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Abstract

Logic programming and relational databases have common foundations based on First Order
Logic. By coupling both paradigms, we can combine the efficiency and safety of databases
in dealing with large amounts of data with the higher expressive power of logic and, thus,
build more powerful systems. Although much work has been developed and described in the
area of logic programming and relational databases, there are very few references which regard
implementation alternatives in coupling a logic system with a relational database. In this work,
we study and evaluate the impact of using different approaches for coupling the Yap Prolog
system with the MySQL relational database system. Our results show that indexing and view
level transformations are fundamental to achieve scalability.

1 Introduction

Logic programming is a programming paradigm based on Horn Clause Logic, a subset of First
Order Logic. The axiomatic knowledge of a logic program can be represented extensionally in the
form of facts, and intensionally in the form of rules. Program execution tries to prove theorems
(goals) and if a proof succeeds the variable bindings are returned as a solution. Relational databases
can also be considered as a simpler First Order Logic model [4]. The axiomatic knowledge is now
only represented extensionally in the form of database relations and the theorems to be proved
correspond to (SQL) queries.

There are two main differences between a logic programming system and a relational database
model. A first difference is the evaluation mechanism which is employed in logic systems and in
relational database systems. Logic systems, such as Prolog, are based on a tuple-oriented evaluation
that uses unification to bind variables with atomic values that correspond to an attribute of a single
tuple. On the other hand, the relational model uses a set-oriented evaluation mechanism. The result
of applying a relational algebra operation, such as projection, selection or join, to a relation is also
a relation, which is a set of tuples. A second difference, is the expressive power of each language.
While every relational operator can be represented as a logic clause, the inverse does not happen.
Recursive rules cannot be expressed as a sequence of relational operators. Thus the expressive
power of Horn clause systems is greater than that of the relational database model.

Combining logic with relational databases would provide the efficiency and safety of database
systems in dealing with large amounts of data with the higher expressive power of logic systems.
This combination aims at representing the extensional knowledge through database relations and
the intensional knowledge through logic rules. A major problem when combining both is the efficient
evaluation of queries written in logic involving database relations.



In the specific field of deductive databases [7], a restriction of logic programming, Datalog [14],
is commonly used as the query language. Datalog encapsulates the set-at-a-time evaluation strategy
and imposes a first normal form compliance to the attributes of predicates associated to database
relations. Datalog queries are evaluated by combining top-down goal orientation with bottom-up re-
dundant computation checking. Redundant computations are resolved using two main approaches:
the magic-sets rewriting technique [1] and tabling [6], a technique of memoisation successfully im-
plemented in XSB Prolog [11], the most well known tabling Prolog system. A tabling engine largely
based on the original ideas of XSB is also available in the Yap Prolog system [9)].

The existing prototypes which combine logic with relational databases, such as LDL [13],
CORAL [8], Aditi [15] and XSB [12], can be classified in two main categories: integrated sys-
tems and coupled systems. Coupled systems, such as CORAL and XSB, have the advantage of
keeping the deductive engine and the relational database management system separate. The inter-
face between the two systems in done by translating the query, or parts of the query, written in
logic to the language understood by the database system, SQL.

Although much work has been done in these systems, there are no references in the literature
that we know that actually discuss and compare the several implementation strategies that may be
used in the coupling of a logic system and a relational database. Our goal in this work is to study
and evaluate the impact of using some of these strategies. We consider three main approaches: (i)
asserting database tuples as Prolog facts; (ii) accessing database tuples through backtracking; and
(iii) transferring unification to the database engine. We present a detailed step-by-step description
of each approach and for that we use Yap Prolog [2] and MySQL [16] as the base systems for
implementing them. Despite the fact that we have chosen these particular systems, we believe that
our implementation and results will be of interest for others that intend to couple similar systems.

The remainder of the paper is organized as follows. First, we briefly introduce the set of
development tools used. Next, we describe the three alternative approaches. We then evaluate the
performance of each approach and finalize by outlining some concluding remarks.

2 Development Tools

To implement the interface between the Yap Prolog and the MySQL systems we took advantage
of their client libraries that allow us to write external modules in the C language. To optimize
the translation of queries between both systems we used the Prolog to SQL compiler written by
Draxler [3]. We next briefly describe the main assets of each tool.

2.1 The C Language interface to Yap Prolog

As many other Prolog systems, Yap provides an interface for writing predicates in other program-
ming languages, such as C, as external modules. We will use a small example to briefly explain
how it works. Assume that the user requires a predicate my_random(N) to unify N with a random
number. To do so, first a my_rand.c module with the following C code should be create.

#include "Yap/YapInterface.h" // header file for the Yap interface to C
void init_predicates() {

YAP_UserCPredicate("my_random",c_my_random,1) ;

int c_my_random(void) {
YAP_Term number = YAP_MkIntTerm(rand());
return(YAP_Unify (YAP_ARG1,number));



Next the module should be compiled to a shared object and then loaded under Yap by calling the
load foreign files() routine. After that, each call to my random(N) will unify N with a random
number. Despite its small size, the example shows the key aspects about the Yap interface. The
include statement makes available the macros for interfacing with Yap. The init predicates()
procedure tells Yap the predicates being defined in the module. The function ¢ my random() is the
implementation of the desired predicate. Note that it has no arguments even though the predicate
being defined has one. In fact the arguments of a Prolog predicate written in C are accessed through
the macros YAP_ARG1, ..., YAP_ARG16 or with YAP_A(N) where N is the argument number. In our
example, the function uses just one local variable of type YAP Term, the type used for holding Yap
terms, where the integer returned by the standard Unix function rand() is stored as an integer
term (the conversion is done by YAP MkIntTerm()). Then it calls YAP Unify (), to attempt the
unification with YAP_ARG1, and returns an integer denoting success or failure.

Table 1 lists the complete set of the available primitives to test, construct and destruct Yap
terms. Terms, from the C point of view, can be classified as: uninstantiated variables, instantiated
variables, integers, floating-point numbers (floats), atoms (symbolic constants), pairs, and compound
terms. Integers, floats and atoms are respectively denoted by the primitives YAP Int, YAP f1t and
YAP_Atom. A pair is a term which consists of a tuple of two terms, designated as the head and the
tail of the term. Pairs are most often used to build lists. A compound term consists of a functor
and a sequence of terms with length equal to the arity of the functor. A functor, denoted in C by
YAP_Functor, consists of an atom (functor name) and an integer (functor arity).

| Term | Test | Construct | Destruct |
uninst var | YAP_IsVarTerm()
inst var YAP _NonVarTerm() YAP MicVarTerm() (none)
integer YAP IsIntTerm() YAP _MkIntTerm( YAP IntOfTerm()
float YAP IsFloatTerm() | YAP_MkFloatTerm() YAP FloatOfTerm()
] YAP _MkAtomTerm() YAP_AtomOfTerm()
atom YAP IsAtomTerm() YAP LookupAtom() YAP_AtomName()
. s YAP _MkNewPairTerm() | YAP_HeadOfTerm()
Patt YAP IsPairTerm() | '\ b\ gy Term() YAP_TailOfTerm()
YAP _MkNewApplTerm() | YAP_ArgOfTerm()
compound YAP_IsApplTerm() YAP _MkApplTerm() YAP FunctorOfTerm()
term YAP_MkFunctor() YAP_NameOfFunctor()
) YAP_ArityOfFunctor()

Table 1: Primitives for manipulating Yap terms

Building interesting modules cannot be accomplished without two extra functionalities. One is
to call the Prolog interpreter from C. To do so, first we must construct a Prolog goal G, and then
it is sufficient to perform YapCallProlog(G). The result will be FALSE, if the goal failed, or TRUE
otherwise. When this is the case, the variables in G will store the values they have been unified
with. The other interesting functionality is how we can define predicates. Yap distinguishes two
kinds of predicates: deterministic predicates, which either fail or succeed but are not backtrackable,
like the one in our module; and backtrackable predicates, which can succeed more than once.

Deterministic predicates are implemented as C functions with no arguments which should re-
turn zero if the predicate fails and a non-zero value otherwise. They are declared with a call to
YAP_UserCPredicate (), where the first argument is the name of the predicate, the second the
name of the C function implementing the predicate, and the third is the arity of the predicate.

For backtrackable predicates we need two C functions: one to be executed when the predicate
is first called, and other to be executed on backtracking to provide (possibly) other solutions.



They are similarly declared, but using instead YAP UserBackCPredicate(). When returning the
last solution, we should use YAP_cut fail() to denote failure, and YAP cut_succeed() to denote
success. The reason for using YAP cut fail() and YAP _cut_succeed() instead of just returning
a zero or non-zero value, is that otherwise, when backtracking, our function would be indefinitely
called. For a more exhaustive description on how to interface C with Yap please refer to [2].

2.2 The MySQL C API

MySQL provides a client library written in C for writing client programs that access MySQL
databases. This library defines an application programming interface that includes the following
facilities: connection management procedures, to establish and terminate sessions with a server;
procedures to construct, send and process the results of queries; and error handling procedures.

Usually, the main purpose of a client program that uses the MySQL C API is to establish a
connection to a database server in order to process a set of queries. Thus, in general, the code
skeleton of these programs is as follows.

#include <mysql.h> // header file for the MySQL C API

int main() {

MYSQL *conn; // connection handler

MYSQL_RES *res_set; // result set

MYSQL_ROW row; // row contents

char *query; // SQL query string

conn = mysql_init(...); // obtain and initialize a connection handler

mysql_real_connect(conn, ...); // establish a connection to a server

while(...) {
query = ...; // construct the query
mysql_query(conn, query); // issue the query for execution
res_set = mysql_store_result(conn); // generate the result set
while ((row = mysql_fetch_row(res_set)) != NULL) { // fetch a row

// do something with row contents

}
mysql_free_result(res_set); // deallocate result set
mysql_close(conn) ; // terminate the connection

Initially, we allocate a connection handler (represented by the MYSQL data type) and try to
establish a connection to the desired server. This is done by calling the mysql real connect()
procedure which includes, among others, arguments to define the name of the host to connect to, the
database to use, and the name and password of the user trying to connect. Next, we communicate
(possibly many times) with the server to process a single query or several queries. At last, we
terminate the connection.

Processing a query involves the following steps: (i) construct the query; (ii) send the query to
the server for execution; and (iii) handle the result set (represented by the MYSQL RES data type).
The result set includes the data values for the rows and also meta-data about the rows, such as the
column names and types, the data values lengths, the number of rows and columns, etc.

Handling the result set also involves three steps: (i) generate the result set; (ii) fetch each
row (represented by the MYSQL_ROW data type) of the result set to do something with it; and (iii)
deallocate the result set. Note that each row is implemented as a pointer to an array of strings
representing the values for each column in the row. Thus, when treating a value as, for instance, a
numeric type, we need to convert the string beforehand.

In our example, we used the mysql store result () procedure to generate the result set. An
alternative is to use the mysql_use result() procedure. They are similar in that both take a
connection handler and return a result set, but their implementations are quite different. The



mysql_store_result() fetches the rows from the server and stores them in the client. Subsequent
calls to mysql_fetch_row() simply return a row from the data structure that already holds the
result set. On the other hand, mysql_use result() does not fetch any rows itself. It simply
initiates a row-by-row communication that must be completed by calling mysql fetch row() for
each row. mysql_store_result() has higher memory and processing requirements because the
entire result set is maintained in the client. mysql use result() only requires space to a single
row at a time, and this can be faster because no complex data structures need to be setting up or
handled. On the other hand, mysql use result () places a great burden on the server, which must
hold rows of the result until the client fetches them all. For a complete description on these topics
and how to take fully advantage of the MySQL C API please refer to [16].

2.3 Prolog to SQL Compiler

The interface between Prolog programs and database management systems is normally done via the
SQL language. A particular Prolog predicate is assigned to a given relation in a database and its
facts are made available through the tuples returned by a SQL query. Normally, it is also possible
to write Prolog predicates which define views over one or more relations. With some restrictions,
these views can also be translated to a single SQL query.

This Prolog to SQL translation as been well describe in the literature [5]. An important im-
plementation of a generic Prolog to SQL compiler is the work done by Draxler [3]. It includes the
translation of conjunctions, disjunctions and negation of goals, and also of higher-order constructs,
such as grouping and sorting. Another important aspect of this work is the notion of database
set predicates, which allows embedding the set-oriented evaluation of database systems into the
standard tuple-oriented evaluation of Prolog, using Prolog itself to navigate this set structure.

Draxler’s Prolog to SQL compiler defines a translate/3 predicate, where the database access
language is defined to be a restricted sublanguage of Prolog equivalent in expressive power to rela-
tional calculus (no recursion is allowed). The first argument to translate/3 defines the projection
term of the database access request, while the second argument defines the database goal which
expresses the query. The third argument is used to return the correspondent SQL select expression.
Because this compiler is entirely written in Prolog it is easily integrated in the pre-processing phase
of Prolog compilers.

3 Coupling Approaches

In this section, we present and discuss our three alternative approaches for coupling logic pro-
gramming with relational databases. To develop running examples of each approach, we used Yap
and MySQL as the base systems, and we took advantage of their client libraries to implement the
interface level. Figure 1 shows how we structured the interface between both systems.

The yap2mysql.c is our main module. It defines the low-level communication predicates and it
uses the Yap and MySQL interfaces to the C language to implement them. The sqlcompiler.pl
is Draxler’s Prolog to SQL compiler. It will be necessary to implement the third approach. The
yap2mysql.pl is the Prolog module that the user should interact with. It defines the high-level
predicates to be used and abstracts the existence of the other modules. After consulting the
yap2mysql.pl module, the user starts by calling the db_open/5 predicate to define a connection
to a database server. Then, it calls db_import/3 to map database relations into Prolog predicates.
We also allow, on the third approach, the definition of database views based on these predicates
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Figure 1: Interface layout

by the use of db_view/3. Next, it uses the mapped predicates to process query goals and, at last,
it calls db_close/1 to terminate the session with the database.

In order to allow the user to define multiple connections we use the db_open/5 and db _close/1
predicates to abstract the low-level predicates db_connect/5 and db_disconnect/1 implemented
in the yap2mysql.c module.
db_open(Host ,User,Passwd,Database,ConnName) :-

db_connect (Host,User,Passwd,Database,ConnHandler) ,
set_value (ConnName,ConnHandler) .

db_close(ConnName) :-
get_value (ConnName, ConnHandler) ,
db_disconnect (ConnHandler) .

As we will see, with this module structure, we only need to change the way we define the
db_import/3 predicate to implement each approach. In what follows we will use a MySQL relation,
edge_r, with two attributes, source and dest, where each tuple represents an edge of a directed
graph. The Prolog predicate associated with this relation will be referred as edge/2.

3.1 Asserting Database Tuples as Prolog Facts

A first approach for mapping database relations into Prolog predicates is to assert the complete
set of tuples in a relation as Prolog facts. To do so, we only need to connect to the database once
and fetch the complete set of tuples. After that, we can simply use the asserted facts as usual.
This approach minimizes the number of database communications and can benefit from the Prolog
indexing mechanism to optimize certain subgoal calls. On the other hand, it has higher memory
requirements because it duplicates the entire set of tuples in the database as Prolog facts. Moreover,
real time modifications to the database done by others are not visible to the Prolog system. Even
Prolog modifications to the set of asserted tuples can be difficult to synchronize with the database.
To implement this approach we use the following db_import/3 definition.
db_import (RelationName,PredName,ConnName) : -

get_value(ConnName,ConnHandler) ,
db_assert (ConnHandler ,RelationName,PredName) .

The c_db_assert () procedure implements the db_assert/3 predicate. First, it constructs a
'SELECT * FROM <RelationName>’ query in order to fetch the complete set of tuples. Then, for
each row, it calls the Prolog interpreter to assert it as a Prolog fact. To do so it constructs
Prolog terms of the form ’assert(f pred(t_args[0],...,targs[arity-1]))’, where f pred is
the predicate name for the asserted facts and t_args[] are the data values for each row.



int c_db_assert(void) {
// auxiliary variables
YAP _Functor f_pred, f_assert;
YAP_Term t_pred, *t_args, t_assert;
MYSQL *conn = (MYSQL *) YAP_IntOfTerm(YAP_ARG1);
sprintf (query,"SELECT * FROM %s",YAP_AtomName (YAP_AtomOfTerm(YAP_ARG2)));
mysql_query(conn, query);
res_set = mysql_store_result(conn);
arity = mysql_num_fields(res_set); // get the number of column fields
f_pred = YAP_MkFunctor (YAP_ AtomOfTerm(YAP ARG3), arity);
f_assert = YAP_MkFunctor (YAP_LookupAtom("assert"), 1);
while ((row = mysql_fetch_row(res_set)) != NULL) {
for (i = 0; i < arity; i++) { // test each column data type to ...
-.; t_args[i]l = YAP_Mk...(row[il); ...; // ... construct the appropriate term
}

t_pred = YAP_MkApplTerm(f_pred, arity, t_args);

t_assert = YAP_MkApplTerm(f_assert, 1, &t_pred);

YAP_CallProlog(t_assert); // assert the row as a Prolog fact
}

mysql_free_result(res_set);
return TRUE;

3.2 Accessing Database Tuples Through Backtracking

The next approach takes advantage of the Prolog backtracking mechanism to access the database
tuples. For that, when mapping a database relation into a Prolog predicate it uses the Yap interface
functionality that allows defining backtrackable predicates, in such a way that every time the
computation backtracks to such predicates, the tuples in the database are fetched one-at-a-time.

With this approach, we concentrate all the data in a single repository. This simplifies its
manipulation and allows us to see real time modifications done by others. Moreover, this also
minimizes memory requirements. Note however that if we use mysql store result() to generate
the result set, we will duplicate the entire set of tuples on the client side. On the other hand, for non
generic calls (calls with not all arguments unbound) we may have to pay the cost of unnecessarily
fetch all the tuples from the database. Prolog unification will select the matching tuples.

To implement this approach we changed the db_import/3 definition. It still receives the same
arguments, but now it dynamically constructs and asserts the clause for the predicate being mapped.
Consider, for example, that we call db_import (edge r,edge,my_conn). For this case the following
clause will be constructed.
edge(A,B) :-

get_value(my_conn,ConnHandler) ,

db_query(ConnHandler, ’SELECT * FROM edge_r’,ResultSet),
db_row(ResultSet, [A,B]).

To fully implement the process, we need to define the predicates db_query/3 and db_row/2 in
the yap2mysql.c module. The predicate db_query/3 simply generates the result set for the given
query (SELECT * FROM edge_r’ in the example). Predicate db_row/2 is a backtrackable predicate
that fetches one row-at-a-time and tries to unify the predicate arguments ([A,B] in the example)
with the data values in the row. Note that the unification process may fail. For example, if we call
edge (A, 1), this turns B ground when passed to the c_db_row() procedure.

int c_db_query(void) {

MYSQL *conn = (MYSQL *) YAP_IntOfTerm(YAP_ARG1);

char *query = YAP_AtomName (YAP_AtomOfTerm(YAP_ARG2)) ;
mysql_query(conn, query);

res_set = mysql_store_result(conn);
return(YAP_Unify(YAP_ARG3, YAP_MkIntTerm((int) res_set)));



int c_db_row(void) {

MYSQL_RES *res_set = (MYSQL_RES *) YAP_IntOfTerm(YAP_ARG1);
if ((row = mysql_fetch_row(res_set)) != NULL) {
YAP_Term head, list = YAP_ARG2;
for (i = 0; i < arity; i++) {
head = YAP_HeadOfTerm(list);
list = YAP_TailOfTerm(list);
if (!YAP_Unify(head, YAP_Mk...(row[i]))) return FALSE;

return TRUE;

mysql_free_result(res_set);
YAP_cut_fail();
}

3.3 Transferring Unification to the Database Engine

The last approach uses the translate/3 predicate from Draxler’s compiler to transfer the Prolog
unification process to MySQL. Instead of using Prolog unification to select the matching tuples for a
non generic call, we dynamically construct specific SQL queries to match the call. By doing this, we
discard beforehand the tuples that will not succeed when performing unification. To implement this
last approach we need to extend the db_import/3 definition to include the translate/3 predicate.
If we consider the previous example, the following clauses will now be asserted.
edge(A,B) :-

get_value(my_conn,ConnHandler),

translate(proj_term(A,B),edge(A,B),QueryString),

db_query(ConnHandler,QueryString,ResultSet),
db_row(ResultSet, [A,B]).

relation(edge_r,edge,2).
attribute(1l,edge_r,source,integer) .
attribute(2,edge_r,dest,integer).

When we call edge(A,1), the translate/3 predicate uses the relation/3 and attribute/4
facts to construct a specific query to match the call: 'SELECT source, 1 FROM edge r WHERE
dest=1;".

Assume now that we define a direct_cycle/2 predicate that calls twice the edge/2 predicate:

direct_cycle(A,B) :- edge(A,B), edge(B,A).

For the first goal, translate/3 generates a query 'SELECT * FROM edge _r’, that will access all
tuples sequentially. For the second goal, it gets the bindings of the first goal and generates a query
of the form 'SELECT 800, 531 FROM edge r WHERE source=800 AND dest=531". These queries
return 1 or O tuples, and are efficiently executed thanks to the MySQL index associated to the
primary key of relation edge r. However, this approach has a substantial overhead of generating,
running and storing a SQL query for each tuple of the first goal. To avoid this we can also benefit
from the translate/3 predicate and transfer the joining process to the MySQL engine. To do so,
we can create a view using db_view((edge(A,B) ,edge(B,A)) ,direct cycle(A,B) ,my_conn) and
the following clause will be constructed.
direct_cycle(A,B) :-

get_value(my_conn,ConnHandler),

translate(proj_term(A,B), (edge(A,B),edge(B,A)),SqlQuery),

db_query (ConnHandler,SqlQuery,ResultSet),
db_row(ResultSet, [A,B]).

If later we call direct_cycle(A,B), only a single query will be generated: ’SELECT A.source,
A.dest FROM edge r A, edger B WHERE B.source=A.dest AND B.dest=A.source’.



These two approaches of executing conjunctions of database predicates are usually referred in the
literature as relation level (one query for each predicate as in the first direct _cycle/2 definition)
and view level (an unique query with all predicates as in the constructed direct _cycle/2 clause).
A step forward will be to automatically detect, when consulting a Prolog file, the clauses that
contain conjunctions of database predicates and use view level transformations, as in the example
above, to generate more efficient code.

4 Performance Evaluation

In order to evaluate the performance of our three approaches, we used Yap 4.4.3 and MySQL server
3.23.52 versions running on the same machine, an AMD Athlon 1400 with 512 Mbytes of RAM.
The edge_r relation was created in the MySQL DBMS using the following SQL declaration:
CREATE TABLE edge_r (

source SMALLINT NOT NULL,

dest SMALLINT NOT NULL,
PRIMARY KEY (source,dest));

We have used two queries over the edge _r relation. The first query was to find all the solutions
for the edge(A,B) goal, which correspond to all the tuples of relation edge r. The second query
was to find all the solutions of the edge (A,B) ,edge(B,A) goal, which correspond to all the direct
cycles. We measured the execution time using the walltime parameter of the statistics built-in
predicate, in order to correctly measure the time spent in the Yap process and in the MySQL
process. In the tables that follow, timing results are always presented in seconds.

Table 2 presents the results for the different coupling approaches, with relation edge r having
1,000 vertices and populated with 5,000, 10,000 and 50,000 random tuples.

Coupling Approach/Query 5,000 | ’11(‘1)1’1(;2;65 | 50,000
Asserting Approach
assert time 0.05 0.30 2.06
edge(A,B) <0.01 | <0.01 0.02
edge (A,B) ,edge(B,A) 7.17 30.10 | 753.80
Backtracking Approach
edge (A,B) (store_result) 0.02 0.04 0.19
edge (A,B) (use_result) 0.02 0.04 0.19
edge (A,B) ,edge (B, A) (store_result) 91.23 | 359.40 | 9,410.7
edge(A,B) ,edge (B,A) (use_result) n.a. n.a. n.a.
Backtracking 4+ SQL Unify Approach
edge (A,B) (store_result) 0.02 0.04 0.19
edge (A,B) ,edge (B,A) (relation level) 0.98 2.20 19.70
edge(A,B) ,edge (B,A) (view level) 0.02 0.04 0.28

Table 2: Execution times of the different approaches

For the asserting approach we measured the two queries mentioned above and also the assert
time of the involved tuples. This assert time is relevant because the other approaches of coupling do
not have this overhead time. The assert time, despite involving multiple context switching between
Prolog and C, is fast and can be used with large relations. Using the method described, asserting
50, 000 tuples takes about 2 seconds. For comparison, if we dump the relation to a file in the form of
Prolog facts and consult this file, Yap takes about 0.6 seconds, which is around 3 times faster. The
edge (A,B) query involves sequentially accessing all the facts that have been asserted. This is done



almost instantly, taking only 0.02 seconds for 50,000 facts. On the query edge(A,B) ,edge(B,A)
this approach shows large difficulties. Even for 5,000 facts Yap already takes more than 7 seconds
and the growth is exponential, taking several minutes for 50,000 facts. This is due to the fact
that, by default, Yap does not index dynamic predicates, such as the asserted edge facts. For each
edge (A,B), Prolog execution mechanism will have to access all the facts to see if they unify with
edge (B, A), because the absence of indexing cannot use the first goal variable bindings to limit the
search space. Finally, we would like to note that this asserting approach reduces the overhead of
communication with the MySQL server to the initial assert, and the resolution of the queries has
no communication with the MySQL server.

To evaluated our second approach we use both mysql store result () and mysql use result()
procedures. No relevant differences were detected, mainly because Yap and MySQL server were run-
ning on the same machine. We could not use mysql use result () with the edge (A,B) ,edge(B,A)
query because this version of MySQL does not allow multiple results sets on the server side (this
should be possible with the latest version of MySQL, 4.1). Query edge (A,B) takes 0.19 seconds to
return the 50,000 solutions. The overhead of communicating with the MySQL result set structure
tuple by tuple causes a slowdown of around 10 times as compared to the previous asserting strategy.
This 10 times factor is also reflected on the execution time of edge (A,B) ,edge (B,A). For both edge
goals, a 'SELECT * FROM edge _r’ query is generated and the join is computed by Yap using the
two MySQL result sets. We should note that, on this approach, there are no indices on Yap that
can be used to speed-up the query, as the edge r tuples only exist in MySQL structures. Also,
the difficulties explained for the asserting approach remain, as the indices existing on the MySQL
server for the edge_r relation are of no use since the queries are 'SELECT * FROM edge._r’.

The last approach of coupling, which tries to transfer unification to the SQL engine, gives exactly
the same results for query edge (A,B), as the query generated by translate/3 is exactly the same of
the previous approach (’SELECT * FROM edger’). Regarding query edge(A,B) ,edge(B,A) there
are very significant differences. For this query we consider a relation level access where translate/3
is used for each goal, and a view level access where translate/3 is used to generate a SQL query
which computes the join of the two goals.

For the relation level access the speed-up obtained is of around 100 times for 5,000 tuples and,
more important, allows the increase in execution time to become linear in the number of tuples.
Note that the execution times of this approach are not faster because there is a large overhead of
communication with MySQL, involving running one query and storing the result on the client for
each tuple of the first goal. For view level access translate/3 generates a single query and Yap
just sequentially accesses the returned result set. For 50,000 tuples the execution time is of 0.28
seconds. This represents a speed-up of more than 2,500 times over the asserting approach and of
more than 30,000 times over the backtracking approach.

Index performance is fundamental to interpret the results obtained. Note that the asserting
approach relies on the logic system indexing capabilities, while the other approaches rely on the
database system indexing capabilities. The asserting approach can be improved if indexing can be
performed over the dynamic predicate asserted. Yap can index on the first argument of dynamic
predicates if we declare the update semantics of dynamic predicates to be logical instead of the de-
fault immediate (dynamic_predicate(edge/2,logical)). Dynamic predicates with logical update
semantics achieve similar performance when compared with static compiled predicates.

Relational database management systems have extended indexing capabilities as compared to
Prolog systems. Every relational database system allows the declaration of several types of indices
on different attributes. To evaluate the impact of changing the indexing approach on MySQL we
dropped the primary key index of relation edge r: ’ALTER TABLE edge r DROP PRIMARY KEY’. We
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also evaluated performance using a secondary index just on the first attribute of edge r: ALTER
TABLE edge_r ADD INDEX ind_source (source)’ (thisis the traditional indexing approach of Pro-
log systems). We next compare on Table 3 the performance of these different indexing schemes.

Coupling Approach/Indexing Scheme 50,000 | 1(;1(;1,1(1))(;%S| 500,000
Asserting Approach

no index 753.80 | 5270.27 | > 2 hours
index on first argument (source) 0.59 2.40 12.88
Backtracking + SQL Unify Approach

no index 487.35 | 1997.36 | > 2 hours
secondary index on (source) 0.54 1.93 10.25
primary key index on (source,dest) 0.28 0.67 3.81

Table 3: Index performance for query edge(A,B) ,edge(B,A)

Table 3 presents the execution times for 50,000, 100,000 and 500, 000 tuples (for 500, 000 tuples
we used 5,000 vertices) using asserting and backtracking with SQL unification in view level for
query edge (A,B) ,edge(B,A). By observing the table we can see the dramatic impact of indexing
when compared with no indexing. An interesting comparison is the time taken with the asserting
approach by Yap without indexing (753.80 and 5270.27 seconds for 50,000 and 100,000 tuples),
and the time taken by MySQL also without indexing (487.35 and 1997.36 seconds for 50,000 and
100,000 tuples). Yap is about 1.5 to 2.5 times slower than MySQL dealing with no indexed data.
Another interesting comparison is the time that Yap and MySQL using an equivalent index on the
same argument take. They show almost the same performance, with a small overhead for Yap in
this particular query. As expected, best results are obtained for MySQL when using a primary
key index on both attributes (0.28, 0.67 and 3.81 seconds for 50,000, 100,000 and 500, 000 tuples).
Further evaluation must be done for different programs and queries.

5 Concluding Remarks

We studied and evaluated the impact of using alternative approaches for coupling Yap Prolog with
MySQL. Through experimentation, we observed that it is possible to couple logic systems with
relational databases using approaches based on tuple-at-a-time communication schemes. Our re-
sults show however that, in order to be efficient, we need to explore view level transformations
when accessing the database. Results also show that indexing is fundamental to achieve scalability.
Indexing is important on the database server for view level access and on the Prolog system when
tuples are asserted as facts. For Yap, further evaluation should experiment with the current devel-
opment version of this system, Yap 4.5, where indexing has been improved and can build indices
using more than just the first argument. We also plan to perform further evaluation and take
advantage of the advanced features of OPTYap [10], such as tabling and or-parallelism, namely in
the evaluation of recursive and concurrent queries.
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