
Achieving Scalability in Parallel Tabled Logic Programs

Ricardo Rocha, Fernando Silva
DCC-FC & LIACC

Universidade do Porto, Portugal�
ricroc,fds � @ncc.up.pt

Vı́tor Santos Costa �
COPPE Systems

Universidade do Rio de Janeiro, Brasil
vitor@cos.ufrj.br

Abstract

Tabling or memoing is a technique where one stores in-
termediate answers to a problem so that they can be reused
in further calls. Tabling is of interest to logic programming
because it addresses some of most significant weaknesses of
Prolog. Namely, it can guarantee termination for programs
with the bounded term-size property. Tabled programs ex-
hibit a more complex execution mechanism than traditional
Prolog’s left-to-right search with backtracking. The reason
is that Prolog programs are highly recursive and generate
multiple answers. This rather involved execution mecha-
nism requires a more complex implementation than tradi-
tional Prolog.

The declarative nature of tabled logic programming sug-
gests that it might be amenable to parallel execution. On
the other hand, the complexity of the tabling mechanism,
and the existence of a shared resource, the table, argues
that parallelism might be limited, and that performance for
real applications might never scale. In this work we prove
that parallel tabling is indeed scalable for real applications
by experimenting the OPTYap parallel tabled system on a
scalable shared-memory machine.

Keywords: Parallel Logic Programming, Tabling.

1. Introduction

Tabling or memoing [9] is a technique where one stores
intermediate answers to a problem so that they can be
reused in further calls. Memoing was originally intro-
duced in the context of Artificial Intelligence, but has since
been introduced to areas as diverse as computer architec-
ture and the functional languages. The last few years have
seen significant work in tabling from the logic program-
ming community. The motivation for this work is that
tabling addresses some of most significant weaknesses of

�
This work has been partially supported by Fundação para a Ciência e

Tecnologia, CLoP (CNPq) and PLAG (FAPERJ).

Prolog. Namely, whereas Prolog is quite vulnerable to in-
finite loops, tabling can guarantee termination for all pro-
grams with the bounded term-size property [2]. Moreover,
tabling can often significantly reduce the search space for
logic programs.

Most of the ground-breaking work in tabling for logic
programming has been developed by the XSB group, from
a novel resolution strategy, SLG-resolution [1], to a new ab-
stract machine, the SLG-WAM [17], which forms the basis
for XSB Prolog system [7]. XSB has been used with suc-
cess for applications such as natural language processing,
knowledge-base systems and data-cleaning, and program-
analysis. One application where XSB-based work has
achieved remarkable results is in model-checking, through
the XMC system [6].

Tabled programs exhibit a more complex execution
mechanism than traditional Prolog’s left-to-right search
with backtracking. The reason is that Prolog programs are
highly recursive and generate multiple answers. For tabling
to be effective, SLG-resolution therefore does not recom-
pute calls to variant tabled goals (consumers), even if the
original goal, or producer, has not been fully computed yet.
Hence, answers must be sent from producers to consumer
as we find them. Of course, sending a answer to a con-
sumer may in turn lead to a new answer for the producer!
This rather involved execution mechanism requires a more
complex implementation than traditional Prolog, whilst de-
manding declarative programming. The declarative na-
ture of tabled logic programming suggests that it might be
amenable to parallel execution, as it has been previously ob-
tained for Prolog. On the other hand, the complexity of the
tabling mechanism, and the existence of a shared resource,
the table, argues that parallelism might be limited, and that
performance for real applications might never scale.

In this work we present and study the performance of
what to the best of our knowledge is the first parallel tabling
logic programming system, OPTYap. OPTYap is based
on the ground-breaking work in XSB, adapted to the high-
performance Yap Prolog system [3]. Our key idea in ex-
ploiting parallelism is that quite a few interesting applica-

tions of tabling are by nature non-deterministic. We there-
fore argue that we should be able to run in parallel al-
ternatives from both tabled and non-tabled goals. By do-
ing so we can both extract more parallelism, and we can
reuse the technology presented for or-parallelism (ORP)
and tabling. In our case, we extended Yap to support Or-
Parallelism within Tabling (OPT) [14]. The OPT model
considers tabling as the base component of the system, that
is, each computational worker behaves as a full sequen-
tial tabling engine. The ORP component of the system is
triggered when a worker runs out of alternatives to exploit.
The OPT model gives the highest degree of orthogonality
between or-parallelism and tabling, thus simplifying initial
implementation issues.

Our major goal is to study the scalability of the OPTYap
system. We use several examples of the XMC model check-
ing application, plus well-known tabled benchmarks, on a
scalable shared-memory architecture, the SGI Origin2000.
Our results show that scalability is indeed possible: linear
speedups have been obtained on XMC up to 32 processors.

The remainder of the paper is organized as follows. First,
we briefly introduce the basic ideas behind tabling in the
context of logic programming. Next, we discuss the main
issues in the implementation of OPTYap. We then charac-
terize applications and present performance data. We termi-
nate by outlining some conclusions and suggesting further
work.

2. Basic Tabling Definitions

The basic idea behind tabling is straightforward: pro-
grams are evaluated by storing newly found answers of cur-
rent subgoals in a proper data space, called the table space.
The method then uses this table to verify for repeated calls
to subgoals. Whenever such a repeated call is found, the
subgoal’s answers are recalled from the table instead of be-
ing re-evaluated against the program clauses. In the follow-
ing, we illustrate the tabled evaluation through an example.

Consider the Prolog program of Figure 1 that defines a
small directed graph (represented by the arc/2 predicate)
with a relation of reachability (given by the path/2 pred-
icate), and the query goal ?- path(a,Z). Traditional
Prolog would enter an infinite loop because the first clause
of path/2 leads to a repeated call to path(a,Z). In con-
trast, if tabling is applied then termination is ensured. Fig-
ure 1 illustrates the evaluation sequence when using tabling.
At the top, the figure illustrates the program code and the
state of the table space at the end of the evaluation. Decla-
ration :- table path/2 in the program code indicates
that predicate path/2 should be tabled. The bottom block
shows the resulting forest of trees for the three tabled sub-
goal calls. The numbering of nodes denotes an evaluation
sequence (several are possible).

:- table path/2.

path(X,Z):- path(X,Y),path(Y,Z).
path(X,Z):- arc(X,Z).

arc(a,b).
arc(b,c).

 ?- path(a,Z).

0. path(a,Z)

1. path(a,Y), path(Y,Z) 2. arc(a,Z)

18. path(c,Z) 3. Z = b 4. fail

10. Z = c 19. fail

5. path(b,Z)

5. path(b,Z)

6. path(b,Y), path(Y,Z) 7. arc(b,Z)

8. fail11. path(c,Z) 9. Z = c

17. fail

11. path(c,Z)

12. path(c,Y), path(Y,Z) 13. arc(c,Z)

14. fail16. fail 15. fail

0. path(a,Z)

5. path(b,Z)

11. path(c,Z)

3. Z = b

9. Z = c

10. Z = c

subgoal answers

Figure 1. A finite tabled evaluation.

Whenever a tabled subgoal is first called, a new tree is
added to the forest of trees and a new entry is added to
the table space. We say this call corresponds to a pro-
ducer node. In this case, execution starts with a producer
node, node � (first call to path(a,Z)). The evaluation
thus begins by creating a new tree rooted by path(a,Z)
and by inserting a new entry in the table space for it.
Next, path(a,Z) is resolved against the first clause for
path/2, creating node � .

Tabling is useful when we find repeated or variant calls
to tabled subgoals. Node � is an example, where we found
a variant of path(a,Z). Other examples include node �
and node ��� . At such nodes, instead of using program
clause resolution to proceed executing, we start consuming
answers from the table space. We call these nodes consumer
nodes. It is interesting to notice that we may call consumer
nodes before finding all answers to a producer. Complete
execution thus requires complex coroutining between pro-
ducers and consumers. Prolog engines that support tabling
must therefore be able to switch back and forth to consumer
nodes, which requires sophisticated mechanisms such as

freezing [17] or copying [4].
At consumer node � we have no answers stored in the

table space. Therefore, the only move we can make is to
suspend node � , and switch back to node � . We then try
the second clause for path/2, and obtain a first answer
for path(a,Z). Notice that in order to do so we must call
arc(a,Z). The arc/2 procedure is not tabled, hence we
say node � is an interior node. Interior nodes correspond to
standard Prolog execution.

Node � generates a single answer, which is stored in the
table. At this point, we can resume the computation at node
� with the newly found answer, which in turn leads to a
first call to subgoal path(b,Z). The evaluation creates a
new tree rooted by path(b,Z), inserts a new entry in the
table space for it, and proceeds as for the latter case. The
process continues, giving rise to one more tree, for subgoal
path(c,Z), and to more answers, one for path(a,Z)
and the other for path(b,Z).

The example shows the major implementation mecha-
nisms we need to support tabling. In a nutshell:

� Producer nodes require two basic operations: first, we
must add new entries and new answers to the table,
second, we need to know when a producer is com-
pletely evaluated, so that we can close the table. The
first operation is called new answer, the second com-
pletion.

� Consumer nodes may be suspended, either by freezing
the whole stacks [17], or by copying them to separate
storage [4]. We must also be able to consume answers
from the table and have a mechanism to indicate which
answers a node has consumed so far. The operation
that does this is called answer resolution.

� Interior nodes should run just as in standard Prolog.

Arguably, two of the most complex operations in tabling
are designing the table itself, and implementing completion.
XSB uses tries [12] to implement the table space. Comple-
tion is also a difficult problem, as tabled execution may lead
to quite intricate dependencies between nodes. XSB uses
a completion stack to check at which points completion is
possible. Essentially, the completion stack stores the cur-
rent producer nodes and the dependencies between them.
The youngest producer node which does not depend from
older producers is called a leader node. Leader nodes de-
fine completion points.

3. Or-Parallelism within Tabling

Intuitively, a way to exploit parallelism in tabled pro-
grams is by running the producer goals in parallel. This so-
lution has been proposed as Table-Parallelism [5]. Our work

was motivated by the observation that exploiting parallelism
only at producer nodes may lose substantial parallelism: ev-
ery node should be a candidate for parallelism [14].

More specifically, in this work we use the OPT
model [14]. In this model, each processor (worker) runs
most of the time as in sequential tabling. On the other
hand, workers without alternatives can steal work from any
other worker. We say that in the OPT model parallelism lies
above tabling. We chose this model precisely because this
separation results in a more structured design, hence sim-
plifying the implementation process.

The question now is whether we can achieve an imple-
mentation of the OPT model, and whether that implemen-
tation is efficient. We implemented OPTYap in order to an-
swer this question. In OPTYap, or-parallelism (ORP) is im-
plemented through copying of stacks. In other words, work-
ers effectively communicate by swapping their whole exe-
cution environments. More precisely, we optimize copying
by using incremental copying, where workers only copy the
differences between their stacks. Tabling is implemented
by freezing the whole stacks when a consumer blocks. In
other words, we cannot recover space above a consumer un-
til completion.

OPT requires changes to both the initial designs for par-
allelism and tabling. First, several workers may be access-
ing the table simultaneously. Second, producers and con-
sumers may have been set by different workers, in separate
stacks. Thus, completion will be distributed between work-
ers. Moreover, we need to know which nodes have real al-
ternatives: there is little point in trying a consumer if the
corresponding producer has not produced further answers.
We next discuss the major issues in the implementation of
OPTYap (please refer to [13] for a detailed presentation of
the algorithms discussed here).

3.1. Producers and Consumers

The first major issue in our implementation is precisely
how to represent nodes. Whereas in XSB Prolog we had
a single stack, in OPTYap we have a separate stack per
worker. Our first step was therefore to design three shared
data structures:

� Nodes that are available for parallel execution are rep-
resented by shared frames, which store scheduling
data.

� Producer nodes are represented in the table space by
subgoal frames. Each subgoal frame corresponds to
a different subgoal call and delimits the trie structure
representing the answers for the subgoal.

� Consumer nodes are represented by dependency
frames. Dependency frames are linked in chronolog-

ical order and they provide concurrent access to the
answers found for the corresponding subgoal.

Figure 2 illustrates how producer and consumer nodes
interact with the table and dependency spaces. The depen-
dency frames are linked together to form a dependency list
of consumer nodes. Additionally, they store information to
efficiently check for completion points, and to efficiently
move across the dependency graph. This functionality re-
places the need for a completion stack.

Interior Node

Consumer Node

Producer Node

Consumer Node

WAM

choice

point

Local Stack

Table Space Dependency Space

Subgoal

Frame

Answer
Trie

Sructure

Dependency

Frame

WAM

choice

point

WAM

choice

point

WAM

choice

point

Dependency

Frame

Figure 2. The nodes and their relationship
with the table and dependency spaces.

3.2. Completion

Completion is maybe the most difficult problem in
tabling. The completion operation is always executed at
leader nodes. The operation proceeds by checking whether
all descendent consumer nodes have consumed all their an-
swers. Note that in sequential tabling systems, such as in
XSB, leader nodes are always producer nodes. This hap-
pens because producer nodes are always the youngest points
where we can detect that the current subcomputation does
not depend from branches above. The story changes in the
parallel setting, as Figure 3 shows.

In this example, worker
���

takes the leftmost alterna-
tive while worker

���
takes the rightmost. While exploiting

their alternatives,
���

calls a tabled subgoal a and
���

calls
a tabled subgoal b. As this is the first call to both subgoals,
a producer node is stored for each one. Next, each worker

W1

a

b

b

a

W2

Youngest common node?

Dummy producer node?

Producer Node

Consumer Node

Public Node

Figure 3. Which is the leader node?

calls the tabled subgoal firstly called by the other, and con-
sumer nodes are therefore allocated. At that point, we may
question at which node should we check for completion?
Intuitively, we would like to choose a node that is common
to both branches and the youngest common node seems the
better choice. But that node is an interior node!

We could avoid the problem by disallowing consumer
nodes for producer nodes on other worker trees. Unfortu-
nately, such a solution would severely restrict parallelism.
Our solution was therefore to allow completion at public
nodes, that is, at nodes that are shared between nodes.

Waiting for Completion The use of copying for ORP in-
troduces a further complication to completion. Consider
the case where worker

�
executes several consumer nodes,

and then backtracks to a public leader node shared by other
workers. Clearly, work is going on below the leader, and�

cannot complete. On the other hand,
�

has tried all
available alternatives so we would like for

�
to try other

work. We would like for
�

to move anywhere in the tree,
say to node � . According to the copying model we use for
ORP we should backtrack to the lowest node common to
� ’s branch, that is, we should reset our stacks to the values
of the common node. According to the freezing model that
we use for tabling, we cannot recover the current consumers
because they are frozen. We thus have a contradiction.

One solution would be to disallow movement in this
case. Unfortunately, we would again severely restrict paral-
lelism. Hence, our solution was to copy the consumer goals
to an extra space, and store a pointer to the copy from the
current leader’s shared frame. These suspended computa-
tions are considered again when the remaining workers do
completion.

Note that this is the only case where ORP and tabling
conflict, as this is the only case where we need to move in
the tree above the leader node. The reason is that we only
recover frozen space when we complete the leader node.

Completion We are now ready to present our parallel
completion algorithm. Knowing that we are at the current
leader node, the algorithm is actually quite straightforward:

1. Check if we are at a leader node.

2. Atomically check whether we are the last worker, store
the result in last worker.

3. Check if a consumer node below has unconsumed an-
swers, if so, move to this work even if it was copied
away;

4. If last worker is false, try to move above by copy-
ing away the current stacks.

5. We have completed.

The synchronization corresponds to checking whether we
are the last worker. If we are we can complete. Note that
we must take care to check whether we are last before we
check for uncompleted answers, as new answers or nodes
might have been generated meanwhile.

3.3. The Table

A further problem we had to address in OPTYap was
concurrent access to the table. In a nutshell, we can say that
there are two critical issues that determines the efficiency
of a locking scheme for the table. One is the lock duration,
that is, the amount of time a data structure is locked. The
other is the lock grain, that is, the amount of data structures
that are protected through a single lock request. It is the
balance between lock duration and lock grain that compro-
mises the efficiency of different table locking approaches.
For instance, if the lock scheme is short duration or fine
grained, then inserting many trie nodes in sequence, corre-
sponding to a long trie path, may result in a large number
of lock requests. On the other hand, if the lock scheme is
long duration or coarse grain, then going through a trie path
without extending or updating its trie structure, may unnec-
essarily lock data and prevent possible concurrent access by
others.

Unfortunately, it was impossible beforehand to know
which locking scheme would be optimal. Therefore,
OPTYap implements four alternative locking schemes to
deal with concurrent accesses to the table space data struc-
tures, the Table Lock at Entry Level scheme, TLEL, the Ta-
ble Lock at Node Level scheme, TLNL, the Table Lock at
Write Level scheme, TLWL, and the Table Lock at Write
Level - Allocate Before Check scheme, TLWL-ABC.

The TLEL scheme essentially allows a single writer per
subgoal trie structure and a single writer per answer trie
structure. The main drawback of TLEL is the contention

resulting from its lock duration scheme. The TLNL en-
ables a single writer per chain of sibling nodes that rep-
resent alternative paths from a common parent node. the
TLWL scheme is similar to TLNL in that it enables a single
writer per chain of sibling nodes that represent alternative
paths to a common parent node. However, in TLWL, the
common parent node is only locked when writing to the ta-
ble is likely. TLWL also avoids the TLNL memory usage
problem by replacing trie node lock fields with a global ar-
ray of lock entries. Last, the TLWL-ABC scheme scheme
anticipates the allocation and initialization of nodes that are
likely to be inserted in the table space to before locking.

3.4. Scheduling

A worker enters in scheduling mode when it runs out of
work and only returns to execution whenever a new piece
of unexploited work is assigned to it by the scheduler. The
scheduler must efficiently distribute the available work for
exploitation between workers. In OPTYap, we have the
extra constraint of keeping the correctness of sequential
tabling semantics.

The OPTYap scheduler engine is mainly based on the
YapOr’s [15] scheduler algorithm: when a worker runs out
of work it searches for the nearest unexploited alternative in
its branch. If there is no such alternative, it selects a busy
worker with excess of work load to share work with. If there
is no such a worker, the idle worker tries to move to a better
position in the search tree. However, some extensions were
introduced in order to preserve the correctness of tabling
semantics and to ensure that a worker never moves above a
leader until it has fully exploited all alternatives.

4. Performance Evaluation

The main question we wanted to address in our work was
whether parallel tabling was worthwhile. Initial results were
quite promising [16]. Our original results showed that the
overheads for OPTYap over Yap, a fast sequential Prolog
system [3], were manageable, in the order of 10% to 20%.
We also obtained good initial speedups, but unfortunately
only for limited configurations. Our goal in this work is to
study whether OPTYap is scalable, and for real applications.

To do so, we used as the main tabled benchmark the
XMC model checker [11]. This model checker verifies
properties written in the alternation-free fragment of the
modal � -calculus [8] for systems specified in XL, an ex-
tension of value-passing CCS [10]. We used standard well-
known benchmarks: the specification for sieve, leader
election over 5 processes, and i-protocol defined for
a correct version (fix) with a huge window size (w = 2)1.

1We are thankful to C.R. Ramakrishnan for providing us these bench-
marks.

We further used a set of standard tabling benchmarks. They
include samegen, which solves the same generation prob-
lem for a randomly generated 24x24x2 cylinder; lgrid,
that computes the transitive closure of a 25x25 grid using
left recursion; lgrid/2 which requires half the relations;
and rgrid/2, which uses right recursion.

To perform our experiments we used oscar, a Silicon
Graphics Cray Origin2000 parallel computer from the Ox-
ford Supercomputing Centre. Oscar consists of 96 MIPS
195 MHz R10000 processors each with 256 Mbytes of main
memory (24 Gbytes of total shared memory) and running
the IRIX 6.5.12 kernel. We had access to 32 nodes at most.

Table 1 presents interesting characteristics for each
tabled application. The first column shows the execution
time, in seconds, for the one worker case. In parentheses, it
shows the overhead over sequential execution, that is, with-
out support for parallelism. Support for parallel execution
introduces, on average, an overhead between 10% to 20%.
The last three columns show the number of producers, and
the numbers of unique and repeated answers. Notice that
5 of the benchmarks have a single producer. Most answers
generated by the sieve and leader benchmarks are re-
peated, indicating the system often reads but hardly writes
to the table. In contrast, lgrid and lgrid/2 also have a
single producer, but find many different answers, suggesting
they often write to the same producer node. Last, samegen
and rgrid/2 have several producers, indicating table ac-
tivity may be well divided.

One Worker # of New Answers
Bench Running Time Prod. Unique Repeated

sieve 268.13(1.14) 1 380 1386181
leader 85.56(1.12) 1 1728 574786
iproto 23.68(1.14) 1 134361 385423
samegen 26.00(1.11) 485 23152 65597
lgrid 4.28(1.21) 1 390625 1111775
lgrid/2 69.02(1.16) 1 160000 449520
rgrid/2 7.51(1.20) 626 781250 2223550

Table 1. Benchmarks characteristics.

Through experimentation, we observed that the locking
schemes, TLWL and TLWL-ABC, present the best speedup
ratios and they are the only schemes showing scalability.
Since none of these two schemes clearly outperform the
other, we assumed TLWL as the default. The observed
slowdown with higher number of workers for TLEL and
TLNL schemes is mainly due to their locking of the table
space even when writing is not likely. In particular, for
repeated answers they pay the cost of performing locking
operations without inserting any new trie node. For these
schemes the number of potential contention points is pro-
portional to the number of answers found during execution,
being they unique or redundant.

Table 2 presents the speedups for OPTYap with 4, 8, 12,
16, 24 and 32 workers. The table is divided in two main
blocks: the upper block groups the benchmarks that showed
potential for parallel execution, whilst the bottom block
groups the benchmarks that do not show any gains when
run in parallel. The speedups are relative to the one worker
case of Table 1 and they correspond to the best speedup ob-
tained in a set of 3 runs. Speedup measurements during
consecutive runs were rather stable.

Number of Workers
Bench 4 8 12 16 24 32

sieve 3.99 7.97 11.94 15.87 23.78 31.50
leader 3.98 7.92 11.84 15.78 23.57 31.18
iproto 3.05 5.08 7.70 9.01 8.81 7.21
samegen 3.72 7.27 10.68 13.91 19.77 24.17
lgrid/2 3.63 7.19 10.21 13.53 19.93 24.35
Average 3.67 7.09 10.47 13.62 19.17 23.68

lgrid 0.65 0.68 0.68 0.55 0.46 0.39
rgrid/2 0.94 1.15 0.92 0.72 0.77 0.65
Average 0.80 0.92 0.80 0.64 0.62 0.52

Table 2. OPTYap’s speedups.

The results show superb speedups for the XMC sieve and
the leader benchmarks up to 32 workers. These benchmarks
reach speedups of 31.5 and 31.18 with 32 workers, an im-
pressive result considering that XMC is a sophisticated ap-
plication and that it was ported as is! A more detailed anal-
ysis showed that these two benchmarks are quite similar,
with a single producer and a single consumer node. Tabling
is necessary because (i) it avoids a loop in left recursion,
and (ii) many answers were duplicated. The speedups stem
from the interior nodes, and it was our decision to exploit
both forms of parallelism which made them possible.

The iproto XMC benchmark shows a good result up to
16 workers and then it slows down for 24 and 32 work-
ers. The benchmark again has a single producer and a
single consumer. The difference is that the producer gen-
erates many more answers, resulting in contention on the
table. The samegen benchmark also exhibits impressive
performance. The benchmark exhibits a respectable number
of producers and of consumers, but low contention, hence
showing that the computations were well distributed. It is
interesting to note that the way we schedule consumer goals
changes: as we increase parallelism, more consumer nodes
start with unfinished producers. This demonstrates that the
completion algorithm is working quite well, and namely
that is not causing contention. Last, the lgrid/2 bench-
mark is also of the one producer, one consumer style, but
with much more contention on the table.

On the other hand, the bottom block shows almost no
speedups at all. Only for rgrid/2 with 8 workers we ob-
tain a slight positive speedup of 1.15. The worst case is for

lgrid with 32 workers, where we are about 2.5 times slower
than execution with a single worker. In this case, surpris-
ingly, we observed that for the whole set of benchmarks the
workers are busy for more than 95% of the execution time,
even for 32 workers. The actual slowdown is therefore not
caused because workers became idle and start searching for
work, as usually happens with parallel execution of non-
tabled programs. Here the problem seems more complex:
workers do have available work, but there is a lot of con-
tention to access that work.

Closer analysis suggested that there are two main rea-
sons that constrain speedups. One relates with massive ta-
ble access to insert and consume answers. As trie structures
are a compact data structure, the presence of massive ta-
ble access increases the number of contention points. The
other relates with the sequencing in the order that answers
are found. There are answers that can only be found when
other answers are also found, and the process of finding
such answers cannot be anticipated. This incurs in high
overheads related with suspensions and resumptions of sus-
pended leader branches.

5. Conclusions and Future Work

We have presented the main issues and the performance
of OPTYap. Our results show that OPTYap can indeed
achieve scalable performance for real applications. This is
possible because OPTYap exploits parallelism from both
tabled and non-tabled nodes. Our best results were ob-
tained on applications that have a limited number of tabled
nodes, but high ORP. On the other hand, we have also ob-
tained good speedups on applications with a large number
of tabled nodes.

Table access has been the main factor limiting paral-
lel speedups so far. OPTYap implements tables as tries,
thus obtaining good indexing and compression. On the
other hand, tries are designed to avoid redundancy. To
do so, they restrict concurrency, especially when updating.
We plan to study whether alternative designs for the table
data-structure can obtain scalable speedups even when fre-
quently updating tables.

Our applications do not show the completion algorithm
to be a major factor in performance so far. In the future, we
plan to study OPTYap over a large range of applications,
namely, natural language, database processing, and non-
monotonic reasoning. We expect that non-monotonic rea-
soning applications, for instance, will raise more complex
dependencies and further stress the completion algorithm.
We are also interested in the implementation of pruning in
the parallel environment.

References

[1] W. Chen, M. Kifer, and D. S. Warren. Hilog: A Foundation
for Higher-Order Logic Programming. The Journal of Logic
Programming, 15(3):187–230, 1993.

[2] W. Chen and D. S. Warren. Tabled Evaluation with Delaying
for General Logic Programs. Journal of the ACM, 43(1):20–
74, 1996.

[3] V. S. Costa. Optimising Bytecode Emulation for Pro-
log. In Proceedings of Principles and Practice of Declara-
tive Programming, number 1702 in LNCS, pages 261–267.
Springer-Verlag, 1999.

[4] B. Demoen and K. Sagonas. CAT: the Copying Approach
to Tabling. In Proceedings of Principles of Declarative Pro-
gramming, number 1490 in LNCS, pages 21–35. Springer-
Verlag, 1998.

[5] J. Freire, R. Hu, T. Swift, and D. S. Warren. Exploiting Par-
allelism in Tabled Evaluations. In Proceedings of the 7th
International Symposium on Programming Languages: Im-
plementations, Logics and Programs, number 982 in LNCS,
pages 115–132. Springer-Verlag, 1995.

[6] The XSB Group. LMC: The Logic-Based
Model Checking Project, 2002. Available from
http://www.cs.sunysb.edu/˜lmc.

[7] The XSB Group. The XSB Logic Pro-
gramming System, 2002. Available from
http://xsb.sourceforge.net.

[8] D. Kozen. Results on the propositional � -calculus. Theoret-
ical Computer Science, 27:333–354, 1983.

[9] D. Michie. Memo Functions and Machine Learning. Nature,
218:19–22, 1968.

[10] R. Milner. Communication and Concurrency. International
Series in Computer Science. Prentice Hall, 1989.

[11] C. R. Ramakrishnan, I. V. Ramakrishnan, S. Smolka,
Y. Dong, X. Du, A. Roychoudhury, and V. Venkatakrishnan.
XMC: A logic-programming-based verification toolset. In
Proceedings of Computer Aided Verification, 2000.

[12] I. V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift, and D. S.
Warren. Efficient Access Mechanisms for Tabled Logic Pro-
grams. Journal of Logic Programming, 38(1):31–54, 1999.

[13] R. Rocha. On Applying Or-Parallelism and Tabling to Logic
Programs. PhD thesis, Computer Science Department, Uni-
versity of Porto, 2001.

[14] R. Rocha, F. Silva, and V. S. Costa. Or-Parallelism within
Tabling. In Proceedings of the 1st International Work-
shop on Practical Aspects of Declarative Languages, num-
ber 1551 in LNCS, pages 137–151. Springer-Verlag, 1999.

[15] R. Rocha, F. Silva, and V. S. Costa. YapOr: an Or-Parallel
Prolog System Based on Environment Copying. In Proceed-
ings of the 9th Portuguese Conference on Artificial Intel-
ligence, number 1695 in LNAI, pages 178–192. Springer-
Verlag, 1999.

[16] R. Rocha, F. Silva, and V. S. Costa. On a Tabling Engine
that Can Exploit Or-Parallelism. In Proceedings of the 17th
International Conference on Logic Programming, number
2237 in LNCS, pages 43–58. Springer-Verlag, 2001.

[17] K. Sagonas and T. Swift. An Abstract Machine for Tabled
Execution of Fixed-Order Stratified Logic Programs. ACM
Transactions on Programming Languages and Systems,
20(3):586–634, 1998.

