
Handling Incomplete and Complete Tables

in Tabled Logic Programs

Ricardo Rocha⋆

DCC-FC & LIACC
University of Porto, Portugal

ricroc@ncc.up.pt

Extended Abstract

Most of the recent proposals in tabling technology were designed as a means
to improve the performance of particular applications in key aspects of tabled
evaluation like re-computation and scheduling. The discussion we address in
this work was also motivated by our recent attempt [1] of applying tabling to
Inductive Logic Programming (ILP) [2]. ILP applications are very interesting
for tabling because they have huge search spaces and do a lot of re-computation.
Moreover, we found that they are an excellent case study to improve some prac-
tical limitations of current tabling execution models. In particular, we next focus
on the table space and how to efficiently handle incomplete and complete tables.

Tabling is about storing answers for subgoals so that they can be reused when
a repeated call appears. On the other hand, most ILP algorithms are interested
in example satisfiability, not in the answers: query evaluation stops as soon as
an answer is found. This is usually implemented by pruning at the Prolog level.
Unfortunately, pruning over tabled computations results in incomplete tables : we
may have found several answers but not the complete set. Thus, usually, when
a repeated call appears we cannot simply trust the answers from an incomplete
table because we may loose part of the computation. The simplest approach,
and the one that has been implemented in most tabling systems, is to throw
away incomplete tables, and restart the evaluation from scratch.

In this work, we propose a more aggressive approach where, by default, we
keep incomplete tables around. Whenever a call for an incomplete table appears,
we first consume the answers from the table. If the table is exhausted, then we
will restart the evaluation from the beginning. Later, if the subgoal is pruned
again, then the same process is repeated until eventually the subgoal is com-
pletely evaluated. The main goal of this proposal is to avoid re-computation
when the already stored answers are enough to evaluate a repeated call. This
idea is closer to the spirit of the just enough tabling (JET) proposal of Sagonas
and Stuckey [3]. Our approach works well in the ILP setting, where queries are
often very similar, and thus already stored answers are enough to evaluate a

⋆ This work has been partially supported by Myddas (POSC/EIA/59154/2004) and
by funds granted to LIACC through the Programa de Financiamento Plurianual,
Fundação para a Ciência e Tecnologia and Programa POSC. We are very thankful
to Nuno Fonseca for his support with the April ILP System.



repeated call. When this is not the case, we may not benefit from having kept
an incomplete table, but we do not pay any cost either.

On the other hand, complete tables can also be a problem. When we use
tabling for applications that build very many queries or that store a huge number
of answers, we can build arbitrarily very many or very large tables, quickly
running out of memory space. In general, we will have no choice but to throw
away some of the tables (ideally, the least likely to be used next). A common
control implemented in most tabling systems is to have a set of tabling primitives
that the programmer can use to dynamically abolish some of the tables. However,
this can be hard to implement and difficult to decide what are the potentially
useless tables that should be deleted.

In order to allow useful deletion without compromising efficiency, we propose
a more suitable approach for large dynamic searches, a memory management
strategy based on a least recently used algorithm, that dynamically recovers space
from the least recently used tables when the system runs out of memory. With
our approach, the programmer can still force the deletion of particular tables,
but can also rely on the effectiveness of the memory management algorithm to
completely avoid the problem of deciding what potentially useless tables should
be deleted.

Both proposals have been implemented in the YapTab tabling system [4] with
minor changes to the original design. To the best of our knowledge, YapTab is the
first tabling system that implements support to handle incomplete and complete
tables as discussed above. Preliminaries results using the April ILP system [5]
showed very substantial performance gains and a substantial increase of the size
of the problems that can be solved by combining ILP with tabling. Despite the
fact that we used ILP as the motivation for this work, our proposals are not
restricted to ILP applications and can be generalised and applied to any other
applications.

References

1. Rocha, R., Fonseca, N., Costa, V.S.: On Applying Tabling to Inductive Logic Pro-
gramming. In: European Conference on Machine Learning. Number 3720 in LNAI,
Springer-Verlag (2005) 707–714

2. Muggleton, S.: Inductive Logic Programming. In: Conference on Algorithmic Learn-
ing Theory, Ohmsma (1990) 43–62

3. Sagonas, K., Stuckey, P.: Just Enough Tabling. In: ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, ACM (2004)
78–89

4. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction. (2000)
77–87

5. Fonseca, N., Camacho, R., Silva, F., Santos Costa, V.: Induction with April: A Pre-
liminary Report. Technical Report DCC-2003-02, Department of Computer Science,
University of Porto (2003)


