
On Applying Program Transformation to

Implement Suspension-Based Tabling in Prolog
(Extended Abstract)

Ricardo Rocha, Cláudio Silva, and Ricardo Lopes⋆

DCC-FC & LIACC
University of Porto, Portugal

ricroc@ncc.up.pt ccaldas@dcc.online.pt rslopes@ncc.up.pt

Tabling is a technique of resolution that overcomes some limitations of tradi-
tional Prolog systems in dealing with redundant sub-computations and recursion.
We can distinguish two main categories of tabling mechanisms: suspension-based

tabling mechanisms and linear tabling mechanisms. Suspension-based tabling
mechanisms need to preserve the state of suspended tabled subgoals in order to
ensure that all answers are correctly computed. A tabled evaluation can be seen
as a sequence of sub-computations that suspend and later resume. On the other
hand, linear tabling mechanisms use iterative computations of tabled subgoals
to compute fix-points. The main idea of linear tabling is to maintain a single
execution tree where tabled subgoals always extend the current computation
without requiring suspension and resumption of sub-computations.

A common approach used to include tabling support into existing Prolog
systems is to modify and extend the low-level engine. Although this approach is
ideal for run-time efficiency, it is not easily portable to other Prolog systems as
engine level modifications are rather complex and time consuming and require
changing important components of the system such as the compiler, the code
generator, and the data structures that support Prolog execution. A different
approach to incorporate tabled evaluation into existing Prolog systems is to ap-
ply source level transformations to a tabled program. The transformed program
then uses external tabling primitives that provide direct control over the search
strategy to implement tabled evaluation. This idea was first explored by Fan and
Dietrich [1] that implemented a form of linear tabling using source level program
transformation and tabling primitives implemented as Prolog built-ins.

In this work, we present a suspension-based tabling mechanism based on
program transformation, but we use the C language interface, available in most
Prolog systems, to implement the tabling primitives. In particular, we use the
C interface of the Yap Prolog system to build external Prolog modules imple-
menting the support for tabled evaluation. We can distinguish two main modules
in our implementation: the module that implements the specific control primi-
tives and the module that implements the table space data structures. The table
space was implemented using tries [2]. To implement our mechanism, that we

⋆ This work has been partially supported by Myddas (POSC/EIA/59154/2004) and
by funds granted to LIACC through the Programa de Financiamento Plurianual,
Fundação para a Ciência e Tecnologia and Programa POSC.



named tabled evaluation with continuation calls, we followed a local scheduling

strategy [3]. Suspension is implemented by leaving a continuation call for the
current computation in the table entry corresponding to the variant call be-
ing suspended. During this process and as further new answers are found, they
are stored in their tables and returned to all variant calls by calling the previ-
ously stored continuation calls. To implement the program transformation step,
we have extended the original program transformation module of Ramesh and
Chen [4] to include the tabling primitives for our approach.

To evaluate the impact of our approach, we ran it against the state-of-the-art
YapTab system, that implements tabling support at the low-level engine. YapTab
also implements a suspension-based mechanism, uses tries to implement the table
space and is implemented on top of Yap. This was thus a first and fair compari-
son between the approach of supporting tabling at the low-level engine and the
approach of supporting tabling by applying source level transformations coupled
with tabling primitives. As expected, YapTab outperformed our mechanism in
all programs tested. On average, YapTab was about 7.50 faster than the contin-
uation calls mechanism. Best performance was achieved for left recursive tabled
predicates with the recursive clause first, with an average overhead between 2
and 3. The results obtained also suggested that there is a cost in the execution
time that is proportional to the number of redundant answers, variant calls and
continuation calls executed during an evaluation. In particular, the number of
continuation calls seems to be the most relevant factor that contributes to this
cost because continuation calls are not compiled, they are constructed and called
in run-time using the C language interface.

Considering that Yap and YapTab are respectively two of the fastest Prolog
and tabling engines currently available, the results obtained are very interesting
and very promising. We thus argue that our approach is a good alternative to
incorporate tabling into any Prolog system. It requires neither advanced knowl-
edge of the implementation details of tabling nor time consuming or complex
modifications to the low-level engine. Moreover, both source level transforma-
tions and tabling primitives can be easily ported to other Prolog systems with
a C language interface. Currently, we are already working with the Ciao group
to include our implementation as a module of the Ciao Prolog system.

References

1. Fan, C., Dietrich, S.: Extension Table Built-Ins for Prolog. Software Practice and
Experience 22 (1992) 573–597

2. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38 (1999)
31–54

3. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic
Programs through Alternative Scheduling Strategies. In: International Symposium
on Programming Language Implementation and Logic Programming. Number 1140
in LNCS, Springer-Verlag (1996) 243–258

4. Ramesh, R., Chen, W.: Implementation of Tabled Evaluation with Delaying in
Prolog. IEEE Transactions on Knowledge and Data Engineering 9 (1997) 559–574


