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Abstract. This work aims at improving the scalability of memory usage
in Inductive Logic Programming systems. In this context, we propose two
efficient data structures: the Trie, used to represent lists and clauses;
and the RL-Tree, a novel data structure used to represent the clauses
coverage. We evaluate their performance in the April system using well
known datasets. Initial results show a substantial reduction in memory
usage without incurring extra execution time overheads. Our proposal is
applicable in any ILP system.
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1 Introduction

Inductive Logic Programming (ILP) [1,2] is an established and healthy subfield
of Machine Learning. ILP has been successfully applied to problems in several
application domains [3]. Nevertheless, it is recognized that efficiency and scal-
ability is a major obstacle to the increase usage of ILP systems in complex
applications with large hypotheses spaces.

Research in improving the efficiency of ILP systems has been focused in
reducing their sequential execution time, either by reducing the number of hy-
potheses generated (see, e.g., [4,5]), or by efficiently testing candidate hypotheses
(see, e.g., [6,7,8,9]). Another line of research, recommended by Page [10] and pur-
sued by several researchers [11,12,13,14,15], is the parallelization of ILP systems.
Another important issue is memory usage as a result of very large and complex
search spaces. In this work, we develop techniques to considerably reduce the
memory requirements of ILP systems without incurring in further execution time
overheads. We propose and empirically evaluate two data structures that may
be applied to any ILP system.

* (©2003 Springer-Verlag
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During execution, an ILP system generates many candidate hypotheses which
have many similarities among them. Usually, these similarities tend to corre-
spond to common prefixes among the hypotheses. Blockeel et al. [6] defined a
new query-pack technique to exploit this pattern and improve the execution time
of ILP systems. We propose the use of the Trie data structure (also known as
prefix-trees) that inherently and efficiently exploits the similarities among the
hypotheses to reduce memory usage. We also noted that systems like Aleph [16],
Indlog [9], and April [17] use a considerable quantity of memory to represent
clauses’ coverage lists®, i.e., lists of examples covered by an hypothesis. To deal
with this issue, we propose a novel data structure, called RL-Tree, specially
designed to efficiently store and manipulate coverage lists. An interesting obser-
vation is that the proposed data structures address the efficient representation
of different types of data. Therefore, these data structures can be used in con-
junction to maximize the gains in reducing memory usage by ILP systems.

The remainder of the paper is organized as follows. Sections 2 and 3 introduce
the Trie and RL-Tree data structures and describe their implementation. In
Section 4 we present an empirical evaluation of the impact in memory usage and
execution time of the proposed data structures. Finally, in Section 5, we draw
some conclusions and propose further work.

2 Tries

Tries were first proposed by Fredkin [18], the name coming from the central let-
ters of the word retrieval. Tries were originally invented to index dictionaries, and
has since been generalized to index terms (see [19] for use of tries in tabled logic
programs and [20,21,22,23] for automated theorem proving and term rewriting).

The basic idea behind the trie data structure is to partition a set T' of terms
based upon their structure so that looking up and inserting these terms will
be efficiently done. The trie data structure provides complete discrimination for
terms and permits lookup and possibly insertion to be performed in a single pass
through a term.

2.1 Applicability

An essential property of the trie structure is that common prefixes are repre-
sented only once. The efficiency and memory consumption of a particular trie
data structure largely depends on the percentage of terms in T' that have com-
mon prefixes. For ILP systems, this is an interesting property that we can take
advantage of.

In ILP, the hypotheses space is structured as a lattice and hypotheses close
to one another in the lattice have a lot of common structure. More specifically,
hypotheses in the search space have common prefixes (literals). Not only the

3 Camacho has observed that Indlog uses around 40% of total memory consumption
to represent coverage lists.
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hypotheses are similar, but information associated to them is also similar (e.g.
the list of variables in an hypothesis is similar to other lists of variables of nearby
hypotheses). This clearly matches the common prefix property of tries. We thus
argue that tries form a promising alternative for storing hypotheses and some
associated information.

2.2 Description

A trie is a tree structure where each different path through the trie data units,
the trie nodes, corresponds to a term in 7T'. At the entry point we have the root
node. Internal nodes represent symbols in terms and leaf nodes specify the end
of terms. Each root-to-leaf path represents a term described by the symbols
labeling the nodes traversed. Two terms with common prefixes will branch off
from each other at the first distinguishing symbol.

When inserting a new term, we start traversing the trie from the root node.
Fach child node specifies a symbol to be inspected in the input term when
reaching that position. A transition is taken if the symbol in the input term
at a given position matches a symbol on a child node. Otherwise, a new child
node representing the current symbol is added and an outgoing transition from
the current node is made to point to the new child node. On reaching the last
symbol in the input term, we reach a leaf node in the trie. Figure 1 presents an
example for a trie with three terms.

Trie
Structure

)

Set of Terns

f(X a).
g(X b, V).

f(Y, 1).

ﬁ

Fig. 1. Using tries to represent terms

An important point when using tries to represent terms is the treatment of
variables. We follow the formalism proposed by Bachmair et al. [20], where each
variable in a term is represented as a distinct constant. Formally, this corresponds
to a function, numbervar, from the set of variables in a term t to the sequence
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of constants < VARg, VAR, ..., VARy >, such that numbervar,(X) < numbervar;(Y)
if X is encountered before Y in the left-to-right traversal of t. For example,
in the term g(X,b,Y), numbervar(X) and numbervar(Y) are respectively VARq
and VAR;. On the other hand, in terms £(X,a) and £(Y, 1), numbervar(X) and
numbervar(Y) are both VARe. This is why the child node VARq of £/2 from Fig. 1
is common to both terms.

2.3 Implementation

The trie data structure was implemented in C as a shared library. Since the ILP
system we used for testing is implemented in Prolog we developed an interface
to tries as an external Prolog module.

Tries are implemented by representing each trie node by a data structure
with four fields each. The first field stores the symbol for the node. The second
and third fields store pointers respectively to the first child node and to the
parent node. The forth field stores a pointer to the sibling node, in such a way
that the outgoing transitions from a node are traced using its first child pointer
and by following the list of sibling pointers of this child. Figure 2 illustrates the
resulting implementation for the trie presented in Fig. 1.

e R
Trie

. root
| fT'p| enentation node n--

-, EEREEN
t
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VAR{

Fig. 2. The implementation of the trie in Fig. 1

At the entry point we have the root node. A root node is allocated when we
call a open_trie(—R) predicate®. This predicate initializes a new trie structure
and returns in R a reference to the root node of the new trie. As it is possible to
have more than a trie structure simultaneously, when storing new terms we use
R to specify the trie where the new terms should be inserted.

4 We will use the — symbol to denote output arguments and the + symbol to denote
input arguments.
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New terms are stored using a put_trie_entry(+R, +T, —L) predicate. R is the
root node of the trie to be used and T is the term to be inserted. The predicate
returns in L the reference to the leaf node of the inserted term. For example, to
obtain the structure in Fig. 2, the following code can be used:

open_trie(R).
put_trie_entry(R,f(X,a),L1).
put_trie_entry(R,g(X,b,Y),L2).
put_trie_entry(R,f(Y,1),L3).

Inserting a term requires in the worst case allocating as many nodes as neces-
sary to represent its complete path. On the other hand, inserting repeated terms
requires traversing the trie structure until reaching the corresponding leaf node,
without allocating any new node.

Searching through a chain of sibling nodes that represent alternative paths
is done sequentially. When the chain becomes larger then a threshold value (8
in our implementation), we dynamically index the nodes through a hash table
to provide direct node access and therefore optimize the search. Further hash
collisions are reduced by dynamically expanding the hash tables.

Recall that variables are standardized using the numbervar function. This
standardization is performed while a term is being inserted in a trie. First oc-
currences of variables are replaced by binding the dereferenced variable cell to
the constant returned by numbervar. Using this single binding, repeated occur-
rences of the same variable are automatically handled, without the need to check
whether the variable has been previously encountered. The bindings are undone
as soon as the insertion of the term is complete. In this manner, standardization
is performed in a single pass through the input term.

To load a term from a trie, we have defined a get_trie_entry(+L,—T) pred-
icate. This predicate returns in T the term whose leaf node is referred by L. For
example, to obtain in T the term referred by L1, from the previous code, we
should call get_trie_entry(L1,T). Starting from the leaf node L1 and following
the parent pointers, the symbols in the path from the leaf to the root node are
pushed into Prolog’s term stack and the term is constructed. On reaching the
root node, T is unified with the constructed term (f(VARg,a)).

When loading a term, the trie nodes for the term in hand are traversed
in bottom-up order. The trie structure is not traversed in a top-down manner
because the insertion and retrieval of terms is an asynchronous process, new
trie nodes may be inserted at anytime and anywhere in the trie structure. This
induces complex dependencies which limits the efficiency of alternative top-down
loading schemes.

Space for a trie can be recovered by invoking a close_trie(+R) predicate,
where R refers the root node of a particular trie, or by invoking a close_all_tries()
predicate where all open tries are closed and their space recovered. Current im-
plementation also defines auxiliary predicates to obtain memory consumption
statistics and to print tries to the standard output. As a final note we should
mention that besides the atoms, integers, variables and compound terms (func-
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tors) presented in the examples, our implementation also supports terms with
floats.

3 RL-Trees

The RL-Tree (RangeList-Tree) data structure is an adaptation of a generic data
structure called quadtree [24] that has been used in areas like image processing,
computer graphics, and geographic information systems. Quadtree is a term
used to represent a class of hierarchical data structures whose common property
is that they are based on the principle of recursive decomposition of space.
Quadtrees based data structures are differentiated by the type of data that they
represent, the principle guiding the decomposition process, and the number of
times the space is decomposed.

The RL-Tree is designed to store integer intervals (e.g. [1 — 3] U [10 — 200]).
The goals in the design of the RL-Tree data structure are: efficient data storage;
fast insertion and removal; and fast retrieval.

3.1 Applicability

To reduce the time spent on computing clauses coverage some ILP systems, such
as Aleph [16], FORTE [25], Indlog [9], and April [17], maintain lists of examples
covered (coverage lists) for each hypothesis that is generated during execution.

Coverage lists are used in these systems as follows. An hypothesis S is gener-
ated by applying a refinement operator to another hypothesis G. Let Cover(G) =
{all e € E such that B A G F e}, where G is a clause, B the background knowl-
edge, and E is the set of positive (ET) or negative examples (E ). Since G is
more general than S then Cover(S) C Cover(G). Taking this into account, when
testing the coverage of S it is only necessary to consider examples of Cover(G),
thus reducing the coverage computation time. Cussens [26] extended this scheme
by proposing a kind of coverage caching. The coverage lists are permanently
stored and reused whenever necessary, thus reducing the need to compute the
coverage of a particular clause only once. Coverage lists reduce the effort in cov-
erage computation at the cost of significantly increasing memory consumption.
Efficient data structures should be used to represent coverage lists to minimize
memory consumption.

The data structure used to maintain coverage lists in systems like Indlog and
Aleph are Prolog lists of integers. For each clause two lists are kept: a list of
positive examples covered and a list of negative examples covered. A number is
used to represent an example in the list. The positive examples are numbered
from 1 to | ET |, and the negative examples from 1 to | E~ |. The systems
mentioned reduce the size of the coverage lists by transforming a list of numbers
into a list of intervals. For instance, consider the coverage list [1,2,5,6,7,8,9, 10]
represented as a list of numbers. This list represented as a list of intervals cor-
responds to [1 — 2,5 — 10]. Using a list of intervals to represent coverage lists is
an improvement to lists of numbers but it still presents some problems. First,
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the efficiency of performing basic operations on the interval list is linear on the
number of intervals and can be improved. Secondly, the representation of lists in
Prolog is not very efficient regarding memory usage. The RL-Tree data structure
was designed to tackle the problems just mentioned: memory usage and execu-
tion time. The RL-Trees can be used to efficiently represent and manipulate
coverages lists, and may be implemented in any ILP system (it is not restricted
to ILP systems implemented in Prolog).

3.2 Description

In the design and implementation of the RL-Tree data structure we took the
following characteristics into consideration: intervals are disjuncts; intervals are
defined by adding or removing numbers; and, the domain (an integer interval)
is known at creation time.

RL-Trees are trees with two distinct types of nodes: list and range nodes. A
list node represents a fixed interval, of size LI, that is implementation dependent.
A range node corresponds to an interval that is subdivided in B subintervals.
Each subinterval in a range node can be completely contained (represented in
Black) or partially contained in an interval (represented in Gray), or not be
within an interval (represented in White).

The basic idea behind RL-Trees is to represent disjunct set of intervals in
a domain by recursively partition the domain interval into equal subintervals.
The number of subintervals B generated in each partition is implementation
dependent. The number of partitions performed depend on B, the size of the
domain, and the size of list node interval LI. Since we are using RL-Trees to
represent coverage lists, the domain is [1, N E] where NE is the number of positive
or negative examples. The RL-Tree whose domain corresponds to the integer
interval [1, N] is denoted as RL-Tree(N).

A RL-Tree(N) has the following properties: LN = ceil(N/LI) is the max-
imum number of list nodes in the tree; H = ceil(logg(LN)) is the maximum
height of the tree; all list nodes are at depth H; root node interval range is
RI = BY « LI; all range node interval bounds (except the root node) are in-
ferred from its parent node; every range node is colored with black, white, and
gray; only the root node can be completely black or white.

Consider the RL-Tree with domain [1,65], also denoted as RL-Tree(65). The
figures 3, 4, 5, and 6 show some intervals represented in a RL-Tree(65). In these
examples the LT and B parameters were set to 16 and 4 respectively. Figure 3
shows the representation of the interval [1]. Each group of four squares represents
arange node. Each square in a range node corresponds to a subinterval. A sixteen
square group represents a list node. Each square in a list node corresponds to
an integer. The top of the tree contains a range node that is associated to the
domain ([1,65]). Using the properties of RL-Trees described earlier one knows
that the maximum height of the RL-Tree(65) is 2 and the root node range is
[1 — 256]. Each subinterval (square) of the root interval represent an interval of
64 integers. The first square (counting from the left) with range [1 —64] contains
the interval [1], so it is marked with Gray. The range node corresponding to the
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(RL- Tr ee(65)

[17-32][ 33- 48] [ 49- 64]
[1-16]
2 |3 |4|5 |6 |7 |8 |9 |1o|11|12|13|14|15|1e

Fig. 3. Interval [1] represented in a RL-Tree(65)

range [1 —64] has all squares painted in White except the first one corresponding
to range [1 — 16], because it contains the interval [1]. The list node only has one
square marked, the square corresponding to the integer 1. Figure 4 shows the
representation of a more complex list of intervals. Note that the number of nodes
is the same as in Fig. 3 even though it represents a more complex list of intervals.
Figure 5 and 6 show, respectively, a complete and empty interval representation.

(RL- Tr ee(65)

[1-16][ 17- 32] [ 33- 48]

[ 49- 64]

Fig. 4. Intervals [1, 32]U[53, 54]U[56, 58]U[60, 62]U[64, 65] represented in a RL-Tree(65)

3.3 Implementation

Like the Trie data structure, the RL-Tree data structure was implemented in C
as a shared library. Since the ILP system used in the experiments is implemented
in Prolog we developed an interface to RL-Tree as an external Prolog module.
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RL- Tr ee( 65)

Fig. 5. Interval [1,65] represented in a RL-Tree(65)
RL- Tr ee( 65)

Fig. 6. Interval & represented in a RL-Tree(65)

Like other quadtree data structures [27], a RL-Tree can be implemented with
or without pointers. We chose to do a pointerless implementation (using an array)
to reduce memory consumption in pointers. The LI and B parameters were set
to 16 and 4 respectively. The range node is implemented using 16 bits. Since we
divide the intervals by a factor of 4, each range node may have 4 subintervals.
Each subinterval has a color associated (White, Black, or Gray) that is coded
using 2 bits (thus a total of 8 bits are used for the 4 subintervals). The other
8 bits are used to store the number of subnodes of a node. This information is
used to improve efficiency by reducing the need to traverse the tree to determine
the position, in the array, of a given node. The list nodes use 16 bits. Each bit
represents a number (that in turn represents an example). The number interval
represented by a list node is inferred from its parent range node.

The RL-Tree(N) implemented operations and their complexity (regarding
the number of subintervals considered) are:

— Create a RL-Tree: O(1);

— Delete a RL-Tree: O(1);

— Check if a number is in a RL-Tree: O(H).
— Add a number to a RL-Tree: O(H)

— Remove a number from a RL-Tree: O(H)

Current implementation of RL-Trees uses, in the worst case, (48+1 —1)/3
nodes. The worst case occurs when the tree requires all LN list nodes. Since
each node in the tree requires 2 bytes, a RL-Tree(N) will require, in the worst
case, approximately ((47+! —1)/3) %2+ C bytes, where C is the memory needed
to store tree header information. In our implementation C' = 20.

4 Experiments and Results

The goal of the experiments was to evaluate the impact of the proposed data
structures in the execution time and memory usage when dealing with real ap-
plication problems.
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We adapted the April ILP system [17] so that it could be executed with sup-
port for Tries and/or RL-Trees and applied the system to well known datasets.
For each dataset the system was executed four times with the following configu-
ration: no Tries and no RL-Trees, Tries and RL-Trees, Tries only, and RL-Trees
only.

4.1 Experimental Settings

The experiments were made on an AMD Athlon(tm) MP 2000+ dual-processor
PC with 2 GB of memory, running the Linux RedHat (kernel 2.4.20) operating
system. We used version 0.5 of the April system and version 4.3.23 of the YAP
Prolog [28].

The datasets used were downloaded from the Machine Learning repositories
of the Universities of Oxford® and York®. The susi dataset was downloaded from
the Science University of Tokyo’. Table 1 characterizes the datasets in terms of
number of positive and negative examples as well as background knowledge size.
Furthermore, it shows the April settings used with each dataset. The parameter
nodes specifies an upper bound on the number of hypotheses generated during
the search for an acceptable hypothesis. The i-depth corresponds to the max-
imum depth of a literal with respect to the head literal of the hypothesis [29].
Sample defines the number of examples used to induce a clause. Language pa-
rameter specifies the maximum number of occurrences of a predicate symbol in
an hypothesis [9]. MinPos specifies the minimum number of positive examples
that an hypothesis must cover in order to be accepted. Finally, the parameter
noise defines the maximum number of negative examples that an hypothesis
may cover in order to be accepted.

Note that in order to speedup the experiments we limited the search space
of some datasets by setting the parameter nodes to 1000. This reduces the total
memory usage needed to process the dataset. However, since we are comparing
the memory consumption when using a data structure with when not using it,
the estimate we obtain will still give a good idea of the impact of the data
structure in reducing memory usage.

4.2 Tries

When activated in April, the Trie data structure stores information about each
hypothesis generated. More specifically, it stores the hypothesis (Prolog clause),
a list of variables in the clause, a list of unbound variables in the clause’s head,
and a list of free variables in the clause.

Table 2 shows the total number of hypotheses generated (| H |), the execution
time, the memory usage and the impact in performance for execution time and
memory usage (given as a ratio between the values obtained when using and

5 http://www.comlab.ox.ac.uk/oucl/groups/machlearn/
5 http://wuw.cs.york.ac.uk/mlg/index.html
" http://www.ia.noda.sut.ac.jp/ilp
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Dataset Characterization April’s Settings
| ET || B~ || | B| | nodes |i[sample[language|minpos|noise
amine uptake | 343 | 343 32 1000 (2| 20 - 50 20
carcinogenesis | 162 | 136 | 44 1000 (3| 10 3 20 10
choline 663 | 663 | 31 1000 |2]| all - 50 20
krki 342 | 658 1 |no limit|1| all 2 1 0
mesh 2272 | 223 | 29 1000 (3] 20 3 10 5
multiplication | 9 15 3 |no limit|2| all 2 1 0
pyrimidines | 881 | 881 | 244 | 1000 |2| 10 - 75 20
proteins 848 | 764 | 45 1000 |2| 10 - 100 100
train 5 5 10 |no limit|2| all 1 1 0
train128 120 5 10 |no limit|2| all 1 1 0
susi 252 | 8979 | 18 |[no limit( 2 1 200 800

Table 1. Settings used in the experiments

when not using Tries). The memory values presented correspond only to the
memory used to store information about the hypotheses.

The use of tries resulted in an average reduction of 20% in memory consump-
tion with the datasets considered. The train dataset was the only exception,
showing a degradation of 25% in memory consumption. This may indicate that
the Tries data structure is not adequate for datasets with very small hypoth-
esis spaces. However, memory usage is not a concern for problems with small
hypotheses space.

Time (sec.) |Memory (bytes) on/off(%)
off on off on Time |Memory
amine uptake| 66933 | 357.10| 362.40| 739316 | 553412 f 101.48 74.85
carcinogenesis|142714 | 506.19 | 517.76 | 869888 | 680212 | 102.28 78.19
choline 803366 |13451.21 |13573.24 | 869736 | 598344 | 100.90 68.79
krki 2579 1.11 1.30 | 62436 50000 § 117.11 80.08
mesh 283552 | 3241.62 | 3267.85 | 607584 | 506112 § 100.80 83.29
multiplication 478 8.91 8.98 | 164304 | 105348 § 100.78 64.11
pyrimidines |372320 | 5581.35| 5602.96 | 914520 | 580852 § 100.38 63.51
proteins 433271 | 794.03| 832.83| 759440 | 595928 | 104.88 78.46

Dataset | H |

train 37 0.02 0.02 9260 11612 § 100.00 125.39
train128 44 0.05 0.06 | 22224 21392 § 120.00 96.25
susi 3344 | 7995.01 | 7982.82 (3655916 | 1934640 99.84 52.91

Table 2. The impact of Tries

With Tries, the execution time slightly increased but the overhead is not
significant. The krki and train128 datasets are exceptions, nevertheless unim-
portant as the difference in execution time is just a fraction of a second.
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In summary, the results suggest that the Tries data structure reduce memory
consumption with a minimal execution time overhead.

4.3 RL-Trees

Table 3 presents the impact of using RL-Trees in the April system. It shows the
total number of hypotheses generated (| H |), the execution time, the memory
usage, and the impact in performance for execution time and memory usage
(given as a ratio between using RL-Trees and Prolog range lists). The memory
values presented correspond only to the memory used to store coverage lists.

Time (sec.) Memory (Kb) rl/list(%)
list rl list rl Time |Memory
amine uptake| 66933 | 365.74| 357.23 | 5142784 |2181658 97.67 42.42
carcinogenesis|142714 | 508.41 | 505.61 | 2972668 |1560180 99.44 52.48
choline  [803366 |13778.29 |13617.49 |17644032 |7520744 | 98.83 42.62
krki 2579 1.22 1.13| 150264 | 43822 92.62 29.16
mesh 283552 | 3394.1| 3258.21 | 8286944 |4880746 95.99 58.89
multiplication 478 8.89 8.91 35808 | 35412 § 100.22 98.89
pyrimidines |372320 | 5606.97 | 5460.22 (24291608 |6568286 97.38 27.03
proteins (433271 | 805.97 | 791.92| 693868 | 146344 98.25 21.09

Dataset | H |

train 37 0.02 0.02 3676 3692 § 100.00 100.43
train128 44 0.05 0.05 10228 7284 § 100.00 71.21
susi 3343 | 8079.51 | 7927.03 | 3021356 | 263098 98.11 8.70

Table 3. The impact of RL-Trees

The use of RL-Trees resulted in an average of 50% reduction in memory
usage (when comparing to Prolog range lists). The only exception to the overall
reduction was registered by the train dataset. This is probably a consequence of
the reduced number of examples of the dataset. The results indicate that more
significant reductions in memory usage were obtained with datasets with greater
number of examples.

In general, a considerable reduction in memory usage is achieved with no
execution time overhead when using RL-Trees. In fact, an average reduction of
2% in the execution time was obtained.

4.4 Tries and RL-Trees

To evaluate the impact of using Tries and RL-Trees simultaneously we ran April
configured to use both data structures. The Table 4 shows the total number of
hypotheses generated (] H |), the execution time, the memory usage, and the
impact in performance for execution time and memory usage (given as a ratio
between using the proposed data structures and not using them). The memory
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values presented correspond only to the memory used to store coverage lists and
information about the hypotheses (stored in the Tries).

Time (sec.) |Memory (bytes) on/off(%)
off on off on Time |Memory
amine uptake| 66933 | 365.74| 362.83 | 5882100 |2728174 ] 99.20 46.38
carcinogenesis|142714 | 508.41 | 516.51 | 3842556 |2223164 § 101.59 57.85
choline 803366 (13778.29 (13651.51 |18513768 |8090504 § 99.07 43.69
krki 2579 1.22 1.21| 212700 | 93978 § 100.82 44.18
mesh 283552 | 3394.1 | 3284.33 | 8894528 |5376906 § 96.76 60.45
multiplication| 478 8.91 8.98 | 200112 | 140908 | 100.78 70.41
pyrimidines |372320 | 5606.97 | 5501.65 (25206128 |7132978 | 98.12 28.29
proteins  |433271| 805.97| 834.76 | 1453308 | 740904 § 103.57 50.98

Dataset | H |

train 37 0.02 0.02 12936 | 15264 § 100.00 117.99
train128 44 0.05 0.05 32452 | 28564 | 100.00 88.01
susi 3343 | 8079.51 | 7928.98 | 6677264 |2197050 98.13 32.90

Table 4. The impact of Tries and RL-Trees

The use of both data structures resulted in significant reductions in memory
usage. The results indicate that the impact of the data structures tend to be
greater in the applications with more examples and with larger search spaces.
The train was the only dataset that consumed more memory when using Tries
and RL-Trees. This occurred because the dataset has a very small hypothesis
space and the number of examples is also small. Nevertheless, the values obtained
are useful because they give an idea of the initial overhead of the proposed data
structures. The time overhead experienced is minimum in the smaller datasets
(train, train128, multiplication), and non existent in the larger datasets.

Table 5 resumes the impact of the data structures proposed in the April
system total memory usage. The table shows the April (total) memory usage
when using Tries and RL-Trees simultaneously and the reduction ratio when
comparing to using Prolog range lists and not using Tries.

The reduction values obtained are good, especially if we take into account
that the biggest reductions (42.15 and 26.57) were obtained in the datasets with
greatest memory usage. From the reduction values presented we conclude that
with small datasets the data structures do not produce major gains, but they also
do not introduce significant overheads. On the other hand, the data structures
proposed should be used when processing larger datasets since they can reduce
memory consumption significantly.

5 Conclusions

This paper contributes to the effort of improving ILP systems efficiency by
proposing two data structures: RL-Trees and Tries. The use of these data struc-
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Memory | Reduction

Dataset (MB) (%)
amine uptake 11.02 21.64
carcinogenesis 13.14 9.04
choline 31.28 26.57
krki 2.21 4.02
mesh 24.86 23.83
multiplication 4.18 0.44
pyrimidines 26.53 42.15
proteins 26.22 2.01
train 1.68 -1.50
train128 1.75 -1.11
susi 20 16.66

Table 5. April memory consumption using Tries and RL-Trees

tures reduce memory consumption without an execution time overhead. The
RL-Tree is a novel data structure designed to efficiently store and manipulate
coverage lists. The Trie data structure inherently and efficiently exploit the sim-
ilarities among the candidate hypotheses generated by ILP systems to reduce
memory usage. The data structures were integrated in the April system, an ILP
system implemented in Prolog.

We have empirically evaluated the use of RL-Trees and Tries, both individ-
ually and in conjunction, on well known datasets. The RL-Tree data structure
alone reduced memory usage in coverage lists to half, in average, and slightly
reduced the execution time. The Tries data structure alone reduced memory
consumption with a minor overhead (approximately 1%) in the execution time.
The use of both data structures simultaneously resulted in a overall reduction
in memory usage without degrading the execution time. In some datasets, the
April system registered very substantial memory reductions (between 20 and
42%) when using Tries and RL-Trees simultaneously. The results indicate that
the benefits from using these data structures tend to increase for datasets with
larger search spaces and greater number of examples. Since the data structures
are system independent, we believe that they can be also applied to other ILP
systems with positive impact.

In the future we plan to implement operations like intersection and subtrac-
tion of two RL-Trees in order to compute the coverage intersection of two clauses
more efficiently. We also will identify more items collected during the search that
may take advantage of the Tries data structure.
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