
ILP: Compute Once, Reuse Often ⋆

Nuno A. Fonseca1, Ricardo Rocha2, Rui Camacho3, and Vı́tor Santos Costa2

1 Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
nf@ibmc.up.pt

2 DCC-FC, Universidade do Porto, Portugal
{ricroc,vsc}@ncc.up.pt

3 Faculdade de Engenharia & LIAAD, Universidade do Porto, Portugal
rcamacho@fe.up.pt

Abstract. Inductive Logic Programming (ILP) is a powerful and well-
developed abstraction for multi-relational data mining techniques. How-
ever, ILP systems are not particularly fast, most of their execution time
is spent evaluating the hypotheses they construct. The evaluation time
needed to assess the quality of each hypothesis depends mainly on the
number of examples and the theorem proving effort required to determine
if an example is entailed by the hypothesis. We propose a technique that
reduces the theorem proving effort to a bare minimum and stores valuable
information to compute the number of examples entailed by each hypoth-
esis (using a tree data structure). The information is computed only once
(pre-compiled) per example. Evaluation of hypotheses requires only basic
and efficient operations on trees. This proposal avoids re-computation of
hypothesis’ value in theory-level search and cross-validation algorithms,
whenever the same data set is used with different parameters. In an
empirical evaluation the technique yielded considerable speedups.

Keywords: Mode Directed Inverse Entailment, Efficiency, Data Structures,
Compilation

1 Introduction

Several multi-relational data mining approaches have been proposed, such as
tree-mining, graph-mining, or cross-relational mining [11]. One powerful and
well-developed abstraction for multi-relational data mining techniques is Induc-
tive Logic Programming (ILP) [1,2]. ILP has been successfully applied to prob-
lems in several application domains [4]. Nevertheless, improvements in efficiency
and scalability are necessary to successfully tackle applications that learn from
large data-sets and/or generate large hypothesis spaces.

⋆ This work has been partially supported by Myddas (POSC/EIA/59154/2004) and
by funds from the Programa Operacional “Ciência, Tecnologia, Inovação” (POCTI)
e do Programa Operacional “Sociedade da Informação” (POSI) do Quadro Co-
munitário de Apoio III (2000-2006). Nuno A. Fonseca is funded by FCT grant
SFRH/BPD/26737/2005.

Research in improving the efficiency of ILP systems has focused on reducing
their sequential execution time, either by reducing the number of hypotheses
generated (see, e.g., [5,6]), or by efficiently testing candidate hypotheses (see,
e.g., [7,8,9]). Another line of research, recommended by Page [10] and pursued
by several researchers is the parallelization of ILP systems[17].

It is well known that an ILP system generates many candidate hypotheses
which have many similarities among them. Usually, these similarities tend to
correspond to common prefixes among the hypotheses. Blockeel et al. [7] defined
query-packs as a technique to exploit this pattern and improve the execution time
of ILP systems. Inspired by their work, we focus on how to reduce the amount of
theorem proving to a minimum. As a first step, in a previous work [3], we argued
that in MDIE [16] based systems the ILP search process can be efficiently coded
by considering the set of all clauses that can be generated from the bottom
clause. This led to an algorithm where a prefix-tree is used to represent all
clauses that can be generated during the search (much in the way of query
packs). But, instead of actually evaluating these clauses, we estimate coverage
by counting the number of bottom-clauses that generated those clauses. Initial
results showed that such an approach can indeed improve performance over
standard ILP search.

The above work uses a single tree to represent the whole search space. In
this work, we go one step further by proposing a novel two step approach to
MDIE-based ILP where:

1. A pre-compilation step defines the search space by generating a set of clauses
per example (where a tree can be used to encode the set of clauses).

2. A search step implements a search using algorithms constructed from an
algebra of set operations implemented over these sets of clauses.

Our original motivation was the observation that the same set of clauses is gen-
erated from the same example at different computation steps (i.e., at different
steps of theory construction or when performing cross-validation). Hence, com-
puting the set of clauses for each example a single time, before execution, could
significantly improve performance. Indeed, experimental results do show a large
reduction in execution time. Moreover, we believe that our approach also pro-
vides a novel, and very modular, framework for ILP algorithm design, where the
search can be easily encoded using set operations.

The remainder of the paper is organised as follows. In Section 2 we provide
a brief introduction to ILP and MDIE. Section 3 introduces the reader to the
rationale of seeing the examples as set of clauses and in Section 4 we present
a first algorithm that exploits this idea. Next, in Section 5, we describe the
proposed two step algorithm (T−once MDIE). In Section 6 some implementation
details are discussed. In Section 7 we present an empirical evaluation of the
impact in execution time and accuracy of our algorithm. Finally, in Section 8 we
discuss our work and draw conclusions.

2 Background

The predictive ILP problem can be defined as follows. Let E+ be the set of
positive examples, E− the set of negative examples, E = E+ ∪ E−, and B the
prior knowledge (background knowledge). In general, B and E can be arbitrary
logic programs. The aim of an ILP system is to find a hypothesis (also referred
to as a theory) H , in the form of a logic program, such that B ∧ E− ∧H 2 �

(Consistency) and B ∧ H � E+ (Completeness), assuming that B 2 E+ and
B ∧E−

2 �.
Mode-Directed Inverse Entailment (MDIE) [16] uses inverse entailment to-

gether with mode restrictions as the basis to perform induction. The key idea
in MDIE is to find all literals that could be used in hypotheses that explain the
example. This is achieved through the construction of the bottom-clause, that
can be considered as the set of all such literals.

Construction of the bottom-clause ⊥e often proceeds as a standard fixed-
point calculation algorithm. Starting from the example e, and using the mode
declarations, we scan the mode language for all possible clauses of the form
e ← l1. We collect all answers for l1 as a set L1 = ∪il1i \ L0, where L0 = {e}.
Next we generate the set L2 with all clauses of the form l1 ← l2, where l1 ∈ L1.
We keep repeating the process until reaching a fixed point (which may be the
whole data-base) or reaching some user-defined constraint. Therefore, the bottom
clause ⊥e can be seen as ∪jLj . Most ILP systems use the bottom clause in order
to bound (anchor) the search space lattice. Therefore, most applications try to
have relatively small bottom-clauses, as otherwise the search space is as big as
if one just enumerates clauses.

3 Examples as Set of Clauses

MDIE-based systems use bottom-clauses to generate sets of clauses. Given a
bottom-clause ⊥e, the refinement operator generates clauses from ⊥e that will
cover at least the example e. Let us call this set S. The clauses in S share e, so we
can say that e forms S. Note that, in general, S will be arbitrarily large, and we
will need to impose some further restrictions, such as clause length restrictions.
Moreover, note that even if complete, S does not correspond to all clauses that
cover e. Indeed, it is well known that the bottom-clause is not complete: we can
generate clauses that cover an example e which cannot be refined from ⊥e [19].

Still, it is interesting to try to understand the meaning of S. An important
question in this regard is: if a clause c generated for example e covers example
x, will c or, to be more precise, a variant of c, be in x’s bottom clause, ⊥x? We
would expect this to be true for ground clauses. Indeed, if this was not the case
there must be at least a ground clause h← g1, . . . , gi−1, gi not refined from ⊥x,
such that h← g1, . . . , gi−1 can be refined from ⊥x. Moreover, gi must be in ⊥e

but not in ⊥x. On the other hand, if gi was in h ← g1, . . . , gi−1, gi it can be
reached from h, g1, . . . , gi−1, so it must also be in ⊥x.

Consider, for example, the following bottom-clause for an example e:

⊥e = l(A)← h c(A, B), h c(A, C), d(B), o c(B), f(C).

and the following clause c:

c = l(A)← h c(A, B), h c(A, C), d(C), o c(B).

Careful examination shows that ⊥e is entailed by clause c. On the other
hand, the closest clause c′ that can be generated from the bottom-clause is:

c′ = l(A)← h c(A, B), h c(A, C), d(B), o c(B).

Although c′ = cθ, c′ is a more specific version of the original clause, it is not
a variant. In this case, we cannot find a variant, even though the example indeed
covers the clause.

This suggests the following approach: given an example e construct the corre-
sponding bottom clause ⊥e and generate a set S with all legal clauses c such that
c θ-subsumes ⊥e. Next, given a set of examples {e+

1 , e+

2 , . . . , e+
n , e−1 , e−2 , . . . , e−m}

construct the corresponding sets of clauses {S+
1 ,S+

2 , . . . ,S+
n ,S−1 ,S−2 , . . . ,S−m}:

finding the best clauses should be just a question of searching for clauses that
appear in most S+

i and not in S−i . More precisely, if we allow no noise, then we
would like to find the clause with the largest coverage from ∪iS

+

i \ ∪j S
−

j .
We are not interested in the examples, but in the set of all clauses of interest,

S (which would to a first approximation be close to ∪iS
+

i). Now, this set may
grow quickly, and therefore needs a compact and fast representation. It makes
sense to represent sets of clauses by structures optimised for quick access and
sharing, such as the tries discussed in Section 6.

4 T-MDIE

Assuming that the above representation works, one approach to estimate the
coverage of all clauses is: walk over all examples and generate all clauses sub-
suming the bottom-clause such that for each clause c generated from an example
e ∈ E:

– If c ∈ S, somehow state that c covers e.
– If c 6∈ S, add c to S and state that c covers e.

This basic algorithm can be optimised if we visit positive examples first, and
assume we do not care about clauses that only cover negative examples:

– If the example e ∈ E+ and c ∈ S, state that c covers one more positive
example.

– If the example e ∈ E+ and c 6∈ S, add c to S and state that c covers one
positive example.

– If the example e ∈ E− and c ∈ S, state that c covers one more negative
example.

– If the example e ∈ E− and c 6∈ S, do nothing.

We therefore need to define an abstract set that we call decorated set S with
all clauses and their coverage. A decorated set S is a set whose elements are
clauses, and attached to each element are several counters (one counter for each
class of the learning problem). With this abstraction we can easily implement any
theory construction algorithm as shown in Figure 1. The main difference with
systems like Progol or Aleph concerns the inner procedure learn T MDIE().
We next describe how clauses are being learned in the T-MDIE approach [3].

generalise T MDIE(B, E+, E−, C):
Given: background knowledge B, finite training set E = E+ ∪ E−, constraints C.
Return: a hypothesis H that explains E and satisfies C.

1. H = ∅
2. while E+ 6= ∅ do
3. h = learn T MDIE(B, E+, E−, C)
4. E+ = E+ \ covered(h)
5. H = H ∪ h
6. B = B ∪ h
7. endwhile
8. return H

Fig. 1. The greedy cover algorithm of a MDIE system implementation.

The T-MDIE algorithm has two basic stages (see Figure 2). First a deco-
rated set S is constructed (lines 1 to 9) and then the best clause (according to
some metric) is found by inspection of the set (line 10). The decorated set S is
constructed as described above. First, all positive examples are processed and
then a pruning procedure, prune(), is invoked to remove useless clauses from
S (e.g., clauses with positive coverage lower than some predefined minimum
number of positive examples). Next, all negative examples are also processed
and then the set is pruned again. While processing the negative examples, the
negative counters of the clauses in S are updated whenever a negative example
generates a matching clause. This means that the clauses generated from the
negative examples that are not in S are discarded.

learn T MDIE(B, E+, E−, C):
Given: background knowledge B, finite training set E = E+ ∪ E−, constraints C.
Return: the best hypothesis that explains some of the E+ and satisfies C.

1. S = ∅
2. foreach e ∈ E+ do
3. fillSet(S , B, e, C)
4. endforeach
5. S = prune(S ,C)
6. foreach e ∈ E− do
7. fillSet(S , B, e, C)
8. endforeach
9. S = prune(S ,C)
10. return bestClauseInTree(S ,C)

Fig. 2. The learning algorithm of T − MDIE.

The set S is filled in three main steps (see Figure 3): i) for each example we
generate a bottom clause (line 2); ii) using the bottom clause we generate all
valid clauses4 (line 4), normalise them (line 5), and insert them in the set (line 6).
Normalisation orders the literals according to the Prolog “@ <” order relation.
We generate all renaming of existential variables to check if a variant already
exists in the tree, therefore guaranteeing a unique representation for each clause.
The insertUpdateInSet() procedure works as follows. If the example class is
positive the clause is inserted into S and the positive counter updated. If the
class is negative, only the negative counter of the clause is updated (the clause
is not added to S, only the coverage is updated).

fillSet(S , B, e, C):
Given: decorated set S , background knowledge B, example e, constraints C.

1. class = getExampleClass(e)
2. bottom = saturate(e,B, C)
3. do
4. clause = findNewV alidClause(bottom,C)
5. clause = normalise(clause)
6. insertUpdateInSet(clause,S , class)
7. while clause ! = ∅

Fig. 3. From an example to a set of clauses.

The algorithm is shown to be complete when compared to the traditional ap-
proach of computing the coverage (PROLOG resolution). Therefore, the cover-
age calculated for a clause by the algorithm should be interpreted as an estimate
since it may not be the exact (correct) value.

5 T-once MDIE

The construction of the set S requires saturating all the examples (both positives
and negatives). Often, one may want to perform repeated runs on the same ex-
amples. For instance, one may want to experiment with different parameters, or
one may be performing cross-validation. Next, we show how repeated saturation
and clause generation can be avoided by decoupling the generation of S from its
usage. The process is divided into two steps: a compilation step, where a Se is
generated for each example e and stored on disk. The stored Se are loaded at
runtime, therefore avoiding the saturation and generation of clauses.

Our algorithm works as follows. At compilation time, we construct a set of
clauses per example; more precisely, we represent the saturated clause for each
example e as a separate Se as depicted in the algorithm presented in Figure 4. At
learning time, we obtain clause coverage information through an algebra of basic
operations, such as union or subtraction, on decorated sets. As an example, search
for the best clause can be described as a search in the decorated set obtained
from the union of all Se. Next, we show in more detail how such approach can

4 Clauses satisfying the language and bias constraints.

be used to implement greedy coverage in a MDIE-based ILP system. It should
be clear that similar operations can be used to implement other ILP algorithms.

compileAnswerSet(B,E, C):
Given: background knowledge B, finite training set E = E+ ∪ E−, constraints C.

1. foreach e ∈ E do
2. class = getExampleClass(e)
3. bottom = saturate(e,B, C)
4. Se = ∅
5. do
6. clause = findNewV alidClause(bottom,C)
7. clause = normalise(clause)
8. Se = insertInSet(clause,S , class)
9. while clause ! = ∅
10. saveSet2File(Se, e, C)
11. endforeach

Fig. 4. Compilation of examples procedure.

Figure 5 shows one approach to implement a MDIE-based algorithm (such
as the default algorithms in Progol [16] and Aleph [12]) using the decorated sets.
Like the algorithm presented in the previous section, the learn T−once MDIE()
algorithm has two main stages: first, it generates a S by loading the compiled
decorated sets and merging them using a joinAdd() procedure; then the best
clause is recursively selected using greedy cover removal.

learn T − once MDIE(E,C):
Given: finite training set E = E+ ∪ E−, constraints C.
Return: a hypothesis H that explains E and satisfies C.

1. S = ∅
2. foreach e ∈ E+ do
3 Se = loadSetFromFile(e,C)
4. S = joinAdd(S ,Se)
5. endforeach
6. S = prune(S ,C)
8. H = ∅
9. while E+ 6= ∅ do
10. h = bestClauseInTree(S ,C)
11. E+ = E+ \ covered(h)
12. H = H ∪ h
13. S = subtract(S ,{Se| e ∈ covered(h) and e ∈ E+})
14. endwhile
15. return H

Fig. 5. The greedy cover algorithm of a MDIE system implementation with pre-
compilation.

6 Implementation Issues

Our algorithms depend on the ability to implement efficiently operations such as
union and subtraction of sets. Furthermore, we need a data structure to store the

decorated sets (clauses and respective coverages). To do so efficiently, we used
tries [14]. A trie is a tree structure where each different path through the trie
data units, the trie nodes, corresponds to a term (clause). An essential property
of the trie data structure is that common prefixes are represented only once. This
naturally applies to ILP since the hypothesis space is structured as a lattice and
hypotheses close to one another in the lattice have common prefixes (literals).

Using Tries to Represent Hypotheses In order to maximise the number of
common trie nodes when storing clauses in a trie, we used Prolog lists to rep-
resent the clauses. A clause of the form Head : −Body1, ...,Bodyn is stored in the
trie structure as an unique path corresponding to the list [Head ,Body1, ...,Bodyn].
Such a path always starts at the root node in the trie, follows a sequence of trie
nodes and terminates at a leaf data structure, the ilp frame data structure, that
we used to extend the original trie structure to store associated information with
the clause, namely information concerning the number of positive and negative
examples covered by the clause. Figure 6 presents an example of a trie storing
three clauses.

An important point when using tries to represent terms is the treatment of
variables. We follow the formalism proposed by Bachmair et al. [15], where each
variable in a term is represented as a distinct constant. Formally, this corresponds
to a function, numbervar(), from the set of variables in a term t to the sequence
of constants VAR0, ...,VARN , such that numbervar(X) < numbervar(Y) if X is
encountered before Y in the left-to-right traversal of t. For example, in the term
[eastbound(T), has car(T, C), long(C)], numbervar(T) and numbervar(C) are
respectively VAR0 and VAR1.

LIST

root node

has_car/2

VAR0

VAR1

long/1

VAR1

END_LIST

ilp frame

eastbound/1

VAR0

closed/1

VAR1

short/1

VAR1

END_LIST

ilp frame

LIST

root node

has_car/2

VAR0

VAR1

long/1

VAR1

END_LIST

ilp frame

eastbound/1

VAR0

closed/1

VAR1

short/1

VAR1

END_LIST

ilp frame

long/1

VAR1

END_LIST

ilp frame

LIST

root node

has_car/2

VAR0

VAR1

long/1

VAR1

END_LIST

ilp frame

eastbound/1

VAR0

(a) (b) (c)

Fig. 6. Using tries to represent:
(a) C = eastbound(T) :- has car(T,C), long(C).
(b) C and D = eastbound(T) :- has car(T,C), closed(C), short(C).
(c) C, D and E = eastbound(T) :- has car(T,C), closed(C), long(C).

Basic Trie Operations In the proposed T-once algorithm, an decorated set
is constructed once and for each example. Therefore, since tries are used to
represent the decorated sets we need to be able to perform some basic trie
operations such as the union and subtraction of tries. The trie-joinAdd() and
trie-subtract() procedures implement these operations. Given two tries, A and
B, the trie-joinAdd(A,B) procedure returns a trie R representing the union of
both tries, that is, if a term t ∈ A or t ∈ B then t ∈ R and ilp frame(tR) =
ilp frame(tA) + ilp frame(tB), where ilp frame(t) represents the information
concerning the number of positive and negative examples covered by t.

The trie-subtract(A,B) procedure returns a trie R equivalent to A but with
the information concerning the number of positive and negative examples covered
by the terms in B subtracted from the terms in A. More formally, if a term
t ∈ A then t ∈ R and ilp frame(tR) = ilp frame(tA) − ilp frame(tB). Terms
represented in B but not in A are ignored.

Searching through a chain of sibling trie nodes that represent alternative
paths is done sequentially. When the chain becomes larger than a threshold value
(8 in our implementation), we dynamically index the nodes through a hash table
to provide direct node access and therefore optimise the search. Further hash
collisions are reduced by dynamically expanding the hash tables. Hence, if the
total number of trie nodes in tries A and B is respectively NA and NB, then the
time complexity of the trie-joinAdd(A,B) and trie-subtract(A,B) procedures is
O(NA + NB).

7 Experiments and Results

The goal of the experiments was to evaluate the impact of the proposed approach
on the execution time and quality of the models when dealing with real applica-
tion problems. We implemented the two algorithms in the April ILP system [13].
For each data set the system was executed with the following configurations:
standard MDIE implementation using a deterministic top-down breadth-first
search (DTD-BF), T −MDIE, and T − once.

7.1 Experimental Settings

The experiments were performed on an AMD Athlon(tm) MP 2000+ dual-
processor PC with 2 GB of memory, running Linux (kernel 2.6.12) Fedora. The
data sets used were downloaded from the Machine Learning repositories at the
Universities of Oxford5 and York6. Table 1 characterises the data sets in terms
of number of positive and negative examples as well as background knowledge
size (number of relations used). The total number of examples ranges from 205
in the Mutagenesis data set up to 1762 in the Pyrimidines data set.

5 http://www.comlab.ox.ac.uk/oucl/groups/machlearn/
6 http://www.cs.york.ac.uk/mlg/index.html

Data set | E+ | | E− | | B |
Carcinogenesis 202 174 44
Mutagenesis 136 69 21
Pyrimidines 881 881 244

Table 1. Data sets. | E+ | is the number of positive examples, | E− | is the number of
positive examples, and | B | is the number of relations in the background knowledge.

The search was constrained to clauses with 3 literals (maximum) in the body.
The clause length was constrained due to the time taken by the DTD-BF algo-
rithm. In practice we tested T − once algorithm on some datasets with a clause
length up to 5 literals in the body. We performed a 10-fold cross validation to
evaluate the training time and accuracy.

7.2 Results and Discussion

Naturally, T − once MDIE execution time requires some time to compile the
examples. Table 2 presents the compilation (pre-processing) time, in seconds,
taken for each data set, the average number of clauses compiled (refined), and the
average file size of each compiled example (in kbytes). Cleary, the compilation
is not a particularly fast process and further improvements should be made.
Nevertheless, compilation is performed only once, as long as saturation-related
settings are not changed or the clause length used is not increased. Therefore,
in subsequent runs where other parameters (e.g., as noise) are changed there is
no need to recompile the examples.

Data set Time (sec) Clauses Size

Carcinogenesis 2,840 19,351 k 920 kb
Mutagenesis 6,054 12,659 k 301 kb
Pyrimidines 1,451 2,079 k 33 kb

Table 2. Compilation (pre-processing) time, average number of clauses compiled by
example (in thousands), and average file size (in kbytes) of each compiled example.

Table 3 compares the execution times of DTD−BF , T−MDIE, and T−once

algorithms. The values presented are the average of a 10-fold cross validation and
the sum of the execution times (within brackets). The results show that once
the examples are compiled, T −once is several times faster than T −MDIE and
DTD−BF in all datasets. However, if we take into account the compilation time
then the best approach, for the 10-fold runs, is clearly T−MDIE. Naturally, the
gains of using T − once increase with the number of runs performed. Therefore,
it is well suited for cross-validation and for performing parameter tuning.

Finally, Table 4 presents the average accuracy for the two approaches. It
shows that in spite of the coverage computed to be an estimate, the improvements
in performance are not obtained at a cost of the quality of the models generated.

Data Set DTD − BF T − MDIE T − once

Carcinogenesis 617 (6,170) 59 (590) 14 (2,980)
Mutagenesis 2,487 (24,870) 43 (430) 34 (6,394)
Pyrimidines 570 (5,700) 89 (890) 20 (1,651)

Table 3. Average execution time (in seconds) and cross-validation total execution
time (within brackets). The total execution time of T − once algorithm includes the
compilation time.

Data set DTD − BF T − MDIE Diff

Carcinogenesis 50 (3) 58 (9) +8
Mutagenesis 75 (11) 74 (9) -1
Pyrimidines 83 (3) 80 (1) -3

Table 4. Average accuracy (standard deviation within brackets)

8 Conclusions

We have presented a novel approach to the execution of MDIE algorithms. Our
approach proceeds in two steps. In the first step we compile each example as a set
of clauses. In the second step we implement ILP search as a set of operations over
these sets of clauses. Since such operations can be implemented very efficiently,
our approach can generate major speedups over traditional ILP execution.

The reuse of the initial computation of the pre-compilation step pays-off
whenever there is a large amount of repetition in clause evaluation. That hap-
pens when the induced theory has several clauses. In this case, after each itera-
tion the covered examples are removed and we only need to perform subtraction
operations between the sets of clauses, an operation that can be efficiently im-
plemented using tries. The technique also pays-off when using cross-validation.

A further advantage of the approach is that it can be easily parallelisable,
as the first step runs independently for every example. Moreover, we believe
that our approach is a step forward in facilitating experimentation with different
parameters, and namely in using internal cross-validation for parameter selection
in ILP. On the other hand, the approach applies to MDIE-based algorithms only,
and it needs further investigation when exploring longer clauses or in data sets
with large numbers of examples (some techniques from [20] may help in that
direction).

Last, an interesting insight from our approach is that we can abstract the
ILP search procedure as a process of tree-mining over the trees representing
individual examples. We believe that this suggests new and exciting directions
for future research in this area.

References

1. S. Muggleton. Inductive logic programming. In Proceedings of the 1st Conference
on Algorithmic Learning Theory, pages 43–62. Ohmsma, Tokyo, Japan, 1990.

2. S. Muggleton. Inductive logic programming. New Generation Computing, 8(4):295–
317, 1991.

3. R. Camacho, N. A. Fonseca, R. Rocha and V. S. Costa. ILP :- Just Trie It. 17th
International Conference on Inductive Logic Programming, 2007.

4. Ilp applications. http://www.cs.bris.ac.uk/ ILPnet2/Applications/.
5. C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend. Declarative

bias in ILP. In L. De Raedt, editor, Advances in Inductive Logic Programming,
pages 82–103. IOS Press, 1996.

6. Rui Camacho. Improving the efficiency of ilp systems using an incremental lan-
guage level search. In Annual Machine Learning Conference of Belgium and the
Netherlands, 2002.

7. Hendrik Blockeel, Luc Dehaspe, Bart Demoen, Gerda Janssens, Jan Ramon, and
Henk Vandecasteele. Improving the efficiency of Inductive Logic Programming
through the use of query packs. Journal of Artificial Intelligence Research, 16:135–
166, 2002.

8. Vı́tor Santos Costa, Ashwin Srinivasan, and Rui Camacho. A note on two simple
transformations for improving the efficiency of an ILP system. LNCS, 1866, 2000.

9. Vı́tor Santos Costa, Ashwin Srinivasan, Rui Camacho, Hendrik, and Wim Van
Laer. Query transformations for improving the efficiency of ilp systems. Journal
of Machine Learning Research, 2002.

10. David Page. ILP: Just do it. In J. Cussens and A. Frisch, editors, Proceedings of
the 10th International Conference on Inductive Logic Programming, volume 1866
of LNAI, pages 3–18. Springer-Verlag, 2000.

11. Jiawei Han and Micheline Kimber. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

12. Aleph. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.
13. Nuno A. Fonseca, Fernando Silva, and Rui Camacho. April - An Inductive Logic

Programming System. In Proceedings of the 10th European Conference on Logics
in Artificial Intelligence (JELIA06), volume 4160 of LNAI, pages 481–484, 2006.
Springer-Verlag.

14. E. Fredkin. Trie Memory. Communications of the ACM, 3:490–499, 1962.
15. L. Bachmair, T. Chen, and I. V. Ramakrishnan. Associative-Commutative Dis-

crimination Nets. In Proceedings of the 4th International Joint Conference on
Theory and Practice of Software Development, number 668 in LNCS, pages 61–74,
1993. Springer-Verlag.

16. S. Muggleton, Inverse Entailment and Progol, New Generation Computing, Special
issue on Inductive Logic Programming. 245-286, vol 13, N. 3-4, 1995.

17. Nuno A. Fonseca and Fernando Silva and Rui Camacho, Strategies to Parallelize
ILP Systems, Proceedings of the 15th International Conference on Inductive Logic
Programming (ILP 2005), LNAI, vol 3625, pp 136–153, 2005.

18. Nuno A. Fonseca and Ricardo Rocha and Rui Camacho and Fernando Silva Effi-
cient Data Structures for Inductive Logic Programming, Proceedings of the 13th
International Conference on Inductive Logic Programming LNAI vol 2835, pp
130–145, 2003.

19. Akihiro Yamamoto W hich Hypotheses Can Be Found with Inverse Entailment?
ILP ’97: Proceedings of the 7th International Workshop on Inductive Logic Pro-
gramming, pp 296–308, 1997.

20. Hendrik Blockeel and Luc De Raedt and Nico Jacobs and Bart Demoen, Scaling
Up Inductive Logic Programming by Learning from Interpretations, Data Mining
and Knowledge Discovery, vol. 3, N. 1, pp 59-93, 1999.

