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Abstract

Tabling is an implementation technique that improves the declarativeness and expressiveness
of Prolog by reusing answers to subgoals. During tabled execution, there are several points where
different operations can be applied. The decision on which operation to perform is determined
by the scheduling strategy. Whereas a strategy can achieve very good performance for certain
applications, for others it might add overheads and even lead to unacceptable inefficiency. The
ability of using multiple strategies within the same evaluation can be a means of achieving the
best possible performance. In this work, we present how the YapTab system was designed to
support the two most successful tabling scheduling strategies: batched and local scheduling; and
how it can be easily extended to support simultaneous mixed-strategy evaluation.

1 Introduction

The past years have seen wide effort at increasing Prolog’s declarativeness and expressiveness. One
such proposal that has been gaining in popularity is the use of tabling or tabulation or memoing.
Work on SLG resolution [2], as implemented in the XSB logic programming system [1], proved
the viability of tabling technology for application areas such as Natural Language Processing,
Knowledge Based Systems, Model Checking, and Program Analysis. Tabling based models are
able to reduce the search space, avoid looping, and have better termination properties than SLD
based models.

The basic idea behind tabling is straightforward: programs are evaluated by storing answers of
current subgoals in an appropriate data space, called the table space. The method then uses the
table to verify whether calls to subgoals are repeated. Whenever such a repeated call is found,
the subgoal’s answers are recalled from the table instead of being re-evaluated against the program
clauses.

During tabled execution, there are several points where we had to choose between continuing
forward execution, backtracking, consuming answers from the table, or completing subgoals. The
decision on which operation to perform is crucial to system performance and is determined by the
scheduling strategy. Different strategies may have a significant impact on performance, and may
lead to different order of solutions to the query goal. Arguably, the two most successful tabling
scheduling strategies are batched scheduling and local scheduling [6].

Batched scheduling favors forward execution first, backtracking next, and consuming answers
or completion last. It thus tries to delay the need to move around the search tree by batching the
return of answers. When new answers are found for a particular tabled subgoal, they are added to
the table space and the evaluation continues. On the other hand, local scheduling tries to complete
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subgoals sooner. When new answers are found, they are added to the table space and the evaluation
fails. Answers are only returned when all program clauses for the subgoal in hand were resolved.

Empirical work from Freire et al. [6, 7] showed that, regarding the requirements of an application,
the choice of the scheduling strategy can differently affect the memory usage, execution time and
disk access patterns. Freire argues [5] that there is no single best scheduling strategy, and whereas
a strategy can achieve very good performance for certain applications, for others it might add
overheads and even lead to unacceptable inefficiency. As a means of achieving the best possible
performance, Freire and Warren [8] proposed the ability of using multiple strategies within the
same evaluation, by supporting mixed-strategy evaluation at the predicate level. However, to the
best of our knowledge, no such implementation has yet been done.

In this work, we present how YapTab [10] was designed to support batched and local scheduling
independently and how it can be easily extended to support simultaneous mixed-strategy evaluation.
YapTab is a sequential tabling engine that extends Yap’s execution model [12] to support tabled
evaluation for definite programs. YapTab’s implementation is largely based on the ground-breaking
design of the XSB system [1], which implements the SLG-WAM [11].

The remainder of the paper is organized as follows. First, we briefly introduce the basic tabling
definitions and discuss the differences between batched and local scheduling. We then present the
support actually implemented in YapTab to deal with both scheduling strategies and discuss and
it can be extended to support mixed-strategy evaluation.

2 Basic Tabling Definitions

Tabling is about storing intermediate answers for subgoals so that they can be reused when a
repeated subgoal appears. Whenever a tabled subgoal S is first called, an entry for S is allocated
in the table space. This entry will collect all the answers found for S. Repeated calls to variants of
S are resolved by consuming the answers already stored in the table. Meanwhile, as new answers
are found, they are stored into the table and returned to all variant subgoals. Within this model,
the nodes in the search space are classified as either: generator nodes, corresponding to first calls
to tabled subgoals; consumer nodes, corresponding to variant calls to tabled subgoals; or interior

nodes, corresponding to non-tabled subgoals.
Tabling based evaluation has four main types of operations for definite programs: entering a

tabled subgoal; adding a new answer to a generator; exporting an answer from the table; and trying
to complete a subgoal. In more detail:

1. The tabled subgoal call operation is a call to a tabled subgoal. It checks if the subgoal is in
the table, and if not, adds a new entry for it and allocates a new generator node. Otherwise,
it allocates a consumer node and starts consuming the available answers.

2. The new answer operation returns a new answer to a generator. It verifies whether a newly
generated answer is already in the table, and if not, inserts it. Otherwise, it fails.

3. The answer resolution operation is executed every time the computation reaches a consumer
node. It verifies whether newly found answers are available for the particular consumer node
and, if any, consumes the next one. Answers are consumed in the same order they are inserted
in the table. Otherwise, it suspends the current computation, either by freezing the whole
stacks [11], or by copying the execution stacks to separate storage [4], and schedules a possible
resolution to continue the execution.
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4. The completion operation determines whether a tabled subgoal is completely evaluated. A sub-
goal is said to be completely evaluated when all its possible resolutions have been performed,
that is, when no more answers can be generated and the variant subgoals have consumed
all the available answers. It executes when we backtrack to a generator node and all of its
clauses have been tried. If the subgoal has been completely evaluated, the operation closes its
table entry and reclaims space. Otherwise, it resumes one of the consumers with unconsumed
answers.

Completion is needed in order to recover space and to support negation. We are most interested
on space recovery in this work. Arguably, in this case we could delay completion until the very
end of execution. Unfortunately, doing so would also mean that we could only recover space for
consumers (suspended subgoals) at the very end of the execution. Instead we shall try to achieve
incremental completion [3] to detect whether a generator node has been fully exploited, and if so
to recover space for all its consumers.

Completion is hard because a number of generators may be mutually dependent, thus forming
a Strongly Connected Component (or SCC ). Clearly, we can only complete SCCs together. We will
usually represent an SCC through the oldest generator. More precisely, the youngest generator
node which does not depend on older generators is called the leader node. A leader node is also the
oldest node for its SCC, and defines the current completion point.

3 Scheduling Strategies

At several points we had to choose between continuing forward execution, backtracking to interior
nodes, returning answers to consumer nodes, or performing completion. The actual sequence of
operations thus depends on the scheduling strategy. We next discuss in some more detail batched
and local scheduling.

3.1 Batched Scheduling

Batched scheduling takes its name because it tries to minimize the need to move around the search
tree by batching the return of answers. When new answers are found for a particular tabled subgoal,
they are added to the table space and the evaluation continues until it resolves all program clauses
for the subgoal in hand. Only then the newly found answers will be returned to consumer nodes.

Batched scheduling schedules the program clauses in a depth-first manner as does the WAM.
Calls to non-tabled subgoals allocate interior nodes. First calls to tabled subgoals allocate generator
nodes and variant calls allocate consumer nodes. However, if we call a variant tabled subgoal,
and the correspondent subgoal is already completed, we can avoid consumer node allocation and
instead perform what is called a completed table optimization [11]. This optimization allocates a
node, similar to an interior node, that will consume the set of found answers executing compiled
code directly from the table data structures associated with the completed subgoal [9].

When backtracking we may encounter three situations: (i) if backtracking to a generator or
interior node, we take the next available alternative; (ii) if backtracking to a consumer node, we
take the next unconsumed answer; (iii) if there are no available alternatives or no unconsumed
answers, we simply backtrack to the previous node on the current branch. Note however that, if
the node without alternatives is a leader generator node, then we must check for completion.

In order to perform completion, we must ensure that all answers have been returned to all
consumers in the SCC. The process of resuming a consumer node, consuming the available set of
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answers, suspending and then resuming another consumer node can be seen as an iterative process
which repeats until a fixpoint is reached. This fixpoint is reached when the SCC is completely
evaluated.

At engine level, the fixpoint check procedure is controlled by the leader of the SCC. The procedure
traverses the consumer nodes in the SCC in a bottom-up manner to determine whether the SCC has
been completely evaluated or whether further answers need to be consumed. Initially, it searches
for the bottom consumer node with unresolved answers, and as long as there are available answers,
it will consume them. After consuming the available set of answers, the consumer suspends and
fails into the next consumer with unresolved answers. This process repeats until it reaches the
last consumer node, in which case it fails into the leader node in order to allow the re-execution
of the fixpoint check procedure. When a fixpoint is reached, all subgoals in the SCC are marked
completed and the stack segments belonging to the completed subtree are released.

3.2 Local Scheduling

Local scheduling is an alternative tabling scheduling strategy that tries to complete subgoals sooner.
Evaluation is done one SCC at a time, and answers are returned outside of a SCC only after that
SCC is completely evaluated. When new answers are found, they are added to the table space and
the evaluation fails. Answers are only returned when all program clauses for the subgoal in hand
were resolved. We next present in Fig. 1 a small example that clarifies the differences between
batched and local evaluation.

1. b(X)
2. X = 1
3. X = 2

subgoal answers

4. complete

:- table b/1.                     b(1).
a(X,Y) :- b(X), b(Y).             b(2).

              ?- a(x,Y).              

0. a(x,Y)

1. b(X), b(Y)

8. Y = 2

1. b(X)

2. X = 1 5. X = 2

Table space

1. b(X)
2. X = 1
5. X = 2

subgoal answers

3. b(Y)

4. Y = 1

6. b(Y)

9. Y = 2 7. Y = 1

0. a(x,Y)

1. b(X), b(Y)

10. Y = 2

X = 1

1. b(X)

2. X = 1 3. X = 2

Table space

5. b(Y)

6. Y = 1

8. b(Y)

X = 2

7. Y = 2 9. Y = 1

10. complete
X = 1 X = 2

Batched
scheduling

Local
scheduling

Figure 1: Batched versus local scheduling
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At the top, the figure illustrates the program code and the query goal used in both evaluations.
Declaration :- table b/1 in the program code indicates that calls to predicate b/1 should be
tabled. The two sub-figures below depict the evaluation sequence for each scheduling strategy,
which includes the resulting table space and forest of trees. The numbering of nodes denotes the
evaluation sequence. The leftmost tree represents the original invocation of the query goal a(X,Y).
As we shall see, computing a(X,Y) requires computing b(X). For simplicity of presentation, the
computation tree for b(X) is represented independently at the right. We next describe in more
detail the two evaluations.

In both cases, the evaluation begins by resolving the query goal against the unique clause for
predicate a/2, thus calling the tabled subgoal b(X). As this is the first call to b(X), we create a
generator node (generators are depicted by white oval boxes) and insert a new entry in the table
space for it. The first clause for b(X) immediately succeeds, obtaining a first answer for b(X) that
is stored in the table (step 2). The interesting aspect that results from the figure, is how both
strategies handle the continuation of the evaluation of b(X).

For batched scheduling, the evaluation proceeds executing as in standard Prolog with the contin-
uation call b(Y), therefore creating consumer node 3 (consumers are depicted by gray oval boxes).
Node 3 is a variant call to b(X), so instead of resolving the call against the program clauses, we
consume answers from the table space. As we already have one answer stored in the table for this
call (X=1), we continue by consuming the available answer, which leads to a first solution for the
query goal (X=1;Y=1). When returning to node 3, we must suspend the consumer node because
there are no more answers for it in the table. We then backtrack to node 1 to try the second clause
for b(X), and a new answer is found (X=2). In the continuation, a new consumer is created (node 6)
and two new solutions are found for the query goal (steps 7 and 8). Node 6 is then suspended and
the computation backtracks again to node 1. At that point, we can check for completion. However,
the generator cannot complete because consumer 3 has unconsumed answers. The computation is
then resumed at node 3 and a new solution for the query goal is found (step 9). When returning
to the generator node 1, we can finally complete the tabled subgoal call b(X) (step 10).

On the other hand, for local scheduling, the evaluation fails back after the first answer was
found (step 2) in order to find the complete set of answers for b(X) and therefore complete before
returning answers to the calling environment. We thus backtrack to node 1, execute the second
clause for b(X), and find a second answer for it (step 3). Then, we fail again to node 1, and the
tabled subgoal call b(X) can be completed (step 4). The two found answers are consumed next by
executing compiled code directly from the table structure associated with the completed subgoal
b(X). The variant calls to b(X) at steps 5 and 8 are also resolved by executing compiled code from
the table.

In batched scheduling, when a new answer is found, variable bindings are automatically propa-
gated to the calling environment. For some situations, this behavior may result in creating complex
dependencies between consumers. On the other hand, the clear advantage of local scheduling shown
in the example does not always hold. Since local scheduling delays answers, it does not benefit
from variable propagation, and instead, when explicitly returning the delayed answers, it incurs
an extra overhead for copying them out of the table. Local scheduling does perform arbitrarily
better than batched scheduling for applications that benefit from answer subsumption, that is,
where we delete non-minimal answers every time a new answer is added to the table. On the other
hand, Freire et al. [6] showed that, on average, local scheduling is about 15% slower than batched
scheduling in the SLG-WAM. Similar results were also obtained for batched and local scheduling
in YapTab [10].
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4 Implementation

We next give a brief introduction to the implementation of YapTab. Throughout, we focus on the
support for the two tabling scheduling strategies.

The YapTab design is very close to the original SLG-WAM [11]: it introduces a new data area,
the table space; a new set of registers, the freeze registers; an extension of the standard trail, the
forward trail ; and four new operations: tabled subgoal call, new answer, answer resolution, and
completion. The substantial differences between the two designs reside in the data structures and
algorithms used to control the process of leader detection and scheduling of unconsumed answers.
The SLG-WAM considers that such control should be done at the level of the data structures
corresponding to first calls to tabled subgoals, and it does so by associating completion frames to
generator nodes. It uses a completion stack of generators to detect completion points. Essentially,
the completion stack stores information about the generator nodes and the dependencies between
them. Each time a new generator is introduced it becomes the current leader node. Each time a
new consumer is introduced one verifies if it is for an older generator node G. If so, G’s leader node
becomes the current leader node.

On the other hand, YapTab innovates by considering that the control of leader detection and
scheduling of unconsumed answers should be performed through the data structures corresponding
to variant calls to tabled subgoals, and it associates a new data structure, the dependency frame,
to consumer nodes. We believe that managing dependencies at the level of the consumer nodes
is a more intuitive approach that we can take advantage of. The new data structure allows us
to eliminate the need for a separate completion stack and to slightly improve the fixpoint check
procedure. In the SLG-WAM, each step of the fixpoint check procedure is done by traversing the
consumers in a SCC by groups, with each group corresponding to consumers for a common variant
subgoal. YapTab simplifies by considering the whole set of consumers within a SCC as a single
group, and it thus traverses the whole set in a single pass.

4.1 Table Space

The table space can be accessed in different ways: to look up if a subgoal is in the table, and if
not insert it; to verify whether a newly found answer is in the table, and if not insert it; to forward
answers to consumer nodes; and to mark subgoals as completed. Hence, a correct design of the
algorithms to access and manipulate the table is a critical issue to obtain an efficient implementa-
tion. Our implementation uses tries as the basis for tables, as proposed by Ramakrishnan et al. [9].
Tries provides complete discrimination for terms and permits lookup and possibly insertion to be
performed in a single pass through a term.

Figure 2 shows the general table structure for a tabled predicate. Table lookup starts from
the table entry data structure. Each table predicate has one such structure, which is allocated at
compilation time. A pointer to the table entry can thus be included in the compiled code. Calls to
the predicate will always access the table starting from this point.

The table entry points to a tree of trie nodes, the subgoal trie structure. More precisely, each
different call to the tabled predicate in hand corresponds to a unique path through the subgoal trie
structure. Such a path always starts from the table entry, follows a sequence of subgoal trie data
units, the subgoal trie nodes, and terminates at a leaf data structure, the subgoal frame.

Each subgoal frame stores information about the subgoal, namely an entry point to its answer

trie structure. Each unique path through the answer trie data units, the answer trie nodes, corre-
sponds to a different answer to the entry subgoal. All answer leave nodes are chained together in
insertion time order in a linked list, so that we can recover answers in the same order they were
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Figure 2: Using tries to organize the table space

inserted. The subgoal frame points at the first and last entry in this list. A consumer node thus
needs only to point at the leaf node for its last consumed answer, and consumes more answers just
by following the chain of leaves.

4.2 Tabled Nodes

In YapTab, applying batched or local scheduling to a tabled evaluation only depends on the way
generators are implemented. All the other tabling extensions are commonly used for both strategies
without any modifications. As we shall see, this makes YapTab highly suitable to support mixed-
strategy evaluation.

Remember that interior nodes are implemented as WAM choice points [13]: the CP TR, CP H,
CP B, CP CP, CP AP and CP ENV choice point fields are used to store at choice point creation, respec-
tively, the top of trail; top of global stack; failure continuation choice point; success continuation
program counter; choice point next alternative; and current environment. Generator and consumer
nodes are implemented as WAM choice points extended with some extra fields to control tabling
execution.

To implement consumer nodes we extended the WAM choice points with the dependency frame
data structure. Dependency frames store the last consumed answer for the correspondent consumer
node; and information to efficiently check for completion points, and to efficiently move across the
consumer nodes with unconsumed answers.

To prevent answers from being returned to the calling environment of a generator node, after a
new answer is found for a particular tabled subgoal, local scheduling fails and backtracks in order
to search for the complete set of answers. These answers are consumed later when all program
clauses for the subgoal in hand were resolved. Therefore, when backtracking to a generator node
without alternatives, we must also act like a consumer node to consume the set of found answers.
Thus, for local scheduling, generator choice points are also extended with dependency frames. For
batched scheduling we only need to access the subgoal frame where answers should be stored, so
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generators are implemented as WAM choice points extended with a pointer to the corresponding
subgoal frame, the CP SgFr field. Figure 3 illustrates how consumers and generators are differently
handled to support batched and local scheduling.

Batched scheduling

Answer
Trie

Structure

Subgoal
Frame

Table space

DepFr_previous

DepFr_sg_fr

DepFr_last_answer

DepFr_leader

DepFr_back_leader

DepFr_previous

DepFr_sg_fr

DepFr_last_answer

DepFr_leader

DepFr_back_leader

TOP_DF

DepFr_previous

DepFr_sg_fr

DepFr_last_answer

DepFr_leader

DepFr_back_leader

CP_SgFr

TOP_DF

Local scheduling

Generator
choice point

Consumer
choice point

Generator
choice point

Consumer
choice point

Figure 3: Consumers and generators with batched and local scheduling

Each dependency frame is a five field data structure. The DepFr previous is a pointer to the
previous dependency frame on stack and it allows to form a list of dependency frames on stack. A
global TOP DF variable points to the youngest dependency frame on stack. The DepFr sg fr and
the DepFr last answer are pointers respectively to the correspondent subgoal frame and to the
last consumed answer, and they are used to connect choice points with the table space in order to
search for and to pick up new answers. Moreover, for local scheduling, we use the DepFr sg fr field
of the dependency frame to access the correspondent subgoal frame. For batched scheduling, we use
the new CP SgFr choice point field. The DepFr leader and the DepFr back leader are pointers
respectively to the leader node at creation time and to the leader node where we perform the most
recent unsuccessful completion operation, and they are used to support the fixpoint check procedure.
The dependency frame DepFr leader field is initialized by the compute leader() procedure, whilst
the DepFr back leader field is initialized with a NULL value. Their use is detailed next.

4.3 Answer Resolution

The answer resolution operation should be executed every time the computation fails back to a
consumer. To achieve this, when a new consumer choice point is allocated, its CP AP field is made
to point to the answer resolution instruction. Figure 4 shows the pseudo-code for it.

Initially, the procedure checks the table space for unconsumed answers. If there are new answers,
it loads the next available answer and proceeds. Otherwise, it schedules for a backtracking node. If
this is the first time that backtracking from that consumer node takes place, then it is performed as
usual to the previous node. This is the case when the DepFr back leader field is NULL. Otherwise,
we know that the computation has been resumed from an older leader node L during an unsuccessful
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answer_resolution (consumer node CN) {
DF = dependency_frame_for(CN)
if (DepFr_last_answer(DF) != SgFr_last_answer(DepFr_sg_fr(DF)))

load_next_unconsumed_answer_and_proceed()
back_cp = DepFr_back_leader(DF)
if (back_cp == NULL)

backtrack()
df = DepFr_previous(DF)
while (consumer_for(df) is younger than back_cp) {

if (DepFr_last_answer(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
// move to previous consumer with unconsumed answers
DepFr_back_leader(df) = back_cp
move_to(consumer_for(df))

}
df = DepFr_previous(df)

}
// move to older leader node
move_to(back_cp)

}

Figure 4: Pseudo-code for answer resolution()

completion operation. Therefore, backtracking must be done to the next consumer node that has
unconsumed answers and that is younger than L. We do this by restoring bindings and stack
pointers. If no such consumer node can be found, backtracking must be done to node L.

The process of resuming a consumer node, consuming the available set of answers, suspending
and then resuming another consumer node can be seen as an iterative process which repeats until
a fixpoint is reached. This fixpoint is reached when the SCC is completely evaluated.

4.4 Leader Nodes

The completion operation takes place when we backtrack to a generator node that (i) has exhausted
all its alternatives and that (ii) is a leader node (remember that the youngest generator which does
not depend on older generators is called a leader node). We designed novel algorithms to quickly
determine whether a generator node is a leader node. The key idea in our algorithms is that
each dependency frame holds a pointer to the resulting leader node of the SCC that includes
the correspondent consumer node. Using the leader node pointer from the dependency frames, a
generator can quickly determine whether it is a leader node. More precisely, a generator L is a
leader node when either (a) L is the youngest tabled node, or (b) the youngest consumer says that
L is the leader.

Our algorithm thus requires computing leader node information whenever creating a new con-
sumer node C. We proceed as follows. First, we hypothesize that the leader node is C’s generator,
say G. Next, for all consumer nodes older than C and younger than G, we check whether they
depend on an older generator node. Consider that there is at least one such node and that the
oldest of these nodes is G ′. If so then G ′ is the leader node. Otherwise, our hypothesis was correct
and the leader node is indeed G. Leader node information is implemented as a pointer to the choice
point of the newly computed leader node. Figure 5 shows the procedure that computes the leader
node information for a new consumer.

The procedure traverses the dependency frames for the consumer nodes between the new con-
sumer and its generator in order to check for older dependencies. As an optimization it only searches
until it finds the first dependency frame holding an older reference (the DepFr leader field). The
nature of the procedure ensures that the remaining dependency frames cannot hold older references.

For local scheduling, when we store a new generator node G we also allocate a dependency
frame. As an optimization we can avoid calling compute leader() to initialize the DepFr leader
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compute_leader (consumer node CN) {
DF = dependency_frame_for(CN)
leader_cp = generator_for(CN)
df = TOP_DF
while (consumer_for(df) is younger than leader_cp ) {
if (leader_cp is equal or younger than DepFr_leader(df)) {

// found older dependency
leader_cp = DepFr_leader(df)
break

}
df = DepFr_previous(df)

}
DepFr_leader(DF) = leader_cp

}

Figure 5: Pseudo-code for compute leader()

field, because it will always compute G as the leader node.

4.5 Completion with Batched Scheduling

When a generator choice point tries the last program clause, its CP AP field is updated to the
completion instruction. Since then, every time we backtrack to the choice point the instruction
gets executed. Figure 6 shows the pseudo-code that implements completion for batched scheduling.

completion (generator node GN) {
if (GN is the current leader node) {
df = TOP_DF
while (consumer_for(df) is younger than GN)) {

if (DepFr_last_answer(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
// move to first consumer with unconsumed answers
DepFr_back_leader(df) = GN
move_to(consumer_for(df))

}
df = DepFr_previous(df)

}
perform_completion()

}
backtrack()

}

Figure 6: Pseudo-code for completion() with batched scheduling

Initially, the procedure finds out if the generator is the current leader node. If not, it simply
backtracks to the previous node. Being leader, it checks whether all younger consumer nodes have
consumed all their answers. To do so, it walks the chain of dependency frames looking for a frame
which has not yet consumed all the generated answers. If there is such a frame, the computation
should be resume to the corresponding consumer node. Otherwise, it can perform completion.
This includes (i) marking as complete all the subgoals in the SCC; (ii) deallocating all younger
dependency frames; and (iii) backtracking to the previous node to continue the execution.

4.6 Completion with Local Scheduling

To implement completion for local scheduling, we only need to slightly change the previous proce-
dure. Figure 7 shows the modified pseudo-code.
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completion (generator node GN) {
if (GN is the current leader node) {
df = TOP_DF
while (consumer_for(df) is younger than GN) {

if (DepFr_last_answer(df) != SgFr_last_answer(DepFr_sg_fr(df))) {
// move to first consumer with unconsumed answers
DepFr_back_leader(df) = GN
move_to(consumer_for(df))

}
df = DepFr_previous(df)

}
perform_completion()
completed_table_optimization() // new

}
CP_AP(GN) = answer_resolution // new
load_first_unconsumed_answer_and_proceed() // new

}

Figure 7: Pseudo-code for completion() with local scheduling

There is a major change to the completion algorithm for local scheduling. As newly found
answers cannot be immediately returned, we need to consume them at a later point. If we perform
completion successfully, we start consuming the set of answers that have been found by execut-
ing compiled code directly from the trie data structure associated with the completed subgoal.
Otherwise, we must act like a consumer node and start consuming answers.

5 Discussion

In result of its clear design based on the dependency frame data structure, YapTab already includes
all the machinery required to support batched and local scheduling simultaneously. Extending
YapTab to use multiple strategies at the predicate level is straightforward. Only two new features
have to be addressed: (i) support strategy-specific Prolog declarations like ’:- batched path/2.’
in order to allow the user to define the strategy to be used to resolve the subgoals of a given predicate;
(ii) at compile time generate appropriate tabling instructions, such as batched new answer or
local completion, accordingly to the declared strategy for the predicate. With these two simple
compiler extensions we are able to use all the algorithms described and already implemented for
batched and for local scheduling without any further modification.

The proposed data structures and algorithms can also be easily extended to support different
strategies per predicate, that is, allow the user to define the strategy to be used to resolve each
subgoal. Moreover, they can be extended to support dynamic switching from batched to local
scheduling, while a generator is still producing new answers. However, further work is still needed
to study if there is a use for such flexibility.

In this work we concentrated on the issues concerning the design and implementation of both
strategies. Currently, we have already batched and local scheduling functioning separately in
YapTab and we are now working on adjusting the system for mixed-strategy evaluation. After
having the system implementing mixed-strategy evaluation we plan to use a set of common tabled
benchmarks to investigate and study the impact of combining both strategies for tabled evaluation.
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