
Speculative Computations

in Or-Parallel Tabled Logic Programs

Ricardo Rocha1, Fernando Silva1, and Vı́tor Santos Costa2

1 DCC-FC & LIACC
University of Porto, Portugal
{ricroc,fds}@ncc.up.pt

2 COPPE Systems & LIACC
Federal University of Rio de Janeiro, Brazil

vitor@cos.ufrj.br

Abstract. Pruning operators, such as cut, are important to develop ef-
ficient logic programs as they allow programmers to reduce the search
space and thus discard unnecessary computations. For parallel systems,
the presence of pruning operators introduces the problem of speculative

computations. A computation is named speculative if it can be pruned
during parallel evaluation, therefore resulting in wasted effort when com-
pared to sequential execution. In this work we discuss the problems be-
hind the management of speculative computations in or-parallel tabled
logic programs. In parallel tabling, not only the answers found for the
query goal may not be valid, but also answers found for tabled predicates
may be invalidated. The problem here is even more serious because to
achieve an efficient implementation it is required to have the set of valid
tabled answers released as soon as possible. To deal with this, we propose
a strategy to deliver tabled answers as soon as it is found that they are
safe from being pruned, and present its implementation in the OPTYap
parallel tabling system.

1 Introduction

Logic programming is a programming paradigm based on Horn Clause Logic, a
subset of First Order Logic. Given a theory (or program) and a query, execution
of logic programs uses a simple theorem prover that performs refutation in order
to search for alternative ways to satisfy the query. Prolog implements a refutation
strategy called SLD resolution. Further, subgoals in a query are always solved
from left to right, and that clauses that match a subgoal are always applied in
the textual order as they appear in the program.

In order to make Prolog an useful programming language, Prolog designers
were forced to introduce features not found within First Order Logic. One such
feature is the cut operator. The cut operator adds a limited form of control to the
execution by pruning alternatives from the computation. Cut is an asymmetric
pruning operator because it only prunes alternatives to the right. Some Prolog
systems also implement symmetric pruning operators, with a generic name of

commit. In practice, pruning operators are almost always required when devel-
oping actual programs, because they allow programmers to reduce the search
space and thus discard unnecessary computation.

Because their semantics are purely operational, pruning operators cause dif-
ficulties when considering alternative execution strategies for logic programs.
The implementation of or-parallel systems is one example [1–4]. Namely, it has
been observed that the presence of pruning operators during parallel execution
introduces the problem of speculative computations. Ciepielewski defines spec-
ulative computations as work which would not be done in a system with one

processor [5]. Alternatives picked for parallel execution, may later be pruned
away by a cut. Earlier execution of such computations results in wasted effort
when compared to sequential execution.

Pruning operators also raise questions in the context of tabling based ex-
ecution models for Prolog. The basic idea behind tabling is straightforward:
programs are evaluated by storing newly found answers of current subgoals in
an appropriate data space, called the table space. New calls to a predicate check
this table to verify whether they are repeated. If they are, answers are recalled
from the table instead of the call being re-evaluated against the program clauses.

We can consider two types of cut operations in a tabling environment: cuts
that do not prune alternatives in tabled predicates – inner cut operations, and
cuts that prune alternatives in tabled predicates – outer cut operations. Inner
cuts can be easily implemented in sequential systems. On the other hand, be-
cause tabling intrinsically changes the left-to-right semantics of Prolog, outer
cuts present major difficulties, both in terms of semantics and of implementa-
tion.

In this work we address the problem of how to do inner pruning on systems
that combine tabling with or-parallelism. Our interest stems from our work in
the OPTYap system [6], to our knowledge the first available system that can
exploit parallelism from tabled programs. Our experience has shown that many
applications do require support for inner pruning. In contrast, outer pruning is
not widely used in current tabling systems. Unfortunately, new problems arise
even when performing inner pruning in parallel systems. Namely, speculative
answers found for tabled predicates may later be invalidated. In the worst case,
tabling such speculative answers may allow them to be consumed elsewhere in
the tree, generating in turn more speculative computation and eventually cause
wrong answers to occur. Answers for tabled predicates can only be tabled when

they are safe from being pruned. On the other hand, finding and consuming an-
swers is the natural way to get a tabled computation going forward. Delaying
the consumption of valid answers too much may compromise such flow. There-
fore, tabled answers should be released as soon as it is found that they are not

speculative.

The main contribution of this paper is a design that allows the correct and
efficient implementation of inner pruning in an or-parallel tabling system. To do
so, we generalise Ali and Karlsson cut scheme [3], which prunes useless work as
early as possible, to tabling systems. Our design allows speculative answers to

be stored in advance into the table, but its availability is delayed. Answers will
only be made available when proved to be not speculative.

The remainder of the paper is organised as follows. First, we discuss specula-
tive computations in or-parallel systems and introduce the cut scheme currently
implemented in OPTYap. Next, we discuss the problems arising with specula-
tive tabled computations. Initially, we introduce the basic tabling definitions and
the inner and outer cuts operations. After that, we present the support actually
implemented in OPTYap to deal with speculative tabled computations. We end
by outlining some conclusions.

2 Cut within the Or-Parallel Environment

Cut is a system built-in predicate that is represented by the symbol “!”. Its
execution results in pruning all the alternatives to the right of the current branch
up to the scope of the cut. In a sequential system, cut only prunes alternatives
whose exploitation has not been started yet. This does not hold for or-parallel
systems, as cut can prune alternatives that are being exploited by other workers
or that have already been completely exploited. Therefore, the cut semantics
in a parallel environment introduces new problems. First, a pruning operation
cannot always be completely performed if the branch executing the cut is not
leftmost, because the operation itself may be pruned by the execution of other
pruning operation in a branch to the left. Similarly, an answer for the query goal
in a non-leftmost branch may not be valid. Last, when pruning we should stop
the workers exploiting the pruned branches.

Ali showed that speculative computations can be completely banned from
a parallel system if proper rules are applied [1]. However, such rules severely
restrict parallelism. Hence, most parallel systems allow speculative computa-
tions. Speculative computations can be controlled more or less tightly. Ideally,
we would prune all computations as soon as they become useless. In practice,
deciding if a computation is still speculative or already useless can be quite com-
plex when nested cuts with intersecting scopes are considered. We next discuss
how cut executes in OPTYap (later we will discuss how cut affects the table).

2.1 Cut in OPTYap

The OPTYap system builds on the or-parallel system YapOr [7] and on the
tabling engine YapTab [8]. YapOr is based on the environment copying model
for shared memory machines [9]. YapTab is a sequential tabling engine that ex-
tends Yap’s execution model to support tabled evaluation for definite programs.
YapTab’s design is largely based on the ground-breaking XSB logic programming
system [10], which implements the SLG-WAM [11]. OPTYap’s execution model
considers tabling as the base component of the system. Each computational
worker behaves as a full sequential tabling engine. The or-parallel component of
the system is triggered to allow synchronised access to the shared part of the
search space or to schedule work.

OPTYap currently implements a cut scheme based on the ideas presented by
Ali and Karlsson [3], designed to prune useless work as early as possible. The
guiding rule is: we cannot prune branches that would not be pruned if our own

branch will be pruned by a branch to the left. Thus, a worker executing cut must
go up in the tree until it reaches either the scope of the cut, or, a node with
workers executing in branches to the left. A worker may not be able to complete
a cut if there are workers in branches to the left, because such workers can
themselves prune the current cut. Such incomplete cuts are called left pending.
In OPTYap, a cut is left pending on the youngest node N that has left branches.
A pending cut can only be resumed when all workers to the left backtrack to
N . It will then be the responsibility of the last worker backtracking to N to
continue the execution of the pending cut.

While going up, a worker may also find workers in branches to the right.
If so, it sends them a signal informing that their branches have been pruned.
Such workers must backtrack to the shared part of the tree and start searching
for new work. Note that even if a cut is left pending in a node N , there may
be branches, older than N , that correspond to useless work. OPTYap prunes
these branches immediately. To illustrate how these branches can be detected
we present in Fig. 1 a small example taken from [3]. For simplicity, the example
ignores indexing and assumes that a node is always allocated for predicates
defined by more than one clause. To better understand the example, we index
the repeated calls to the same predicate by call order. For instance, the node
representing the first call to predicate p is referred as p1, the second as p2 and

successively. We also write p
(i)
n to denote the ith alternative of node pn. Note

also that we use the symbol ! to mark the alternatives corresponding to clauses
with cuts.

Figure 1(a) shows the initial configuration, where a worker W is computing

the branch corresponding to [p
(1)
1
, q

(1)
1
, p

(1)
2
, q

(2)
2
, p

(2)
3
]. Its current goal is

“!(p2), !(p1)”, where !(p2) means a cut with the scope p2 and !(p1) means a cut
with the scope p1. There are only two branches to the left, corresponding to

alternatives p
(1)
3

and q2
(1). If there are workers within alternative p3

(1), then W

cannot execute any pruning at all because p3
(1) is marked as containing cuts.

A potential execution of a pruning operation in p3
(1) will invalidate any cut

executed in p3
(2) by W . Therefore, W saves a cut marker in p3 to indicate a

pending cut operation (Fig. 1(b)). A cut marker is a two field data structure
containing information about the scope of the cut and about the alternative of
the node which executed the cut.

Let’s now assume that there are no workers in alternative p3
(1), but there are

in alternative q2
(1). Alternative q2

(1) is not marked as containing cuts, but the
continuation of q2 contains two pruning operations, !(p2) and !(p1). The worker
W first executes !(p2) in order to prune q2

(3) and p2
(2). This is a safe pruning

operation because any pruning from q2
(1) will also prune q2

(3) and p2
(2). At the

same time W stores a cut marker in q2 to signal the pruning operation done. As
we will see, for such cases, the cut marker is used to prevent unsafe future pruning
operations from the same branch. Consider the continuation of the situation, W

(a) (b) (c)

q(1), p([2]), !(p1)

q(2), p([]), !(p2), !(p1)

p1

q1

p2

p([1,2])

p([2]), !(p1)

q2

p3

p([]), !(p2), !(p1)

!(p2), !(p1)

!

!

!

W

p1

q1

p2

q2

p3

!(p1)

!

!

!

W

<p2,2>

p1

q1

p2

q2

!

!

W

<p1,2>

p([H|T]) :- q(H), p(T), !. q(1).
p([]). q(2).
 q(3).

 ?- p([1,2]).

Fig. 1. Pruning in the or-parallel environment

tries to execute !(p1) in order to prune q1
(2), q1

(3) and p1
(2). However, this is

a dangerous operation. A worker in q2
(1) may execute the previous pruning

operation, !(p2), pruning W ’s branch but not q1
(2), q1

(3) or p1
(2). Hence, there is

no guarantee that the second pruning, !(p1), is safe. The cut marker stored in q2
is a warning that this possibility exists. So, instead of doing pruning immediately,
W updates the cut marker stored in q2 to indicate the new pending cut operation
(Fig. 1(c)).

2.2 Tree Representation

To represent the shared part of the search tree, OPTYap follows the Muse ap-
proach [9] and uses or-frames. When sharing work, an or-frame is added per
choice point being shared, in such a way that the complete set of or-frames form
a tree that represents the shared part of the search tree. Or-frames are used to
synchronise access to the unexploited alternatives in a shared choice point, and
to store scheduling data. By default, an or-frame contains the following fields:
the OrFr lock field supports a busy-wait locking mutex mechanism that guaran-
tees atomic updates to the or-frame data; the OrFr alt field stores the pointer
to the next unexploited alternative in the choice point; the OrFr members field is
a bitmap that stores the set of workers sharing the choice point; the OrFr node

field is a back pointer to the correspondent choice point; and the OrFr next field
is a pointer to the parent or-frame on the current branch.

Identifying workers on left branches or checking whether a branch is leftmost
requires a mechanism to represent the relative positions of workers in the search
tree. Our implementation uses a branch() matrix, where each entry branch(w, d)
corresponds to the alternative taken by worker w in the shared node with depth
d of its current branch. Figure 2 shows a small example that clarifies the corre-
spondence between a particular search tree and its matrix representation. Note
that we only need to represent the shared part of a search tree in the matrix.
This is due to the fact that the position of each worker in the private part of the
search tree is not relevant when computing relative positions.

2

W1

1

1

1

3

13 3
22

 W2

W3
W4

depth 1

depth 2

depth 0

1

W1
depth 0 1

W2
1

W3
1

W4

1depth 1 2 3 3

2depth 2 - 2 3

-depth 3 - - -

......

branch(w,d)

Fig. 2. Search tree representation

To correctly consult or update the branch matrix, we need to know the depth
of each shared node. We thus introduced a new data field in the or-frame data
structure, the OrFr depth field, that holds the depth of the corresponding node.
By using the OrFr depth field and the OrFr members bitmap of each or-frame
to consult the branch matrix, we can easily identify the workers in a node that
are in branches at the left or at the right the current branch of a given worker.

Let us suppose that a worker W wants to check whether it is leftmost or
at which node it ceases from being leftmost. W should start from the youngest
shared node N on its branch, read the OrFr members bitmap from the or-frame
associated with N to determine the workers sharing the node, and investigate
the branch matrix to determine the alternative number taken by each worker
sharing N . If W finds an alternative number less than its own, then W is not
leftmost. Otherwise, W is leftmost in N and will repeat the same procedure at
the next upper node on branch and so on until reaching the root node or a node
where it is not leftmost.

2.3 Pending Answers

OPTYap also builds on a mechanism originally designed for a problem in or-
parallel systems: an answer for the query goal may not be valid, if the branch
where the answer was found may be pruned. At the end of the computation,
only valid answers should be seen.

OPTYap addresses this problem by storing a new answer in the youngest
node where the current branch is not leftmost. A new data field was therefore
introduced in the or-frame data structure, the OrFr qg answers field. This field
allows access to the set of pending answers stored in the corresponding node.
Also, new data structures store the pending answers that are being found for
the query goal in hand. Figure 3 details the data structures used to efficiently
keep track of pending answers. Answers from the same branch are grouped into
a common top data structure. The top data structures are organised by reverse
branch order. This organisation simplifies the pruning of answers that became
invalid in consequence of a cut operation to the left.

OrFr_qg_answers(N->or_frame)

answer-x

NULL

answer-y

answer-z

NULL

2

NULL

3

first answer

last answer

branch order

next frame

answer

next answer

2
1 3

answer-x answer-y

answer-z

N

Fig. 3. Dealing with pending answers

When a node N is fully exploited and its corresponding or-frame is being
deallocated, the whole set of pending answers stored in N can be easily linked
together and moved to the next node where the current branch is not leftmost.
At the end, the set of answers stored in the root node are the set of valid answers
for the given query goal.

3 Cut within the Or-Parallel Tabling Environment

Extending the or-parallel system to include tabling introduces further complexity
into cut’s semantics. Dealing with speculative tabled computations and guaran-
teeing the correctness of tabling semantics, without compromising the perfor-
mance of the or-parallel tabling system, requires very efficient implementation
mechanisms. In this section, we present the OPTYap’s approach. Before we start,
we provide a brief overview of the basic tabling definitions and distinguish the
two types of cut operations in a tabling environment: inner cuts and outer cuts.

3.1 Basic Tabling Definitions

Tabling is about storing intermediate answers for subgoals so that they can be
reused when a repeated subgoal appears. Whenever a tabled subgoal S is first
called, an entry for S is allocated in the table space. This entry will collect all the
answers found for S. Repeated calls to variants of S are resolved by consuming
the answers already stored in the table. Meanwhile, as new answers are gener-
ated, they are inserted into the table and returned to all variant subgoals. Within
this model, the nodes in the search space are classified as either generator nodes,
corresponding to first calls to tabled subgoals, consumer nodes, corresponding to
variant calls to tabled subgoals, and interior nodes, corresponding to non-tabled
subgoals.

Tabling evaluation has four main types of operations for definite programs.
The tabled subgoal call operation checks if the subgoal is in the table and if not,
inserts it and allocates a new generator node. Otherwise, allocates a consumer
node and starts consuming the available answers. The new answer operation
verifies whether a newly generated answer is already in the table, and if not, in-
serts it. The answer resolution operation consumes the next unconsumed answer
from the table, if any. The completion operation determines whether a tabled
subgoal is completely evaluated, and if not, schedules a possible resolution to
continue the execution.

The table space can be accessed in different ways: to look up if a subgoal is in
the table, and if not insert it; to verify whether a newly found answer is already in
the table, and if not insert it; and to pick up answers to consumer nodes. Hence,
a correct design of the algorithms to access and manipulate the table data is
a critical issue to obtain an efficient implementation. Our implementation uses
tries as the basis for tables, as proposed by Ramakrishnan et al. in [12].

Figure 4 shows the general table structure for a tabled predicate. Table
lookup starts from the table entry data structure. Each table predicate has one
such structure, which is allocated at compilation time. Calls to the predicate will
always access the table starting from this point.

The table entry points to a tree of trie nodes, the subgoal trie structure.
More precisely, each different call to the tabled predicate in hand corresponds
to a unique path through the subgoal trie structure. Such a path always starts
from the table entry, follows a sequence of subgoal trie data units, the subgoal

trie nodes, and terminates at a leaf data structure, the subgoal frame.
Each subgoal frame stores information about the subgoal, namely an entry

point to its answer trie structure. Each unique path through the answer trie
data units, the answer trie nodes, corresponds to a different answer to the entry
subgoal. To obtain the set of available answers for a tabled subgoal, the leaf
answer nodes are chained in a linked list in insertion time order, so that we can
recover answers in the same order they were inserted. The subgoal frame points
to the first and last answer in this list. Thus, a consumer node only needs to
point at the leaf node for its last consumed answer, and consumes more answers
just by following the chain. To load an answer, the trie nodes are traversed in
bottom-up order and the answer is reconstructed.

Table Entry

Subgoal
Frame

Subgoal
Frame

Subgoal
Frame

Subgoal Trie Structure

Answer
Trie

Structure

Answer
Trie

Structure

Answer
Trie

Structure

Predicate
Compiled Code

Fig. 4. Using tries to organise the table space

3.2 Inner and Outer Cut Operations

We consider two types of pruning in a tabling environment: cuts that do not
prune alternatives in tabled predicates – inner cut operations, and cuts that
prune alternatives in tabled predicates – outer cut operations. In Fig. 5 we illus-
trate four different situations corresponding to inner and outer cut operations.
Below each illustration we present a block of Prolog code that may lead to such
situations. For simplicity, we assume that t is the unique tabled predicate defined
and that the “...” parts do not include t. Note that the rightmost situation
only occurs if a parallel tabling environment is considered, as otherwise t will
only be called if the cut operation in the first alternative of s is not executed.

t

!(s)

s

Inner Cut

!(s)

Outer Cut

s

t

:- table t/0.

t :- ..., s, ...
t :- ...

s :- ..., !, ...
s :- ...

:- table t/0.

s :- ..., !, ...
s :- ..., t, ...

t :- ...
t :- ...

Outer Cut

:- table t/0.

t :- ..., !, ...
t :- ...

Outer Cut

:- table t/0.

s :- ..., t, ..., !, ...
s :- ...

t :- ...
t :- ...

t

!(t)

t

!(s)

W

s

W W W1 W2

Fig. 5. The two types of cut operations in a tabling environment

Cut semantics for outer cut operations is still an open problem. A major
problem is that of pruning generator nodes. Pruning generator nodes cancels
its further completion and puts the table space in an inconsistent state. For
sequential tabling, a simple approach is to delete the whole table data structures
related with the pruned subgoal and recompute it from the beginning when it
reappears. This can be safely done because when a generator is pruned all variant
consumers are also pruned. On the other hand, for parallel tabling, it is possible
that generators will execute earlier, and in a different branch than in sequential
execution. In fact, different workers may execute the generator and the consumer
goals. Workers may have consumer nodes while not having the corresponding
generator nodes in their branches. Conversely, the owner of a generator node
can have consumer nodes being executed by several different workers.

The intricate dependencies in a parallel tabled evaluation makes pruning
a very complex problem. A possible solution to this problem can be moving
the generator’s role to a non-pruned dependent consumer node, if any, in order
to allow further exploitation of the generator’s unexploited branches. Such a
solution will require that the other non-pruned consumer nodes recompute and
update their dependencies relatively to the new generator node. Otherwise, if all
dependent consumer nodes are also pruned, we can suspend the execution stacks
and the table data structures of the pruned subgoal and try to resume them when
the next variant call takes place. Further research is still necessary in order to
study the combination of pruning and parallel tabling. Currently, OPTYap still
does not support outer cut operations and for such cases execution is aborted.
Outer cut operations are detected when a worker moves up in the tree either
because it is executing a cut operation or it has received a signal informing that
its branch have been pruned away by another worker.

3.3 Detecting Speculative Tabled Answers

As mentioned before, a main goal in the implementation of speculative tabling
is to allow storing valid answers immediately. We would like to maintain the
same performance as for the programs without cut operators. In this subsection,
we introduce and describe the data structures and implementation extensions
required to efficiently detect if a tabled answer is speculative or not.

We introduced a global bitmap register named GLOBAL pruning workers to
keep track of the workers that are executing branches that contain cut operators
and that, in consequence, may prune the current goal. Additionally, each worker
maintains a local register, LOCAL safe scope, that references the youngest node
that cannot be pruned by any pruning operation executed by itself.

The correct manipulation of these new registers is achieved by introducing a
new instruction clause with cuts to mark the blocks of code that include cut
instructions. During compilation, the code generated for the clauses containing
cut operators is extended to include the clause with cuts instruction so that
it is the first instruction to be executed for such clauses. When a worker loads a
clause with cuts instruction, it executes the clause with cuts() procedure.

Figure 6 details the pseudo-code that implements the clause with cuts()

procedure. It sets the worker’s bit in the GLOBAL pruning workers register and,
if the LOCAL safe scope register is younger than the current node, it updates
the LOCAL safe scope register to refer to the current node. The current node is
the resulting top node if a pruning operation takes place in the clause in hand.

clause_with_cuts() {
if (LOCAL_safe_scope == NULL) { // first time here

insert_into_bitmap(GLOBAL_pruning_workers, WORKER_id)
LOCAL_safe_scope = B // B is a pointer to the current choice point

} else if (LOCAL_safe_scope is younger than B) {
LOCAL_safe_scope = B

}
}

Fig. 6. Pseudo-code for clause with cuts()

When a worker finds a new answer for a tabled subgoal, it first inserts it
into the table space and then checks if the answer is safe from being pruned.
When this is the case, the answer is inserted at the end of the list of available
answers, as usual. Otherwise, if it is found that the answer can be pruned by
another worker, its availability is delayed. Figure 7 presents the pseudo-code
that implements the checking procedure.

speculative_tabled_answer(generator node G) { // G is the generator...
prune_wks = GLOBAL_pruning_workers // ...for the answer being checked
delete_from_bitmap(prune_wks, WORKER_id)
if (prune_wks is not empty) { // there are workers that may...

or_fr = youngest_or_frame() // ...execute pruning operations
depth = OrFr_depth(or_fr)
scope_depth = OrFr_depth(G->or_frame)
while (depth > scope_depth) { // check the branch till...

alt_number = branch(WORKER_id, depth) // ...the generator
for (w = 0; w < number_workers; w++) {

if (w is in prune_wks && w is in OrFr_members(or_fr) &&
branch(w, depth) < alt_number &&
OrFr_node(or_fr) is younger than LOCAL_safe_scope(w))

return or_fr // the answer can be pruned by worker w
}
or_fr = OrFr_next(or_fr)
depth = OrFr_depth(or_fr)

}
}
return NULL // the answer is safe from being pruned

}
Fig. 7. Pseudo-code for speculative tabled answer()

The procedure starts by determining if there are workers that may execute
pruning operations. If so, it checks the safeness of the branch where the tabled
answer was found. The branch only needs to be checked until the corresponding
generator node, as otherwise it would be an outer cut operation. A branch is

found to be safe if it is leftmost, or if the workers in the branches to the left
cannot prune it. If it is found that the answer being checked can be speculative,
the procedure returns the or-frame that corresponds to the youngest node where
the answer can be pruned by a worker in a left branch. That or-frame is where
the answer should be left pending. Otherwise, if it is found that the answer is
safe, the procedure returns NULL.

3.4 Pending Tabled Answers

Tabled answers are inserted in advance into the table space. However, if a tabled
answer is found to be speculative, its insertion in the list of available answers
is delayed and the answer is left pending. This prevents unsafe answers to be
consumed elsewhere in the tree. Only when it is found that a pending answer
is safe from being pruned, it is released as a valid answer and inserted at the
end of the list of available answers for the subgoal. Dealing with pending tabled
answers requires efficient support to allow that the operations of pruning or
releasing pending answers are efficiently performed.

Remember that speculative tabled answers are left pending in nodes. To allow
access to the set of pending answers for a node, a new data field was introduced
in the or-frame data structure, the OrFr tg answers field. New data structures
were also introduced to efficiently keep track of the pending answers being found
for the several tabled subgoals. Figure 8 details that data structure organisation.

G2

G1

21 3

G1(answer-x) G1(answer-y)

G2(answer-z)

N

L
O
C
A
L
_
s
a
f
e
_
s
c
o
p
e
(
w
)

W

OrFr_tg_answers(N->or_frame)

NULL

NULL

NULL

generator node

branch order

next branch frame

next generator frame

next block

answers on block

first block of answers

last block of answers

G2

3

G1

2

G1

3

NULL

answer-z

1

pointers to the
leaves nodes of the
trie structures
representing the
pending answers

-

...

-
}

NULL

answer-x

1

-

...

-

NULL

answer-y

1

-

...

-

Fig. 8. Dealing with pending tabled answers

The figure shows a situation where three tabled answers, answer-x, answer-y
and answer-z, were found to be speculative and therefore have all been left
pending in a common node N . N is the youngest node where a worker in a left
branch, W in the figure, holds a LOCAL safe scope register pointing to a node
older than N .

Pending answers found for the same subgoal and from the same branch are
addressed by a common top data structure. As the answers in the figure were
found in different subgoal/branch pairs, three top data structures were required.
answer-x, answer-y and answer-z were found, respectively, in branches 2, 3
and 3 for the subgoals corresponding to generator nodes G1, G1 and G2. These
data structures are organised in older to younger generator order and by reverse
branch order when they are for the same generator. Hence, each data structure
contains two types of pointers to follow the chain of structures, one points to
the structure that corresponds to the next younger generator node, while the
other points to the structure that corresponds to the next branch within the
same generator.

Blocks of answers address the set of pending answers for a subgoal/branch
pair. Each block points to a fixed number of answers. By linking the blocks we
can have a large number of answers for the same subgoal/branch pair. Note
that the block data structure does not hold the representation of a pending
answer, only a pointer to the leaf node of the answer trie structure representing
the pending answer. As we will see, with this simple scheme, we can easily
differentiate between occurrences of the same speculative answer in different
branches. Figure 9 shows the procedure that OPTYap executes when a tabled
answer is found.

tabled_answer(answer A, generator node G) { // G is the generator...
sf = subgoal_frame(G) // ...for the answer A
leaf_node = insert_into_table_space(A, sf)
if (leaf_node is a valid answer) {

fail() // already in the list of available answers for sf
} else {

or_fr = speculative_tabled_answer(G)
if (or_fr == NULL) // the answer is safe from being pruned

valid_answer(leaf_node, sf)
else

left_pending(leaf_node, or_fr)
}

}
Fig. 9. Pseudo-code for tabled answer()

The procedure starts by inserting the answer in the table space. Then, it
verifies if the answer is already tabled as a valid answer and, if so, the execution
fails as usual. Otherwise, it checks if the answer is safe from being pruned. Being
this the case, the answer is tabled as a valid answer. Otherwise, it is left pending.

Suppose now that we have an answer A left pending in a node N and that
a new occurrence of A is found elsewhere. Two situations may happen: the new
occurrence of A is also speculative or it is safe from being pruned. In the first
case, A is left pending in a node of the current branch. This is necessary because
there is no way to know beforehand in which branch A will be proved first to be
not speculative, if in any. In the second case, A is released as a valid answer and
inserted in the list of available answers for the subgoal in hand. Note that in this

case, A still remains left pending in node N . In any case, A is only represented
once in the table space.

With this scheme, OPTYap implements the following algorithm in order to
release answers as soon as possible: the last worker W leaving a node N with
pending tabled answers, determines the next node M on its branch that can be
pruned by a worker to the left. The pending answers from N that correspond
to generator nodes equal or younger than M are made available (if an answer
is already valid, nothing is done), while the remaining are moved from N to
M. Note that W only needs to check for the existence of M up to the oldest
generator node for the pending answers stored in N . To simplify finding the
oldest generator node we organised the top data structures in older to younger
generator order (please see Fig. 8).

On the other hand, when a node N is pruned, its pending tabled answers
can be in one of three situations: only left pending in N ; also left pending in
other nodes; or already valid answers. Note that for all situations no interaction
with the table space is needed and N can simply be pruned away. Even for the
first situation, we may keep the answers in the table and wait until completion,
as in the meantime such answers can still be generated again in other branches.
So, only when a subgoal is completed evaluated, it is required that the answer
trie nodes representing speculative answers are removed from the table. As this
requires traversing the whole answer trie structure, for simplicity and efficiency,
this is only done in the first call to the tabled subgoal after it has been completed.

4 Conclusions

In this paper we discussed the management of speculative computations in or-
parallel tabled logic programs. Our approach deals with inner pruning at a first
step and we address speculative tabled computations by delaying the point at
which their answers are made available in the table. With this support, OPTYap
is now able to execute a wider range of applications without introducing signif-
icant overheads (less than 1%) for applications without cuts.

Support for outer cuts is a delicate issue. To our knowledge, the first proposal
on outer cuts for sequential tabling was presented by Guo and Gupta in [13].
They argue that cuts in tabling systems are most naturally interpreted as a
commit, and they define the cut operator in terms of the operational semantics of
their tabling strategy [14], which is based on recomputation of so-called looping
alternatives. In more recent work, Castro and Warren propose the demand-based
once pruning operator [15], whose semantics are independent of the operational
semantics for tabling, but which does not fully support cut. We believe that a
complete design for outer cut operations in sequential tabling is still an open
and, arguably, a controversial problem.

To fully support pruning in parallel tabling, further work is also required. We
need to do it correctly, that is, in such a way that the system will not break but
instead produce sensible answers according to the proposed sequential semantics,
and well, that is, allow useful pruning with good performance.

Acknowledgments

This work has been partially supported by APRIL (POSI/SRI/40749/2001) and
by funds granted to LIACC through the Programa de Financiamento Plurianual,
Fundação para a Ciência e Tecnologia and Programa POSI.

References

1. Ali, K.: A Method for Implementing Cut in Parallel Execution of Prolog. In:
Proceedings of the International Logic Programming Symposium, IEEE Computer
Society Press (1987) 449–456

2. Hausman, B.: Pruning and Speculative Work in OR-Parallel PROLOG. PhD
thesis, The Royal Institute of Technology (1990)

3. Ali, K., Karlsson, R.: Scheduling Speculative Work in MUSE and Performance
Results. International Journal of Parallel Programming 21 (1992) 449–476

4. Beaumont, A., Warren, D.H.D.: Scheduling Speculative Work in Or-Parallel Prolog
Systems. In: Proceedings of the 10th International Conference on Logic Program-
ming, The MIT Press (1993) 135–149

5. Ciepielewski, A.: Scheduling in Or-parallel Prolog Systems: Survey and Open
Problems. International Journal of Parallel Programming 20 (1991) 421–451

6. Rocha, R., Silva, F., Santos Costa, V.: On a Tabling Engine that Can Exploit
Or-Parallelism. In: Proceedings of the 17th International Conference on Logic
Programming. Number 2237 in LNCS, Springer-Verlag (2001) 43–58

7. Rocha, R., Silva, F., Santos Costa, V.: YapOr: an Or-Parallel Prolog System Based
on Environment Copying. In: Proceedings of the 9th Portuguese Conference on
Artificial Intelligence. Number 1695 in LNAI, Springer-Verlag (1999) 178–192

8. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Proceedings of the 2nd Conference on Tabulation in
Parsing and Deduction. (2000) 77–87

9. Ali, K., Karlsson, R.: Full Prolog and Scheduling OR-Parallelism in Muse. Inter-
national Journal of Parallel Programming 19 (1990) 445–475

10. Sagonas, K., Swift, T., Warren, D.S.: XSB as an Efficient Deductive Database
Engine. In: Proceedings of the ACM SIGMOD International Conference on the
Management of Data, ACM Press (1994) 442–453

11. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20 (1998) 586–634

12. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38 (1999)
31–54

13. Guo, H.F., Gupta, G.: Cuts in Tabled Logic Programming. In: Proceedings of the
Colloquium on Implementation of Constraint and LOgic Programming Systems.
(2002)

14. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: Proceedings of
the 17th International Conference on Logic Programming. Number 2237 in LNCS,
Springer-Verlag (2001) 181–196

15. Castro, L.F., Warren, D.S.: Approximate Pruning in Tabled Logic Programming.
In: Proceedings of the 12th European Symposium on Programming. Volume 2618
of LNCS., Springer Verlag (2003) 69–83

