
DBTAB: a Relational Storage Model

for the YapTab Tabling System

Pedro Costa, Ricardo Rocha, and Michel Ferreira

DCC-FC & LIACC
University of Porto, Portugal

c0370061@dcc.fc.up.pt {ricroc,michel}@ncc.up.pt

Abstract. Resolution strategies based on tabling have proved to be par-
ticularly effective in logic programs. However, when tabling is used for
applications that store large answers and/or a huge number of answers,
we can quickly run out of memory. In general, to recover space, we will
have no choice but to delete some of the tables. In this work, we pro-
pose an alternative approach and instead of deleting tables, we store
them externally using a relational database system. Subsequent calls to
stored tables would import answers from the database, hence avoiding re-
computation. To validate our approach, we have extended the YapTab
tabling system to provide engine support for exporting and importing
tables to and from the MySQL relational database management system.

1 Introduction

Tabling [1] is an implementation technique where intermediate answers for sub-
goals are stored and then reused when a repeated call appears. Resolution strate-
gies based on tabling [2, 3] have proved to be particularly effective in logic pro-
grams, reducing the search space, avoiding looping and enhancing the termina-
tion properties of Prolog models based on SLD resolution [4].

The performance of tabling largely depends on the implementation of the
table itself; being called upon very often, fast look up and insertion capabilities
are mandatory. Applications can make millions of different calls, hence compact-
ness is also required. Arguably, the most successful data structure for tabling is
tries [5]. Tries are trees in which there is one node for every common prefix [6].
Tries have proved to be one of the main assets of tabling implementations, be-
cause they are quite compact for most applications while having fast look up
and insertion. The YapTab tabling system [7] uses tries to implement tables.

When tabling is used for applications that build many queries or that store a
huge number of answers, we can build arbitrarily many and possibly very large
tables, quickly filling up memory. In general, there is no choice but to throw away
some of the tables (ideally, the least likely to be used next). The common control
implemented in most tabling systems is to have a set of tabling primitives that
the programmer can use to dynamically abolish some of the tables.

A more recent proposal, is the approach implemented in YapTab, where a
memory management strategy, based on a least recently used algorithm, auto-
matically recovers space from the least recently used tables when the system

runs out of memory. With this approach, the programmer can still force the
deletion of particular tables, but can also rely on the effectiveness of the mem-
ory management algorithm to completely avoid the problem of deciding what
potentially useless tables should be deleted. Note that, in both situations, the
loss of stored answers within the deleted tables is unavoidable, leading to the
need of restarting the evaluation whenever a repeated call occurs.

In this work, we propose an alternative approach and instead of deleting
tables, we store them externally using a relational database management system
(RDBMS). Later, when a repeated call appears, we load the stored answers from
the database, hence avoiding recomputing them. With this approach, we can still
use YapTab’s memory management algorithm, but to decide what tables to move
to database storage when the system runs out of memory, instead of using it to
decide what tables to delete.

To validate this approach we thus propose DBTAB, a relational model for
representing and storing tables externally in tabled logic programs. In particular,
we will use YapTab as the tabling system and MySQL [8] as the RDBMS. The
initial implementation of DBTAB only handles atomic terms such as integers,
atoms and floating-point numbers.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we introduce
our model and discuss how tables can be represented externally in database
storage. We then describe how we extended YapTab to provide engine support
for exporting and importing answers to and from the RDBMS. At the end, we
present initial experimental results and outline some conclusions.

2 The Table Space

Tabled programs are evaluated by storing all found answers for current subgoals
in a proper data space, the table space. Whenever a subgoal S is called for the first
time, a matching entry is allocated in the table space and every generated answer
for the subgoal is stored under this entry. Repeated calls to S or its variants1

are resolved by consumption of these previously stored answers. Meanwhile, as
new answers are generated, they are inserted into the table and returned to all
variant subgoals. When all possible resolutions are performed, S is said to be
completely evaluated.

The table space can be accessed in a number of ways: (i) to look up if a
subgoal is in the table, and if not insert it; (ii) to verify whether a newly found
answer is already in the table, and if not insert it; and, (iii) to load answers to
variant subgoals. Two levels of tries are used to implement tables, one for subgoal
calls, other for computed answers. Each tabled predicate has a table entry data
structure assigned to it, acting as the entry point for the subgoal trie. Every
subgoal call is represented in this trie as an unique path to a subgoal frame data
structure, with argument terms stored within the internal nodes. Terms with

1 Two calls are said to be variants if they are the same up to variable renaming.

common prefixes branch off each other at the first distinguishing symbol. If free
variables are present within the arguments, all possible bindings are stored into
the answer trie, i.e., all possible answers to the subgoal are mapped to unique
paths in this second trie. When inserting new answers, only the substitutions for
the unbound variables in the subgoal call are stored. This optimization is called
substitution factoring [5].

Tries are implemented by representing each trie node by a data structure
with four fields each. The first field (TrNode symbol) stores the symbol for the
node. The second (TrNode child) and third (TrNode parent) fields store point-
ers respectively to the first child node and to the parent node. The fourth field
(TrNode next) stores a pointer to the sibling node, in such a way that the out-
going transitions from a node can be collected by following its first child pointer
and then the list of sibling pointers.

Subgoal frame
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer
SgFr_answers

Table entry for f/2

Subgoal frame
for f(VAR0,a)

a

VAR0

root
node

1

0

root
node

a

Subgoal trie
for f/2

Answer trie
for f(VAR0,1)

SgFr_first_answer
SgFr_last_answer

SgFr_answers

tabled_subgoal_call: f(X,a)
tabled_subgoal_call: f(Y,1)
tabled_new_answer: f(0,1)
tabled_new_answer: f(a,1)

Fig. 1. Using tries to organize the table space

An example for a tabled
predicate f/2 is shown in Fig. 1.
Initially, the subgoal trie only
contains the root node. When
the subgoal f(X, a) is called,
two internal nodes are inserted:
one for the variable X , and a
second last for the constant a.
Notice that variables are repre-
sented as distinct constants, as
proposed by Bachmair et al. [9].
The subgoal frame is inserted as
a leaf, waiting for the answers
to appear. Then, the subgoal
f(Y, 1) is inserted. It shares one
common node with f(X, a), but
the second argument is differ-
ent so a different subgoal frame
needs to be created.

At last, the answers for
f(Y, 1) are stored in the answer
trie as their values are com-
puted. The leaf answer nodes
are chained in a linked list in
insertion time order (using the
TrNode child field), so that re-
covery may happen the same way. Finally, the subgoal frame internal pointers
SgFr first answer and SgFr last answer are set to point respectively to the
first and last answer of this list. Thus, when consuming answers, a variant sub-
goal needs only to keep a pointer to the leaf node of its last loaded answer, and
consumes more answers just by following the chain. To load an answer, the trie
nodes are traversed in bottom-up order and the answer is reconstructed.

3 The Relational Storage Model

The chosen RDBMS for DBTAB is MySQL 4.1 [8], running a InnoDB storage en-
gine. This is a transaction-safe engine with commit, rollback and crash-recovery
capabilities. InnoDB tables present no limitation in terms of growth and sup-
port foreign key constraints with cascade abilities. The MySQL C API for
prepared statements is used to manipulate the record-sets, benefiting of several
advantages in terms of performance: the statement is parsed only once, when
it is first sent; network traffic is substantially reduced since statement invoca-
tion require only the respective input parameters; a binary protocol is used to
transfer data between the client and the server.

3.1 Representing the Table Space

Fig. 2. The dbtab relational schema

Figure 2 shows the ER dia-
gram for the relational represen-
tation of the table space, the
dbtab database. The diagram
is divided in two types of ta-
bles: system tables, identified by
the prefix dbtab, and predicate
tables, identified by the pre-
fix session. System tables ba-
sically maintain control status,
while predicate tables are meant
to hold look-up values and run-
time data, such as computed
answers and meta-information
about known subgoals.

Storing run-time data, of
possible multiple sources, raises
the important issue of multi-
user concurrency. Since the
same database is to be used as
a final repository of data, each
running instance of YapTab
must be uniquely identified in order to refer to its own found answers. To tackle
this problem, DBTAB introduces the notion of session. A specific predicate,
tabling init session/1, is introduced to initialize sessions. It takes one ar-
gument that is considered to be a session id, that can be either a free vari-
able or a ground term. In the first case, a new identifying integer is attained
from the dbtab sessions table and unified with the variable. On the other
hand, if the argument is a ground integer, its value is searched in the ses-
sions table, and should it be found, the indicated session is reestablished2. The

2 Currently, this means only that the same session id is reused.

tabling kill session/0 predicate can be used to finish the opened session and
clean-up all of its dependent information.

Tabling begins by the identification of the predicates to handle. YapTab’s
directive ’:- table p/n.’ is used for this purpose, generating a new table en-
try data structure for the specified predicate and inserting it into the table
space. DBTAB extends the previously described behaviour by registering func-
tor p and arity n into dbtab tabled. The sid field acts as a foreign key
to dbtab sessions, establishing the dependency net for the session. DBTAB
then dynamically creates a new relational table sessionk pn to hold all com-
pleted answer tries for p/n, together with three auxiliary relational tables ses-
sionk atoms, sessionk longints and sessionk floats, with k being the cur-
rent session id. Along with all computed answers, a meta-representation for every
p/n’s completely evaluated subgoal is to be stored within the sessionk pn table.
The integer field meta is used to tell apart these two kinds of records: a zero
value signals an answer; a positive non-zero value signals a meta-information
record. The arguments of p/n are mapped into integer fields3 named argi , with
i being an index between 1 and n.

The abolish table(p/n) predicate is used by YapTab to remove p/n’s en-
try from the table space. DBTAB’s expansion of this predicate deletes the cor-
responding record from dbtab tabled and drops all the session tables associ-
ated with p/n. Both in YapTab and DBTAB, the abolish all tables/0 pred-
icate can be used to dispose of all table entries: the action takes place as if
abolish table/1 was called for every tabled predicate.

3.2 Handling Primitive Types

YapTab handles atomic terms such as integers, atoms and floating-point num-
bers. YapTab determines the type of each term by reading its mask bits. The
non-mask part of a term is thus less than the usual 32 or 64-bit representation, so
an additional term is used to represent floating-point values and integers greater
than the maximum masked integer allowed. In what follows we call these integers
long integer terms. Due to this difference in sizes, internal representation at trie
level may require more than one node. While integer and atom terms use only
one node, long integer and floating-point terms use 3 and 4 nodes.

DBTAB explores this idea and handles answer terms dividing them in two
categories: atomic terms have their values directly stored within the correspond-
ing argi record fields; non-atomic terms are substituted in the argi record
fields by unique sequential values that work as a foreign key to the term field
of the auxiliary tables for the predicate. These sequential values are masked as
YapTab terms in order to simplify the loading algorithm4. Atomic terms com-

3 The YapTab internal representation of terms can be thought of as 32 or 64-bit long
integers, so MySQL integer or bigint types are accordingly used to store these
values.

4 The YAP MkApplTerm() macro is used to create dummy application terms and then
the non-tag part of these terms is used to hold the sequential value.

prise integers and atoms, while floating-point and long integer terms are con-
sidered non-atomic. Two auxiliary tables are defined to hold non-atomic values:
sessionk floats stores floating-point values used to build floating-point terms;
sessionk longints is used to store long integer values.

Aside from storing atoms into the predicate tables, every session stores their
YapTab’s internal representation as well as their string values, respectively in
the term and token fields of its sessionk atoms table. When reestablishing
a session, this table is used to rebuild the previous internal symbol addressing
space.

3.3 Manipulating Data Through Prepared Statements

Data exchange between the database and YapTab is done through the MySQL C
API along with a prepared statement data structure (see Fig. 3 for details). The
SQL statements used to store/retrieve information are sent to the database for
parsing, and, on success, the returned handle is used to initialize the statement

pointer. Additional information about possible used parameters is stored within
the sub-structure params.

typedef struct prepared_statement {
MYSQL_STMT *statement;
my_ulonglong affected_rows;
void *stmt_buffer;
struct {

int count;
MYSQL_BIND *bind;
my_bool *null;
my_ulong *length;

} params;
struct {

int count;
MYSQL_BIND *bind;
my_bool *null;
my_ulong *length;

} fields;
struct {

MYSQL_RES *metadata;
my_ulonglong num_rows;

} records;
} *PreparedStatement;

Fig. 3. The prepared statement structure

If a record-set is to be returned
upon the statement’s execution, the
result-set pointer records.metadata

and the sub-structure fields are ini-
tialized with information regarding it.
For predicate tables, the stmt buffer

pointer will be initialized with an
integer array, sized to hold an en-
tire record. Since the params and
fields sub-structures are never used
at the same time, they can share the
stmt buffer, bind, null, and length

arrays - these arrays are sized ac-
cordingly to the largest requirement
in terms of size. After record storing,
the records.num rows sub-structure
holds the count of retrieved rows.

The table entry data structure is augmented with a pointer to a generic in-
sert prepared statement. All subgoals branches hanging from this table entry
share the same prepared statement. Computed answers are stored by instan-
tiating its input parameters as required and executing it. The subgoal frame
data structure is augmented with a pointer to a specific select prepared state-
ment. Ground terms in the subgoal trie are used in the refinement of the where
clause; the corresponding fields are not selected for retrieval since their values
are already known.

Figure 4 shows the prepared statements generated to store and recover the
f(Y, 1) subgoal call introduced back at Fig. 1. The first statement is the generic
insert statement that is used for all insertions into table sessionk f2. The

second statement is one of the specific select statements that are used to re-
trieve the records that contain the answer trie. It takes no input parameters and
returns only one field, arg1. Note that value 22 is the YapTab’s internal repre-
sentation of the integer term of value 1. The third statement presents a similar
query that will retrieve answers if floating-point values are expected to unify
with the variable term Y . Finally, the forth statement collects the meta-data for
the subgoal.

(1) insert ignore into sessionk f2(meta,arg0,arg1) values(?,?,?);
(2) select arg1 from sessionk f2 where meta=0 and arg2=22;
(3) select f2.arg1, floats.value as flt arg1

from sessionk f2 as f2 left join sessionk floats as floats
on (f2.arg1=floats.term)

where meta=0 and arg2=22;
(4) select arg1 from sessionk f2 where meta=1 and arg2=22;

Fig. 4. Prepared statements for f(Y, 1)

3.4 The DBTAB API

We next present the list of developed functions and briefly describe their actions.

dbtab init session(int sid) - initializes the session passed by argument;
dbtab kill session(void) - kills the currently opened session;
dbtab init table(TableEntry tab ent) - creates the relational table and ini-

tializes the generic insert prepared statement associated with the table
entry passed by argument;

dbtab free table(TableEntry tab ent) - frees the insert prepared state-
ment, dropping the table if no other instance is using it;

dbtab init view(SubgoalFrame sg fr) - initializes the specific select pre-
pared statement associated with the passed subgoal frame;

dbtab free view(SubgoalFrame sg fr) - frees the select prepared statement;
dbtab export(SubgoalFrame sg fr) - traverses both the subgoal trie and the

answer trie, executing the insert prepared statement placed at the table
entry associated with the subgoal frame passed by argument. The answer
trie is deleted at the end of the transaction;

dbtab import(SubgoalFrame sg fr) - starts a data retrieval transaction, ex-
ecuting the select prepared statement for the subgoal frame passed as
argument.

4 Extending the YapTab Design

When a predicate is declared as tabled, the dbtab init table() function is
called, starting the table creation process and generation of the insert clause,
sending it afterwards to the database for parsing. If preparation succeeds, the
returned handle is placed inside the corresponding table entry data structure.

DBTAB’s final model is meant to trigger the dumping of a tabled subgoal
to the database when the corresponding table is chosen by YapTab’s memory
management algorithm to be abolished. Currently, DBTAB is still not yet fully
integrated with YapTab’s memory management algorithm. However, the present
version already implements all the required features to correctly export and
import tables, therefore allowing us to study and evaluate the potential and
weaknesses of the proposed model. The current version of DBTAB triggers the
dumping of a tabled subgoal to the record-set upon its completion operation, re-
moving it from memory afterwards - it is to be replaced by a record-set storing
the same answer terms. This operation is delayed up to this point in execu-
tion in order to prevent unnecessary memory consumption, both at client and
server sides, while only incomplete tables are known. Variant calls to completed
subgoals always import answers from the database.

4.1 Exporting Answers

Figure 5 shows the pseudo-code for the dbtab export() function. Initially, the
function starts a new data transaction. It then begins to climb the subgoal
trie branch, binding the ground terms to the respective statement parameters
along the way. When the root node is reached, all parameters consisting of
variable terms will be left null. The attention is then turned to the answer trie,
cycling through the terms stored within the answer nodes. The remaining null
parameters are bound repeatedly, and the prepared statement is executed for
each present branch. Next, the meta-information about variables is stored. For
each variable term present in the subgoal trie branch, a new unassigned variable
term is created. The non-tag part of this variable is used to store a bit-mask
containing information about all the possible types of terms that will be unified
with the original variable. The total number of variables is stored in the meta

dbtab_export(SubgoalFrame sg_fr) {
dbtab_start_transaction()
insert_stmt = TabEnt_insert_stmt(SgFr_tab_ent(sg_fr))
n_vars = bind_subgoal_terms(SgFr_parent(sg_fr))
answer = SgFr_first_answer(sg_fr)
while (answer != NULL) {

bind_answer_terms(answer) // prepare record
commit &= exec_prep_stmt(insert_stmt)
answer = TrNode_child(answer)

}
if (!n_vars) { // n_vars is the number of free variables

bind_subgoal_metadata(n_vars) // prepare meta-record
commit &= exec_prep_stmt(insert_stmt)

}
if (commit) {

mysql_commit(DBTAB_SCHEMA)
mark_as_stored(sg_fr) // update subgoal frame state
free_answer_trie(SgFr_answers(sg_fr))

} else {
mysql_rollback(DBTAB_SCHEMA)

}
}

Fig. 5. Pseudo-code for dbtab export()

field of this record. Finally, the commit of the transaction occurs if and only if
all insert statements are executed correctly; otherwise, a rollback operation
is performed.

To clarify ideas, recall the example of Fig. 1. During the execution of the
’:- table f/2.’ directive, table sessionk f2 is created in the dbtab database
and the insert statement, meant to handle all insertions into this table, is
generated and sent to the database, which will return a handle for it upon suc-
cessful parsing. The handle is placed inside a prepared statement data structure
pointed by the TabEnt insert stmt field of the table entry data structure (see
Fig. 6 for details). The structure’s field stmt buff and params sub-structure
are initialized, with params.bind being set to point at a newly created array of
mysql bind structures.

Fig. 6. Exporting f(Y, 1): the relational representation

When completion is reached, the subgoal trie is climbed binding the second
parameter, arg2, with the integer term of value 1 (appearing in its internal
representation 22). All values for arg1 are then bound cycling through the leafs
of the answer trie. Each branch is climbed up to the root node, that marks
the point where the insertion is to be performed. The branch for the integer
term of value 0 (internally represented by 6) is stored right away, but the one
for atom a (internally represented by 0xff04 in the figure) requires extra work
because atoms are also stored into the corresponding sessionk atoms table. At
last, the meta-data is inserted. This consists of a record holding the different
terms found in the answer trie for the free arguments in the subgoal call along
with the other ground arguments. A new variable term replaces V AR0, and its

non-tag part is used to hold a bit-mask - the value 0 visible in the last record -
signaling that arg1 column holds no special typed terms5. The meta field holds
the number of free variables for the subgoal, 1 in this case.

4.2 Importing Answers

After completion, the first variant call to a stored subgoal call now executes the
dbtab import() function, presented at Fig. 7.

dbtab_import(SubgoalFrame sg_fr) {
select_stmt = SgFr_select_stmt(sg_fr)
if (!PS_STMT(select_stmt)) {

dbtab_init_view(sg_fr)
exec_prep_stmt(select_stmt)

}
// switch on the number of rows
if (PS_NROW(select_stmt) == 0) { // no answers

SgFr_first_answer(sg_fr) = NULL
SgFr_last_answer(sg_fr) = NULL
SgFr_answers(sg_fr) = NULL

} else {
SgFr_first_answer(sg_fr) = PS_TOP_RECORD(select_stmt)
SgFr_last_answer(sg_fr) = PS_BOTTOM_RECORD(select_stmt)
if(VIEW_FIELD_SUCCEED == TRUE) // yes answer
SgFr_answers(sg_fr) = NULL

else // one or more answers
SgFr_answers(sg_fr) = SgFr_first_answer(sg_fr)

}
}

Fig. 7. Pseudo-code for dbtab import()

The first step calls the dbtab init view() function, creating the select
prepared statement that will load all possible answers. All variable terms are
returned by default, possibly in conjunction with additional columns for non-
atomic values. In case floating-point values are to be returned by argk , an
additional column flt argk is joined to the data-set (see query 3 at Fig. 4
for such an example). Likewise, if long integers are to be returned by argk ,
an additional column lint argk is joined to the data-set. These columns are
placed immediately to the right of argk and possibly both of them may appear
simultaneously - if such is the case, only one of these columns is set to a non-
null value. The choice on which one of them to use is made consulting argk ,
who’s value is replaced by a functor term for the desired type6.

Also during this process, ground terms are used to set search conditions,
within the where clause, to be matched upon data retrieval in order to shorten
the fields list, thus reducing the amount of data returned by the server. The
statement is finally sent to the database for parsing and, on success, the re-
turned handle is stored inside the prepared statement data structure added to
the subgoal frame.

5 Meaning floating-point numbers or long integers.
6 YapTab defines internally two special functors for this purpose: FunctorDouble and
FunctorLongInt.

Since the predicate’s answer trie will not change once completed, all subse-
quent calls may fetch their answers from the obtained record-set. The next step
is then to reset the subgoal frame SgFr first answer, SgFr last answer and
SgFr answers internal fields accordingly to the obtained data-set:

Ground queries return at most one record. On failure, the pointers are all set
to null and no record is returned, which means that the answer is no. On
success, SgFr first answer and SgFr last answer point at the only record
of the fetched data-set, consisting of a single boolean field named succeed
holding a true value, and SgFr answers holds the null value, indicating
this is a yes answer.

Non-ground queries may return more than one record. If the reduction of the
subgoal holds, the SgFr answers and SgFr first answer pointers are set
respectively to the first record of the data-set, while SgFr last answer is
set to the last.

Figure 8 shows answer collection for f(Y, 1). The meta-data is recovered
through the execution of query 4 at Fig. 4. The constant term 1 (internally
represented by value 22) is used to set a search condition over arg2. All values
in column arg1 are then recovered as possible answers for variable term Y
through the execution of query 2 at Fig. 4. At last, the subgoal frame pointers
SgFr answers, SgFr first answer and SgFr last answer are set to the first
and last records as explained above.

Fig. 8. Importing f(Y, 1): the resulting data-set

As control returns from dbtab import(), the SgFr answers value is tested
to decide if the query should fail, proceed or load answers from the database. If
loading answers, the first record’s offset along with the subgoal frame address are
stored within a loader choice point7. The fetched record and its field values are
then used to bind the free variables found for the subgoal in hand. If backtracking
occurs, the choice point is reloaded and its CP last answer field, containing
the offset for the last consumed record, is used to calculate the offset for the
next answer. If the new offset is a valid one, the CP last answer is updated
accordingly. Otherwise, the choice point is discarded, signaling the positioning
at the last answer. Whatever the case, the record is fetched and the variables are
rebound according to the fields values. This process continues until all answers
are consumed.

5 Initial Experimental Results

A batch of tests were performed in a computer with a Pentium R©4 2.6GHz
processor and 1GB of RAM. The test program, shown in Fig. 9, is a simple path
discovery algorithm over a graph.

:- consult(’graph.pl’).
:- tabling_init_session(S).
:- table path/2.

path(X,Z) :- path(X,Y), path(Y,Z).
path(X,Y) :- edge(X,Y).

Fig. 9. The test program

For comparison purposes, three main series of tests were performed both in
YapTab and DBTAB environments. For each one of these series, the external
file that holds the edge/2 facts was generated with a different number of edges,
ranging roughly from 50 to 150, corresponding to 5000 to 50000 possible combi-
nations among nodes. In each sub-series, three types of nodes were considered:
integer, floating-point and atom terms. The query ’?- path(X,Y).’ was exe-
cuted 10 times for each setup and the mean of measured times, in milliseconds,
is presented in Table 1. The table shows two columns for YapTab, measuring
the generation and recovery times when using tries to represent the table space,
and three columns to DBTAB, measuring the times to export and import the
respective number of answers and the time to recover answers when navigating
the stored data-set after importing it.

As expected, most of DBTAB’s execution time is spent in data transactions,
mainly during insertion of tuples. Storage of non-integer terms takes approxi-
mately three times more than their integer counter-part, due to the extra inser-
tion on auxiliary tables. An implementation of this step using stored procedures
might accelerate things a little bit, since it takes only one message to be sent

7 A loader choice point is a WAM choice point augmented with the offset for the last
consumed record and a pointer to the subgoal frame data structure.

Answers Terms
YapTab DBTAB

Generation Recovery Export Import Recovery

5000
integers 23 1 387 41 2
atoms 21 2 1148 37 3
floats 22 2 1404 54 3

10000
integers 58 2 780 60 3
atoms 66 2 2285 63 4
floats 64 3 2816 94 5

50000
integers 413 5 3682 240 15
atoms 422 6 11356 252 12
floats 386 20 14147 408 34

Table 1. Execution times, in milliseconds, for YapTab and DBTAB

and most of the processing is done server-side. Non-atomic terms (floats) also
present an interesting problem at fetching time. The use of left join clauses in
the retrieval select statement (as seen in Fig. 4) becomes a heavy weight when
dealing with large data-sets. Some query optimization is required to simplify the
process and decrease the time required to import answers.

Two interesting facts emerge from the table. First, the navigation times for
tries and data-sets are relatively similar, with stored data-sets requiring, on
average, the double of time to be completely scanned. The second observed fact
regards the time required to recompute answer tries for atomic terms (integers
and atoms). When the answer trie becomes very large (the 50000 tuples rows), its
computation requires more time, almost the double, than the fetching (import
plus recovery) of its relational representation. DBTAB may thus become an
interesting approach when the complexity of recalculating the answer trie largely
exceeds the amount of time required to fetch the entire answer data-set.

An important side-effect of DBTAB is the attained gain in memory consump-
tion. Recall that trie nodes are represented with four fields each, of which only
one is used to hold a symbol, the others being used to hold the addresses of
parent, child and sibling nodes (please refer to section 2). Since the relational
representation dispenses the three pointers and focus on the symbol storage, the
size of the memory block required to hold the answer trie can be reduced by a
factor of four. This is the worst possible scenario, in which all stored terms are
integers or atoms. For floating-point numbers the reducing factor raises to eight
because, although this type requires four trie nodes to be stored, one floating-
point requires most often the size of two integers. For long integer terms, memory
gains go up to twelve times: three nodes are used to store them in the trie.

6 Conclusions and Further Work

In this work, we have introduced the DBTAB model: a relational database model
to represent and store tables externally in tabled logic programs. We discussed
how to represent tables externally in database storage; how to handle atomic
terms such as integers, atoms and floating-point numbers; and how we have

extended the YapTab tabling system to provide engine support for exporting
and importing answers to and from the database.

DBTAB was designed to be used as an alternative approach to the problem
of recovering space when the tabling system runs out of memory. The common
control implemented in most tabling systems is to have a set of tabling primitives
that the programmer can use to dynamically delete some of the tables. By storing
tables externally instead of deleting them, DBTAB avoids re-computation when
subsequent calls to those tables appear. Another important aspect of DBTAB is
the gain in memory consumption when representing answers for floating-point
and long integer terms. Our preliminaries results showed that DBTAB may be-
come an interesting approach when the cost of recalculating a table largely ex-
ceeds the amount of time required to fetch the entire answer data-set from the
database.

As further work we plan to investigate the impact of applying DBTAB to
a more representative set of programs. We also plan to introduce some other
enhancements to improve the quality of the developed model. The expansion
of the actual DBTAB model to cover all possibilities for tabling presented by
YapTab is the first goal to achieve in a near future. First implementation tests
shown that pairs, lists and application terms can be recorded and recovered
through the use of a recursive algorithm and record trees. Each of these types
of term is represented by a sequential number, which serves as the tree root,
that is to be stored as described before at the tabled predicate relational table.
Auxiliary tables have to be built to store all internal terms used by complex
terms. These tables must possess a key field that links every node descendant
to their direct ancestor. This operation is easy to implement and is expected to
execute very quickly. Recovering is slightly more expensive. All child-nodes of
the root node have to be selected, each one of them being interpreted as the root
of a new sub-tree. The process continues until all leave-nodes are reached. By
then, the specific term can be reconstructed by YapTab.

During execution, YapTab processes may have to stop due to several reasons:
hosts may crash or have to be turned off, the users may want to interrupt process
evaluation, etc. If such a situation arises, table space residing in memory is lost,
leading to repeated calculation of the completed answer tries in later program ex-
ecutions. A possible solution to this problem is to search for meta-representation
of terms before starting the process of tabling. If such a representation is found,
the information contained in it can be used to not only build the corresponding
branch in the subgoal tree but also the required prepared statements used to
store new found answers and retrieve previously computed ones.

Acknowledgments

This work has been partially supported by Myddas (POSC/EIA/59154/2004)
and by funds granted to LIACC through the Programa de Financiamento Pluri-
anual, Fundação para a Ciência e Tecnologia and Programa POSC.

References

1. Michie, D.: Memo Functions and Machine Learning. Nature 218 (1968) 19–22
2. Tamaki, H., Sato, T.: OLDT Resolution with Tabulation. In: International Confer-

ence on Logic Programming. Number 225 in LNCS, Springer-Verlag (1986) 84–98
3. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-

grams. Journal of the ACM 43 (1996) 20–74
4. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag (1987)
5. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access

Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38 (1999)
31–54

6. Fredkin, E.: Trie Memory. Communications of the ACM 3 (1962) 490–499
7. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to

Support Parallelism. In: Conference on Tabulation in Parsing and Deduction. (2000)
77–87

8. Widenius, M., Axmark, D.: MySQL Reference Manual: Documentation from the
Source. O’Reilly Community Press (2002)

9. Bachmair, L., Chen, T., Ramakrishnan, I.V.: Associative Commutative Discrimi-
nation Nets. In: International Joint Conference on Theory and Practice of Software
Development. Number 668 in LNCS, Springer-Verlag (1993) 61–74

