The completion

algorithm for shared branches can take advantage of the dependency frame data

structure to avoid explicit communication and synchronization between workers.
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4.3 Local Scheduling

The algorithms described in the previous subsections assume a batched scheduling

strategy. We are interested in alternative tabling scheduling strategies in order to

study their impact when combining tabling with parallelism. Local scheduling is an

alternative tabling scheduling strategy that tries to evaluate subgoals as independently

as possible [41]. Evaluation is done one SCC at a time, and answers are returned

outside of a SCC only after that SCC is completely evaluated. In other words, with

local scheduling answers will only be returned to the leader’s calling environment when

its SCC is completely evaluated. Because local scheduling completes subgoals sooner,

we can expect less complex dependencies when running in parallel. Figure 4.16 clarifies

the differences between batched and local scheduling evaluation.

:- table b/1.

a(X,Y) :- b(X), b(Y).

b(1).
b(2).

      ?- a(x,Y).

0. a(x,Y)

1. b(X), b(Y)

8. Y = 2

1. b(X)

2. X = 1 5. X = 2

Batched scheduling

1. b(X)
2. X = 1
5. X = 2

subgoal answers

3. b(Y)

4. Y = 1

6. b(Y)

9. Y = 2 7. Y = 2

0. a(x,Y)

1. b(X), b(Y)

10. Y = 2

X = 1

1. b(X)

2. X = 1 3. X = 2

Local scheduling

subgoal answers

5. b(Y)

6. Y = 1

8. b(Y)

X = 2

7. Y = 2 9. Y = 2

10. complete

1. b(X)
2. X = 1
3. X = 2

4. complete

X = 1 X = 2

Figure 4.16: Batched versus local scheduling: an example.
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At the top, Figure 4.16 illustrates the program code and query goal used for both

evaluations. Below, the figure depicts the evaluation sequence for each scheduling

strategy, which includes the resulting table space and the resulting forest of trees.

The numbering of nodes denote the evaluation sequence.

The most interesting aspect that results from the figure, is how both strategies handle

the evaluation of the tabled subgoal call b(X). The first answer for b(X) binds X

to 1. Batched scheduling then proceeds executing as in standard Prolog with the

continuation call b(Y), while local scheduling fails back in order to find the complete

set of answers for b(X) and therefore completes the SCC before returning answers to

the calling environment.

For local scheduling, the variant subgoal calls to b(X) at steps 5 and 8 are resolved by

executing compiled code directly from the trie structure associated with the completed

subgoal b(X). For batched scheduling, the same variant subgoal calls lead to suspension

points that are resolved by consuming answers as they are being found.

The clear advantage of local scheduling shown in the example of Figure 4.16 does not

always hold. In batched scheduling when a new answer is found, variable bindings

are automatically propagated to the calling environment. Since local scheduling de-

lays answers, it does not benefit from this propagation, and instead, when explicitly

returning the delayed answers, it incurs an extra overhead for copying them out of

the table. Local scheduling does perform arbitrarily better than batched scheduling

for applications that benefit from answer subsumption, that is, where we delete non-

minimal answers every time a new answer is added to the table. On the other hand,

Freire et al. [41] showed that on average local scheduling is 15% slower than batched

scheduling.

We next present how local scheduling is implemented on top of batched scheduling.

As the reader will see, it is straightforward to extend the engine to perform local

scheduling.

To prevent answers from being returned to the calling environment of a generator

node, after a new answer is found for a particular tabled subgoal, local scheduling

fails and backtracks in order to search for the complete set of answers. Therefore,

when backtracking to a generator node, we must also act like a consumer node

to consume the answers that could not be returned to their environment. In our
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approach, we implement a generator choice point also as a consumer choice point.

Figure 4.17 illustrates how generators are differently handled if supporting batched or

local scheduling.

Local Stack

Consumer
Choice
Point

CP_DEP_FR

Generator
Choice
Point

CP_SG_FR

Dependency Frame

DepFr_sg_fr

TOP_DEP_FR

DepFr_next

DepFr_leader_cp

Subgoal Frame

Batched Scheduling

Local Stack

Consumer
Choice
Point

CP_DEP_FR

Generator
Choice
Point

CP_DEP_FR

Dependency Frame

DepFr_sg_fr

TOP_DEP_FR

DepFr_next

DepFr_leader_cp

Subgoal Frame

Local Scheduling

Dependency Frame

DepFr_sg_fr

DepFr_next

DepFr_leader_cp

Figure 4.17: Handling generator nodes for supporting batched or local scheduling.

For local scheduling, when we store a generator node we also allocate a dependency

frame. The dependency frame is initialized similarly as for the consumer nodes. As an

optimization we can avoid calling compute leader node() procedure to initialize the

DepFr leader cp field, as it will always compute the new generator node as the leader

node. To access subgoal frames, in batched scheduling we use the CP SG FR generator

choice point field. In local scheduling we must use the CP DEF FR generator choice

point field and follow the DepFr sg fr field of the dependency frame. Further, to fully

implement local scheduling, we need to slightly change the completion() procedure.

Figure 4.18 shows the modified pseudo-code.

There is a major change to the completion algorithm for local scheduling. As newly

found answers cannot be immediately returned, we need to consume them at a later

point. If we perform completion successfully, we start consuming the set of answers

that have been found by executing compiled code directly from the trie data structure

associated with the completed subgoal. Otherwise, we must act like a consumer node

and start consuming answers.
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completion(generator node G) {
if (G is the current leader node) {

df = TOP_DEP_FR
while (DepFr_cons_cp(df) is younger than G) {
if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {

DepFr_back_cp(df) = G
C = DepFr_cons_cp(df)
restore_bindings(CP_TR(G), CP_TR(C))
goto answer_resolution(C)

}
df = DepFr_next(df)

}
perform_completion()
adjust_freeze_registers()
goto completed_table_optimization(DepFr_sg_fr(CP_DEP_FR(G))) // new

}
CP_ALT(G) = answer_resolution // new
load_first_answer_from_subgoal(DepFr_sg_fr(CP_DEP_FR(G))) // new
proceed // new

}

Figure 4.18: Pseudo-code for completion() with a local scheduling strategy.

Empirical work from Freire et al. [41, 42] showed that, regarding the requirements

of an application, the choice of the scheduling strategy can differently affect the

memory usage, execution time and disk access patterns. Freire argues [39] that there

is no single best scheduling strategy, and whereas a strategy can achieve very good

performance for certain applications, for others it might add overheads and even lead

to unacceptable inefficiency. As a means of achieving the best possible performance,

Freire and Warren [43] proposed the ability of using multiple strategies within the

same evaluation, by supporting mixed-strategy evaluation at the predicate level.

We believe that YapTab is more suitable than the SLG-WAM to be extended to

support a mixed-strategy evaluation. In result of its clear design based on the de-

pendency frame data structure, extending YapTab to use multiple strategies at the

predicate level seems straightforward. Only two features have to be addressed: (i)

support strategy-specific Prolog declarations like ’:- batched path/2.’ in order to

allow the user to define the strategy to be used to resolve the subgoals of a given

predicate; (ii) at compile time generate appropriate tabling instructions, such as

batched new answer or local completion, accordingly to the declared strategy for

the predicate. With these two simple compiler extensions we are able to use all the

algorithms described and already implemented for batched and for local scheduling

without any further modification. Although in this work we concentrated on the
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issues concerning the exploitation of parallel implementation, we expect to exploit a

mixed-strategy evaluation in the future.

4.4 Chapter Summary

In this chapter we introduced the YapTab engine. YapTab extends the Yap Prolog

system to support sequential tabling in Prolog programs. YapTab’s implementation

is largely based on the SLG-WAM approach to tabling.

We started by presenting the SLG-WAM abstract machine, as first implemented in the

XSB system, and then we focused on its key aspects, namely, the batched scheduling

strategy, the incremental completion optimization and its instruction set for tabling.

Next, we discussed the motivation for the YapTab design and described the main issues

in extending the Yap Prolog system to support sequential tabling. We introduced a

novel data structure, the dependency frame, and a new completion detection algorithm

not based on the intrinsically sequential completion stack. YapTab innovates by

considering that the control of leader detection and scheduling of unconsumed answers

should be done at the level of the data structures corresponding to variant calls to

tabled subgoals.

To further study the impact of alternative scheduling strategies when combining

tabling with parallelism, we implemented an alternative strategy, local scheduling,

and described how it was implemented on top of batched scheduling.



Chapter 5

Parallel Tabling

In this chapter we propose two new computational models to efficiently implement the

parallel evaluation of tabled logic programs. We start by describing related work to

get an overall view of alternative approaches to parallel tabling. Next, we introduce

and detail the fundamental aspects underlying the new computational models, and

then we discuss their advantages and disadvantages. Last, we focus on the elected

computational model to discuss its implementation framework.

5.1 Related Work

One important advantage of logic programming is that it allows the implicit exploita-

tion of parallelism. This is true for SLD based systems, and should also apply for

SLG based systems. A first proposal on how to exploit implicit parallelism in tabling

systems was Freire’s Table-parallelism [40]. Table-parallelism resembles the Linda’s

tuple-space model, in that it views the table space as a shared data structure through

which cooperating agents may synchronize and communicate.

In the Table-parallelism model, each tabled subgoal is computed independently in a

single computational thread, a generator thread. Each generator thread is associated

with a unique tabled subgoal and it is responsible for fully exploiting its search tree

in order to obtain the complete set of answers. As new answers are being produced,

they are inserted in the table space. A generator thread dependent on other tabled

subgoals will asynchronously consume answers as the correspondent generator threads

109
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will make them available.

Within this model, parallelism results from having several generator threads running

concurrently. Parallelism arising from non-tabled subgoals or from execution alterna-

tives to tabled subgoals is not exploited. Moreover, in order to fully implement the

model a deep redesign of the base tabling engine is required, including new scheduling

strategies and a new completion algorithm. Load balancing for this model can also

be a difficult task. When the number of tabled subgoals is large, the dependencies

between them can be quite intricate. Even when the number of tabled subgoals is

small, some subgoals may have much larger search spaces than others. We expect that

the scheduling problem of selecting which subgoals to allocate to which processors

would be even harder than for traditional parallel systems.

More recent work [47], proposes a different approach to the problem of exploiting

implicit parallelism in tabled logic programs. Curiously, this new approach was also

named as Table-parallelism. The approach is a consequence of a new sequential tabling

scheme whose design simplifies the exploitation of parallelism. The new sequential

tabling scheme is based on dynamic reordering of alternatives with variant calls, and it

works in a single SLD tree without requiring suspension of goals and freezing of stacks.

The alternatives leading to variant calls are denominated as looping alternatives. This

dynamic alternative reordering strategy not only tables the answers to tabled subgoals,

but also the looping alternatives. A tabled subgoal will repeatedly recompute its

looping alternatives until a fixpoint is reached.

If we find a variant call to a tabled predicate when exploiting a subgoal S, the current

alternative clause A is tabled as a looping alternative and it is reordered and placed at

the end of the alternative list for the call. Moreover, the variant call is not expanded

immediately, given it can lead to an infinite loop. Instead, a failure is simulated in

order for A to be backtracked over. After exploiting all matching clauses, the subgoal

S enters a looping state, where the looping alternatives, if they exist, start being

tried repeatedly. If no new answer for S is added to the table in a complete cycle

over the looping alternatives, then we can say that subgoal S has reached its fixpoint.

Within this model, parallelism arises if we schedule the multiple looping alternatives

to different workers. Communication among the different workers can be done through

the table space.

An important characteristic of tabling is that it avoids recomputation of tabled sub-
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goals. An interesting point of the dynamic reordering strategy is that it avoids recom-

putation through performing recomputation. The process of retrying alternatives may

cause redundant recomputations of the non-tabled subgoals that appear in the body of

a looping alternative. It may also cause redundant consumption of answers if the body

of a looping alternative contains more than one variant subgoal call. Furthermore, to

really judge the potential of the model as proclaimed by the authors [48], a more

detailed performance evaluation is needed.

We believe that parallelism may cause even more drawbacks in this model. A major

problem in parallel execution with this model is the way alternatives may be scheduled

to be recomputed. Assume, for instance, two workers, W1 and W2, recomputing two

different looping alternatives for the same subgoal. Consider that within its alternative,

W1 consumes the available answers for a given subgoal S and then backtracks to

continue exploitation. Suppose that in the meantime W2 finds a new answer for S.

When W1 exhausts its looping alternative, it has to recompute it from the beginning

in order to consume the newly found answer. However, a similar situation may occur

and W2 may find another answer for S that may lead to a new recomputation of the

alternative owned by W1. Therefore, parallelism may not come so naturally as for

SLD evaluations and parallel execution may lead to doing more work.

There have been other proposals for concurrent tabling but in a distributed memory

context. Hu [56] was the first to formulate a method for distributed tabled evaluation

termed Multi-Processor SLG (SLGMP). This method matches subgoals with proces-

sors in a similar way to Freire’s approach [40]. Each processor gets a single subgoal

and it is responsible for fully exploiting its search tree and obtain the complete set

of answers. One of the main contributions of SLGMP is its controlled scheme of

propagation of subgoal dependencies in order to safely perform distributed completion.

An implementation prototype of SLGMP was developed, but as far as we know no

results have been reported.

A different approach for distributed tabling was proposed by Damásio in [35]. The

architecture for this proposal relies on four types of components: a goal manager

that interfaces with the outside world; a table manager that selects the clients for

storing tables; table storage clients that keep the consumers and answers of tables;

and prover clients that perform evaluation. An interesting aspect of this proposal

is the completion detection algorithm. It is based on a classical credit recovery
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algorithm [65] for distributed termination detection. Dependencies among subgoals

are not propagated and, instead, a controller client, associated with each SCC, controls

the credits for its SCC and detects completion if the credits reach the zero value. An

implementation prototype has also been developed, but further analysis is required.

Marques et al. [64] have proposed an initial design for an architecture for a multi-

threaded tabling engine. Their first aim is to implement an engine capable of process-

ing multiple query requests concurrently. The main idea behind this proposal seems

very interesting, however the work is still in an initial stage.

5.2 Novel Models for Parallel Tabling

Our work is based on the observation that tabling is still about exploiting alternatives

to finding answers for goals, and that or-parallel systems have precisely been designed

to achieve this goal efficiently. Our suggestion is that all alternatives to subgoals should

be amenable to parallel exploitation, be they from tabled or non-tabled subgoals, and

that or-parallel frameworks can be used as the basis to do so. This gives an unified

approach with two major advantages. First, it does not restrict parallelism to tabled

subgoals, and, second, it can draw from the large experience in implementing or-

parallel systems. We believe that this approach can be an efficient model for the

exploitation of parallelism in tabling-based systems.

One of the important characteristics of tabling-based systems is that some subgoals

need to suspend on other subgoals to obtain the full set of answers. Or-parallel systems

also need to suspend, either while waiting for leftmostness in the case of side-effects,

or to avoid speculative execution. The need for suspending introduces an interesting

similarity between tabling and or-parallelism that influenced our work. We therefore

propose two new computational models, the OPT and TOP models.

To develop an efficient parallel tabling system we believe that it should exploit maxi-

mum parallelism and take maximum advantage of current parallel and tabling technol-

ogy. A key idea in our proposals is that we want to explore in parallel all the available

alternatives, be they from generator, consumer or interior nodes. For efficiency reasons

we are also most interested in multi-sequential systems [111], that is, in systems where

workers compute independently in the search tree, and mainly communicate with each
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other to fetch work.

5.2.1 Or-Parallelism within Tabling (OPT)

In this first approach, that we name Or-Parallelism within Tabling (OPT), parallel

evaluation is done by a set of independent tabling engines that may share different

common branches of the search tree during execution. Each worker can be considered a

sequential tabling engine that fully implements the tabling operations: access the table

space to insert new subgoals or answers; allocate data structures for the different types

of nodes; suspend tabled subgoals; resume subcomputations to consume newly found

answers; and complete private (not shared) subgoals. As most of the computation

time is spent in exploiting the search tree involved in a tabled evaluation, we can say

that tabling is the base component of the system.

The or-parallel component of the system is triggered to allow synchronized access to

the shared parts of the execution tree, in order to get new work when a worker runs out

of alternatives to exploit, and to perform completion of shared subgoals. Unexploited

alternatives should be made available for parallel execution, regardless of whether they

originate from generator, consumer or interior nodes. From the viewpoint of SLG reso-

lution, the OPT computational model generalizes the Warren’s multi-sequential engine

framework for the exploitation of or-parallelism. Or-parallelism stems from having

several engines that implement SLG resolution, instead of implementing Prolog’s SLD

resolution.

Figure 5.1 illustrates how parallelism can be exploited in the OPT model. It assumes

two workers, W1 and W2, and it represents a possible evaluation for the following

program code with ?- a(X) as the query goal.

:- table a/1.

a(X) :- a(X).
a(X) :- b(X).

b(1).
b(X) :- ...
b(X) :- ...

?- a(X).

Consider that worker W1 executes the query goal. It first inserts an entry for the
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tabled subgoal a(X) into the table space and creates a generator node for it. The

execution of the first alternative leads to a recursive call for a(X), W1 hence creates

a consumer node for a(X) and, because there are no available answers, it backtracks.

The next alternative finds a non-tabled subgoal b(X) for which an interior node is

created. The first alternative for b(X) succeeds and an answer for a(X) is therefore

found: a(1). The worker inserts the newly found answer in the table and then starts

exploiting the next alternative for b(X).

Generator Node

Consumer Node

Interior Node

Public Tree

New Answer

Exploited Branch

W1

a(X)

X = 1

a(X) b(X)

a(1)

W1

a(X)

a(X) b(X)

W2

Sharing with W2

X = 1

a(1)

Figure 5.1: Exploiting parallelism in the OPT model.

At this point, worker W2 moves in to share work. Consider that worker W1 decides to

share all of its private nodes. The two workers will share three nodes: the generator

node for a(X), the consumer node for a(X), and the interior node for b(X). Worker

W2 takes the next unexploited alternative of b(X) and from now on, both workers can

find further answers for a(X) and any of them can restart the shared consumer node.

5.2.2 Tabling within Or-Parallelism (TOP)

The second approach, that we name Tabling within Or-Parallelism (TOP), considers

that a parallel evaluation is performed by a set of independent WAM engines, each

managing a unique branch of the search tree at a time. These base engines are extended

to include direct support to the basic table access operations, that allow the insertion

of new subgoals and answers.

We have seen that subgoals in tabling based systems need to suspend on other subgoals

to obtain the full set of answers. Or-parallel systems also need to suspend, either while
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waiting for leftmostness in the case of side-effects, or to avoid speculative execution.

The need for suspending introduces an important similarity between tabling and or-

parallelism. The TOP approach therefore unifies or-parallel suspensions and suspen-

sions due to tabling. When exploiting parallelism, some branches may be suspended,

say, because they are speculative or not leftmost, or because they include consumer

nodes waiting for more answers, while others are available for parallel execution. In

TOP, the or-parallel suspension mechanism is extended to also manage the suspensions

related to the tabling evaluation. Consequently, a suspended branch can wake up

for reasons such as, new answers have been found for the consumer node on that

branch, the branch becoming leftmost, or just for lack of non-speculative work in the

search tree. The TOP name arises from the fact that tabled evaluation is attained by

embracing the tabling suspension mechanism within the or-parallel component.

Figure 5.2 illustrates how parallelism is exploited under this approach for the same

previous program. We can observe from the left figure that as soon as W1 suspends on

consumer node for a(X), it makes the whole branch public and only after it backtracks

to the upper node. The suspended branch thus stops being the responsibility of W1

and becomes, instead, shared work that anyone can wake up when new answers to

a(X) are found.

Generator Node

Consumer Node

Interior Node

Public Tree

New Answer

Exploited Branch

W1

a(X)

X = 1

a(X) b(X)

a(1)

W1

a(X)

a(X) b(X)

W2

W2 getting
shared work

X = 1

a(1)

a(1)

Figure 5.2: Exploiting parallelism in the TOP model.

Continuing the execution, W1 finds an answer for subgoal a(X) in the first alternative

for subgoal b(X). So, when worker W2 starts looking for work, it can choose whether

to resume the consumer node with the newly found answer or to ask worker W1 to

share his private nodes. The right figure assumes that the first option was chosen.
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5.2.3 Comparing the Models

The TOP model is a very attractive model, as it provides a clean and systematic

unification of tabling and or-parallel suspensions. Workers have a clearly defined

position, because a worker always occupies the tip of a single branch in the search

tree. Everything else is shared work. It also has practical advantages, such as the fact

that in this approach we can guarantee that a suspended branch will only appear once,

instead of possibly several times for several workers. On the other hand, as suspended

nodes are always shared in or-parallel systems, the unified suspension may result in

having a larger public part of the tree, which may increase overheads. Besides, in

order to support all forms of suspension with minimal overhead, the unified suspension

mechanism must be implemented efficiently.

In TOP, we have a standard Prolog system extended with an or-parallel/tabling

component. If adopting SLG-WAM for tabling, this means that TOP is most adequate

for, say, binding arrays models [113, 112] for the or-parallel component, as a result

of the similar cactus stack organization that both approaches use. An alternative

for tabling is Demoen and Sagonas’s CAT [36] model. CAT seems to fulfill best the

requirements of the TOP approach, since it assumes a linear stack for the current

branch and uses an auxiliary area to save the suspended nodes. If implementing TOP

based on CAT, then we should adopt for the or-parallel component an environment

copying model [6, 5] as it fits best with the kind of operations that CAT introduces.

On the other hand, the OPT approach offers interesting advantages. First, it reduces

to a minimum the overlap between or-parallelism and tabling. In OPT we have a

tabling system extended with an or-parallel component. Moreover, it enables different

combinations for or-parallelism and tabling, giving implementors the highest degree

of freedom. For instance, one can use the SLG-WAM for tabling, and environment

copying or binding arrays for or-parallelism.

Taking into account the advantages and disadvantages presented, we decided to focus

our work on the design and implementation of the OPT model. Our choice seems

the most natural as we believe that the OPT approach gives the highest degree of

orthogonality between or-parallelism and tabling. The hierarchy of or-parallelism

within tabling results in a property that one can take advantage of to structure the

design and thus simplify the implementation.
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5.2.4 Framework Motivation for the OPT Model

We adopted a framework based on the YapOr and YapTab engines in order to imple-

ment the OPT model. We choose to use environment copying for or-parallelism and

SLG-WAM for tabling based on the fact that these are, respectively, two of the most

successful or-parallel and tabling engines. In our case, we already had the experience

of implementing environment copying in the Yap Prolog, the YapOr system, with

excellent performance results when compared with the Muse system [79, 82]. Adopting

YapOr for the or-parallel component of the combined system was therefore our first

choice.

On the other hand, YapTab was initially developed based on the SLG-WAM because,

at the time, SLG-WAM was the most, and perhaps unique, successful tabling engine.

The later appearance of the CAT [36] and CHAT [37] approaches to tabling, opened

news paths and raised questions about the direction our work should follow. Instead

of freezing computations, CAT uses an external data area to where it copies suspended

computations. It turns out that CAT may have arbitrarily worse behavior than the

SLG-WAM for some programs, and thus, a variation of the CAT approach, the CHAT,

was later proposed to overcome some limitations of the CAT design. CHAT is an

hybrid approach that combines certain features of the SLG-WAM with others of CAT.

It innovates by introducing a technique for freezing stacks without using either freeze

registers or stack copying. CHAT still copies the choice point and the trail stacks but

not the environment and heap stacks. Instead, the latter are protected by manipulating

pointers in the choice points.

We considered these new models as alternatives to the SLG-WAM, but after studying

and considering their integration with an or-parallel component, we decided not to

change the course of our work because CAT and CHAT have major problems for

support parallelism over YapOr. First, to take best advantage of CAT or CHAT we

need to have separate environment and choice point stacks, but Yap has an integrated

local stack. Second, and more importantly, we believe that CHAT is not appropriate

for parallel execution and that CAT is less suitable than the SLG-WAM to an efficient

extension to or-parallelism.

Regarding CHAT, we argue that it is its choice point manipulation technique that

makes it inappropriate as a base model to support parallel execution. Consider, for
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example, two different workers, W1 and W2, exploiting alternative branches from a

public choice point N and W1 suspending a computation that requires manipulating

pointers in N . Obviously, parallelism is not compatible with this kind of choice point

manipulation. If W2 backtracks to N then we can expect arbitrary behavior when W2

restores N ’s pointers.

As the SLG-WAM, CAT assumes an incremental completion technique in order to be

more efficient in terms of memory consumption and to minimize the size of stacks to

be copied. It was precisely this incremental completion principle that we believe

it is less suitable to an efficient extension of the model to or-parallelism. CAT

implements incremental completion through an incremental copying mechanism that

saves intermediate states of the execution stacks. The mechanism works as follows:

when suspending a consumer node, the state of the computation is saved to a proper

CAT area up to the nearest generator node G on the current branch, in such a way that

if execution fails back to G, all younger consumer nodes have saved all information

needed for their restoration. If G is a leader node, on reaching fixpoint, completion

can occur and the space for the CAT area can be freed. Otherwise, to allow for the

younger consumers to be further restored, since backtracking over G will occur we need

to perform an incremental state saving. Incremental saving is always done up to the

next nearest generator node and linked to the CAT areas previously saved up to G.

This incremental saving of computational states maximizes sharing between common

state segments and therefore, avoids double copying of the same segments.

In sequential tabling, the notion of leader node only makes sense if that node is a

generator node. However, if we want to preserve incremental completion efficiency in

a parallel tabling environment, we need to enlarge the concept behind the notion of

leader node. Consider, for example, the situation from Figure 5.3. Starting from a

common public node, worker W1 takes the leftmost alternative while worker W2 takes

the rightmost. While exploiting their alternatives, W1 calls a tabled subgoal a and

W2 calls a tabled subgoal b. As this is the first call to both subgoals, a generator node

is stored for each one. Next, each worker calls the tabled subgoal firstly called by the

other, and consumer nodes are therefore allocated. At that point, we may question at

which node we should check for completion? Intuitively, we might choose a node that is

common to both branches and the youngest common node seems the better choice. As

an alternative, we might store a dummy generator node at the beginning of the stacks
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in order to guarantee that there is always an older generator node where we will check

for completion. Obviously, if adopting this latter approach, incremental completion is

not practicable and the efficiency of the model in terms of memory consumption and

the size of stacks to be saved and later reinstalled is the worst possible.

W1

a

b

b

a

W2

Youngest common node?

Dummy generator node?

Generator Node

Consumer Node

Public Node

Figure 5.3: Which is the leader node?

As motivated by the example, if one adopts the youngest common node approach, then

in a parallel tabled evaluation any kind of node (generator, consumer or interior) may

be a leader node. Moreover, situations where a worker has several consumer nodes

but not a single generator node are common. The efficiency of the CAT’s incremental

completion technique is based in the fact that the next place where completion may

take place is in the upper generator node and that between two generator nodes

there cannot exist another completion point. Parallel tabling does not preserve these

properties. As an example, consider the situation from Figure 5.4.

The figure shows three workers, W1, W2 and W3 executing a tabled evaluation in

parallel. The left sub-figure shows a situation where W2 and W3 are about to suspend,

respectively, the consumer nodes for the tabled subgoals a and b. The sub-figure on

the right shows the resulting state if the youngest common node approach is adopted

for suspension. Note that nodes N1 and N3 are, respectively, the youngest common

nodes to the branches of the generator and consumer nodes for a and b. Therefore,

consumer node for a is suspended at N1 and consumer node for b is suspended at N3.
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Generator Node
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suspended

b
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N1

N3

N2

Figure 5.4: CAT’s incremental completion for parallel tabling.

Assume now that no more suspensions occur until W2 and W3 both backtrack from

N3. Such a situation leads to a major problem. How should the last worker leaving

N3 handle the suspension for b?

To solve this problem we need a very flexible mechanism that can decide when a sus-

pension depends on upper suspensions. Besides, even if such mechanism is efficiently

implemented, introducing parallelism over CAT would activate incremental saving

whenever backtracking from public nodes. Moreover, incremental saving should be

performed up to the parent node, as potentially it can hold other suspensions or be the

next completion point. Obviously, this node-to-node segmentation of the incremental

saving technique will degrade the efficiency of any parallel system. The problems

behind the management of incremental completion in parallel tabling were the major

reason why we were unwilling to change our initial framework choice.

5.3 Chapter Summary

In this chapter we proposed two novel computational models for parallel tabled evalu-

ation, OPT and TOP models, and we discussed their fundamental aspects, advantages

and drawbacks. We also discussed two related approaches to exploit parallelism from
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tabled logic programs, the Table-parallelism approach from Freire et al. [40] and the

Table-parallelism approach from Guo and Gupta [47].

We then motivated for a framework based on the YapOr and YapTab engines to

implement the OPT model and stated the reasons for our choice. In the next two

chapters we present the details for the implementation.

YapOr’s engine was recently extended [33] to support two newer or-parallel binding

approaches based on the Sparse Binding Array [28, 26] and on the Copy-On-Write [29]

models. Therefore, we aim at integrating these binding models with YapTab in order

to enlarge the combinations for the or-parallel tabling engine.
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Chapter 6

OPTYap: The Or-Parallel Tabling

Engine

This chapter presents the implementation details for the OPTYap engine. OPTYap

is an or-parallel tabling system that implements the OPT computational model. As

introduced in previous chapters, the OPT model is based on environment copying for

the or-parallel component, and on the SLG-WAM for the tabling component. Our

initial design only supports parallel tabled evaluation for definite clauses.

We start by presenting an overall view of the main issues involved in the implementa-

tion of the or-parallel tabling engine and then we introduce and detail the new data

areas, data structures and algorithms required to implement it.

6.1 Implementation Overview

In our model, a set of independent workers will execute a tabled program by traversing

a search tree where each node is a candidate entry point for parallelism. Each worker

physically owns its environment, that is, a set of stacks, and shares the data structures

that support tabling and scheduling. During execution, the search tree is implicitly

divided into a public and private regions. Workers in their private region execute

nearly as in sequential tabling. Workers exploiting the public region of the search tree

must be able to synchronize in order to ensure the correctness of the tabling operations.

123
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Parallel execution requires novel algorithms in a number of different situations. In

some cases, parallel execution is straightforward, such as when backtracking to a public

generator or to an interior node in order to take the next available alternative; when

backtracking to a public consumer node to take the next unconsumed answer; or when

inserting new answers into the table space. However, parallel execution can be quite

complex in other situations. Therefore, it is a crucial implementation issue to achieve

efficiency within the parallel tabling system. Complex cases include completion,

resumption of computations, and the fixpoint check procedure, when operating over

the public part of the execution tree. In a parallel tabling system, the relative positions

of generator and consumer nodes are not as clear as for sequential systems, hence we

need more complex algorithms to determine whether a node can be a leader node and

to determine whether a SCC1 can be completed. As we shall see, the condition of

being a leader node is not, by itself, sufficient to perform completion.

We follow a multi-sequential design. Therefore, a worker running out of alternatives

to exploit enters in scheduling mode and uses the YapOr scheduler to search for busy

workers with unexploited work. Alternatives are made available for parallel execution,

regardless of whether they originate from generator, consumer or interior nodes. A

worker is said to have shareable work if it contains private nodes with unexploited

alternatives or with unconsumed answers. When a worker shares work with another

worker, incremental copying is used to set the environment for the requesting worker.

6.2 The Parallel Data Area

A crucial part for the efficiency of a parallel system is how concurrent handling of

shared data is achieved and synchronized. In this section we present the data-area

design that allows for an efficient management of data structures in OPTYap. Memory

allocation in OPTYap follows the same organization as in YapOr (please refer to

Figure 3.6). Memory is divided into a global addressing space and a collection of local

spaces, each one supporting one system worker. The global space includes the code

area and a parallel data area that consists of all the data structures required to support

concurrent execution. OPTYap extends the parallel data area to include the table and

1Recall that we do not distinguish between SCCs and ASCCs and that we use the SCC notation

to refer the approximation resulting from the stack organization.



6.2. THE PARALLEL DATA AREA 125

dependency spaces inherited from YapTab. A new data space preserves the stacks of

suspended branches with dependencies in other branches (further details are given in

section 6.7).

6.2.1 Memory Organization

The parallel data area stores data structures that may be accessed and updated

concurrently. A major source of overhead regarding data access or update in parallel

systems are memory cache misses and page faults. To deal with these, we need to

achieve good locality for these data structures.

An important characteristic of almost all parallel data structures in the parallel data

area is that elements of the same type are linked together to improve the efficiency of

the common procedures that search through a chain until a certain condition is met.

Hence, a good heuristic for increasing locality is to organize memory in such a way

that data structures that are near at the abstract chain level, are also near at the

memory level.

Modern computer architectures use pages to handle memory. Pages are fixed size

blocks of contiguous memory cells. If we guarantee that most consecutive memory

references are also physically consecutive, we may obtain access to the whole set of

references when loading a memory page. Based on this characteristic, we adopt a

page organization scheme in order to split memory among different data structures

resident in the parallel data area. Figure 6.1 gives an overview of the parallel data

area memory organization.

Y data
structures

Z data
structures Free Page

X data
structures

Unreleased_Pages

Parallel
Data Area

X data
structures

Figure 6.1: Using memory pages as the basis for the parallel data area.

Figure 6.1 shows that each memory page only contains data structures of the same

type. Whenever a new request for a data structure of type T appears, the next

available structure on one of the T pages is returned. If there are no available
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structures in any T page, then a new T page must be requested. If there are pages

already marked as free, as in the figure, then one of them is made to be of type

T . Otherwise, a new page can be released from a pool of unreleased pages. This is

achieved by making the page given by the Unreleased Pages pointer to be of type T ,

and by updating the pointer to the next unreleased page. A page is freed when all its

data structures are released. A free page can be immediately reassigned to a different

structure type. Figure 6.2 details the parallel data area pages organization.
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Figure 6.2: Inside the parallel data area pages.

Access to pages of a given data type is synchronized by the page entry data structure.

In Figure 6.2, PAGES T is the page entry that allows access to the data structures of

type T . A page entry structure includes two data fields. The Pg lock field implements

a lock mechanism to synchronize access to available data structures, in such a way that

only a worker at a time may be updating the chain of available pages or the set of

available data structures. The Pg free pg field is a pointer to the first page with

available data structures of the given type.



6.2. THE PARALLEL DATA AREA 127

6.2.2 Page Management

The management of pages and data structures within pages is achieved by allocating a

special page header structure at the beginning of each page and by uniformly splitting

the remaining of each page in data structures of the type being handled. A page header

consists of four fields. The PgHd str in use field stores the number of structures in

use within the page. When it goes to zero the page can be freed. The PgHd free str

field points to the first available data structure within the page. The PgHd next

and PgHd previous fields point, respectively, to the next and previous pages with

available structures. Within a page, available data structures are linked through their

next fields. Access to free pages is also synchronized by a proper page entry data

structure, named PAGES void. The management of theses pages is simple because the

PgHd next page header field is sufficient to maintain the chain of free pages.

Figures 6.3 and 6.4 present, respectively, the pseudo-code for allocating and freeing a

data structure of a given page entry type.

alloc_struct(page entry pg_entry) {
lock(Pg_lock(pg_entry))
if (Pg_free_pg(pg_entry) == NULL) // if no available pages then ...

Pg_free_pg(pg_entry) = alloc_page() // ... request a new page
header = Pg_free_pg(pg_entry)
PgHd_str_in_use(header)++
str = PgHd_free_str(header)
PgHd_free_str(header) = struct_next(str)
if (PgHd_free_str(header) == NULL) { // if no available structures then...

Pg_free_pg(pg_entry) = PgHd_next(header) // ... move to next page
if (PgHd_next(header) != NULL)
PgHd_previous(PgHd_next(header)) = NULL

}
unlock(Pg_lock(pg_entry))
return str

}

Figure 6.3: Pseudo-code for alloc struct().

The alloc struct() procedure initially checks for available pages. If there are no

pages a new one is requested through a call to alloc page(). Next, we get the first

available structure from the page we obtained and update the page header to point

to the next available structure. If no more structures are available then the page is

fully used. Hence, we update the page entry at hand to point to the next page with

available structures.
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free_struct(page entry pg_entry, data structure str) {
header = page_header(str) // header of the page that includes str
lock(Pg_lock(pg_entry))
if (--PgHd_str_in_use(header) == 0) { // if no structures in use then ...

// ... put page free
if (PgHd_previous(header)) {
PgHd_next(PgHd_previous(header)) = PgHd_next(header)
if (PgHd_next(header) != NULL)

PgHd_previous(PgHd_next(header)) = PgHd_previous(header)
} else {
Pg_free_pg(pg_entry) = PgHd_next(header)
if (PgHd_next(header) != NULL)

PgHd_previous(PgHd_next(header)) = NULL
}
free_page(header)

} else {
struct_next(str) = PgHd_free_str(header)
PgHd_free_str(header) = str
if (struct_next(str) == NULL) { // if first available structure then ...
// ... put page available
PgHd_previous(header) = NULL
PgHd_next(header) = Pg_free_pg(pg_entry)
if (PgHd_next(header) != NULL)

PgHd_previous(PgHd_next(header)) = header
Pg_free_pg(pg_entry) = header

}
}
unlock(Pg_lock(pg_entry))

}

Figure 6.4: Pseudo-code for free struct().

The free struct() procedure starts by determining if the page that includes the

structure being released is fully available, that is, without any other structure being

used. If this is the case the page stops being of the current type and instead it is

made free. Otherwise, the structure is chained in the available structures within the

page, and if it is the first structure made available then the page is also chained in the

available pages for that type.

The management scheme attained with the alloc struct() and free struct() pro-

cedures enables local references for data structures of the same type. Subsequent

allocate requests for data structures of the same type are serviced from the same

memory page, and data structures being freed are chained within their own pages in

order to keep locality of reference in further requests. Moreover, reclaiming unused

pages is trivial as a simple reference count is sufficient to detect unused pages; allocat-

ing and freeing data structures are fast, constant-time operations, all we have to do

is to move a structure to or from a list of free structures; and memory fragmentation
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is minimal, the only wasted space is the unused portion at the end of a page when it

cannot accommodate any more data structures.

To the best of our knowledge, the idea of page-based allocation of shared memory

was first proposed by Bonwick for his Solaris Slab memory allocator [16]. Bonwick

also proposes several alignment mechanisms in order to reduce cache misses. Our

performance evaluation has not shown the need for such sophisticated mechanisms in

OPTYap.

6.2.3 Improving Page Management for Answer Trie Nodes

During parallel evaluation, some data structures may induce high lock contention in the

page entry access, because of higher rates of concurrent allocating and release requests.

Through experimentation, we observed that this problem mainly occurs with answer

trie nodes. In order to attenuate these overheads, we introduced a different mechanism

to specifically deal with answer trie nodes. The idea is that: each worker maintains

a private pre-allocated set of available answer trie nodes. When a worker runs out of

pre-allocated answer trie nodes, it asks for an available answer trie node page and pre-

allocates all the structures in it. To implement that mechanism, a new local register

is necessary and a different procedure to request for available data structures is used.

We next present the pseudo-code for that procedure.

get_struct(page entry pg_entry, data structure local_str) {
str = local_str
if (str == NULL) { // if no available pre-allocated structures then ...

// ... get an available page and pre-allocate all the structures in it
lock(Pg_lock(pg_entry))
if (Pg_free_pg(pg_entry) == NULL)
Pg_free_pg(pg_entry) = alloc_page()

header = Pg_free_pg(pg_entry)
PgHd_str_in_use(header) = structs_per_page(pg_entry)
str = PgHd_free_str(header)
PgHd_free_str(header) = NULL
Pg_free_pg(pg_entry) = PgHd_next(header)
unlock(Pg_lock(pg_entry))

}
local_str = struct_next(str)
return str

}

Figure 6.5: Pseudo-code for get struct().

The get struct() procedure includes support for the pre-allocation mechanism and
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it replaces the alloc struct() procedure when dealing with requests for answer trie

nodes. The second argument is the local register that points to the next available

pre-allocated data structure.

The procedure starts by checking if pre-allocated data structures are available. If this

is the case, it gets the first available structure and updates the local register to point

to the next pre-allocated structure. Otherwise, a new page is requested and the local

register is made to point to the first available structure within that page. Moreover,

the page is marked as fully used and the page entry is updated to the next page with

available structures.

6.3 Concurrent Table Access

The table space is the major data area open to concurrent access operations in a

parallel tabling environment. To maximize parallelism, whilst minimizing overheads,

accessing and updating the table space must be carefully controlled. Reader/writer

locks are the ideal implementation scheme for this purpose. However, several different

approaches may be taken. One is to have a unique lock for the table, thus enabling

a single writer for the whole table space; or one can have one lock per table entry,

allowing one writer per predicate; or one lock per path, allowing one writer per subgoal

call; or one lock per trie node, to attain least contention on locks; or hybrid locking

schemes combining the above.

6.3.1 Trie Structures

The table data structures, and mainly the subgoal trie and answer trie structures,

should be protected from races when operations that can change their structure are

being executed. The tabling operations that change the subgoal trie and answer trie

structures are the tabled subgoal call operation and the new answer operation.

Three different situations may occur when executing a tabled subgoal call operation.

If the subgoal in hand is the first call to a tabled predicate, then a complete path of

subgoal trie nodes is inserted into the subgoal trie structure. The opposite is when

the subgoal is a variant of a subgoal in the table space, then no subgoal trie nodes are
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inserted or updated, and thus, the subgoal trie structure remains unaltered. Last, if

the subgoal is partially common to other tabled subgoals, only the divergent subgoal

trie path is inserted into the subgoal trie structure. A similar set of situations may

occur for the new answer operation. The difference is that the new answer operation

works over the answer trie structure instead of the subgoal trie structure.

A table locking scheme must consider the situations described above. To better

understand the peculiarities behind alternative locking schemes, we next give a more

detailed description about the organization and handling of trie structures. Figure 6.6

illustrates the trie structure organization by focusing in more detail on one of the

answer trie structures previously presented in Figure 4.3, including the complete set

of the trie nodes contents and dependencies.

Trie Structure in Detail
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subgoal frame
for call

t(var 0,var 1)
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NULL

NULL
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-
NULL
NULL
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Figure 6.6: Detailing the trie structure organization.
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A trie node is a data structure with four main data fields. The TrNode entry stores the

term that represents the node; the TrNode next is a pointer to the sibling node that

represents an alternative path; the TrNode parent is a back pointer to the preceding

node on path; and the TrNode child is a pointer to the next node on path.

The figure presents the organization for the answer trie structures. The subgoal trie

structures are organized similarly. The difference resides in how the TrNode child field

of the leaf trie nodes are processed. In an answer trie structure, the TrNode child field

of the leaves answer trie nodes forms a chain through the answers already stored in the

table. In the subgoal trie structure, the TrNode child field of the subgoal trie leaves

gives access to the correspondent subgoal frame (please refer to subsection 4.2.2).

The completed table optimization allows compiled code execution from a trie. The

optimization requires that answer trie nodes include two extra fields. One field, the

TrNode instr, stores the compiled instruction that implements unification for the

term stored in the node. The other, the TrNode or arg field, stores the number of

sibling nodes and supports the worker load computation scheme (see subsection 3.3.3).

For simplicity, these fields were not included in Figure 6.6.

Besides the nodes needed to represent the several alternative paths, a root node marks

the beginning of a trie structure. In Figure 6.6, the root node is the one represented

with a ’-’ in the TrNode entry field. This root node synchronizes access to the first

level of sibling nodes (nodes with terms e and b in the figure). Its usefulness can be

better understood through Figure 6.7. It illustrates a trie node check insert() call

sequence in the context of a new answer operation. For a tabled subgoal call operation

a similar sequence will be used.

// SG_FR is the subgoal frame for the subgoal in hand
// (T1, ..., Tn) are the substitution factors for the new answer

current_node = SgFr_answer_trie(SG_FR) // start from the root node
current_node = trie_node_check_insert(T1, current_node)
...
current_node = trie_node_check_insert(Tn, current_node)

Figure 6.7: trie node check insert() call sequence for the new answer operation.

Given a term T and a trie node P, the trie node check insert() procedure returns

the child trie node of P that represents the given term T . If such node was not already



6.3. CONCURRENT TABLE ACCESS 133

inserted by a previous operation then a new trie node to represent T is allocated and

inserted as a child of P. The trie node check insert() is called by tabled subgoal

call and new answer operations to traverse the subgoal and answer trie structures. It

is called for each term that represents the path being checked or inserted. For terms

of the form f(u1, ..., un), where f is a functor and u1, ..., un are themselves terms,

it is called for f/n and for each term ui.

Figure 6.8 introduces the algorithm that implements the trie node check insert()

procedure. Initially the algorithm traverses the chain of sibling nodes that represent

alternative paths from the given parent node and checks for one representing the

given term. If such a node is found then execution is stopped and the node returned.

Otherwise, in order to represent the given term a new trie node is allocated and inserted

in the beginning of the chain. We should stress that trie nodes corresponding to new

paths are inserted in the trie structure through invocation of the new trie node()

procedure. This procedure allocates new trie nodes, and it initializes the fields of

the newly allocated node. The TrNode entry, TrNode next, TrNode parent and

TrNode child fields are respectively initialized with the first, second, third and forth

argument. When a chain of sibling nodes becomes larger then a threshold value, we

dynamically index the nodes through a hash table to provide direct node access and

therefore optimize the search. In order to simplify the understanding of the algorithms,

we do not include the code for the hashing mechanism.

trie_node_check_insert(term t, trie node parent) {
// check if the node representing t is already inserted
child = TrNode_child(parent)
while (child) {

if (TrNode_entry(child) == t)
// node representing t found
return child

child = TrNode_next(child)
}
// insert a new node to represent t
child = new_trie_node(t, TrNode_child(parent), parent, NULL)
TrNode_child(parent) = child
return child

}

Figure 6.8: Pseudo-code for trie node check insert().

We should mention that at this point we are still not considering any locking scheme

to synchronize access to the trie structures. Furthermore, currently we do not support

dynamic tries, that is, using tries to represent clauses for dynamic predicates. The
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locking schemes that we present next assume therefore that, whilst evaluating a

subgoal, we cannot remove trie nodes from the tables.

6.3.2 Table Locking Schemes

We are now ready to discuss the different locking schemes. In a nutshell, we can

say that there are two critical issues that determines the efficiency of a table locking

scheme. One is the lock duration, that is, the amount of time a data structure is

locked. The other is the lock grain, that is, the amount of data structures that are

protected through a single lock request. It is the balance between lock duration and

lock grain that compromises the efficiency of different table locking approaches. For

instance, if the lock scheme is short duration or fine grained, then inserting many trie

nodes in sequence, corresponding a long trie path, may result in a large number of

lock requests. On the other hand, if the lock scheme is long duration or coarse grain,

then going through a trie path without extending or updating its trie structure, may

unnecessarily lock data and prevent possible concurrent access by others.

OPTYap implements four alternative locking schemes to deal with concurrent accesses

to the table space data structures, the Table Lock at Entry Level scheme, the Table

Lock at Node Level scheme, the Table Lock at Write Level scheme, and the Table Lock

at Write Level - Allocate Before Check scheme.

The Table Lock at Entry Level (TLEL) scheme was the first table locking scheme

implemented in OPTYap. The TLEL scheme allows a single writer per subgoal trie

structure and a single writer per answer trie structure. To do so, it uses the table entries

and the subgoal frames to lock, respectively, the subgoal trie and answer trie structures.

Within this scheme, a single lock request is sufficient to protect the trie structure

subject to concurrent access (coarse grain lock scheme). However, the trie structure is

only unlocked when the path for the subgoal/answer in hand was completely traversed

(long duration lock scheme).

The main drawback of TLEL is the contention resulting from its lock duration scheme.

We then implemented a new lock scheme, the Table Lock at Node Level (TLNL). The

TLNL only enables a single writer per chain of sibling nodes that represent alternative

paths from a common parent node. Its implementation leads to extending the trie

node data structure with a new TrNode lock field, used to lock access to the node’s
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children. This scheme has the advantage that in order to traverse a trie structure each

node on path only needs to be locked once. Within this scheme, the number of lock

requests is proportional to the length of the path, and the period of time a node is

locked is proportional to the average time needed to traverse the node (mean duration

lock scheme). Note however, that a lock on a node synchronizes access to the chain of

children nodes (fine grain lock scheme) and not to the node itself.

To fully implement this node level lock scheme, it is also necessary to adapt the

procedure responsible for traversing trie structures. Figure 6.9 shows the pseudo-

code that implements the trie node check insert() procedure to support the TLNL

scheme. The main difference from the original trie node check insert() procedure

is that here we lock the parent node while accessing its children nodes.

trie_node_check_insert(term t, trie node parent) {
lock(TrNode_lock(parent)) // locking the parent node
child = TrNode_child(parent)
while (child) {

if (TrNode_entry(child) == t) {
unlock(TrNode_lock(parent)) // unlocking before return
return child

}
child = TrNode_next(child)

}
child = new_trie_node(t, TrNode_child(parent), parent, NULL)
TrNode_child(parent) = child
unlock(TrNode_lock(parent)) // unlocking before return
return child

}

Figure 6.9: Pseudo-code for trie node check insert() with a TLNL scheme.

An important drawback of the TLNL scheme is that the amount of memory in the

parallel data area can increase substantially. During larger tabled evaluations, the trie

nodes, and mainly the answer trie nodes, are the major data types responsible for the

high percentage of memory pages being used in the parallel data area. Including an

extra field in the subgoal and answer trie node data structure leads, respectively, to a

25% and 16% size growth. Due to the high number of trie nodes pages, this ratio can

proportionally reflect the parallel data area memory usage.

We next developed a new scheme, the Table Lock at Write Level (TLWL) scheme, in

order to avoid the TLNL drawbacks without loosing its benefits. In fact, the TLWL

scheme improves over TLNL by reducing memory usage, whilst also reducing lock

duration. Like TLNL, the TLWL scheme only enables a single writer per chain of
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sibling nodes that represent alternative paths to a common parent node. However, in

TLWL, the common parent node is only locked when writing to the table is likely.

Figure 6.10 presents the pseudo-code that implements the TLWL scheme. Initially,

the chain of sibling nodes that succeed the given parent node is traversed without

locking. Only when the given term is not found do we lock the parent node. This

avoids locking when the term already exists in the chain. Moreover, it delays locking

while insertion of a new node to represent the term is not likely. Notice that we need

to check if, during our attempt to lock, other worker expanded the chain to include

the given term.

trie_node_check_insert(term t, trie node parent) {
child = TrNode_child(parent)
initial_child = child // keep the initial child node
while (child) { // traverse the initial chain of sibling nodes ...

if (TrNode_entry(child) == t) // ... searching for t
return child

child = TrNode_next(child)
}
lock(GLOBAL_locks[hash_node(parent)]) // locking the common parent node
// traverse the nodes inserted in the meantime by other workers before ...
child = TrNode_child(parent)
while (child != initial_child) {

if (TrNode_entry(child) == t) {
unlock(GLOBAL_locks[hash_node(parent)]) // unlocking before return
return child

}
child = TrNode_next(child)

}
// ... insert a new node to represent t
child = new_trie_node(t, TrNode_child(parent), parent, NULL)
TrNode_child(parent) = child
unlock(GLOBAL_locks[hash_node(parent)]) // unlocking before return
return child

}

Figure 6.10: Pseudo-code for trie node check insert() with a TLWL scheme.

It can be observed that TLWL maintains the lock granularity of TLNL (fine grain lock

scheme), but reduces the lock duration (short duration lock scheme). On average, the

number of lock requests in the TLWL scheme is lower, it ranges from zero to the

number of nodes on path. The amount of time a node is locked is on average also

smaller. It is the time needed to check the nodes that in the meantime were inserted

by other workers, if any, plus the time needed to allocate and initialize a new node.

TLWL avoids the TLNL memory usage problem by replacing trie node lock fields
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(TrNode lock) with a global array of lock entries (GLOBAL locks). A locking node

operation is achieved by applying an hash algorithm (hash node()) to the node address

in order to index the global array entry that should be locked. This lock mechanism

preserves the TLNL lock semantics, whilst reducing the memory needed to implement

locks to a fixed sized global array.

Lastly, we present the Table Lock at Write Level - Allocate Before Check (TLWL-

ABC) scheme. The TLWL-ABC scheme is a variant of the TLWL scheme that follows

the probable node insertion notion introduced in TLWL, but uses a different strategy

on when to allocate a node. In order to reduce to a minimum the lock duration

(minimum duration lock scheme), the TLWL-ABC scheme anticipates the allocation

and initialization of nodes that are likely to be inserted in the table space to before

locking. Note that, if in the meantime a different worker introduces first an identical

node, we pay the cost of having pre-allocated an unnecessary node, that has to be

additionally freed. Figure 6.11 presents the pseudo-code that implements the TLWL-

ABC scheme.

trie_node_check_insert(term t, trie node parent) {
child = TrNode_child(parent)
initial_child = child
while (child) {

if (TrNode_entry(child) == t)
return child

child = TrNode_next(child)
}
// pre-allocate a node to represent t
pre_alloc = new_trie_node(t, NULL, parent, NULL)
lock(GLOBAL_locks[hash_node(parent)])
child = TrNode_child(parent)
TrNode_next(pre_alloc) = child
while (child != initial_child) {

if (TrNode_entry(child) == t) {
// freeing the pre-allocated node
free_struct(PAGES_trie_nodes, pre_alloc)
unlock(GLOBAL_locks[hash_node(parent)])
return child

}
child = TrNode_next(child)

}
// inserting the pre-allocated node
TrNode_child(parent) = pre_alloc
unlock(GLOBAL_locks[hash_node(parent)])
return pre_alloc

}

Figure 6.11: Pseudo-code for trie node check insert() with a TLWL-ABC scheme.
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OPTYap supports all these table locking schemes. The TLWL scheme is the default

scheme adopted for OPTYap. In Chapter 8 we present a detailed evaluation of the four

alternative locking schemes, justifying our decision to choose TLWL as the default.

6.4 Data Frames Extensions

The or-frames, the subgoal frames and the dependency frames were the main data

structures introduced to support the YapOr and YapTab models. To implement

OPTYap, these data structures were extended to support parallel tabling.

6.4.1 Or-Frames

Or-frames synchronize access to the available alternatives for public choice points and

support scheduling of work.

In the WAM, the choice point stack represents a single branch of the execution tree at

a time. In the SLG-WAM, the choice point stack supports several different branches

at a time. This leads to non-linearity in choice points. In other words, between two

choice points for adjacent nodes in a branch there may exist several other choice points

representing different branches. Hence, the notion of being public has to be clarified.

A worker can physically share a choice point C, physically in the sense that it holds C

on its stacks, while it is not logically sharing C, logically in the sense that its current

branch contains C.

OPTYap considers that a physically shared choice point is a public choice point. When

sharing work, the whole set of choice points being incrementally copied are made

public, be they on the current branch of the sharing worker or not. This maximizes

parallelism and simplifies the further management of suspended branches. The whole

set of data structures representing the execution dependencies can be shared without

changing its structure. However, the or-frame data structure has to store additional

information to reflect the new choice point environment. Figure 6.12 shows an example

that illustrates the new or-frame data fields.

The example is presented through three sub-figures. The sub-figure on the left shows

the evaluation being considered. The sub-figure in the middle presents nodes depen-
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Figure 6.12: New data fields for the or-frame data structure.

dencies at three different points of the evaluation. The nodes are presented linearly

to reflect the physical choice point stack order. A link between two nodes indicates

adjacent nodes on a branch. Situation (a) presents node dependencies after a worker P

had traversed nodes N1 and N2, suspended on N2, backtracked to N1, and traversed

nodes N3 and N4. Situation (b) considers that worker P accepted a sharing work

request from worker Q and that it has made public the whole set of nodes. Last,

situation (c) assumes that P suspends on N4, backtracks to N3 and follows to node

N5 (note that N5 is not public).

The sub-figure on the right presents or-frames dependencies at the end of situation (c).

Observe that both workers hold the whole set of public nodes despite N2 not being on

either worker’s current branch and N4 not being on P’s current branch. Remember

that OrFr members stores the set of workers which contain the choice point on their

branch. A new or-frame data field, OrFr owners, stores the number of workers that

hold the choice point on their stack, be it on their branch or not. The OrFr members

field allows worker Q, in situation (c), to determine that it is the unique worker with

node N4 on its branch. The OrFr members field allows worker Q to know that there

is another worker holding N4. That worker may, through a completion or answer

resolution operation, include N4 on its branch.
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Figure 6.12 also shows two other fields, the OrFr next and OrFr next on stack fields,

and two registers controlling or-frames, TOP OR FR and TOP OR FR ON STACK. Remem-

ber that TOP OR FR allows access to the youngest or-frame on the worker’s branch, and

that OrFr next points to the parent or-frame on branch. The TOP OR FR ON STACK

is a new register that allows access to the youngest or-frame on stack, while the

OrFr next on stack is a new or-frame data field that points to the or-frame that

corresponds to the preceding choice point on stack, in such a way that the choice

point stack order can be obtained starting from TOP OR FR ON STACK and following

the OrFr next on stack fields.

To allow support for suspension of SCCs, the or-frame data structure includes two ad-

ditional fields. The OrFr suspensions field points to the suspended SCCs stored in the

frame. The OrFr nearest suspnode field points to the next or-frame in the worker’s

list of or-frames with suspended SCCs that corresponds to the nearest youngest choice

point on stack. The process of suspending SCCs and the role that these new fields

play in the process is detailed in section 6.7.

6.4.2 Subgoal and Dependency Frames

Remember that subgoal frames provide access to answer trie structures, while depen-

dency frames support the fixpoint check procedure. A detailed description of YapTab’s

subgoal and dependency frames was given in subsection 4.2.4. Next, we present the

extensions introduced to deal with the OPT model. Both subgoal and dependency

frames include three additional data fields.

For the subgoal frames, these fields are: SgFr lock, SgFr worker and SgFr top or fr.

SgFr lock is a lock that synchronizes concurrent updates to the frame fields. It

can also be used to support the TLEL table lock scheme. SgFr worker stores the

identification number for the worker that allocated the frame. SgFr top or fr points

to the generator or-frame, if the generator choice point is shared, and otherwise to the

or-frame that corresponds to the youngest shared choice point on the generator choice

point branch. Both SgFr worker and SgFr top or fr are used to compute the leader

node information (see section 6.5).

The new fields in the dependency frames are: DepFr lock, DepFr gen on stack and

DepFr top or fr. DepFr lock synchronizes concurrent updates to the frame fields.
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DepFr gen on stack is a boolean that indicates whether the generator choice point

for the corresponding leader choice point is on stack or not. In OPT, a consumer

node can have its generator on another worker’s branch. DepFr top or fr points to

the consumer or-frame, if the consumer choice point is shared, and otherwise to the

or-frame that corresponds to the youngest shared choice point on the consumer choice

point branch. Both DepFr gen on stack and DepFr top or fr support the fixpoint

check procedure for shared nodes (see section 6.6).

6.5 Leader Nodes

Or-parallel systems execute alternatives early. As a result, it is possible that generators

will execute earlier, and in a different branch than in sequential execution (as an

example, please refer to Figure 5.3). In fact, different workers may execute the

generator and the consumer goals. Workers may have consumer nodes while not

having the corresponding generator nodes in their branches. Conversely, the owner of

a generator node can have consumer nodes being executed by several different workers.

This may induce complex dependencies between workers, therefore requiring a more

elaborate completion operation that may involve the branches from several workers.

To clarify the dependencies between generator and consumer nodes we introduce a

new concept, the Generator Dependency Node (or GDN ). Its purpose is to signal the

nodes that are candidates to be leader nodes, therefore representing a similar role as

that of the generator nodes for sequential tabling. A GDN is calculated whenever a

new consumer node, say C, is created. It is defined as the youngest node D on the

current branch of C, that is an ancestor of the generator node G for C. Obviously, if

G belongs to the current branch of C then G is the GDN. On the other hand, if the

worker allocating C is not the one that allocated G then the youngest node D is a

public node, but not necessarily G.

Figure 6.13 presents three different situations that better illustrate the GDN concept.

WG is always the worker that allocated the generator node G, WC is the worker that

is allocating a consumer node C, and the node pointed by the black arrow is the GDN

for the new consumer.

In situation (a), the generator node G is on the branch of the consumer node C, and
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Figure 6.13: Spotting the generator dependency node.

thus, G is the GDN. In situation (b), nodes N1 and N2 are on the branch of C and

both contain a branch leading to the generator G. As N2 is the youngest node of both,

it is the GDN. In situation (c), N1 is the unique node that belongs to C’s branch and

that also contains G in a branch below. N2 contains G in a branch below, but it is not

on C’s branch, while N3 is on C’s branch, but it does not contain G in a branch below.

Therefore, N1 is the GDN. Notice that in both cases (b) and (c) the GDN can be a

generator, a consumer or an interior node.

Sequential tabling performs only completion detection at generator nodes. Our parallel

tabling design perform completion at GDNs. The procedure to compute the leader

node information when allocating a dependency frame for a new consumer node now

relies on the GDN concept. Remember that it is through leader node information

stored in the dependency frames that a node can determine whether it is a leader

node. The main difference from the sequential tabling algorithm is that now we

first hypothesize that the leader node for the consumer node in hand is its GDN,

and not its generator node. Figure 6.14 presents the modified pseudo-code for the
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compute leader node() procedure.

compute_leader_node(dependency frame dep_fr) {
// start by computing the generator dependency node
sg_fr = DepFr_sg_fr(dep_fr)
if (SgFr_worker(sg_fr) == WORKER_ID) {

leader_cp = SgFr_gen_cp(sg_fr)
on_stack = TRUE

} else {
or_fr = SgFr_top_or_fr(sg_fr)
while (WORKER_ID is not in OrFr_members(or_fr))
or_fr = OrFr_next(or_fr)

leader_cp = OrFr_node(or_fr)
on_stack = (SgFr_gen_cp(sg_fr) == leader_cp)

}
// and then compute the leader node
df = TOP_DEP_FR
while (DepFr_cons_cp(df) is younger than leader_cp) {

if (leader_cp is equal to DepFr_leader_cp(df)) {
on_stack |= DepFr_gen_on_stack(df)
break

} else if (leader_cp is younger than DepFr_leader_cp(df)) {
leader_cp = DepFr_leader_cp(df)
on_stack = DepFr_gen_on_stack(df)
break

}
df = DepFr_next(df)

}
DepFr_leader_cp(dep_fr) = leader_cp
DepFr_gen_on_stack(dep_fr) = on_stack

}

Figure 6.14: Modified pseudo-code for compute leader node().

The parallel compute leader node() procedure can be divided in two main blocks.

The first block computes the GDN, and the second block computes leader node

information to be stored in the DepFr leader cp field. Note that the procedure now

also computes the value of the DepFr gen on stack field. This field is initialized to

TRUE when the generator node for the computed leader node is on stack. Otherwise it

is initialized to FALSE.

The first code block checks if the worker allocating the consumer node is the one

that allocated the generator node. If so, then we assume the generator node is the

GDN. Otherwise, we are in one of the situation presented in Figure 6.13 and we must

traverse the chain of or-frames, starting from the one given by the SgFr top or fr

pointer relative to the subgoal in hand, until we reach one in the consumer branch.

The node for the common or-frame corresponds to the GDN.
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Regarding the second code block, we first check the consumer nodes younger than the

newly found GDN for an older dependency. Note that as soon as an older dependency

D is found in a consumer node C′, the remaining consumer nodes, older than C′ but

younger than the GDN, do not need to be checked because the leader node computation

ensures that they do not contain older dependencies than D. The previous computa-

tion of the leader node information for the consumer node C′ already represents the

oldest dependency that includes the remaining consumer nodes. This argument is

similar to the one proved for sequential tabling (remember subsection 4.2.7).

By now, the reader may have spotted an inconsistency between the original GDN

definition and the code block that computes it. If a consumer node was allocated by

the same worker that allocated the generator node, then the procedure assumes that

the GDN is the generator node. However, there are situations where this is not true.

Observe for instance Figure 6.15. Node G is the GDN computed by the procedure,

despite N2 being, by definition, the correct GDN. As explained next, this inconsistency

is intentional to achieve code efficiency.

WG
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on Stack

G
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Procedure’s Computed Node
N3

N1

Figure 6.15: The generator dependency node inconsistency.

The key observation is that backtracking over a generator node G without completing,

it only happens when there is a suspension point younger than G that depends on

a node older than G. We can therefore infer that there must exist a consumer

node N3 such that N2, or an ancestor N1, is its correspondent GDN. Thus, if we
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execute the remaining compute leader node() procedure we will eventually conclude

that the leader of the SCC that includes C is correctly determined, even if starting

from an incorrect node for the generator dependency. This optimization avoids the

computation time required to detect the GDN, which can be quite significant in more

complex situations.

As a final note we should remark that due to the dependency frame’s design, con-

currency is not a problem for the compute leader node() procedure. Observe, for

example, the situation from Figure 6.16. Two workers, W1 and W2, exploiting different

alternatives from a common public node, N4, are allocating new private consumer

nodes. They compute the leader node information for the new dependency frames

without requiring any explicit communication between both and without requiring

any synchronization if consulting the common dependency frame for node N3. The

resulting dependency chain for each worker is illustrated on each side of the figure.

Note that the dependency frame for consumer node N3 is common to both workers.

It is illustrated twice only for simplicity.
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Figure 6.16: Dependency frames in the parallel environment.

A new consumer node is always a private node and a new dependency frame is always

the youngest dependency frame for a worker. The leader information stored in a

dependency frame denotes the resulting leader node at the time the correspondent

consumer node was allocated. Thus, after computing such information it remains
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unchanged. If when allocating a new consumer node the leader changes, the new

leader information is only stored in the dependency frame for the new consumer,

therefore not influencing others. With this scheme each worker views its own leader

node independently from the execution being done by others. Determining the leader

node where several dependent SCCs from different workers may be completed together

is the problem that we address next.

6.6 The Flow of Control

OPTYap is a multi-sequential system where workers may be in engine mode, that

is, doing work, or in scheduling mode, that is, looking for work. Actual execution

control of a parallel tabled evaluation mainly flows through four procedures. The

process of completely evaluating SCCs is accomplished by the completion() and

answer resolution() procedures, while parallel synchronization is achieved by the

getwork() and scheduler() procedures.

Here we focus on the flow of control in engine mode, that is on the completion(),

answer resolution() and getwork() procedures, and leave scheduling for a following

section. Figure 6.17 presents a general overview of how control flows between the

three procedures in discussion and how it flows within each procedure. The design

and implementation details for each procedure are presented in detail next.

6.6.1 Public Completion

Detection of completion in sequential tabling is a complex problem. With the in-

troduction of parallelism the complexity increases even further. The correctness and

efficiency of the completion algorithm appear to be one of the most important issues

in the implementation of a parallel tabling system.

Different paths may be followed when a worker W reaches a leader node for a SCC

S. The simplest case is when the node is private. In this case, we should proceed

as for sequential tabling. Hence, W enters the sequential completion() procedure

previously presented in Figure 4.13. Otherwise, the node is public, and there may

exist dependencies on branches explored by other workers. Therefore, even when all
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Figure 6.17: The flow of control in a parallel tabled evaluation.

younger consumer nodes on W’s stacks do not have unconsumed answers, completion

cannot be performed. The reason for this is that the other workers can still influence

S. For instance, these workers may find new answers for a consumer node in S, in

which case the consumer must be resumed to consume the new answers. As a result,
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in order to allow W to continue execution it becomes necessary to suspend the SCC

at hand.

Suspending in this context is obviously different from suspending consumer nodes.

Consumer nodes are suspended due to tabling evaluation. SCCs are suspended due

to or-parallel execution to enable the current worker to proceed executing work.

Suspending a SCC includes saving the SCC’s stacks to a proper space in the parallel

data area, leaving in the leader node a reference to where the stacks were saved,

and readjusting the freeze registers and the stack and frame pointers (more details in

section 6.7). If the worker did not suspend the SCC, hence not saving the stacks to

the parallel data area, any future sharing work operation might damage the SCC’s

stacks and therefore make delayed completion unworkable. An alternative would be

for the worker to wait until no one else could influence it and only then complete the

SCC. Obviously, this is not an efficient strategy.

To deal with the new particularities arising with concurrent evaluation a novel com-

pletion procedure, public completion(), implements completion detection for public

leader nodes. Most often, the public completion() procedure executes through

backtracking to a public generator node whose next available alternative leads to

the completion instruction. Remember that the completion instruction follows a

table try me single or a table trust me instruction and that it forces completion

detection when all alternatives have been exploited for a generator node. Note that

the completion instruction only needs to get executed once for each particular gen-

erator node. Further executions of completion detection are triggered by the fixpoint

check procedure. As a consequence, after a completion instruction gets loaded, the

OrFr alt field of the correspondent or-frame is set to NULL. Remember that for public

nodes, the next available alternative is stored in the OrFr alt field of the correspondent

or-frame.

Looking back to Figure 6.17, it can be observed that there are two other situations from

where the public completion() procedure is directly invoked for execution (search for

the ’goto public completion()’ statement). A first situation occurs when resuming

a suspended SCC, we restart execution by performing public completion() at the

leader of the resumed SCC. A second situation occurs when failing to a public leader

node. The exception is when the public leader node is a generator node for the

current SCC and it contains unexploited alternatives. In such cases, the current SCC
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is not fully exploited, and therefore we should first exploit such alternatives. This last

situation can be better understood in subsection 6.6.3.

Figure 6.18 introduces the pseudo-code for the public completion() procedure. The

first step in the algorithm is to check for younger consumer nodes with unconsumed

answers. If there is such a node, we resume the computation to it. In parallel tabling,

resuming a computation to an younger consumer node C includes: (i) updating the

DepFr back cp dependency frame field of C when the leader detecting for comple-

tion is older than the current reference stored in DepFr back cp (details about the

DepFr back cp semantics for public nodes in subsection 6.6.2); (ii) setting the worker’s

bit in the OrFr member field for the or-frames in the branch being resumed; and (iii)

using the forward trail to restore the bindings for the branch being resumed.

If the algorithm does not find any younger consumer node with unconsumed answers

it must check for suspended SCCs in the scope of its SCC. A suspended SCC should

be resumed if it contains consumer nodes with unconsumed answers. To resume a

suspended SCC a worker needs to copy the saved stacks to the correct position in its

own stacks, and thus, it has to suspend its current SCC first.

We thus adopted the strategy of resuming suspended SCCs only when the worker finds

itself at a leader node, since this is a decision point where the worker either completes

or suspends the current SCC. Hence, if the worker resumes a suspended SCC it does

not introduce further dependencies. This is not the case if the worker would resume

a suspended SCC R as soon as it reached the node where it had suspended. In that

situation, the worker would have to suspend its current SCC S, and after resuming R

it would probably have to also resume S to continue its execution. A first disadvantage

is that the worker would have to make more suspensions and resumptions. Moreover,

if we resume earlier, R may include consumer nodes with unconsumed answers that

are common with S. On the other hand, in a leader node position, we know that the

consumer nodes belonging to S have consumed all the answers currently available, and

thus if R has to be resumed it is because it has consumer nodes with unconsumed

answers that do not belong to S. More importantly, suspending in non-leader nodes

leads to further complexity. Answers can be found in upper branches for suspensions

made in lower nodes, and this can be very difficult to manage.

A SCC S is completely evaluated when (i) there are no unconsumed answers in any

consumer node in its scope, that is, in any consumer node belonging to S or in any
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public_completion(public node N) {
if (N is the current leader node) {

// remember that TOP_OR_FR points to N’s or-frame
owners = OrFr_owners(TOP_OR_FR) // keep N’s owners
df = TOP_DEP_FR
while (DepFr_cons_cp(df) is younger than N)) {
if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {

// dependency frame with unconsumed answers
lock(DepFr_lock(df))
DepFr_back_cp(df) = oldest(N, DepFr_back_cp(df))
unlock(DepFr_lock(df))
restore_member_info(TOP_OR_FR, DepFr_top_or_fr(df))
C = DepFr_cons_cp(df)
restore_bindings(CP_TR(N), CP_TR(C))
goto answer_resolution(C)

}
df = DepFr_next(df)

}
L = youngest_node_holding_a_suspended_SCC_to_resume()
if (L is equal or younger than N) {
// L belongs to the current SCC
suspend_SCC(N)
resume_SCC(L)
goto public_completion(L)

}
if (owners == 1) {
// the current SCC is completely evaluated
perform_public_completion()

} else {
// other workers can still influence the current SCC
suspend_SCC(N)

}
goto getwork(N)

}
goto scheduler()

}

Figure 6.18: Pseudo-code for public completion().

consumer node within a SCC suspended in a node belonging to S; and (ii) there

is only a single worker owning its leader node L. Condition (ii) has to be satisfied

first, that is, before the worker W performing completion starts checking for younger

consumer nodes with unconsumed answers. Otherwise, other workers may find new

answers in the meantime for the consumer nodes already checked by W and these

workers may retire from owning L before W ends checking. As a result, S may be

incorrectly considered completely evaluated.

When a SCC is found to be completely evaluated then it is completed. Completing a

SCC includes marking all dependent subgoals as complete; releasing the dependency
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and or-frames belonging to the complete branches, including the branches in suspended

SCCs; releasing the frozen stacks and the memory space used to hold the stacks from

suspended SCCs; and finally readjusting the freeze registers and the whole set of stack

and frame pointers.

Our public completion algorithm has two major advantages. One is that the worker

checking for completion determines if its current SCC is completely evaluated or not

without requiring any explicit communication or synchronization with other workers.

The other is that it uses the SCC as the unit for suspension. This latter advantage

is very important since it simplifies the management of dependencies arising from

branches not on stack. A leader node determines the position from where dependencies

may exist in younger branches. As a suspension unit includes the whole SCC and

suspension only occurs in leader node positions, we can simply use the leader node to

represent the whole scope of a suspended SCC, and therefore simplify its management

(section 6.7 details this issue).

6.6.2 Answer Resolution

The answer resolution operation loads tabled answers from the table space to the exe-

cution stacks. The operation also supports the fixpoint check procedure. Usually, the

answer resolution() procedure gets executed through failure to a consumer node, in

which case execution jumps to the answer resolution instruction through the CP ALT

choice point field. The execution can also flow directly to the answer resolution()

procedure when scheduling for a backtracking node during the fixpoint check procedure

(these are the cases for the goto answer resolution() statement in Figure 6.17).

Figure 6.19 shows the pseudo-code that implements the answer resolution operation for

the parallel environment. Compared with the procedure previously presented in Fig-

ure 4.14 for sequential tabling, it can be observed that the new answer resolution()

procedure extends the sequential algorithm to support the new situations arising with

parallelism.

Initially, the procedure checks the consumer node C for unconsumed answers to be

loaded for execution. If we have answers, execution will jump to them. Otherwise,

if there are no such answers, we schedule for a backtracking node. Remember that

a valid reference B in the DepFr back cp field of the dependency frame associated
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answer_resolution(consumer node C) {
DEP_FR = CP_DEP_FR(C)
if (DepFr_last_ans(DEP_FR) != SgFr_last_answer(DepFr_sg_fr(DEP_FR))) {

// unconsumed answers in current dependency frame
load_next_answer_from_subgoal(DepFr_sg_fr(DEP_FR))
proceed

}
dep_back_cp = DepFr_back_cp(DEP_FR)
if (dep_back_cp == NULL) {

if (C is a public node)
goto scheduler()

else
backtrack_to(CP_B(C))

}
back_cp = youngest(DepFr_leader_cp(TOP_DEP_FR), dep_back_cp)
df = DepFr_next(DEP_FR)
while (DepFr_cons_cp(df) is younger than back_cp)) {

if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
// dependency frame with unconsumed answers
lock(DepFr_lock(df))
DepFr_back_cp(df) = oldest(DepFr_back_cp(df), dep_back_cp)
unlock(DepFr_lock(df))
restore_member_info(TOP_OR_FR, DepFr_top_or_fr(df))
back_cp = DepFr_cons_cp(df)
restore_bindings(CP_TR(C), CP_TR(back_cp))
goto answer_resolution(back_cp)

}
df = DepFr_next(df)

}
restore_member_info(TOP_OR_FR, CP_OR_FR(back_cp))
restore_bindings(CP_TR(C), CP_TR(back_cp))
if (back_cp is a public node)

goto getwork(back_cp)
else

goto completion(back_cp)
}

Figure 6.19: Pseudo-code for answer resolution().

with C indicates that we are in a fixpoint check procedure. Therefore, we search for

a consumer node with unconsumed answers. If found then answer resolution gets re-

executed. Otherwise, we backtrack to the youngest node between the current leader

node and B. For both situations, the OrFr member bitmaps and the bindings for the

branch being resumed should be restored. Moreover, if we backtrack to a consumer

node, the correspondent DepFr back cp field should be updated.

There are two interesting aspects, both related with the fixpoint check procedure, that

should be noted in the answer resolution() procedure. One is that the youngest

node between the current leader node and the node given by the C’s DepFr back cp
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is used by the procedure as the node that limits the search for youngest consumer

nodes with unconsumed answers. The other is that if a consumer node B is scheduled

for backtracking, the DepFr back cp field associated with B is updated to the oldest

node between its current reference node and the node given by C’s DepFr back cp

field. In order clarify these aspects, Figure 6.20 illustrates two different sequences

for a complete loop over the fixpoint check procedure. Both sequences start with a

worker W in a leader node position, and assume that all younger consumer nodes have

unconsumed answers.
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Figure 6.20: Scheduling for a backtracking node in the parallel environment.

Regarding situation (a), the computation initially moves from leader node L2 to

consumer node C2, which includes updating the DepFr back cp field of C2 to the leader

reference L2. Then, while worker W was consuming the available unconsumed answers

for C2, another worker, also in a fixpoint check procedure, updates C1’s DepFr back cp

to its leader reference, L1 in the case. Thus, after consuming all available answers in
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C2, W is scheduled to consumer node C1, but C1’s DepFr back cp remains unchanged

because it holds an older leader reference. Last, when all available unconsumed

answers for C1 have been consumed, W backtracks to L2. Despite C1 holding a

DepFr back cp reference to L1, meaning that all generator and interior nodes younger

than L1 are necessarily exploited, the current leader node is younger than L1, and

therefore backtracking should be performed first to L2 in order to avoid computation

from flowing to nodes outside the current SCC.

Situation (b) presents a slightly different sequence. Worker W starts from a leader

node L2 that resumes the computation to consumer node C2. Next, a different worker

updates the DepFr back cp field of C1 while W is consuming the available answers

for C2. However, when exploiting an unconsumed answer for C2, W allocates a new

consumer node and as a consequence, changes its current leader node to become L1.

After all available answers for C2 have been consumed, C1 is scheduled for backtracking.

The interesting difference from situation (a) happens when, at the end, after all

available answers for C1 have been consumed, L1 is scheduled for backtracking. This

results not only from the fact that L1 is the current leader node, but also from the L1

reference in the DepFr back cp field of C1 that allows us to conclude that the branch

between the initial leader node L2 and the current leader node L1 is already exploited.

Note that, nothing can be concluded about L1; for instance, L1 can still have available

alternatives. Hence, using public completion() to continue execution for L1 would

be incorrect. We therefore use getwork() to ensure the correct behavior, as discussed

next.

6.6.3 Getwork

Getwork is the last flow control procedure. It contributes to the progress of a parallel

tabled evaluation by moving to effective work. Note that, despite this procedure being

related with the process of getting a new piece of work, it is independent from the

process of scheduling for a new piece of work. More precisely, we use getwork for public

nodes bordering private regions, that is, the youngest public nodes on each branch,

while scheduling works over interior nodes in the public region of the search tree.

The usual way to execute getwork() is through failure to the youngest public node on

the current branch, in which case the getwork instruction gets loaded for execution.
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However, there are three other cases from where getwork() is directly invoked to

continue the execution. One occurs in the fixpoint check procedure to ensure the

correct behavior of the computation when the leader node is scheduled for backtrack-

ing. The other two occur in the public completion algorithm and both are related

with situations where the SCC in hand is removed from the execution stacks, either

because it is completed or suspended.

Figure 6.21 presents the pseudo-code that implements the getwork() procedure. We

can distinguish two blocks of code. The first block detects completion points and

therefore makes the computation flow to the public completion() procedure. The

second block corresponds to or-parallel execution. It checks the associated or-frame

for available alternatives and executes the next one, if any. Otherwise, it invokes

the scheduler. Remember that the TOP OR FR register points to the or-frame for the

youngest public node on the current branch, that is, the or-frame related with N .

getwork(public node N) {
// code for detecting completion points
if (DepFr_leader_cp(TOP_DEP_FR) == N &&

(DepFr_gen_on_stack(TOP_DEP_FR) == FALSE || OrFr_alt(TOP_OR_FR) == NULL))
goto public_completion(N)

// original code inherited from YapOr
if (OrFr_alt(TOP_OR_FR) != NULL) {

load_next_alternative_from_frame(TOP_OR_FR)
proceed

} else
goto scheduler()

}

Figure 6.21: Pseudo-code for getwork().

The getwork() procedure detects a completion point when N is the leader node

pointed by the top dependency frame. The exception is if N is itself a generator node

for a consumer node within the current SCC (DepFr gen on stack(TOP DEP FR) ==

TRUE) and it contains unexploited alternatives (OrFr alt(TOP OR FR) != NULL). In

such cases, the current SCC is not fully exploited. Hence, we should exploit first the

available alternatives, and only then invoke completion.

Figure 6.22 illustrates the complete set of situations where computation flows from

getwork() to public completion(). It distinguishes two different cases: goto situ-

ations, and load situations. The goto situations correspond to the completion points

detected by getwork(). A load situation occurs when completion is loaded for execu-
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tion from a generator node whose next available alternative points to a completion

instruction. This situation occurs independently of the generator being leader or not.
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Top Consumer Node
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Goto Situations

Load Situations

completionW NcompletionW N
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NULLW N
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Figure 6.22: From getwork to public completion.

6.7 SCC Suspension

Whenever a worker executing a public completion operation determines that the

current SCC depends on branches being exploited outside the SCC, it should delay

completion until no more dependencies exist. To allow the worker to proceed with

the execution of other work it is convenient to suspend the current SCC at this point.

Note that SCC suspension is absolutely necessary for an environment copy based

implementation. Environment copy requires coherency between workers for the sub-

stacks corresponding to shared regions. Delayed completion would be incorrect if a

SCC is not suspended and an incremental copying operation damages its stacks.

The SCC suspension procedure includes saving the stacks segments relative to the SCC

being suspended to a proper space in the parallel data area and leaving a reference

to where the stacks were saved in the leader node. This reference corresponds to

the suspension frame data structure. The suspension frame is a novel data structure

introduced to allow for suspended SCCs to be resumed. Figure 6.23 presents an

example of suspension that illustrates how suspension frames relate with suspended
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SCCs.
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Figure 6.23: Suspending a SCC.

The process of suspending a SCC works as follows. Initially, the set of stack segments

corresponding to the SCC being suspended is copied to the parallel data area. After

that, a new suspension frame is allocated and a reference to it is stored in the or-

frame relative to the leader node of the SCC being suspended. Finally, the whole set

of stack and frame pointers are readjusted in order to correctly reflect the resulting

computation state.

A suspension frame holds the following data from a suspended SCC: the values from

the TOP SG FR, TOP DEP FR, and TOP OR FR ON STACK registers at the time the SCC

was suspended, the pointers to the beginning of each area where the segments were

saved, and the size of each suspended segment. The data stored in a suspension frame

plus the data stored in the node that holds the reference to the suspension frame are

sufficient to restore a suspended SCC to its original computation state.

Notice that we never need to suspend a SCC S that does not contain private nodes.

Otherwise, S will repeatedly suspend for each worker sharing it. This is a safe

optimization because, at least, one of the workers, say W, sharing S will later suspend

or complete S, either because the current SCC of W includes S and further private

nodes, or because W will be the last worker executing public completion over S.
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In order to access the suspension frames for a particular node, the or-frame data

structure was extended with a OrFr suspensions extra field to point to a linked list

of suspension frames for the node. The linked list is maintained through a SuspFr next

field (not illustrated in Figure 6.23).

A suspended SCC is resumed when a worker executing completion in a public leader

node finds that a suspended SCC in the scope of its current SCC contains consumer

nodes with unconsumed answers. In order to find out which suspended SCCs need

to be resumed, each worker maintains a list of suspended SCCs that may contain

consumer nodes with unconsumed answers. In order to avoid frequent and redundant

checking operations for suspended SCCs, a worker only checks for suspended SCCs

when it is the last worker backtracking from a node N . If there are suspended SCCs,

the or-frame associated with N is included in the worker’s list of or-frames with

suspended SCCs. If the or-frame already belongs to other worker’s list, it is not

collected. This guarantees that each or-frame only belongs to one worker’s list at a

time.

Each worker holds a TOP SUSP FR register that points to the list L of or-frames with

suspended SCCs. The list always starts with the or-frame of L that corresponds to

the youngest choice point on stack. The list L is maintained through a new field

OrFr nearest suspnode in the or-frame. The field always points to the next or-frame

of L that corresponds to the nearest younger choice point on stack. In this way we

guarantee that the list of or-frames belonging to L is traversed in stack order.

Figure 6.24 illustrates how or-frames referring suspended SCCs are linked. The figure

assumes two workers, W1 and W2, and four public nodes containing suspended SCCs.

For simplicity of illustration, the figure only presents the segment of the local stack

that is shared between both workers.

The figure shows that an or-frame with suspended SCCs may not be in any linking

list. The or-frames relative to nodes N1 and N4 are in the list for W1, the or-frame

relative to N3 is in the list for W2, while the or-frame for N2 is not in any list. An

or-frame with suspended SCCs does not belong to any worker’s list either if there still

exist workers in the node, or if it is already known that none of the suspended SCCs

contain consumer nodes with unconsumed answers. However, this latter case does

not guarantee that the SCCs are completely evaluated. As a result of a completion

operation performed above, workers can still be scheduled to include nodes belonging
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Figure 6.24: Using or-frames to link suspended SCCs.

to those SCCs.

A worker executing public completion follows its list of or-frames with suspended

SCCs in order to search for SCCs to be resumed. It starts searching the suspended

SCCs in the or-frame given by the TOP SUSP FR register and then it follows the

OrFr nearest suspnode chain until either a suspended SCC with unconsumed an-

swers is found or until reaching an or-frame corresponding to a node younger than

the leader node executing completion. At the end of the process, it updates the

TOP SUSP FR register to the or-frame where searching was aborted, either because a

SCC was resumed there or because it corresponds to a node older than the leader node.

Resuming a SCC includes copying the previously saved stack segments in the parallel

data area to the correct stack positions of the worker resuming the SCC. Therefore,

in order to protect the current stack’s data from being lost, the worker has to suspend

its current SCC first.

Figure 6.25 illustrates the management of suspended SCCs when searching for SCCs

to resume. The figure considers a worker W executing public completion in a leader

node N1 and assumes that the worker’s list of or-frames with suspended SCCs refers
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two or-frames in its current SCC S1.
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Figure 6.25: Resuming a SCC.

The search for SCCs to be resumed starts at the or-frame given by TOP SUSP FR.

Assuming that the suspended SCC S4 does not contain unconsumed answers, the

search continues in the next or-frame in the list. Here, suppose that SCC S2 does not

have consumer nodes with unconsumed answers, but SCC S3 does. At this point, the

current SCC S1 must be suspended. This includes storing the correspondent reference

in the or-frame relative to its leader node N1, and updating TOP SUSP FR to the or-

frame referring to the SCC to be resumed. Now we can resume S3.

Resuming S3 includes copying the set of suspended stack segments from the parallel

data area to the correct position in W’s stacks; updating the OrFr members and

OrFr owners info for the or-frames below the previous leader node (N1 in this case),

including the or-frames from S3; adjusting the whole set of stack and frame pointers

in order to reflect the previous computation state of S3; and releasing the suspension

frame related to S3.

Still regarding Figure 6.25, notice that the or-frame relative to node N3 was removed

from W’s list of or-frames with suspended SCCs. This happens because S3 may not

include N3 in its stack segments. For simplicity and efficiency, instead of checking

S3’s segments, we simply remove N3’s or-frame from W’s list. Note that this is a
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safe decision as a SCC only depends from branches below the leader node and thus,

if S3 does not include N3 then no new answers can be found for S4’s consumer nodes.

Otherwise, if this is not the case then W or other workers can eventually be scheduled

to a node held by S4 and find new answers for at least one of its consumer nodes. In this

case, when failing, these workers will necessarily backtrack through N3, S4’s leader.

Therefore, the last worker backtracking from N3 will collect the or-frame relative to

N3 for its own list of or-frames with suspended SCCs, which allows S4 to be later

resumed when public completion is being executed in an upper leader node.

Remember even when a worker does not find any suspended SCC to resume, it may

not always perform completion. This occurs when it is not the unique owner of the

current leader node. Remember that a worker W containing a node N in its stacks

is an owner of N . A problem arises if W suspends the SCC that includes N . W

then retires from owning N . Nevertheless, if W later resumes the suspended SCC

then W again owns N . Execution would be incorrect if a worker would complete

a SCC based on being the unique owner of the current leader node L, and then a

suspended SCC that includes L was resumed. To overcome this problem, we assume

that the number of owners of a node N corresponds to the number of representations

of N in the computational environment, be N represented in the execution stacks of a

worker or be N in the suspended stack segments of a SCC. Therefore, whenever a SCC

is suspended, the OrFr owners field of the or-frames belonging to the SCC remains

unchanged.

6.8 Scheduling Work

Scheduling work is the scheduler’s task. It is about efficiently distributing the available

work for exploitation between the running workers. In a parallel tabling environment

we have the extra constraint of keeping the correctness of sequential tabling semantics.

A worker enters in scheduling mode when it runs out of work and returns to execution

whenever a new piece of unexploited work is assigned to it by the scheduler.

Subsection 3.2 presented the YapOr’s scheduler algorithm: when a worker runs out

of work it searches for the nearest unexploited alternative in its branch. If there is no

such alternative, it selects a busy worker with excess of work load to share work with.

If there is no such a worker, the idle worker tries to move to a better position in the
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search tree.

The scheduler for the OPTYap engine is mainly based on YapOr’s scheduler. All

the scheduler strategies implemented for YapOr were used in OPTYap. However,

extensions were introduced in order to preserve the correctness of tabling semantics.

These extensions allow support for leader nodes, frozen stack segments, and suspended

SCCs.

Figure 6.26 presents two different situations that illustrate how leader node semantics

influences the usual scheduling for the nearest node with unexploited alternatives

within the current branch. Situation (a) considers that the current leader node is

equal or older than the nearest node with unexploited alternatives, while situation

(b) considers that the current leader node is younger than the nearest node with

unexploited alternatives.

(b)

alternative

NULL

NULL

NULL

NULL

completion

answer_resolution

alternative

completion
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Figure 6.26: Scheduling for the nearest node with unexploited alternatives.

A node has available work if the OrFr alt field of its relative of-frame is not NULL.

Besides the usual instructions corresponding to unexploited alternatives, this includes

the cases where the OrFr alt field points to a completion or to an answer resolution
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instruction.

The OPTYap model was designed to enclose the computation within a SCC until

the SCC was suspended or completely evaluated. Thus, OPTYap introduces the

constraint that the computation cannot flow outside the current SCC, and workers

cannot be scheduled to execute at nodes older than their current leader node. Therefore,

when scheduling for the nearest node with unexploited alternatives, if it is found that

the current leader node is younger than the potential nearest node with unexploited

alternatives, then the current leader node is the node scheduled to proceed with the

evaluation. This is the case illustrated in situation (b) of Figure 6.26.

The next case is when the process of scheduling for the nearest node with unexploited

alternatives does not return any node to proceed execution. The scheduler then starts

searching for busy workers that can be requested for work. If such a worker B is

found, then the requesting worker moves up to the lowest node that is common to B,

in order to become partially consistent with part of B. Otherwise, no busy worker

was found, and the scheduler moves the idle worker to a better position in the search

tree. Therefore, we can enumerate three different situations for a worker to move up

to a node N : (i) N is the nearest node with unexploited alternatives; (ii) N is the

lowest node common with the busy worker we found; or (iii) N corresponds to a

better position in the search tree.

The process of moving up in the search tree from a current node N0 to a target node

Nf is mainly implemented by the move up one node() procedure. This procedure is

invoked for each node that has to be traversed until reaching Nf . The presence of

frozen stack segments or the presence of suspended SCCs in the nodes being traversed

influences and can even abort the usual moving up process. Figure 6.27 presents the

pseudo-code that implements the move up one node() procedure for OPTYap.

The argument for the move up one node() procedure is the node Ni where the idle

worker W is currently positioned at and from where it wants to move up one node.

Initially, the procedure checks for frozen nodes on the stack to infer whether W is

moving within a SCC. If so, W is simply deleted from member of the or-frame relative

to Ni and if it is the last worker leaving the frame then it checks for suspended SCCs

to be collected.

The interesting case is when W is not within a SCC. If Ni holds a suspended SCC, then
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move_up_one_node(public node N) {
// remember that TOP_OR_FR points to N’s or-frame
lock(OrFR_lock(TOP_OR_FR))

// frozen nodes on stack ?
if (B_FZ is younger than N) {

delete_from_bitmap(OrFr_members(TOP_OR_FR), WORKER_ID)
if (OrFr_members(TOP_OR_FR) is empty) {
collect_suspended_SCCs(TOP_OR_FR)

}
unlock(OrFR_lock(TOP_OR_FR))
return CP_B(N)

}

// suspended SCCs to resume ?
if (N holds a suspended SCC to resume) {

unlock(OrFR_lock(TOP_OR_FR))
restore_bindings(TR, CP_TR(N))
resume_SCC(N)
goto public_completion(N)

}

// N is a consumer node ?
if (B_FZ == N) {

delete_from_bitmap(OrFr_members(TOP_OR_FR), WORKER_ID)
if (OrFr_owners(TOP_OR_FR) == 1)
complete_suspended_SCCs(TOP_OR_FR)

unlock(OrFR_lock(TOP_OR_FR))
return CP_B(N)

}

// unique owner ?
if (OrFr_owners(TOP_OR_FR) == 1) {

complete_suspended_SCCs(TOP_OR_FR)
if (SgFr_gen_cp(TOP_SG_FR) == N)
mark_subgoal_as_completed(TOP_SG_FR)

free_struct(PAGES_or_frames, TOP_OR_FR)
return CP_B(N)

}

delete_from_bitmap(OrFr_members(TOP_OR_FR), WORKER_ID)
OrFr_owners(TOP_OR_FR)--
unlock(OrFR_lock(TOP_OR_FR))
return CP_B(N)

}

Figure 6.27: Pseudo-code for move up one node().

W can safely resume it. If resumption does not take place, the procedure proceeds

to check whether Ni is a consumer node. Being this the case, W is deleted from the

members bitmap of the or-frame relative to Ni and if W is the unique owner of Ni then

the suspended SCCs in Ni can be completed. Completion can be safely performed over
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the suspended SCCs in Ni not only because the SCCs are completely evaluated, as

none was previously resumed, but also because no more dependencies exist, as there

are no more branches below Ni.

The reasons given to complete the suspended SCCs in Ni hold even if Ni is not a

consumer node, as long as W is the unique owner of Ni. In such case, as W is the last

owner leaving Ni, the or-frame for Ni can be freed and if Ni is a generator node then

its correspondent subgoal can be also marked as completed. Otherwise, W is simply

deleted from being member and owner of the or-frame relative to Ni.

The scheduler extensions presented are mainly related with tabling support. Further

work is needed to implement and experiment with proper scheduling strategies that

can take advantage of the parallel tabling environment, as the scheduling strategies

inherited from the YapOr’s scheduler were designed for an or-parallel model, and not

for an or-parallel tabling model. Next, we propose two new scheduling strategies that

explicitly deal with the flow of a parallel tabling evaluation:

• When a worker is looking for others with available work, the scheduler must give

higher priority to work that contains suspended SCCs. By doing so, suspended

SCCs can be resumed sooner, and therefore we increase the probability of an

early successful completion. Furthermore, we may avoid further dependencies

that would occur if the subgoals involved were not completed early.

• The scheduler must avoid sharing branches with consumer nodes. Consumer

nodes correspond to frozen segments, and frozen segments involve extra copying

of stack segments. Moreover, we may generate suspended SCCs that in turn

contain repeated stack segments corresponding to shared frozen segments.

We believe that these strategies can contribute to a more efficient distribution of work

for parallel tabling and thus we intend to further implement and experiment the impact

of these strategies in OPTYap’s performance.

6.9 Local Scheduling

All the implementations issues described above assume a batched scheduling strategy.

In this section we present how the batched based implementation for parallel tabling
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can be straightforwardly extended to support local scheduling.

Support for local scheduling in the parallel environment includes the extensions pre-

viously presented in subsection 4.3 to support local scheduling for sequential tabling.

Remember that a generator choice point is implemented as a consumer choice point

and that this includes allocating a dependency frame when storing a generator node.

One should also remember that when a generator node loads the completion instruc-

tion for execution, it also updates the field for the next available alternative to the

answer resolution instruction, in order to guarantee that, subsequently, the node

will act like a consumer node and consume the found answers.

Full support for the parallel execution with local scheduling is attained by considering

the novel situation where a generator turned consumer is both a public node and the

youngest node on stack. Figure 6.28 illustrates the case in point. Note that node N

obviously corresponds to the local scheduling implementation for generator nodes, as

this is the unique case where the DepFr leader cp field of a node references itself.

answer_resolution

B_FZ N

N
DepFr_leader_cp Field

Top Consumer Node

OrFr_alt Field

Figure 6.28: Local scheduling situation requiring special implementation support.

The problem arising with this kind of situation is that N can be computed as a

leader node. This happens because the DepFr leader cp field of the dependency

frame corresponding to the top consumer node, that is N , references N . However,

N should only execute completion when it is found that no unconsumed answers are

available. Implementation support for this special situation requires slight changes to

the getwork(), answer resolution() and public completion() procedures.

Figure 6.29 presents the modified pseudo-code for the getwork() procedure. It intro-

duces a single modification in the block of code that detects for completion points,

by replacing NULL for answer resolution in the test involving the OrFr alt field of

the TOP OR FR register, and by adding a new test condition that avoids completion

detection for nodes in the local scheduling special situation. The first change is
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because, in local scheduling, the last update operation to the OrFr alt field relative

to a generator node is to answer resolution and not to NULL. The second change

forces the nodes in the local scheduling special situation to act like consumer nodes

and consume the newly found answers.

getwork(public node N) {
// code for detecting completion points
if (DepFr_leader_cp(TOP_DEP_FR) == N &&

(DepFr_gen_on_stack(TOP_DEP_FR) == FALSE ||
(OrFr_alt(TOP_OR_FR) == answer_resolution && B_FZ != N))) // changed

goto public_completion(N)
...

}

Figure 6.29: Pseudo-code for getwork() with a local scheduling strategy.

We next present in Figure 6.30 the new pseudo-code for the answer resolution()

procedure. When the node C executing the procedure is also the current leader

node then it is known that we are in the presence of the local scheduling special

situation, because a leader node never executes answer resolution(). Notice that

in this case, C forms a SCC with a single node, and thus, computation cannot flow

to upper nodes while C remains on stack. Hence, if it is found that no unconsumed

answers are available for C, no work can be done for the current SCC. The new

code for answer resolution() detects this kind of situations and moves the flow of

the computation to the public completion() procedure, which is where they are

resolved.

answer_resolution(consumer node C) {
DEP_FR = CP_DEP_FR(C)
if (DepFr_last_ans(DEP_FR) != SgFr_last_answer(DepFr_sg_fr(DEP_FR))) {

load_next_answer_from_subgoal(DepFr_sg_fr(DEP_FR))
proceed

}
if (DepFr_leader_cp(TOP_DEP_FR) == C) // new

goto public_completion(C) // new
dep_back_cp = DepFr_back_cp(DEP_FR)
...

}

Figure 6.30: Pseudo-code for answer resolution() with a local scheduling strategy.

Figure 6.31 presents the extended pseudo-code for the public completion() pro-

cedure. It includes the following modifications: adding a test condition to avoid

getwork() when facing the local scheduling special situation; and introducing a new
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block of code to specifically process the situation. Notice that the new block of code is

positioned after the code that implements completion or suspension for the previous

SCC on stack because this is from where a local scheduling special situation can result.

public_completion(public node N) {
if (N is the current leader node) {

...
if (DepFr_leader_cp(TOP_DEP_FR) != N) // new
goto getwork(N)

// start of new block of code due to local scheduling
df = TOP_DEP_FR
if (DepFr_last_ans(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
unlock(OrFr_lock(TOP_OR_FR))
load_next_answer_from_subgoal(DepFr_sg_fr(df))
proceed

}
// no unconsumed answers found
lock(OrFr_lock(TOP_OR_FR))
if (OrFr_owners(TOP_OR_FR) != 1) {
// remove N from stack
delete_from_bitmap(OrFr_members(TOP_OR_FR), WORKER_ID)
OrFr_owners(TOP_OR_FR)--
TOP_OR_FR_ON_STACK = OrFr_next_on_stack(TOP_OR_FR)
TOP_DEP_FR = DepFr_next(df)
unlock(OrFr_lock(TOP_OR_FR))
if (SgFr_gen_cp(TOP_SG_FR) == N)

TOP_SG_FR = SgFr_next(TOP_SG_FR)
TOP_OR_FR = CP_OR_FR(CP_B(N))
adjust_freeze_registers()
backtrack_to(CP_B(N))

} else {
// make N an interior node
OrFr_alt(TOP_OR_FR) = NULL
unlock(OrFr_lock(TOP_OR_FR))
TOP_DEP_FR = DepFr_next(df)
free_struct(PAGES_dependency_frames, df)
adjust_freeze_registers()
goto scheduler()

}
// end of new block of code

}
goto scheduler()

}

Figure 6.31: Pseudo-code for public completion() with a local scheduling strategy.

The new block of code starts by checking node N for unconsumed answers to proceed

execution. If it is found that no unconsumed answers are available in N then no work

can be done for the current SCC and therefore execution only proceeds if the current

SCC changes. If the worker W executing the procedure is not the unique owner of N



6.10. CHAPTER SUMMARY 169

then N is removed from the stacks of W and execution is backtracked to the parent

node on the branch. Otherwise, as W is the unique owner, N is made to be an interior

node without available alternatives so that W can enter in scheduling mode and get

a new piece of work at a different node. Execution is not immediately backtracked

in this second case because W is the last worker leaving N and therefore it must use

the scheduler’s move up one node() procedure to move in the search tree to guarantee

that, for instance, N is checked for suspended SCCs and the subgoal associated with

N is marked as completed.

6.10 Chapter Summary

This chapter introduced the OPTYap engine. To the best of our knowledge, OPTYap

is the first implementation of a parallel tabling engine for logic programming systems.

OPTYap extends Yap’s efficient sequential Prolog engine to support or-parallel execu-

tion of tabled logic programs. It follows OPT’s computation model for parallel tabling,

and it builds on SLG-WAM for tabling and on environment copying for or-parallelism.

We discussed the complete set of major problems addressed during OPTYap’s de-

velopment, which included: memory management; concurrent table access; public

completion; scheduling decisions for parallel tabling; and SCC suspension. For each

problem we presented and described the new data areas, data structures and algo-

rithms introduced to efficiently solve them. We can emphasize the GDN concept of

signalling nodes that are candidates to be leader nodes; the new algorithms to quickly

compute and detect leader nodes; the novel termination detection scheme to allow

completion in public nodes; the assumption of SCCs as the units for suspension; and

the different locking schemes for concurrent table access.
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Chapter 7

Speculative Work

In [22], Ciepielewski defines speculative work as work which would not be done in a

system with one processor. The definition clearly shows that speculative work is an

implementation problem for parallelism, that must be addressed carefully in order to

reduce its impact.

The presence of pruning operators during or-parallel execution introduces the problem

of speculative work [53, 54, 8, 14]. Prolog has an explicit pruning operator, the cut

operator. When a computation executes a cut operation, all branches to the right of

the cut are pruned. Computations that can potentially be pruned are thus specula-

tive. Earlier execution of such computations may result in wasted effort compared to

sequential execution.

In this chapter, we discuss the problems arising with speculative computations and

introduce the mechanisms used in YapOr and OPTYap to deal with it. Initially, we

introduce the cut semantics and its particular behavior within or-parallel systems.

After that we present the cut scheme currently implemented in YapOr and describe

the main implementation details. Then we discuss speculative tabling execution and

present the support actually implemented in OPTYap.

171
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7.1 Cut Semantics

Cut is a system built-in predicate that is represented by the ! symbol. Its execution

results in pruning all the branches to the right of the cut scope branch. The cut

scope branch starts at the current node and finishes at the node corresponding to the

predicate containing the cut. Cut is an asymmetric pruning operator because it only

prunes branches at the right. Other parallel Prolog systems implement symmetric

pruning operators, with a generic name of commit. The execution of commit results

in pruning both to the left and to the right. YapOr and OPTYap do not yet support

symmetric pruning operators.

Figure 7.1 gives a general overview of cut semantics by illustrating the left to right

execution of a particular program containing cuts. The query goal a(X) leads the

computation to the first alternative of predicate a and the query goal is replaced

with the body of the first clause of a, where !(a) means a cut with the scope a. If

!(a) gets executed, all the right branches until the node corresponding to predicate a,

inclusively, should be pruned.

root

a(X) :- b(X), !, c(X).        b(X) :- X = 1.
a(X) :- ...                   b(X) :- ...
a(X) :- ...                        
                                 
                  ?- a(X).

a(X).

root

b(X),!(a),c(X).

a

root

a

b

!(a),c(1).

root

c(1).

Figure 7.1: Cut semantics overview.

As execution continues, b(X) is called and its first alternative succeeds by binding X

to value 1. The cut corresponding to the first alternative of a is invoked next and thus

the remaining alternatives for predicates a and b are pruned. As a consequence, the

nodes representing both predicates can be removed.
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7.2 Cut within the Or-Parallel Environment

In a sequential system, cut only prunes alternatives whose exploitation has not been

started yet. This does not hold for parallel systems, as cut can prune alternatives that

are being exploited by other workers or that have already been completely exploited.

Therefore, cut’s semantics in a parallel environment have a new dimension. First, a

pruning operation cannot always be completely performed if the cut scope branch is

not leftmost, because the operation itself may be pruned by the execution of other

pruning operation in a branch to the left. Similarly, an answer for the query goal in

a non-leftmost branch may not be valid. Last, pruning a branch puts out of work the

workers exploiting such branch.

Ali [3] showed that speculative work can be completely banned from a parallel system

if proper rules are applied. However, as such rules severely restrict the parallel

exploitation of work, most or-parallel systems allow speculative work as it is their

main source of parallelism. Speculative branches can be controlled more or less tightly.

Ideally, we would prune all branches as soon as they become useless. In practice,

deciding if a computation is still speculative or already useless can be quite complex

when nested cuts with intersecting scopes are considered.

7.2.1 Our Cut Scheme

Implementing cut in an or-parallel system entails two main problems: the cut operation

may have to prune work from the shared region of the search tree and the execution

of the branch where the cut is found may itself be speculative. When implementing

cut, the following rule must be preserved: we cannot prune branches that would not

be pruned if our own branch will be pruned by a branch to the left.

YapOr currently implements a cut scheme based on the ideas presented by Ali and

Karlsson [8] that prunes useless work as early as possible. The worker executing cut,

must go up in the tree until it reaches either the cut scope choice point or a choice point

with workers executing branches to the left. While going up it may find workers in

branches to the right. If so, it sends them a signal informing them that their branches

have been pruned. When receiving such a signal, workers must backtrack to the shared

part of the tree and become idle workers again.
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Note that a worker may not be able to complete a cut if there are workers in left

branches, as they can themselves prune the current cut. In these cases, one says the

cut was left pending. In YapOr, a cut is left pending on the first (youngest) node N

that has left branches. A pending cut can be resumed only when all workers to the

left backtrack into the shared node N . It will then be the responsibility of the last

worker backtracking to N to continue the execution of the pending cut.

Even if a cut is left pending in a node N , there may be branches, older than N , that

correspond to useless work according to the cut rule mentioned above. YapOr’s cut

scheme prunes these branches immediately. To illustrate how these branches can be

detected we present in Figure 7.2 a small example taken from [8]. To better understand

the example, we index the repeated calls to the same predicate by call order. For

instance, the node representing the first call to predicate p is referred as p1, the second

as p2 and successively. We also write p
(i)
n to denote the ith alternative of node pn.

Notice also, that we use the mark ! in the branch of an alternative to indicate that it

contains at least one cut predicate.

p([H|T]) :- q(H), p(T), !.
p([]).

q(1).
q(2).
q(3).

                      
       ?- p([1,2]).

p1

q1

p2

p([1,2]).

q(1), p([2]), !(p1).

p([2]), !(p1).

q2

p3

q(2), p([]), !(p2), !(p1).

p([]), !(p2), !(p1).

!(p2), !(p1).

!

!

!

Figure 7.2: Pruning in the parallel environment.

Assume that a worker W, in a parallel execution environment, is computing the branch

corresponding to [p
(1)
1 , q

(1)
1 , p

(1)
2 , q

(2)
2 , p

(2)
3 ]. There are only two branches to the

left, corresponding to alternatives p
(1)
3 and q2

(1). If there are workers within alternative
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p3
(1) then W cannot execute any pruning at all because p3

(1) is marked as containing

cuts. A potential execution of a pruning operation in p3
(1) will invalidate any cut

executed in p3
(2) by W. Therefore, W saves a pending cut marker in p3 and when the

work in p3
(1) terminates, pruning for the pending cut is executed.

Lets now assume that there are no workers in alternative p3
(1), but there are in alter-

native q2
(1). Alternative q2

(1) is not marked as containing cuts, but the continuation

of q2 contains two pruning operations, !(p2) and !(p1). The worker W first executes

!(p2) in order to prune q2
(3) and p2

(2). This is a safe pruning operation because any

pruning from q2
(1) will also prune q2

(3) and p2
(2). At the same time W stores a cut

marker in q2 to signal the pruning operation done.

Pursuing the example, W executes !(p1) in order to prune q1
(2), q1

(3) and p1
(2).

However, this is a dangerous operation. A worker in q2
(1) may execute the previous

pruning operation, !(p2), pruning W’s branch but not q1
(2), q1

(3) or p1
(2). Hence, there

is no guarantee that the second pruning, !(p1), is safe. The cut marker stored in q2

is a warning that this possibility exists. So, instead of doing pruning immediately,

W updates the pending cut marker stored in q2 to indicate the did not complete cut

operation.

Figure 7.3 shows the effect of executing two pruning operations using our cut scheme.

Initially, the pruning operations, !(b) and !(c), are respectively executed until nodes

f and e as these are the closest nodes that contain unexploited alternatives in left

branches. Therefore, cut markers are stored in nodes f and e. A cut marker is a two

field data structure consisting of the cut scope and the branch executing the cut.

However, we know that no branch to the left, except the ones marked with !, can

invalidate further pruning for the current operations. Therefore !(b) can execute up

to node d and !(c) can fully execute till node c. The cut marker stored in f indicates

a pending cut operation, while the cut marker stored in e prevents possible future

pruning operations from the same branch.

7.2.2 Tree Representation

Supporting the cut predicate requires efficient mechanisms to represent the absolute

and relative positions of each worker in the search tree. Checking whether the current



176 CHAPTER 7. SPECULATIVE WORK

b

d

f

!(b), inst1.

!

c

e

g

!(c), inst2.

a

Before pruning.

b

d

f

inst1.

!

c

e

inst2.

a

After pruning.

<b,2>

<c,2>

Figure 7.3: Pruning useless work as early as possible.

branch is leftmost or identifying workers working on branches to the left/right need

to be very efficient operations.

The current YapOr implementation has the following representation of a Prolog search

tree. We use a bi-dimensional matrix, branch[], to represent the current branch of

each worker. Each entry branch[W,D] corresponds to the alternative taken by worker

W in the shared node with depth D of its current branch. The advantage of this simple

representation is that moving a worker in the search tree is a very efficient operation

- neither locking nor extra overheads for maintaining the tree topology are needed.

Figure 7.4 presents a small example that clarifies the correspondence between a Prolog

search tree and its matrix representation. Notice that we only represent the shared

part of a search tree in the branch matrix. This is due to the fact that the position

of each worker in the private part of the search tree is not helpful when computing

relative positions.

To correctly consult or update the branch matrix, we need to know the depth of each

shared node. To achieve this, we introduce a new data field in the or-frame data

structure, the OrFr depth field, that holds the depth of the corresponding node. By

using the OrFr depth field together with the OrFr members bitmap of each or-frame

to consult the branch matrix, we can easily identify the workers in a node that are in

branches at the left or at the right the current branch of a given worker.
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Figure 7.4: Search tree representation.

7.2.3 Leftmostness

Let us suppose that a worker W wants to check whether it is leftmost or at which

node it ceases from being leftmost. W should start from the bottom shared node

N on its branch, read the OrFr members bitmap from the or-frame associated with

N to determine the workers sharing the node, and investigate the branch matrix

to determine the alternative number taken by each worker sharing N . If W finds an

alternative number less than its own, then W is not leftmost. Otherwise, W is leftmost

in N and will repeat the same procedure at the next upper node on branch and so on

until reaching the root node or a node where it is not leftmost.

Two improvements were introduced [5] to obtain an efficient implementation. The first

improvement reduces the number of workers to be consulted in each shared node, by

avoiding consulting workers already known to be to the right. The second improvement

reduces the number of nodes to be investigated in a branch, by associating with each

shared node a new or-frame data field named OrFr nearest leftnode pointing to the

nearest upper node with branches to the left.

7.2.4 Pending Answers

With speculative work, a new answer for the query goal in a non-leftmost branch may

not be valid since the branch where the answer was found may be pruned. To deal with

these kinds of situations, it is necessary to efficiently store the newly found answers in

such a way that, by end of the computation, all valid answers are easily obtained.
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YapOr stores a new answer in the first (youngest) shared node where the current branch

is not leftmost. To accomplish this, a new data field was introduced in the or-frame

data structure, the OrFr qg answers field. This allows access to the set of pending

answers stored in the corresponding node. New data structures were introduced to

store the pending answers that are being found for the query goal in hand. Figure 7.5

details the data structures used to efficiently keep track of pending answers. Answers

from the same branch are grouped into a common top data structure. The top data

structures are organized by reverse branch order. This organization simplifies the

pruning of answers that became invalid in consequence of a cut operation to the left.

21 3

answer-x

OrFr_qg_answers(CP_OR_FR(N))

answer-y

answer-z

N

answer-x

NULL

answer-y

answer-z

NULL

2

NULL

3

first answer

last answer

branch order

next frame

answer

next answer

Figure 7.5: Dealing with pending answers.

When a node N is fully exploited and its corresponding or-frame is being deallocated,

the whole set of pending answers stored in N can be easily linked together and moved

to the next node where the current branch is not leftmost. At the end, the set of

answers stored in the root node are the set of valid answers for the given query goal.

7.2.5 Scheduling Speculative Work

We have seen that pruning speculative branches as soon as a cut to the left is exe-

cuted is a key implementation issue in order to efficiently deal with speculative work

in a parallel environment. Besides this important aspect, speculative work can be

minimized if proper scheduling strategies are used. The Muse system implements a

sophisticated strategy named actively seeking the leftmost available work strategy [8],

that concentrates workers on the leftmost unexploited work of a search tree as long as
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there is enough parallelism, in order to avoid workers entering into speculative work

if less speculative work is available.

The set of unexploited alternatives in a search tree can be ordered according to their

degree of speculativeness. Speculativeness decreases towards the bottom of the leftmost

branch and increases towards the top of the rightmost one. Scheduling strategies that

benefit the branches closer to the leftmost bottom corner of the execution tree should

make useless work less probable.

The general idea of the actively seeking the leftmost available work strategy is to

concentrate workers in the less speculative branches of the search tree in order to

simulate the sequential Prolog execution as much as possible. The search tree is divided

into two parts: the left part contains active work and the right part contains suspended

work. Periodically, if there are no idle workers, all workers cooperate to compute their

ordering and load information. Whenever there exists leftmost available work, the

rightmost worker suspends all non-suspended alternatives to its right, including its

current branch, and moves to the leftmost available alternative. When the amount of

work to the left is not enough for the running workers, the leftmost suspended work

to the right is taken and made active for exploitation.

Further work is still necessary to make YapOr’s scheduler take full advantage of this

kind of strategy.

7.3 Cut within the Or-Parallel Tabling Environ-

ment

The previous sections shown us that dealing with speculative work is not simple.

Extending the or-parallel system to include tabling introduces complexity into cut’s

semantics. During a tabled computation, not only the answers found for the query goal

may not be valid, but also answers found for tabled predicates may be invalidated. The

problem here is even more serious because tabled answers can be consumed elsewhere in

the tree, which makes impracticable any late attempt to prune computations resulting

from the consumption of invalid tabled answers. Indeed, consuming invalid tabled

answers may result in finding more invalid answers for the same or other tabled

predicates.
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Notice that finding and consuming answers is the natural way to get a tabled computa-

tion going forward. Delaying the consumption of answers may compromise such flow.

Therefore, tabled answers should be released as soon as it is found that they are safe

from being pruned. Whereas for all-solution queries the requirement is that, at the

end of the execution, we will have the set of valid answers; in tabling the requirement

is to have the set of valid tabled answers released as soon as possible. Dealing with

speculative tabled computations and guaranteeing the correctness of tabling semantics,

without compromising the performance of the or-parallel tabling system, requires very

efficient implementation mechanisms. Next, we discuss the OPTYap’s approach.

7.3.1 Inner and Outer Cut Operations

Allowing pruning operations in a tabling environment introduces a major design

problem: how to deal with the operations that prune tabled nodes. We consider two

types of cut operations in a tabling environment, cuts that do not prune tabled nodes

– inner cut operations, and cuts that prune tabled nodes – outer cut operations.

Figure 7.6 illustrates four different situations corresponding to inner and outer cut

operations. Below each illustration we present a block of Prolog code that may lead

to such situations. Predicates t and s correspond respectively to the tabled and

scope nodes illustrated. Notice that the last situation only occurs if a parallel tabling

environment is considered.

tabled
node

!(scope)

scope
node

Inner Cut

!(scope)

Outer Cut

scope
node

tabled
node

:- table t/0.

t :- ..., s, ...
t :- ...

s :- ..., !, ...
s :- ...

:- table t/0.

s :- ..., !, ...
s :- ..., t, ...

t :- ...
t :- ...

!(scope)

Outer Cut

tabled
and

scope node

:- table t/0.

t :- ..., !, ...
t :- ...

tabled
node

!(scope)

scope
node

Outer Cut

:- table t/0.

s :- ..., t, ..., !, ...
s :- ...

t :- ...
t :- ...

Figure 7.6: The two types of cut operations in a tabling environment.
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Cut semantics for outer cut operations is still an open problem. The intricate de-

pendencies in a tabled evaluation makes pruning a very complex problem. A major

problem is that of pruning generator nodes. Pruning generator nodes cancels its

further completion and puts the table space in an inconsistent state. This may lead

dependent consumer nodes to incorrect computations as the set of answers found for

the pruned generator node may be incomplete. A possible solution to this problem

can lay on moving the generator’s role to a not pruned dependent consumer node,

if any, in order to allow further exploitation of the generator’s unexploited branches.

Such a solution will require that the other non-pruned consumer nodes recompute

and update their dependencies relatively to the new generator node. Otherwise, if all

dependent consumer nodes are also pruned, we can suspend the execution stacks and

the table data structures of the pruned subgoal and try to resume them when the next

variant call takes place. Scheduling also appears to be a problem. Applying different

resolution strategies to return answers may lead to different pruning sequences that

may influence the order that tabled nodes are pruned. Obviously, these are only simple

preliminary ideas about the problems in discussion. Further research is still necessary

in order to study the combination of pruning and tabling. Currently, OPTYap does

not support outer cut operations. For such cases, execution is aborted.

7.3.2 Detecting Speculative Tabled Answers

As mentioned before, a main goal in the implementation of speculative tabling is to

allow storing safe answers immediately. We would like to maintain the same perfor-

mance as for the programs without cut operators. In this subsection, we introduce

and describe the data structures and implementation extensions required to efficiently

detect if a tabled answer is speculative or not.

We introduced a global bitmap register named GLOBAL pruning workers to keep track

of the workers that are executing alternatives that contain cut operators and that, in

consequence, may prune the current goal. Additionally, each worker maintains a local

register, LOCAL safe scope, that references the bottommost (youngest) node that

cannot be pruned by any pruning operation executed by itself.

The correct manipulation of these new registers is achieved by introducing the new

WAM instruction clause with cuts. This new instruction marks the blocks of code
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that include cut instructions. During compilation, the WAM code generated for

the clauses containing cut operators was extended to include the clause with cuts

instruction so that it is the first instruction to be executed for such clauses. When

a worker loads a clause with cuts instruction, it executes the clause with cuts()

procedure.

Figure 7.7 details the pseudo-code that implements the clause with cuts() proce-

dure. It sets the worker’s bit of the global register GLOBAL pruning workers, and

updates the worker’s local register LOCAL safe scope to the oldest reference between

its current value and the current node. The current node is the resulting top node if

a pruning operation takes place from the clause being executed.

clause_with_cuts() {
if (LOCAL_safe_scope == NULL) {

// first execution of clause_with_cuts
insert_into_bitmap(GLOBAL_pruning_workers, WORKER_ID)
LOCAL_safe_scope = B

} else if (LOCAL_safe_scope is younger than B)
// B is the local stack register
LOCAL_safe_scope = B

}
load_next_instruction
proceed

}

Figure 7.7: Pseudo-code for clause with cuts().

When a worker finds a new answer for a tabled subgoal call, it inserts the answer’s trie

representation into the table space and then it checks if the answer is safe from being

pruned. When this is the case, the answer is included in the chain of available answers

for the tabled subgoal, as usual. Otherwise, if it is found that the answer can be

pruned by another worker, its availability is delayed. Figure 7.8 presents the pseudo-

code that implements the checking procedure. When it is found that the answer being

checked can be speculative, the procedure returns the or-frame that corresponds to

the youngest node where the answer can be pruned by a worker in a left branch. That

or-frame is where the answer should be left pending. Otherwise, if is found the answer

is safe, the procedure returns NULL.

Note that the speculative tabled answer() procedure is only called when the gen-

erator node for the answer being checked in is public, as otherwise any pruning corre-

sponds to an outer cut operation. The procedure’s pseudo-code starts by determining

if there are workers that may execute pruning operations. If so, it checks the safeness
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speculative_tabled_answer(generator node G) {
// G is the generator node for the answer being checked
prune_wks = GLOBAL_pruning_workers
delete_from_bitmap(prune_wks, WORKER_ID)
if (prune_wks is not empty) {

// there are workers that may execute pruning operations
or_fr = TOP_OR_FR
depth = OrFr_depth(or_fr)
scope_depth = OrFr_depth(CP_OR_FR(G))
while (depth > scope_depth) {
// checking the public branch till the generator node
alt_number = branch(WORKER_ID, depth)
for (w = 0; w < number_workers; w++) {

if (w is in OrFr_members(or_fr) &&
branch(w, depth) < alt_number &&
w is in prune_wks &&
OrFr_node(or_fr) is younger than LOCAL_safe_scope(w))

// the answer can be pruned by worker w
return or_fr

}
or_fr = OrFr_next(or_fr)
depth = OrFr_depth(or_fr)

}
}
// the answer is safe from being pruned
return NULL

}

Figure 7.8: Pseudo-code for speculative tabled answer().

of the branch where the tabled answer was found. The branch only needs to be

checked until the corresponding generator node, as otherwise it would be an outer

cut operation. A branch is found to be safe if it is leftmost, or if the workers in the

branches to the left cannot prune it.

The speculative tabled answer() procedure is similar to the leftmost check pro-

cedure described before. Hence, the implementation improvements mentioned for

the leftmost check procedure can also be used here to improve the efficiency of the

speculative tabled answer() procedure. However, for simplicity of presentation,

none of those improvements were included in the pseudo-code.

7.3.3 Pending Tabled Answers

If a tabled answer is speculative, its availability is delayed. A speculative answer

should remain in a pending state until it is pruned by a left branch or until it is found
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that it is safe from being pruned. In the latter case it should be released as a valid

answer. Dealing with pending tabled answers requires efficient support to allow that

the operations of pruning or releasing pending answers are efficiently performed.

Remember that pending answers are stored in a node. To allow access to the set of

pending answers for a node, a new data field was introduced in the or-frame data

structure, the OrFr tg answers field. New data structures were also introduced to

efficiently keep track of the pending answers being found for the several tabled subgoal

calls. Figure 7.9 details that data structure organization.
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Figure 7.9: Dealing with pending tabled answers.

The figure shows a situation where three tabled answers, answer-x, answer-y and

answer-z, were found to be speculative and in consequence have all been left pending

in a common node N . N is the bottommost node where a worker in a left branch, W

in the figure, holds a LOCAL safe scope register pointing to a node older than N .

Pending answers found for the same subgoal and from the same branch are addressed

by a common top frame data structure. As the answers in the figure were found in

different subgoal/branch pairs, three top frames were required. answer-x, answer-y

and answer-z were found respectively in branches 2, 3 and 3 for the subgoals corre-

sponding to generator nodes G1, G1 and G2. The top frames are organized in older to

younger generator order and by reverse branch order when there are several frames

for the same generator. Hence, each frame contains two types of pointers to follow the

chain of frames, one points to the frame that corresponds to the next younger generator
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node, while the other points to the frame that corresponds to the next branch within

the same generator.

Blocks of answers address the set of pending answers for a subgoal/branch pair. Each

block points to a fixed number of answers. By linking the blocks we can have a

large number of answers for the same subgoal/branch pair. Note that the block data

structure does not hold the representation of a pending answer, only a pointer to the

leaf answer trie node of the answer trie structure representing the pending answer.

This happens because tabled answers are inserted in advance into the table space even

if they are to be pruned later.

As already mentioned, a key point in the implementation support for pending answers

is the efficiency of the procedure to release answers. OPTYap implements the fol-

lowing algorithm: the last worker W leaving a node N with pending tabled answers,

determines the next node M on its branch that can be pruned by a worker to the left.

The pending answers from N that correspond to generator nodes equal or younger

than M are made available, while the remaining are moved from N to M. Notice

that W only needs to check for the existence of a node M up to the oldest generator

node in the pending answers stored in N . To simplify finding the oldest generator

node we organized top frames in older to younger generator order.

Last, in order to correctly implement direct compiled code execution in OPTYap,

it is required that the answer trie nodes representing pruned answers are removed

from the trie structure. For simplicity and efficiency, this is performed by the tabled

subgoal call that first calls the tabled subgoal after it has been completed because it

requires traversing the whole answer trie structure. The code for direct compiled code

execution is therefore computed while traversing the answer trie structure.

7.4 Chapter Summary

This chapter discussed the problems behind the management of speculative compu-

tations. A computation is named speculative if it can potentially be pruned during

parallel evaluation, therefore resulting in wasted effort when compared to sequential

execution.

We started by introducing the semantics for the standard pruning operator – cut,
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and then we discussed its behavior for parallel execution. Next we presented YapOr’s

approach to efficiently deal with speculative work and described the supporting data

structures and algorithms for its implementation.

Lastly, we motivated the problems of combining pruning with tabling and distinguished

two different types of cut operations in a tabling environment, cuts that do not prune

tabled nodes – inner cuts, and cuts that prune tabled nodes – outer cuts. Cut semantics

for outer cuts is still an open problem. We thus focused on the support for inner cuts

and described OPTYap’s approach to efficiently deal with speculative tabled answers.



Chapter 8

Performance Analysis

The overall goal of research in parallel logic programming is to achieve of higher

performance through parallelism. The initial implementations of successful or-parallel

Prolog systems, such as Aurora and Muse, relied on a detailed knowledge of a specific

Prolog system, SICStus Prolog [19], and on the evaluation attained from original

shared memory machines, such as the Sequent Symmetry. Modern Prolog systems,

although WAM based, have made substantial improvements in sequential execution.

These improvements largely result from the development of new and refined optimiza-

tions not found in the original SICStus Prolog. Besides, the impressive improvements

on CPU performance over the last years have not been followed by similar gains in

bus and memory performance. As a result, modern parallel machines show a much

higher memory latency, as measured by the number of CPU clock cycles, than original

Sequent style machines.

The question therefore arises of whether the good results previously obtained with

Aurora and Muse in Sequent style machines are still reachable with current Prolog

systems in modern parallel architectures. In particular, we can question whether such

results extend to parallel tabling implementations as tabling, by nature, reduces the

potential non-determinism available in logic programs. Also notice that accomplish-

ing good speedups may not necessarily translate to a corresponding improvement in

performance with respect to state of the art sequential implementations. The cost of

managing parallelism can make the performance of the parallel implementation with

a single worker considerably worse than the base sequential implementation.

187
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To assess the efficiency of our parallel tabling implementation and thus respond to

the questions just raised, we present next a detailed analysis of OPTYap’s perfor-

mance. We start by presenting an overall view of the overheads of supporting several

Yap extensions: YapOr, YapTab and OPTYap. Then, we compare YapOr’s parallel

performance with that of OPTYap for a set of non-tabled programs. Next, we use

a set of tabled programs to measure the sequential behavior of YapTab, OPTYap

and XSB, and to assess OPTYap’s performance when running the tabled programs in

parallel. At last, we study the impact of using the alternative locking schemes from

subsection 6.3.2 to deal with concurrent accesses to the table space data structures.

YapOr, YapTab and OPTYap are based on Yap’s 4.2.1 engine1. We used the same

compilation flags for Yap, YapOr, YapTab and OPTYap. Concerning YapTab and

OPTYap, we studied performance under both batched and local scheduling strate-

gies. Regarding XSB Prolog, we used version 2.3 with the default configuration and

the default execution parameters (chat engine and batched scheduling) for batched

scheduling, and version 2.4 with the default configuration and the default execution

parameters (chat engine and local scheduling) for local scheduling.

The environment for our experiments was oscar, a Silicon Graphics Cray Origin2000

parallel computer from the Oxford Supercomputing Centre. Oscar consists of 96 MIPS

195 MHz R10000 processors each with 256 Mbytes of main memory (for a total shared

memory of 24 Gbytes) and running the IRIX 6.5.12 kernel. While benchmarking,

the jobs were submitted to an execution queue responsible for scheduling the pending

jobs through the available processors in such a way that, when a job is scheduled

for execution, the processors attached to the job are fully available during the period

of time requested for execution. We have limited our experiments to 32 processors

because the machine was always with a very high load and we were limited to a

guest-account.

8.1 Performance on Non-Tabled Programs

To place our performance results in perspective we first evaluate how the original

Yap Prolog engine compares against the several Yap extensions we implemented and

1Note that sequential execution would be somewhat better with more recent Yap engines.
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against the most well-known tabling engine, XSB Prolog. Since OPTYap is based on

the same environment model as the one used by YapOr, we then compare OPTYap’s

performance with that of YapOr on a similar set of non-tabled programs.

8.1.1 Non-Tabled Benchmark Programs

We use a set of standard non-tabled logic programming benchmarks [101, 57, 93, 33].

The set includes the following benchmark programs2:

cubes: solves the N-cubes or instant insanity problem from Tick’s book [105]. It

consists of stacking 7 colored cubes in a column so that no color appears twice

within any given side of the column.

ham: finds all hamiltonian cycles for a graph consisting of 26 nodes with each node

connected to other 3 nodes.

map: solves the problem of coloring a map of 10 countries with five colors such that

no two adjacent countries have the same color.

nsort: naive sort algorithm. It sorts a list of 10 elements by brute force starting from

the reverse order (and worst) case.

puzzle: places numbers 1 to 19 in an hexagon pattern such that the sums in all 15

diagonals add to the same value (also taken from Tick’s book [105]).

queens: a non-naive algorithm to solve the problem of placing 11 queens on a 11x11

chess board such that no two queens attack each other.

All benchmarks find all the answers for the problem. Multiple answers are computed

through automatic failure after a valid answer has been found. To measure total

execution time we used the Prolog code that follows.

:- sequential run/0.

go :- statistics(walltime, [Start,_]),
run,
statistics(walltime, [End,_]),

2The Prolog code for these benchmark programs is included as Appendix A.1.
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Time is End-Start,
write(’WallTime is ’), write(Time), nl.

run :- benchmark, fail.
run.

benchmark :- ...

The go/0 predicate is the top query goal. For each particular benchmark, benchmark/0

is the predicate that triggers the benchmark’s execution. The run/0 predicate is

defined by two clauses. The first clause implements the automatic failure mechanism,

while the second accomplishes successfully complete execution of the top query goal.

Note that for parallel execution one needs to declare the run/0 predicate as sequential

in order to ensure that the second clause only gets executed after the whole search

space for the benchmark in hand has been exploited.

8.1.2 Overheads over Standard Yap

Fundamental criteria to judge the success of an or-parallel, tabling, or of a combined

or-parallel tabling model includes measuring the overhead introduced by these models

when running programs that do not take advantage of the particular extension. Ideally,

a program should not pay a penalty for or-parallel or tabling mechanisms that it does

not require. Therefore, in order to develop a successful or-parallel, tabling, or or-

parallel tabling engine such overheads should be minimal.

Table 8.1 shows the base execution time, in seconds, for Yap, YapOr, YapTab, OPTYap

and XSB for our set of non-tabled benchmark programs. In parentheses, it shows the

overhead over the Yap execution time. Obviously, the timings reported for YapOr

and OPTYap correspond to the execution with a single worker. For simplicity, in this

section, we will not distinguish between batched and local scheduling when reporting

to YapTab, OPTYap and XSB, as for non-tabled programs there are no execution

differences between both strategies.

The results indicate that YapOr, YapTab and OPTYap introduce, on average, an

overhead of about 10%, 5% and 17% respectively over standard Yap. YapOr overheads

result from handling the work load register and from testing operations that (i) verify

whether the bottommost node is shared or private, (ii) check for sharing requests,

and (iii) check for backtracking messages due to cut operations. On the other hand,
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Program Yap YapOr YapTab OPTYap XSB 2.4

cubes 1.97 2.06(1.05) 2.05(1.04) 2.16(1.10) 4.81(2.44)

ham 4.04 4.61(1.14) 4.28(1.06) 4.95(1.23) 10.36(2.56)

map 9.01 10.25(1.14) 9.19(1.02) 11.08(1.23) 24.11(2.68)

nsort 33.05 37.52(1.14) 35.85(1.08) 39.95(1.21) 83.72(2.53)

puzzle 2.04 2.22(1.09) 2.19(1.07) 2.36(1.16) 4.97(2.44)

queens 16.77 17.68(1.05) 17.58(1.05) 18.57(1.11) 36.40(2.17)

Average (1.10) (1.05) (1.17) (2.47)

Table 8.1: Yap, YapOr, YapTab, OPTYap and XSB execution time on non-tabled

programs.

YapTab overheads are due to the handling of the freeze registers and support of the

forward trail. OPTYap overheads inherits both sources of overheads. Considering that

Yap Prolog is one of the fastest Prolog engines currently available, the low overheads

achieved by YapOr, YapTab and OPTYap are very good results.

Regarding XSB, the results from Table 8.1 show that, on average, XSB is 2.47 times

slower than Yap. This is a result mainly due to the faster Yap engine.

8.1.3 Speedups for Parallel Execution

To assess the performance of OPTYap’s or-parallel engine when executing non-tabled

programs in parallel, we ran OPTYap with a varying number of workers for the set of

non-tabled benchmark programs.

The results reported in previous work [79, 82], for parallel execution of non-tabled

programs, showed that YapOr is very efficient in exploiting or-parallelism and that it

obtains better speedup ratios than Muse with the increase in the number of workers.

This was a surprising result given that YapOr has better base performance. Note,

however, that Muse under SICStus is a more mature system that implements some

functionalities that are still lacking in YapOr. Since OPTYap is based on YapOr’s

engine, we also tested YapOr against the same set of benchmark programs to get a

better perspective of OPTYap’s results.

Table 8.2 shows the speedups relative to the single worker case for YapOr and OPTYap

with 4, 8, 16, 24 and 32 workers. Each speedup corresponds to the best execution time
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obtained in a set of 3 runs.

YapOr OPTYap

Program 4 8 16 24 32 4 8 16 24 32

cubes 3.99 7.81 14.66 19.26 20.55 3.98 7.74 14.29 18.67 20.97

ham 3.93 7.61 13.71 15.62 15.75 3.92 7.64 13.54 16.25 17.51

map 3.98 7.73 14.03 17.11 18.28 3.98 7.88 13.74 18.36 16.68

nsort 3.98 7.92 15.62 22.90 29.73 3.96 7.84 15.50 22.75 29.47

puzzle 3.93 7.56 13.71 18.18 16.53 3.93 7.51 13.53 16.57 16.73

queens 4.00 7.95 15.39 21.69 25.69 3.99 7.93 15.41 20.90 25.23

Average 3.97 7.76 14.52 19.13 21.09 3.96 7.76 14.34 18.92 21.10

Table 8.2: Speedups for YapOr and OPTYap on non-tabled programs.

The results show that YapOr and OPTYap achieve identical effective speedups in all

benchmark programs. Despite that OPTYap includes all the machinery required to

support tabled programs, these results allow us to conclude that OPTYap maintains

YapOr’s behavior in exploiting or-parallelism in non-tabled programs.

8.2 Performance on Tabled Programs

In this section we start by describing the set of tabled benchmark programs that we

used to assess performance for tabling execution. We then measure the performance

of YapTab and OPTYap for sequential execution and compare the results with those

of XSB. Next, we assess OPTYap’s performance for parallel execution on these tabled

programs and discuss various statistics gathered during execution so that the results

obtained can be better understood. Last, we study the impact of using alternative

locking schemes to access the table space during parallel execution.
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8.2.1 Tabled Benchmark Programs

The tabled benchmark programs were obtained from the XMC3 [45] and XSB [46] world

wide web sites and are frequently used in the literature to evaluate such systems. The

benchmark programs are4:

sieve: the transition relation graph for the sieve specification5 defined for 5 processes

and 4 overflow prime numbers.

leader: the transition relation graph for the leader election specification defined for

5 processes.

iproto: the transition relation graph for the i-protocol specification defined for a

correct version (fix) with a huge window size (w = 2).

samegen: solves the same generation problem for a randomly generated 24x24x2

cylinder. The cylinder data can be thought of as a rectangular matrix of 24x24

elements where each element in row n (except the last) is connected to two

elements in row n + 1. A pair of nodes is said to belong to the same generation

when they are the same or when each one holds a connection to nodes that are in

the same generation. This benchmark is very interesting because for sequential

execution it does not allocate any consumer choice point. Variant calls to tabled

subgoals only occur when the subgoals are already completed.

lgrid: computes the transitive closure of a 25x25 grid using a left recursion algorithm.

A link between two nodes, n and m, is defined by two different relations; one

indicates that we can reach m from n and the other indicates that we can reach

n from m.

lgrid/2: the same as lgrid but it only requires half the relations to indicate that two

nodes are connected. It defines links between two nodes by a single relation,

3The XMC system [71] is a model checker implemented atop the XSB system which verifies

properties written in the alternation-free fragment of the modal µ-calculus [61] for systems specified

in XL, an extension of value-passing CCS [67].
4The Prolog code for these benchmark programs is included as Appendix A.2.
5We are thankful to C. R. Ramakrishnan for helping us in dumping the transition relation graph

of the automatons corresponding to each given XL specification, and in building runnable versions

out of the XMC environment.
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and it uses a predicate to achieve symmetric reachability. This modification

alters the order by which answers are found, therefore leading to a more random

distribution. Moreover, as indexing in the first argument is not possible for some

calls, the execution time increases significantly. For this reason, we only use here

a 20x20 grid.

rgrid/2: the same as lgrid/2 but it computes the transitive closure of a 25x25 grid

and it uses a right recursion algorithm.

Similarly to what was done for non-tabled benchmark programs, here we use the same

mechanisms to search for all answers for each problem and to measure the execution

time necessary to fully search the execution tree of a particular benchmark.

8.2.2 Timings for Sequential Execution

In order to place OPTYap’s results in perspective we start by analyzing the overheads

introduced to extend YapTab to parallel execution and by measuring YapTab and

OPTYap behavior when compared with the latest versions of the XSB system.

Table 8.3 shows the execution time, in seconds, for YapTab, OPTYap and XSB

using batched and local scheduling strategies for the tabled benchmark programs.

In parentheses it shows the overheads, respectively, over the YapTab Batched and

YapTab Local execution time. The execution time reported for OPTYap correspond

to the execution with a single worker. We used the TLWL locking scheme for OPTYap

Batched and the TLWL-ABC locking scheme for OPTYap Local. We choose these

schemes as a result of the performance study that we present in subsection 8.2.5. In

what follows, if nothing is said, when reporting OPTYap Batched or OPTYap Local

we assume the locking schemes mentioned above. Regarding XSB, we used version 2.3

for batched scheduling and version 2.4 for local scheduling, as referred in the beginning

of this chapter. Notice that the average result obtained for XSB using local scheduling

is clearly influenced by the strange behavior showed for the rgrid/2 benchmark. If we

do not consider such benchmark then the average result is 1.97.

The results indicate that, for these set of tabled benchmark programs, OPTYap

introduces, on average, an overhead of about 15% over YapTab for both batched
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Batched Scheduling Local Scheduling

Program YapTab OPTYap XSB 2.3 YapTab OPTYap XSB 2.4

sieve 235.31 268.13(1.14) 433.53(1.84) 242.38 260.65(1.08) 458.33(1.89)

leader 76.60 85.56(1.12) 158.23(2.07) 77.45 85.49(1.10) 161.22(2.08)

iproto 20.73 23.68(1.14) 53.04(2.56) 21.93 25.33(1.16) 54.38(2.48)

samegen 23.36 26.00(1.11) 37.91(1.62) 24.82 27.73(1.12) 38.28(1.54)

lgrid 3.55 4.28(1.21) 7.41(2.09) 3.85 4.65(1.21) 8.19(2.13)

lgrid/2 59.53 69.02(1.16) 98.22(1.65) 61.17 71.13(1.16) 102.72(1.68)

rgrid/2 6.24 7.51(1.20) 15.40(2.47) 6.15 7.32(1.19) 94.06(15.29)

Average (1.15) (2.04) (1.15) (3.87)

Table 8.3: YapTab, OPTYap and XSB execution time on tabled programs.

and local scheduling strategies. This overhead is very close to that observed for non-

tabled programs (11%). The small difference results from locking requests to handle

the data structures introduced by tabling. Locks are require to insert new trie nodes

into the table space, and to update subgoal and dependency frame pointers to tabled

answers. These locking operations are all related with the management of tabled

answers. Therefore, the benchmarks that deal with more tabled answers are the ones

that potentially can perform more locking operations. This causal relation seems to

be reflected in the execution times showed in Table 8.3, because the benchmarks that

show higher overheads are also the ones that find more answers. The answers found

by each benchmark are presented in Table 8.4. In this table we can observe that lgrid

and rgrid/2 are the benchmarks that find more answers, followed by the iproto and

lgrid/2 benchmarks.

The results also confirm previous results from Freire et al. [41] where local scheduling

performs worst than batched scheduling. Regardless, our results did show a smaller

slowdown. YapTab Local is only about 3% slower than YapTab Batched (this overhead

is not included in the table). Moreover, there is one benchmark, rgrid/2, where local

scheduling performs slightly better than batched.

Table 8.3 shows that YapTab is on average about twice as fast as XSB for these

set of benchmarks. This may be partly due to the faster Yap engine, as seen in

Table 8.1, and also to the fact that XSB implements functionalities that are still

lacking in YapTab and that XSB may incur through overheads in supporting those

functionalities. Independently of the scheduling strategy, the average execution time

for the single worker case proved that OPTYap runs as fast or faster than current
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XSB.

We believe that these results clearly show that we have accomplished our initial aim

of implementing an or-parallel tabling system that compares favorably with current

state of the art technology. Hence, we believe the following evaluation of the parallel

engine is significant and fair.

8.2.3 Characteristics of the Benchmark Programs

In order to achieve a deeper insight on the behavior of each benchmark, and therefore

clarify some of the results that are presented next, we first present in Table 8.4 data

on the benchmark programs. The columns in Table 8.4 have the following meaning:

first: is the number of first calls to subgoals corresponding to tabled predicates. It

corresponds to the number of generator choice points allocated.

nodes: is the number of subgoal/answer trie nodes used to represent the complete

subgoal/answer trie structures of the tabled predicates in the given benchmark.

For the answer tries, in parentheses, it shows the percentage of saving that the

trie’s design achieves on these data structures. Given the total number of nodes

required to represent individually each answer and the number of nodes used by

the trie structure, the saving can be obtained by the following expression:

saving =
total − used

total

As an example, consider two answers whose single representation requires re-

spectively 12 and 8 answer trie nodes for each. Assuming that the answer trie

representation of both answers only requires 15 answer trie nodes, thus 5 of those

being common to both paths, it achieves a saving of 25%. Higher percentages of

saving reflect higher probabilities of lock contention when concurrently accessing

the table space.

depth: is the number of nodes required to represent a path through a subgoal/answer

trie structure. In other words, it is the number of nodes required to represent a

subgoal call or to represent an answer. It is a three value column. The first and

third values correspond, respectively, to the minimum and maximum depth of a
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path in the whole subgoal/answer tries. The second value is the average depth

of the whole set of paths in the corresponding subgoal/answer trie structures.

Trie structures with smaller average depth values are more amenable to higher

lock contention.

unique: is the number of non-redundant answers found for tabled subgoals. It corre-

sponds to the number of answers stored in the table space.

repeated: is the number of redundant answers found for tabled subgoals. A high

number of redundant answers can degrade the performance of the parallel system

when using table locking schemes that lock the table space without taking into

account whether writing to the table is, or is not, likely.

Subgoal Tries New Answers Answer Tries

Program first nodes depth unique repeated nodes depth

sieve 1 7 6/6/6 380 1386181 8624(57%) 21/53/58

leader 1 5 4/4/4 1728 574786 41793(70%) 15/81/97

iproto 1 6 5/5/5 134361 385423 1554896(77%) 4/51/67

samegen 485 971 2/2/2 23152 65597 24190(33%) 1/1.5/2

lgrid 1 3 2/2/2 390625 1111775 391251(49%) 2/2/2

lgrid/2 1 3 2/2/2 160000 449520 160401(49%) 2/2/2

rgrid/2 626 1253 2/2/2 781250 2223550 782501(33%) 1/1.5/2

Table 8.4: Characteristics of the tabled programs.

By observing Table 8.4 it seems that sieve and leader are the benchmarks least

amenable to table lock contention because they are the ones that find the least number

of answers and also the ones that have the deepest trie structures. In this regard, lgrid,

lgrid/2 and rgrid/2 correspond to the opposite case. They find the largest number of

answers and they have very shallow trie structures. However, rgrid/2 is a benchmark

with a large number of first subgoals calls which can reduce the probability of lock

contention because answers can be found for different subgoal calls and therefore be

inserted with minimum overlap. Likewise, samegen is a benchmark that can also

benefit from its large number of first subgoal calls, despite also presenting a very

shallow trie structure. Finally, iproto is a benchmark that can also lead to higher

ratios of lock contention. It presents a deep trie structure, but it inserts a huge
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number of trie nodes in the table space. Moreover, it is the benchmark showing the

highest percentage of saving.

8.2.4 Parallel Execution Study

To assess OPTYap’s performance when running tabled programs in parallel, we ran

OPTYap with varying number of workers for the set of tabled benchmark programs.

We start by studying parallel execution with batched scheduling.

Parallel Execution with Batched Scheduling

Table 8.5 presents the speedups for OPTYap with 2, 4, 6, 8, 12, 16, 24 and 32 workers

using batched scheduling. The speedups are relative to the single worker case of

Table 8.3. They correspond to the best speedup obtained in a set of 3 runs. The table

is divided in two main blocks: the upper block groups the benchmarks that showed

potential for parallel execution, whilst the bottom block groups the benchmarks that

do not show any gains when run in parallel.

Number of Workers

Program 2 4 6 8 12 16 24 32

sieve 2.00 3.99 5.99 7.97 11.94 15.87 23.78 31.50

leader 2.00 3.98 5.97 7.92 11.84 15.78 23.57 31.18

iproto 1.72 3.05 4.18 5.08 7.70 9.01 8.81 7.21

samegen 1.94 3.72 5.50 7.27 10.68 13.91 19.77 24.17

lgrid/2 1.88 3.63 5.29 7.19 10.21 13.53 19.93 24.35

Average 1.91 3.67 5.39 7.09 10.47 13.62 19.17 23.68

lgrid 0.46 0.65 0.69 0.68 0.68 0.55 0.46 0.39

rgrid/2 0.73 0.94 1.01 1.15 0.92 0.72 0.77 0.65

Average 0.60 0.80 0.85 0.92 0.80 0.64 0.62 0.52

Table 8.5: Speedups for OPTYap using batched scheduling on tabled programs.

The results show superb speedups for the XMC sieve and the leader benchmarks up

to 32 workers. These benchmarks reach speedups of 31.5 and 31.18 with 32 workers!

Two other benchmarks in the upper block, samegen and lgrid/2, also show excellent

speedups up to 32 workers. Both reach a speedup of 24 with 32 workers. The remaining
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benchmark, iproto, shows a good result up to 16 workers and then it slows down with

24 and 32 workers. Globally, the results for the upper block are quite good, especially

considering that they include the three XMC benchmarks that are more representative

of real-world applications.

On the other hand, the bottom block shows almost no speedups at all. Only for rgrid/2

with 6 and 8 workers we obtain a slight positive speedup of 1.01 and 1.15. The worst

case is for lgrid with 32 workers, where we are about 2.5 times slower than execution

with a single worker. In this case, surprisingly, we observed that for the whole set of

benchmarks the workers are busy for more than 95% of the execution time, even for

32 workers. The actual slowdown is therefore not caused because workers became idle

and start searching for work, as usually happens with parallel execution of non-tabled

programs. Here the problem seems more complex: workers do have available work,

but there is a lot of contention to access that work.

The parallel execution behavior of each benchmark program can be better understood

through the statistics described in the tables that follows. The columns in these tables

have the following meaning:

variant: is the number of variant calls to subgoals corresponding to tabled predicates.

It matches the number of consumer choice points allocated.

complete: is the number of variant calls to completed tabled subgoals. It is when

the completed table optimization takes places, that is, when the set of found

answers is consumed by executing compiled code directly from the trie structure

associated with the completed subgoal.

SCC suspend: is the number of SCCs suspended.

SCC resume: is the number of suspended SCCs that were resumed.

contention points: is the total number of unsuccessful first attempts to lock data

structures of all types. Note that when a first attempt fails, the requesting worker

performs arbitrarily locking requests until it succeeds. Here, we only consider

the first attempts.

subgoal frame: is the number of unsuccessful first attempts to lock subgoal

frames. A subgoal frame is locked in three main different situations: (i)
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when a new answer is found which requires updating the subgoal frame

pointer to the last found answer; (ii) when marking a subgoal as completed;

(iii) when traversing the whole answer trie structure to remove pruned

answers and compute the code for direct compiled code execution.

dependency frame: is the number of unsuccessful first attempts to lock de-

pendency frames. A dependency frame has to be locked when it is checked

for unconsumed answers.

trie node: is the number of unsuccessful first attempts to lock trie nodes. Trie

nodes must be locked when a worker has to traverse a trie structure to

check/insert for new subgoal calls or answers.

To accomplish these statistics it was necessary to introduce in the system a set

of counters to measure the several parameters. Although, the counting mechanism

introduces an additional overhead in the execution time, we assume that it does not

significantly influence the parallel execution pattern of each benchmark program.

Tables 8.6 and 8.7 show respectively the statistics gathered for the group of programs

with and without parallelism. We do not include the statistics for the leader bench-

mark because its execution behavior showed to be identical to the observed for the

sieve benchmark.

The statistics obtained for the sieve benchmark support the excellent performance

speedups showed for parallel execution. It shows insignificant number of contention

points, it only calls a variant subgoal, and despite the fact that it suspends some

SCCs it successfully avoids resuming them. In this regard, the samegen benchmark

also shows insignificant number of contention points. However the number of variant

subgoals calls and the number of suspended/resumed SCCs indicate that it introduces

more dependencies between workers. Curiously, for more than 4 workers, the number

of variant calls and the number of suspended SCCs seems to be stable. The only

parameter that slightly increases is the number of resumed SCCs. Regarding iproto

and lgrid/2, lock contention seems to be the major problem. Trie nodes show identical

lock contention, however iproto inserts about 10 times more answer trie nodes than

lgrid/2. Subgoal and dependency frames show an identical pattern of contention, but

iproto presents higher contention ratios. Moreover, if we remember from Table 8.3

that iproto is about 3 times faster than lgrid/2 to execute, we can conclude that the
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Number of Workers

Parameter 4 8 16 24 32

sieve

variant/complete 1/0 1/0 1/0 1/0 1/0

SCC suspend/resume 20/0 70/0 136/0 214/0 261/0

contention points 108 329 852 1616 3040

subgoal frame 0 0 0 0 2

dependency frame 0 0 1 0 4

trie node 96 188 415 677 1979

iproto

variant/complete 1/0 1/0 1/0 1/0 1/0

SCC suspend/resume 5/0 9/0 17/0 26/0 32/0

contention points 7712 22473 60703 120162 136734

subgoal frame 3832 9894 21271 33162 33307

dependency frame 678 4685 25006 66334 81515

trie node 3045 6579 10537 11816 11736

samegen

variant/complete 485/1067 1359/193 1355/197 1384/168 1363/189

SCC suspend/resume 187/2 991/11 1002/20 1024/25 1020/34

contention points 255 314 743 1160 1607

subgoal frame 8 52 112 283 493

dependency frame 0 0 1 0 0

trie node 154 119 201 364 417

lgrid/2

variant/complete 1/0 1/0 1/0 1/0 1/0

SCC suspend/resume 4/0 8/0 16/0 24/0 32/0

contention points 4004 10072 28669 59283 88541

subgoal frame 167 1124 7319 17440 27834

dependency frame 98 1209 5987 23357 35991

trie node 2958 5292 10341 12870 12925

Table 8.6: Statistics of OPTYap using batched scheduling for the group of programs

with parallelism.

contention ratio for iproto is obviously much higher per time unit, which justifies its

worst behavior.
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Number of Workers

Parameter 4 8 16 24 32

lgrid

variant/complete 1/0 1/0 1/0 1/0 1/0

SCC suspend/resume 4/0 8/0 16/0 24/0 32/0

contention points 112740 293328 370540 373910 452712

subgoal frame 18502 73966 77930 68313 115862

dependency frame 17687 113594 215429 223792 248603

trie node 72751 91909 61857 62629 64029

rgrid/2

variant/complete 3051/1124 3072/1103 3168/1007 3226/949 3234/941

SCC suspend/resume 1668/465 1978/766 2326/1107 2121/882 2340/1078

contention points 58761 110984 133058 170653 173773

subgoal frame 55415 103104 122938 159709 160771

dependency frame 0 8 5 259 268

trie node 1519 3595 5016 4780 4737

Table 8.7: Statistics of OPTYap using batched scheduling for the group of programs

without parallelism.

The statistics gathered for the second group of programs present very interesting

results. Remember that lgrid and rgrid/2 are the benchmarks that find the largest

number of answers per time unit (please refer to Tables 8.3 and 8.4). Regarding lgrid ’s

statistics it shows high contention ratios in all parameters considered. Closer analysis

of its statistics allows us to observe that it shows an identical pattern when compared

with lgrid/2. The problem is that the ratio per time unit is significantly worst for

lgrid. This reflects the fact that most of lgrid ’s execution time is spent in massively

accessing the table space to insert new answers and to consume found answers.

The sequential order by which answers are accessed in the trie structure is the key

issue that reflects the high number of contention points in subgoal and dependency

frames. When inserting a new answer we need to update the subgoal frame pointer

to point at the last found answer. When consuming a new answer we need to update

the dependency frame pointer to point at the last consumed answer. For programs

that find a large number of answers per time unit, this obviously increases contention

when accessing such pointers. Regarding trie nodes, the small depth of lgrid ’s answer
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trie structure (2 trie nodes) is one of the main factors that contributes to the high

number of contention points when massively inserting trie nodes. Trie structures are

a compact data structure. Therefore, obtaining good parallel performance in the

presence of massive table access will always be a difficult task.

Analyzing the statistics for rgrid/2, the number of variant subgoals calls and the

number of suspended/resumed SCCs suggest that this benchmark leads to complex

dependencies between workers. Curiously, despite the large number of consumer nodes

that the benchmark allocates, contention in dependency frames is not a problem. On

the other hand, contention for subgoal frames seems to be a major problem. The

statistics suggest that the large number of SCC resume operations and the large

number of answers that the benchmark finds are the key aspects that constrain

parallel performance. A closer analysis shows that the number of resumed SCCs is

approximately constant with the increase in the number of workers. This may suggest

that there are answers that can only be found when other answers are also found,

and that the process of finding such answers cannot be anticipated. In consequence,

suspended SCCs have always to be resumed to consume the answers that cannot be

found sooner. We believe that the sequencing in the order that answers are found is

the other major problem that restrict parallelism in tabled programs.

Another aspect that can negatively influence this benchmark is the number of com-

pleted calls. Before executing the first call to a completed subgoal we need to traverse

the trie structure of the completed subgoal. When traversing the trie structure the

correspondent subgoal frame is locked. As rgrid/2 stores a huge number of answer trie

nodes in the table (please refer to Table 8.4) this can lead to longer periods of lock

contention.

Next, we present an identical study for parallel execution of OPTYap using local

scheduling.

Parallel Execution with Local Scheduling

Table 8.8 presents the speedups for parallel execution of OPTYap with 2, 4, 6, 8, 12,

16, 24 and 32 workers using local scheduling. The speedups are relative to the single

worker case of Table 8.3 and they correspond to the best speedup obtained in a set of

3 runs. As for batched, we group the benchmarks in two main blocks.
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Number of Workers

Program 2 4 6 8 12 16 24 32

sieve 2.00 3.99 5.98 7.96 11.92 15.86 23.69 31.67

leader 1.99 3.97 5.95 7.94 11.86 15.77 23.41 31.23

iproto 1.68 2.94 3.59 4.28 4.90 4.59 4.23 3.58

samegen 1.93 3.92 5.74 7.66 11.04 13.54 18.69 21.56

lgrid/2 1.84 3.42 4.86 6.12 7.83 8.79 12.23 12.93

Average 1.89 3.65 5.22 6.79 9.51 11.71 16.45 20.19

lgrid 0.47 0.40 0.42 0.46 0.35 0.29 0.25 0.17

rgrid/2 1.60 0.87 0.84 0.71 0.54 0.46 0.40 0.37

Average 1.04 0.64 0.63 0.59 0.45 0.38 0.33 0.27

Table 8.8: Speedups for OPTYap using local scheduling on tabled programs.

On average the results for local scheduling are worse than those obtained for batched.

Generally, the benchmarks that find more answers are the ones that introduce further

overheads and obtain lesser speedups with local scheduling. These are the cases of the

iproto and lgrid/2 benchmarks for the upper block and the lgrid and rgrid/2 for the

lower block. In order to understand what extra overheads local scheduling introduces

for parallel execution, we present in Table 8.9 some statistics gathered during parallel

execution of these four benchmarks. We do not include the statistics for the sieve,

leader and samegen benchmarks because their execution behavior showed to be similar

to the observed for batched scheduling.

A closer analysis of the statistics obtained in Table 8.9 for the four benchmarks under

discussion clearly shows that the worse results obtained for local scheduling relate

with a higher rate of contention in dependency frames. In particular, the difference is

most obvious on the rgrid/2 benchmark. The rest of the parameters show comparable

results to those obtained for batched scheduling.

We remind the reader that in local scheduling after a leader subgoal is completed we

need to consume the answers that were prevented from being returned to the caller

environment. For sequential execution this is done by executing compiled code directly

from the trie data structure associated with the completed subgoal. Unfortunately, this

optimization is not possible on our parallel implementation of local scheduling. The

problem is that workers may start consuming answers before subgoals were completed.

This occurs for workers where the subgoals are not leaders. Hence, when a leader
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Number of Workers

Parameter 4 8 16 24 32

iproto

variant/complete 1/0 1/0 1/0 1/0 1/0

SCC suspend/resume 7/0 13/0 19/0 30/0 32/0

contention points 36706 78417 135239 192977 206776

subgoal frame 3506 8892 21657 30505 32820

dependency frame 31235 64010 100043 142587 155336

trie node 1208 2763 5754 7317 7121

lgrid/2

variant/complete 1/0 1/0 1/0 1/0 1/0

SCC suspend/resume 4/0 8/0 16/0 24/0 32/0

contention points 50723 67230 85438 106969 115023

subgoal frame 227 2356 7621 18042 31229

dependency frame 44217 54850 52434 33311 57167

trie node 4153 6803 11571 13586 13086

lgrid

variant/complete 1/0 1/0 1/0 1/0 1/0

SCC suspend/resume 4/0 8/0 16/0 24/0 32/0

contention points 246749 420431 562025 539567 568159

subgoal frame 18051 59689 98627 46987 45580

dependency frame 157773 260984 369394 350291 384847

trie node 56866 78822 65705 58551 55573

rgrid/2

variant/complete 3018/1157 3003/1172 3006/1169 3012/1163 3029/1146

SCC suspend/resume 1711/509 2199/995 2354/1139 2368/1154 2238/1014

contention points 155099 237860 370182 349569 295013

subgoal frame 63247 111433 92703 131749 137762

dependency frame 87115 116296 270226 207565 90304

trie node 766 1854 1658 2255 4989

Table 8.9: Statistics of OPTYap using local scheduling for the group of programs

showing worst speedups than for batched scheduling.

subgoal is completed we just act like a consumer node and start consuming answers.

The results presented in Table 8.9 suggest that in some cases this may be incompatible
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with good performance. The typical situation is when a leader subgoal with a large

number of answers completes and its answers start being heavily consumed by the

available workers, therefore leading to high ratios of contention in the dependency

frames. We believe that this is a very hard problem to be solved even if different

parallel tabling approaches were developed.

The statistics presented in the tables above clearly illustrate some of the problems

behind parallel tabled evaluation. They are thus an excellent source for further study

in order to improve and/or reformulate some of the implementation issues that showed

to be less suitable for parallel execution.

Two major conclusions can be highlighted from the performance analysis done in this

section. First, there are table applications that can achieve very high performance

through parallelism. Second, batched scheduling showed to be more adequate than

local scheduling for parallel execution.

8.2.5 Locking the Table Space

OPTYap implements four alternative locking schemes to deal with concurrent accesses

to the table space data structures. These schemes were described in subsection 6.3.2

and were referred as: TLEL (Table Lock at Entry Level); TLNL (Table Lock at Node

Level); TLWL (Table Lock at Write Level); and TLWL-ABC (Table Lock at Write

Level - Allocate Before Check).

To evaluate the impact that different approaches to locking the table space may

produce during parallel execution, we ran OPTYap using the four alternative locking

schemes for the tabled benchmark programs that showed significant speedups for

parallel execution. Table 8.10 shows the speedups for the four alternative locking

schemes with varying number of workers for batched and local scheduling. The

speedups are relative to the single worker case and they correspond to the best speedup

obtained in a set of 3 runs.

Two main conclusions can be easily drawn from the speedups showed in Table 8.10.

First, all benchmarks show identical patterns with the increase in the number of work-

ers for both batched and local scheduling. Apparently, this suggests that scheduling

does not significantly influence lock contention in table access. Second, TLWL and
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Locking Batched Scheduling Local Scheduling

Scheme 4 8 16 24 32 4 8 16 24 32

sieve

TLEL 3.79 7.35 10.37 8.53 8.20 3.89 7.16 11.19 8.99 7.27

TLNL 3.80 7.24 11.86 3.98 4.71 3.79 7.23 12.19 2.56 4.18

TLWL 3.99 7.97 15.87 23.78 31.50 4.00 7.97 15.89 23.74 31.05

TLWL-ABC 3.99 7.97 15.85 23.78 31.47 3.99 7.96 15.86 23.69 31.67

leader

TLEL 3.80 6.16 5.77 5.34 4.69 3.74 6.42 6.36 5.59 4.88

TLNL 3.49 6.32 8.45 4.39 3.05 3.32 5.86 9.91 3.56 3.07

TLWL 3.98 7.92 15.78 23.57 31.18 3.99 7.94 15.78 23.47 31.07

TLWL-ABC 3.98 7.94 15.75 23.46 31.07 3.97 7.94 15.77 23.41 31.23

iproto

TLEL 1.66 1.41 1.25 1.23 1.05 1.87 1.58 1.12 1.09 1.01

TLNL 1.68 2.65 1.86 1.05 1.00 1.54 2.45 1.18 1.00 0.96

TLWL 3.05 5.08 9.01 8.81 7.21 2.72 4.41 4.42 3.79 3.42

TLWL-ABC 3.10 5.13 7.78 8.48 7.19 2.94 4.28 4.59 4.23 3.58

samegen

TLEL 3.70 7.28 13.79 19.58 21.51 3.94 7.67 13.74 18.28 19.26

TLNL 3.68 7.23 13.80 19.64 24.04 3.88 7.64 13.74 18.86 21.46

TLWL 3.72 7.27 13.91 19.77 24.17 3.89 7.59 13.66 18.92 21.42

TLWL-ABC 3.83 7.29 13.92 19.71 24.29 3.92 7.66 13.54 18.69 21.56

lgrid/2

TLEL 3.74 7.17 9.67 5.13 4.50 3.43 5.97 6.19 4.15 3.27

TLNL 3.48 6.79 12.16 6.26 5.30 3.28 3.11 7.84 5.40 4.33

TLWL 3.63 7.19 13.53 19.93 24.35 3.48 6.16 8.55 9.97 10.42

TLWL-ABC 3.60 6.95 13.46 18.96 24.20 3.42 6.12 8.79 12.23 12.93

Table 8.10: OPTYap execution time with different locking schemes for the group of

programs with parallelism.

TLWL-ABC are the locking schemes that present the best speedup ratios and they are

the only schemes showing scalability. Even though neither scheme clearly outperform

the other, TLWL seems slightly better for batched scheduling and TLWL-ABC for

local scheduling. In order to avoid choosing only one, we decided to use TLWL

for OPTYap Batched and TLWL-ABC for OPTYap Local in the performance study
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described during this chapter.

Closer analysis to Table 8.10 allows us to observe other interesting aspects: all schemes

show identical speedups for the samegen benchmark, and the TLEL and the TLNL

schemes clearly slow down for more than 16 workers. The reason for the good behavior

of all schemes with the samegen benchmark arises from the fact that this benchmark

calls 485 different tabled subgoals. This increases the number of entries where answers

can be stored and thus reduces the probability of two workers accessing simultaneously

the same answer trie structure.

The slow-down of TLEL and TLNL schemes is related to the fact that these schemes

lock the table space even when writing is not likely. In particular, for repeated answers

they pay the cost of performing locking operations without inserting any new trie

node. For these schemes the number of potential contention points is proportional

to the number of answers found during execution, be they unique or redundant.

This explains the slow-down presented by these schemes for the sieve and leader

benchmarks. These benchmarks find a smaller number of unique answers, but have

large number of redundant answers (please refer to Table 8.4). Curiously, for some

benchmarks TLEL obtains better speedups than TLNL with the increase of workers.

This suggests that for certain circumstances it is better to lock the whole trie and

traverse it more quickly than lock node by node and increase the points of contention

and the time spend to traverse the trie.

8.3 Chapter Summary

In this chapter we have presented a detailed analysis of OPTYap’s performance. We

started by presenting an overall view of OPTYap’s performance for execution of non-

tabled programs. Then, we measured the sequential tabling behavior of OPTYap

and compared it with current XSB. Next, we assessed OPTYap’s performance when

running tabled programs in parallel and discussed its execution behavior. At last,

we studied the impact of using alternative locking schemes to concurrently access the

table space.

The initial results obtained for OPTYap shows that it introduces low overheads over

Yap and YapTab for sequential execution of non-tabled and tabled programs, and that



8.3. CHAPTER SUMMARY 209

it compares favorably with current versions of XSB. Moreover, the results showed that

OPTYap maintains YapOr’s effective speedups in exploiting or-parallelism in non-

tabled programs. For parallel execution of tabled programs, OPTYap showed superb

results for two benchmarks and quite good results globally. However, there are tabled

programs where OPTYap may not speedup up execution. Our study suggested that

parallel execution of tabled programs is more natural for a batched scheduling strategy

and for a TLWL or a TLWL-ABC locking scheme.
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Chapter 9

Concluding Remarks

This long journey is about to end. In this final chapter, we begin by summarizing

the main contributions of the thesis and then we suggest several directions for further

travel. At the end, a final remark ceases the chapter and the thesis.

9.1 Main Contributions

The work described in this thesis can be stated as the design, implementation and

evaluation of the OPTYap system. To the best of our knowledge, OPTYap is the first

engine that exploits or-parallelism and tabling from logic programs. A major guideline

for OPTYap was concerned with making best use of the excellent technology already

developed for previous systems. In this regard, OPTYap uses Yap’s efficient sequential

Prolog engine [30, 32] as its starting framework, and the SLG-WAM [87, 90, 88] and

environment copying [5, 57] approaches, respectively, as the basis for its tabling and

or-parallel components.

We then summarize the main contributions of our work.

Novel computational models for parallel tabling. We have proposed two novel

computational models, the Or-Parallelism within Tabling (OPT ) and Tabling

within Or-Parallelism (TOP) models, that exploit implicit or-parallelism from

tabled logic programs by considering all subgoals as being parallelizable, be they

from tabled or non-tabled predicates.

211
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The YapTab sequential tabling engine. We have presented the design and imple-

mentation of YapTab, an extension to the Yap Prolog system that implements

sequential tabling. YapTab reuses the principles of the SLG-WAM, whilst inno-

vating by separating the tabling suspension data in a single space, the depen-

dency space, and by proposing a new completion detection algorithm not based

on the intrinsically sequential completion stack. YapTab has been implemented

from scratch and it was developed to be used as the basis for OPTYap’s tabling

component. YapTab showed low overheads over standard Yap when executing

non-tabled programs, and excellent results for tabling benchmarks if compared

with the more mature XSB system [46].

The OPTYap or-parallel tabling engine. OPTYap’s execution framework was a

first step to study and understand the behavior and implications of exploiting

parallelism from tabled logic programs. During this thesis, we have presented

novel data structures, algorithms and implementation techniques to efficiently

solve the challenging issues that a project of this size encompasses. These

contributions can be used as a reference guide for other approaches that may

follow. Next, we enumerate the most relevant contributions.

• The dependency frame data structure and the idea of keeping apart, in a

common shared space, the whole data related with tabling suspensions.

• The generator dependency node (GDN) concept of signalling nodes that

are candidates to be leader nodes.

• New algorithms to quickly compute and detect leader nodes.

• The novel termination detection scheme to allow completion in public nodes.

• The support for suspension of strongly connected components (SCCs) and

the assumption of SCCs as the units for suspension.

• Newer scheduler heuristics to support tabling that explicitly deal with the

flow of a parallel tabled evaluation and achieve a more efficient distribution

of work in such evaluations.

• The implementation techniques to deal with concurrent table access and

the TLEL, TLNL, TLWL and TLWL-ABC locking schemes.

• The distinction between inner and outer cut operations in a parallel tabling

environment and the support for speculative tabled answers.
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Performance study. We have performed a detailed study to assess the performance

of the or-parallel tabling engine over a large number of parameters. During eval-

uation, the system was examined against a selected set of benchmark programs

that we believe are reasonably representative of existing applications. From the

results obtained, the following observations can be enumerated.

• Sequential execution of non-tabled programs showed that YapOr, YapTab

and OPTYap introduce, on average, respectively an overhead of about

10%, 5% and 17% over standard Yap. Considering that Yap Prolog is

one of the fastest Prolog engines currently available, these results are quite

satisfactory.

• Parallel execution of non-tabled programs showed that YapOr and OPTYap

achieve, on average, identical speedups up to 32 workers. This result

suggests that OPTYap do not introduces further overheads for parallel

execution of non-tabled programs, despite the fact that it includes all the

machinery required to support tabled programs.

• Sequential execution of tabled programs indicate that OPTYap introduces,

on average, an overhead of about 15% over YapTab for both batched and

local scheduling strategies, which is very close to the overhead observed

for non-tabled programs, about 11%. The small difference results from

locking requests to the data structures introduced with tabling. The results

also showed that we successfully accomplished our initial goal of comparing

favorably with current state of the art technology since, on average, YapTab

showed to be about twice as fast as XSB.

• Parallel execution of tabled programs showed that the system was able to

achieve excellent speedups up to 32 workers for applications with coarse

grained parallelism and quite good speedups for applications with medium

parallelism. Our results suggested that parallel execution of tabled pro-

grams is more natural for batched scheduling than for local scheduling and

that concurrent table access is best handled by schemes that lock table

data structures only when writing to the table is likely. On the other

hand, there are applications where OPTYap was not able to speedup their

execution. This is the case with applications whose evaluation is mostly

deterministic or whose main execution operations rely on massive accesses
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to the table space. The parameters evaluated during execution suggested

that the slowdown for these applications is not caused by workers becoming

idle, but because there is a lot of contention in handling tabled answers.

In general, tabling tends to decrease the height of the search tree, whilst

increasing its breadth. We therefore believe that further improvements

in scheduling and on concurrent access to the data structures introduced

to support parallel tabling may be fundamental to achieve even better

scalability.

Through this research we aimed at showing that the models developed to exploit

implicit or-parallelism in standard logic programming systems can also be used to

successfully exploit implicit or-parallelism in tabled logic programming systems. Initial

results show that OPTYap can indeed speed up well known tabled programs without

programmer intervention. The results reinforced our belief that tabling and parallelism

are a very good match that can contribute to expand the range of applications for Logic

Programming.

9.2 Further Work

We hope that the work resulting from this thesis will be a basis to conduct further

improvements and further research in this area. OPTYap has achieved our initial goal.

Even so, the system still has some limitations that may reduce its use elsewhere and

its contribution in the support of realistic applications. Current limitations relate to

issues not within the scope of the present work, but that are very important for wider

use throughout the logic programming community. These include:

Further experimentation. The current implementation needs to be tested more

intensively with a wider range of applications. Many opportunities for refining

the system exist, and more will almost certainly be uncovered with profound

experimentation of the system. We gratefully acknowledge the generosity of

tabling logic programming community by providing us access to several inter-

esting applications, such as XMC. We are experimenting with other tabled logic

programming applications and differently platforms.



9.2. FURTHER WORK 215

Scheduling strategies. OPTYap scheduling strategies are essentially inherited from

YapOr’s scheduler. Further work is still needed to implement and experiment

with proper scheduling strategies that can take advantage of the tabling envi-

ronment. In subsection 6.8 we have proposed novel scheduling strategies that

we believe should contribute for a more efficient work distribution strategy in an

or-parallel tabled evaluation.

Speculative work limitations. For certain groups of applications, such as best-

solution kind of problems, speculative computations represent a major problem.

OPTYap prunes speculative computations as soon as a cut causing their specu-

lativeness is executed. However, it does not implement any scheduling strategy

that makes speculative computations less likely. To some extent, these limita-

tion can be addressed by implementing Muse’s sophisticated strategy – actively

seeking leftmost available work [8], to voluntary suspend rightmost computations

and thus reduce the degree of speculativeness of the work being done to obtain

high performance (please refer to subsection 7.2.5 for more details).

In the presence of tabling, pruning is an even more delicate issue. A deeper

understanding of the interaction between pruning and tabling is required. We

need to do it correctly, that is, in such a way that the system will not break but

instead produce sensible answers, and well, that is, allow useful pruning with

good performance.

Support for full Prolog. To support full Prolog semantics, the system still needs

more development, specially to support side-effects effectively. To ensure sequen-

tial Prolog semantics, side-effects must be executed by leftmost workers. Full

support for side-effects in YapOr can be achieved by extending some of the data

structures used to support the cut predicate and to support SCC suspension

for parallel tabling. One interesting problem is the management of the internal

database, as many applications require concurrency in database updates. Yap

already includes the base machinery to allow such concurrency, however further

work is need to make it usable by programmers. Several ideas about efficient

side-effects implementation can be found elsewhere [54, 5, 22, 102, 58, 103].

Tabling is a more complex problem. Semantics are different and side-effects

are not Prolog compatible in tabling, as they may depend on scheduling order.

What do programmers expect from side-effects in a tabling environment is still
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an open problem.

Dynamic memory expansion. OPTYap allows to indicate the amount of memory

required for each data area. However, during execution one may discover that

the memory initially requested was insufficient. We would like to lift that burden

from the user by allowing dynamic memory expansion. Unfortunately, dynamic

memory expansion is a very complex operation when supporting an environment

copying based implementation. Accomplishing efficiency is even more laborious.

Proposals for novel memory organization schemes enabling efficient dynamic

memory expansion operations are therefore required.

Garbage collection. By nature, garbage collection is a heavy cost operation. For

an environment copying based system, garbage collection may also lead to in-

consistency between the execution stacks of the running workers. Special care

is not taken when incremental copying is used to share work. Although YapTab

supports garbage collection, OPTYap does not implement garbage collection at

all. In [4] K. Ali proposes some interesting mechanisms to deal with garbage

collection for environment copying systems.

Support for negation. A wide range of applications that use tabling require the

expressiveness granted by the possibility of manipulating negative subgoals.

OPTYap does not currently implement support for negation. Extending OPTYap

to efficiently support negation will certainly be one major step forward to make

OPTYap usable by a larger community.

9.3 Final Remark

Clearly, the research we present in this thesis is built on the vigorous research effort

made by preceding researchers. Their ideas brought us the flame that has lighted up

our way. With our work, we hope to shed at least a ray of light to someone else that

may follow.

Much work still remains to be done. A large amount of this available work will be

exploited in parallel by many different research workers all over the world. Sometimes,

much of the clues to pursue such work have already been tabled by other researchers

when studying variant problems. The question therefore is how to efficiently distribute



9.3. FINAL REMARK 217

the available tasks through the available workers in such a way that we avoid speculative

work and redundant answers for the subgoals of the ultimate query goal :

?- develop system(S), least development cost(S),

best achievable performance(S).
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Appendix A

Benchmark Programs

This appendix contains the benchmark programs used in Chapter 8 to assess OPTYap’s

performance. For the set of non-tabled benchmark programs we provide the full Prolog

code. On the other hand, as the tabled benchmark programs are quite lengthy, we

only show parts of the code. The author may be contacted for the full Prolog code of

these programs.

A.1 Non-Tabled Benchmark Programs

cubes
benchmark :- cubes7(_).

cubes7(Sol) :-
cubes(7,Qs),
solve(Qs,[],Sol).

cubes(7,[q(p(5,1),p(0,5),p(3,1)),
q(p(2,3),p(1,4),p(4,0)),
q(p(3,6),p(0,0),p(2,4)),
q(p(6,4),p(6,1),p(0,1)),
q(p(1,5),p(3,2),p(5,2)),
q(p(5,0),p(2,3),p(4,5)),
q(p(4,2),p(2,6),p(0,3))]).

solve([],Rs,Rs).
solve([C|Cs],Ps,Rs) :-

set(C,P),
check(Ps,P),
solve(Cs,[P|Ps],Rs).

set(q(P1,P2,P3),P) :-
rotate(P1,P2,P).

set(q(P1,P2,P3),P) :-

rotate(P2,P1,P).
set(q(P1,P2,P3),P) :-

rotate(P1,P3,P).
set(q(P1,P2,P3),P) :-

rotate(P3,P1,P).
set(q(P1,P2,P3),P) :-

rotate(P2,P3,P).
set(q(P1,P2,P3),P) :-

rotate(P3,P2,P).

check([],_).
check([q(A1,B1,C1,D1)|Ps],P) :-

P = q(A2,B2,C2,D2),
A1=\=A2,
B1=\=B2,
C1=\=C2,
D1=\=D2,
check(Ps,P).

rotate(p(C1,C2),p(C3,C4),q(C1,C2,C3,C4)).
rotate(p(C1,C2),p(C3,C4),q(C1,C2,C4,C3)).
rotate(p(C1,C2),p(C3,C4),q(C2,C1,C3,C4)).
rotate(p(C1,C2),p(C3,C4),q(C2,C1,C4,C3)).

ham
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benchmark :- ham(_).

ham(H) :-
cycle_ham([a,b,c,d,e,f,g,h,i,j,k,l,m,n,

o,p,q,r,s,t,u,v,w,x,y,z],H).

cycle_ham([X|Y],[X,T|L]) :-
chain_ham([X|Y],[],[T|L]),
ham_edge(T,X).

chain_ham([X],L,[X|L]).
chain_ham([X|Y],K,L) :-

ham_del(Z,Y,T),
ham_edge(X,Z),
chain_ham([Z|T],[X|K],L).

ham_del(X,[X|Y],Y).
ham_del(X,[U|Y],[U|Z]) :-

ham_del(X,Y,Z).

ham_edge(X,Y) :-
ham_connect(X,L),
ham_el(Y,L).

ham_el(X,[X|_]).
ham_el(X,[_|L]) :-

ham_el(X,L).

ham_connect(a,[b,n,m]).

ham_connect(b,[c,a,u]).
ham_connect(c,[d,b,o]).
ham_connect(d,[e,c,v]).
ham_connect(e,[f,d,p]).
ham_connect(f,[g,e,w]).
ham_connect(g,[h,f,q]).
ham_connect(h,[i,g,x]).
ham_connect(i,[j,h,r]).
ham_connect(j,[k,i,y]).
ham_connect(k,[l,j,s]).
ham_connect(l,[m,k,z]).
ham_connect(m,[a,l,t]).
ham_connect(n,[o,a,t]).
ham_connect(o,[p,n,c]).
ham_connect(p,[q,o,e]).
ham_connect(q,[r,p,g]).
ham_connect(r,[s,q,i]).
ham_connect(s,[t,r,k]).
ham_connect(t,[s,m,n]).
ham_connect(u,[v,z,b]).
ham_connect(v,[w,u,d]).
ham_connect(w,[x,v,f]).
ham_connect(x,[y,w,h]).
ham_connect(y,[z,x,j]).
ham_connect(z,[y,l,u]).

map
benchmark :- map(_).

map(M) :-
my_map(M),
map_colours(C),
colour_map(M,C).

my_map([country(a,A,[B,C,D,F,G]),
country(b,B,[A,C,E,G]),
country(c,C,[A,B,D,E]),
country(d,D,[A,C,E,F,H]),
country(e,E,[B,C,D,H,I,J]),
country(f,F,[A,B,D,G,H,J]),
country(g,G,[A,B,F,J]),
country(h,H,[D,E,F,I,j]),
country(i,I,[E,H,J]),
country(j,J,[E,F,G,H,I])]).

colour_map([],_).
colour_map([Country|Map],Colourlst) :-

colour_country(Country,Colourlst),
colour_map(Map,Colourlst).

colour_country(country(_,C,Adjacents),Colourlst) :-
map_del(C,Colourlst,CL),
map_subset(Adjacents,CL).

map_subset([],_).
map_subset([C|Cs],Colourlst) :-

map_del(C,Colourlst,_),
map_subset(Cs,Colourlst).

map_colours([red,green,blue,white,black]).

map_del(X,[X|L],L).
map_del(X,[Y|L1],[Y|L2]) :-

map_del(X, L1,L2).

nsort
benchmark :- nsort(_).

nsort(L) :-
go_nsort([10,9,8,7,6,5,4,3,2,1],L).

go_nsort(L1,L2) :-
nsort_permutation(L1,L2),
nsort_sorted(L2).

nsort_permutation([],[]).
nsort_permutation(L,[H|T]):-

nsort_delete(H,L,R),
nsort_permutation(R,T).

nsort_delete(X,[X|T],T).
nsort_delete(X,[Y|T],[Y|T1]) :-

nsort_delete(X,T,T1).

nsort_sorted([X,Y|Z]) :-
X=<Y,
nsort_sorted([Y|Z]).

nsort_sorted([_]).

puzzle
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benchmark :- puzzle(_).

puzzle([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S]) :-
List=[1,2,3,4,5,6,7,8,9,10,11,

12,13,14,15,16,17,18,19],
member(A,List,La),
member(B,La,Lb),
C is 38-A-B,
member(C,Lb,Lc),
A<C,
member(D,Lc,Ld),
H is 38-A-D,
member(H,Ld,Lh),
A<H,
C<H,
member(E,Lh,Le),
member(F,Le,Lf),
G is 38-D-E-F,
member(G,Lf,Lg),
L is 38-C-G,
member(L,Lg,Ll),
A<L,
member(I,Ll,Li),
M is 38-B-E-I,
member(M,Li,Lm),

Q is 38-H-M,
member(Q,Lm,Lq),
A<Q,
member(J,Lq,Lj),
N is 38-C-F-J-Q,
member(N,Lj,Ln),
K is 38-H-I-J-L,
member(K,Ln,Lk),
P is 38-B-F-K,
member(P,Lk,Lp),
S is 38-L-P,
member(S,Lp,Ls),
A<S,
R is 38-Q-S,
member(R,Ls,Lr),
38 is D+I+N+R,
member(O,Lr,_Lo),
38 is M+N+O+P,
38 is A+E+J+O+S,
38 is G+K+O+R.

member(X,[X|Y],Y).
member(X,[X2|Y],[X2|Y2]) :-

X\==X2,
member(X,Y,Y2).

queens
benchmark :- queens(_).

queens(S) :-
get_solutions(11,S).

get_solutions(Board_size,Soln) :-
solve(Boars_size,[],Soln).

solve(Board_size,Initial,Final) :-
newsquare(Initial,Next),
solve(Board_size,[Next|Initial],Final).

solve(Bs,[square(Bs,Y)|L],[square(Bs,Y)|L]) :-
size(Bs).

newsquare([square(I,J)|Rest],square(X,Y)) :-
X is I+1,
snint(Y),
not_threatened(I,J,X,Y),
safe(X,Y,Rest).

newsquare([],square(1,X)) :-
snint(X).

not_threatened(I,J,X,Y) :-

I=\=X,
J=\=Y,
I-J=\=X-Y,
I+J=\=X+Y.

safe(X,Y,[square(I,J)|L]) :-
not_threatened(I,J,X,Y),
safe(X,Y,L).

safe(X,Y,[]).

size(11).
snint(1).
snint(2).
snint(3).
snint(4).
snint(5).
snint(6).
snint(7).
snint(8).
snint(9).
snint(10).
snint(11).
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A.2 Tabled Benchmark Programs

sieve
benchmark :- reach(sieve_0(5,4,27,end), T).

:- table reach/2.

reach(S,T) :-
trans(S,_,T).

reach(S,T) :-
reach(S,N),
trans(N,_,T).

% the transition relation graph
trans(par(A,end,end,B),nop,B).
trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)).
trans(generator_0(A,B,C,D),out(A,B),D) :-

E is B+1, not B=<C.

...

% auxiliary predicates

...

leader
benchmark :- reach(systemLeader_0(5,end), T).

:- table reach/2.

reach(S,T) :-
trans(S,_,T).

reach(S,T) :-
reach(S,N),
trans(N,_,T).

% the transition relation graph
trans(par(A,end,end,B),nop,B).
trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)).
trans(medium_0(A,B,C,D),

in(A,E),medium_0(A,B,[E|C],D)).

...

% auxiliary predicates

...

iproto
benchmark :- reach(iproto_0(_,_,end), T).

:- table reach/2.

reach(S,T) :-
trans(S,_,T).

reach(S,T) :-
reach(S,N),
trans(N,_,T).

window_size(2).
seq(4).

fixed(fix).

% the transition relation graph
trans(par(A,end,end,B),nop,B).
trans(par(A,B,C,D),E,par(A,F,G,D)) :-

(partrans(A,E,B,C,F,G);partrans(A,E,C,B,G,F)).
trans(iproto_0(A,B,C),nop,imain_0(C)).

...

% auxiliary predicates

...

samegen
benchmark :- same_generation(_,_).

:- table same_generation/2.

same_generation(X,Y) :-
cyl(X,Z),
same_generation(Z,W),
cyl(Y,W).

same_generation(X,X).

% the cylinder data
cyl(1,30).
cyl(1,40).
cyl(2,43).

...

cyl(551,569).
cyl(552,569).
cyl(552,564).

lgrid
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benchmark :- lpath(_,_).

:- table lpath/2.

lpath(X,Y) :-
lpath(X,Z),
link(Z,Y).

lpath(X,Y) :-
link(X,Y).

% the 25x25 grid
link(1,2).
link(2,1).
link(2,3).
link(3,2).

...

link(575,600).
link(600,575).
link(600,625).
link(625,600).

lgrid/2
benchmark :- lpath(_,_).

:- table lpath/2.

lpath(X,Y) :-
lpath(X,Z),
arc(Z,Y).

lpath(X,Y) :-
arc(X,Y).

arc(X,Y) :-
link(X,Y).

arc(X,Y) :-
link(Y,X).

% the 20x20 grid
link(1,2).
link(2,3).
link(3,4).
link(4,5).
link(5,6).

...

link(300,320).
link(320,340).
link(340,360).
link(360,380).
link(380,400).

rgrid/2
benchmark :- rpath(_,_).

:- table rpath/2.

rpath(X,Y) :-
arc(X,Y).

rpath(X,Y) :-
arc(X,Z),
rpath(Z,Y).

arc(X,Y) :-
link(X,Y).

arc(X,Y) :-
link(Y,X).

% the 25x25 grid
link(1,2).
link(2,3).
link(3,4).
link(4,5).
link(5,6).

...

link(500,525).
link(525,550).
link(550,575).
link(575,600).
link(600,625).
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[79] R. Rocha. Um Sistema Baseado na Cópia de Ambientes para a Execução de

Prolog em Paralelo. MSc Thesis, Department of Informatics, University of

Minho, July 1996. In Portuguese.

[80] R. Rocha, F. Silva, and V. Santos Costa. On Applying Or-Parallelism to Tabled

Evaluations. In Proceedings of the First International Workshop on Tabling in

Logic Programming, pages 33–45, Leuven, Belgium, June 1997.

[81] R. Rocha, F. Silva, and V. Santos Costa. Or-Parallelism within Tabling.

In Proceedings of the First International Workshop on Practical Aspects of



REFERENCES 233

Declarative Languages, number 1551 in LNCS, pages 137–151, San Antonio,

Texas, USA, January 1999. Springer-Verlag.

[82] R. Rocha, F. Silva, and V. Santos Costa. YapOr: an Or-Parallel Prolog System

Based on Environment Copying. In Proceedings of the 9th Portuguese Conference

on Artificial Intelligence, number 1695 in LNAI, pages 178–192, Évora, Portugal,
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