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Abstract. Resolution strategies based on tabling are considered to be
particularly effective in Logic Programming. Unfortunately, when faced
with applications that store large and/or many answers, memory ex-
haustion is a potential problem. A common approach to recover space is
table deletion. In this work, we propose a different approach, storing ta-
bles externally in a relational database. Subsequent calls to stored tables
import answers from the database, rather than performing a complete
re-computation. To validate this approach, we have extended the YapTab
tabling system, providing engine support for exporting and importing ta-
bles to and from the MySQL RDBMS. Two different relational schemes
for data storage and two data-set retrieval strategies are compared.

1 Introduction

Tabling is an implementation technique where intermediate answers for subgoals
are stored and then reused when a repeated call appears. Resolution strategies
based on tabling [1, 2] have proved to be particularly effective in logic programs,
reducing the search space, avoiding looping and enhancing the termination prop-
erties of Prolog models based on SLD resolution [3].

The performance of tabling largely depends on the implementation of the
table itself; being called upon often, fast look up and insertion capabilities are
mandatory. Applications can make millions of different calls, hence compact-
ness is also required. Arguably, the most successful data structure for tabling is
tries [4]. Tries are trees in which there is one node for every common prefix [5].
Tries meet the previously enumerated criteria of compactness and efficiency quite
well. The YapTab tabling system [6] uses tries to implement tables.

Used in applications that pose many queries, possibly with a large number of
answers, tabling can build arbitrarily many and very large tables, quickly filling
up memory. In general, there is no choice but to throw away some of the tables,
ideally, the least likely to be used next. The common control mechanism imple-
mented in most tabling systems is to have a set of tabling primitives that the
programmer can use to dynamically abolish some of the tables. A more recent
proposal has been implemented in YapTab, where a memory management strat-
egy, based on a least recently used algorithm, automatically recovers space from
the least recently used tables when memory runs out [7]. With this approach,
the programmer can still force the deletion of particular tables, but can also



transfer to the memory management algorithm the decision of what potentially
useless tables to delete. Note that, in both situations, the loss of stored answers
within the deleted tables is unavoidable, eventually leading to re-computation.

In this work, we propose an alternative approach and instead of deleting ta-
bles, we store them using a relational database management system (RDBMS).
Later, when a repeated call appears, we load the answers from the database,
hence avoiding re-computation. With this approach, the YapTab’s memory man-
agement algorithm can still be used, this time to decide what tables to move to
the database when memory runs out, rather than what tables to delete. To vali-
date this approach we propose DBTAB, a relational model for representing and
storing tables externally in tabled logic programs. In particular, we use YapTab
as the tabling system and MySQL [8] as the RDBMS. The initial implementation
of DBTAB handles only atomic terms such as atoms and numbers.

The remainder of the paper is organised as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we introduce
our model and discuss how tables can be represented in a RDBMS. We then
describe how we extended YapTab to provide engine support to handle database
stored answers. Finally, we present initial results and outline some conclusions.

2 The Table Space

Tabled programs are evaluated by storing all computed answers for current sub-
goals in a proper data space, the table space. Whenever a subgoal S is called
for the first time, a matching entry is allocated in the table space, under which
all computed answers for the call are stored. Variant calls to S are resolved by
consumption of these previously stored answers. Meanwhile, as new answers are
generated, they are inserted into the table and returned to all variant subgoals.
When all possible resolutions are performed, S is said to be completely evaluated.

The table space can be accessed in a number of ways: (i) to look up if a
subgoal is in the table, and if not insert it; (ii) to verify whether a newly found
answer is already in the table, and if not insert it; and, (iii) to load answers to
variant subgoals.

For performance purposes, tables are implemented using two levels of tries,
one for subgoal calls, other for computed answers. In both levels, stored terms
with common prefixes branch off each other at the first distinguishing symbol.
The table space is organized in the following way. Each tabled predicate has
a table entry data structure assigned to it, acting as the entry point for the
subgoal trie. Each unique path in this trie represents a different subgoal call,
with the argument terms being stored within the internal nodes. The path ends
when a subgoal frame data structure is reached. When inserting new answers,
substitution terms for the unbound variables in the subgoal call are stored as
unique paths into the answer trie [4].

An example for a tabled predicate f/2 is shown in Fig. 1. Initially, the sub-
goal trie contains only the root node. When the subgoal f(X,a) is called, two
internal nodes are inserted: one for the variable X, and a second for the con-



stant a. Notice that variables are represented as distinct constants, as proposed
by Bachmair et al. [9]. The subgoal frame is inserted as a leaf, waiting for the
answers. Then, the subgoal f(Y, 1) is inserted. It shares one common node with
f(X,a), but the second argument is different, so a new subgoal frame needs to
be created. Next, the answers for f(Y,1) are stored in the answer trie as their
values are computed.

Each internal node is a four
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special markers. This representation particularity is visible in Fig. 1, where the
230 integer is surrounded by a long integer functor (LIF) marker.

When adding answers to the trie, the leaf answer nodes are chained in a
linked list in insertion time order (using the child field), so that recovery may
happen the same way. The subgoal frame internal pointers SgFr first_answer
and SgFr_last_answer point respectively to the first and last answer of this list.
When consuming answers, a variant subgoal only needs to keep a pointer to the
leaf node of its last loaded answer, and consumes more answers just by following
the chain. Answers are loaded by traversing the trie nodes bottom-up.



3 Extending the YapTab Design

The main idea behind DBTAB is straightforward. Every data transaction occurs
in the context of a specific execution session. In that context, a relational table is
assigned to each tabled predicate. The relation’s name encloses the predicate’s
functor and arity, the relation’s attributes equal the predicate’s arguments in
number and name. The dumping of a complete tabled subgoal answer set to the
database is triggered when the respective table is chosen for destruction by the
least recently used algorithm.

Data exchange between the YapTab engine and the RDBMS is mostly done
through MySQL C API for prepared statements. Two major table space data
structures, table entries and subgoal frames, are expanded with new pointers to
PreparedStatement data structures. Table entries are expanded with a pointer
to an INSERT prepared statement. This statement is prepared to insert a full
record at a time into the predicate’s relational table, so that all subgoals hanging
from the same table entry may use the same INSERT statement when storing
their computed answers. Subgoal frames, on the other hand, are expanded with
a pointer to a SELECT prepared statement. This statement is used to speed up the
data retrieval, while reducing the resulting record-set at the same time. Ground
terms in the respective subgoal trie branch are used to refine the statement’s
WHERE clause - the corresponding fields in the relational representation need
not to be selected for retrieval since their values are already known.

3.1 The Relational Storage Model

The choice of an effective representation model for the tables is a hard task to
fulfill. The relational model is expected to quickly store and retrieve answers,
thus minimizing the impact on YapTab’s performance. With this concern in
mind, two different database schemes were developed.
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The tabled predicate f/2 is

mapped into the relational table SESSIONk_F2, where k is the current session id.
Predicate arguments become the ARG? integer fields and the META field is used to
tell apart the three kinds of possible records: a zero value signals an answer trie




branch; a one value signals a full bound subgoal trie branch and a positive value
greater than one signals a subgoal with unbound variables within its arguments.
Notice that with this representation, only short atomic terms can be directly
stored within the corresponding ARG? integer fields. Long atomic terms are stored
in the SESSIONL_LONGINTS and SESSIONk_FLOATS auxiliary tables. Each long
atomic value appears only once and is uniquely identified by the key value stored
in the TERM integer field.

Single Table Schema The multiple table schema TR
. . . B OEIJIVUNK_r&
may require several operations to store a single sub- T
goal answer. For instance, for a subgoal such as f/2 ARG
with two floating-point bindings, five transactions ;:1;;';(;'
may be required if the floating-point values have ARGZ
not been previously stored. To avoid over-heads in H‘;T-RR?
the storage operation, a simpler database schema TA

has been devised (see Fig. 3).

Table SESSIONE_F2’s design now considers the Fig. 3. Single table schema
possibility of storage for long atomic terms. For
that purpose, specifically typed fields are placed after each ARG: argument field.
Regardless of this, each triplet is still considered a single argument for record-set
manipulation purposes, hence a single field may be initialised to a value other
than NULL; the others must remain unset.

3.2 The DBTAB API

The DBTAB’s API, embedded in YapTab, provides a middleware layer between
YAP and MySQL. We next present the developed API functions and briefly
describe their actions.

dbtab_init_session(MYSQL *handle, int sid) uses the database handle to
initialise the session identified by the sid argument.

dbtab kill session(void) kills the currently opened session.

dbtab_init_table(TableEntry tab_ent) initialises the INSERT prepared state-
ment associated with tab_ent and creates the corresponding relational table.

dbtab_free table(TableEntry tab_ent) frees the INSERT prepared statement
associated with tab_ent and drops the corresponding table if no other in-
stance is using it.

dbtab_init_view(SubgoalFrame sg fr) initialises the specific SELECT prepared
statement associated with sg_fr.

dbtab_free view(SubgoalFrame sg fr) frees the SELECT prepared statement
associated with sg_fr.

dbtab_store_answer_trie(SubgoalFrame sg_fr) traverses both the subgoal trie
and the answer trie, executing the INSERT prepared statement placed at the
table entry associated with the subgoal frame passed by argument.

dbtab_fetch_answer_trie(SubgoalFrame sg_fr) starts a data retrieval trans-
action executing the SELECT prepared statement for sg fr.



3.3 Top-Level Predicates

Two new predicates were added and two pre-existing ones were slightly changed
to act as front-ends to the developed API functions. To start a session we must call
the tabling init_session/2 predicate. It takes two arguments, the first being a
database connection handler and the second being a session identifier. This iden-
tifier can be either a free variable or an integer term meaning, respectively, that
a new session is to be initiated or a previously created one is to be reestablished.
These arguments are then passed to the dbtab_init_session() function, which
will return the newly (re)started session identifier. The tabling kill_session/0
terminates the currently open session by calling dbtab kill session().
YapTab’s directive table/1 is used to set up the predicates for tabling. The
DBTAB expanded version of this directive calls the dbtab_init_table() func-
tion for the corresponding table entry data structure. Figure 4 shows, labeled
as (1) and (2), the INSERT statements generated, respectively, to each storage
schema by the dbtab_init_table() function for the call ‘:- table £/2°.

(1) INSERT IGNORE INTO SESSIONk_F2(META,ARG1,ARG2) VALUES (7,7,7);
(2) INSERT IGNORE INTO SESSIONk_F2(META,ARG1,LINT1,FLT1,ARG2,LINT2,FLT2)
VALUES (?,7,7,7,7,7,7);
(3) SELECT F2.ARG1 AS ARG1, L.VALUE AS LINT1 FROM SESSIONk_F2 AS F2
LEFT JOIN SESSIONK_LONGINTS AS L ON (F2.ARG1=L.TERM)
WHERE F2.META=(0 AND F2.ARG2=22;
(4) SELECT DISTINCT ARG1,LINT1 FROM SESSIONk_F2 WHERE META=(0 AND ARG2=22;
(5) SELECT ARG1 FROM SESSIONK_F2 WHERE META>1 AND ARG2=22;

Fig. 4. Prepared statements for f(Y,1)

The abolish table/1 built-in predicate can be used to abolish the tables
for a tabled predicate. The DBTAB expanded version of this predicate calls
the dbtab_free_table() function for the corresponding table entry and the
dbtab_free_view() function for each subgoal frame under this entry.

3.4 Exporting Answers

Whenever the dbtab_store_answer_trie() function is called, a new data trans-
action begins. Given the subgoal frame to store, the function begins to climb
the subgoal trie branch, binding every ground term it finds along the way to the
respective parameter in the INSERT statement. When the root node is reached,
all parameters consisting of variable terms will be left NULL. The attention is
then turned to the answer trie and control proceeds cycling through the terms
stored within the answer trie nodes. The remaining NULL parameters are bound
repeatedly, and the prepared statement is executed for each present branch.
Next, a single record of meta-information is stored. The META field value is
set to a bit field structure that holds the total number of variables in the subgoal
call. The least significant bit is reserved to differentiate answers generated by full



ground subgoal trie branches from answer trie branches. The ARG fields standing
for variable terms present in the subgoal trie branch are bitwise masked with
special markers, that identify each one of the possible types of long terms found
in the answer trie and were meant to be unified with the original variable.
Figure 5 illustrates the final result of the described process using both storage
schemes. When the subgoal trie is first climbed, ARG2 is bound to the integer
term of value 1 (internally represented as 22). All values for ARG1 are then bound
cycling through the leafs of the answer trie. The branch for the integer term of
value 0 (internally represented as 6) is stored first, and the branch for the long
integer term 230 is stored next. Notice how, in the multiple table schema, the
ARG] field of the second record holds the key for the auxiliary table record. At
last, the meta-information is inserted. This consists of a record holding in the
META field the number of variables in the subgoal call (1 in this case, internally
represented by 2) and in the ARG7 fields the different terms found in the answer
trie for the variables in the subgoal call along with the other ground arguments.
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Fig. 5. Exporting f(Y, 1) using both storage schemes

3.5 Importing Answers

To import answers from the database, we first call dbtab_init_view() in order
to construct the specific SELECT statement used to fetch the answers for the
subgoal. Function dbtab_init_view() first retrieves the meta-information from



the database and then it uses the ground terms in the meta-information record
to refine the search condition within the WHERE part of the SELECT statement.

Figure 4 shows, labeled as (3) and (4), the SELECT statements generated
to each storage schema by the call to dbtab_init_view(). Notice that state-
ment (4) bears a DISTINCT option. This is the way to prune repeated answers.
Statement (5) is used by both schemes to obtain the meta-information record.

The storage schemes differ somewhat in the way the returned result-set is
interpreted. The multiple table schema sets the focus on the ARG fields, where
no NULL values can be found. Additional columns, placed immediately to the
right of the ARGi fields, are regarded as possible placeholders of answer terms
only when these main fields convey long atomic term markers. In such a case,
the non-NULL additional field value is used to create the specific YapTab term.
The single table schema, on the other hand, requires no sequential markers for
long atomic terms, hence, it makes no distinction what so ever between ARG
and its possibly following auxiliary fields. For each argument (single field, pair
or triplet), the first non-NULL value is considered to be the correct answer term.
Figure 6 shows, in the right boxes, the resulting views for each storage schema.
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Fig. 6. Importing f(Y, 1) using both storage schemes

3.6 Handling the Resulting Record-Sets

After the SELECT statement execution, two possible strategies may be used to
supply the stored record-set with the answers back to the YapTab engine.



Rebuilding the Answer Trie In this scenario, the stored record-set is only
used for answer trie rebuilding purposes. The set of retrieved values is sequen-
tially traversed and inserted in the respective subgoal call, exactly as when the
tabled new_answer operation occurred. By the end of the process, the entire an-
swer trie resides in the table space and the record-set can then be released from
memory. This approach requires no alteration to the YapTab’s implemented API.

Browsing the Record-Set In this approach, the stored record-set is kept in
memory. Since the answer tries will not change once completed, all subsequent
subgoal calls may fetch their answers from the obtained record-set. This is ex-
pected to lead to gains in performance since: (i) retrieval transaction occurs
only once; (ii) no time and memory are spent rebuilding the answer trie; and
(iii) long atomic term representation required down to one fourth of the usually
occupied memory. Figure 6 illustrates how the ancillary YapTab constructs are
used to implement this idea. The left side box presents the state of the subgoal
frame after answer collection for f(Y,1). The internal pointers are set to the first
and last rows of the record-set. When consuming answers, the first record’s offset
along with the subgoal frame address are stored in a loader choice point'. The
fetched record and its field values are then used to bind the free variables found
for the subgoal in hand. If backtracking occurs, the choice point is reloaded and
the last recorded offset is used to step through to the next answer. When, at
the end of the record-set, an invalid offset is reached, the loader choice point is
discarded and execution fails, thus terminating the ongoing evaluation.

4 Initial Experimental Results

For comparison purposes, three main series of tests were performed both in
YapTab and DBTAB environments (DBTAB with MySQL 5.0 running an Inn-
oDB engine [8]) using a simple path discovery algorithm over a graph with 10,000,
50,000 and 100,000 possible combinations among nodes. In each series, two types
of nodes were considered: integer and floating-point terms. Each setup was ex-
ecuted 10 times and the mean of measured times, in milliseconds, is presented
next in Table 1. The environment for our experiments was an Intel Pentium@®4
2.6GHz processor with 2 GBytes of main memory and running the Linux kernel-
2.6.18.

The table shows two columns for YapTab, measuring the generation and
browsing times when using tries to represent the table space, two columns for
each of DBTAB storage schemes, measuring the times to export and import
the respective number of answers and one last column, measuring the time to
recover answers when using the approach that browses through the stored data-
set. Some preliminary observations: (i) export and import times exclude the
table generation time; (ii) when the trie is rebuilt after importing, this operation

1 A loader choice point is a WAM choice point augmented with a pointer to the subgoal
frame data structure and with the offset for the last consumed record.



YapTab DBTAB
Multiple Table Single Table

Answers Terms Generate Browse Export Tmport Export Tmport Browse
10.000 integers 65 1 1055 16 1048 34 2
’ floats 103 2 10686 44 1112 47 6
50.000 integers 710 6 4911 76 5010 195 12
’ floats 1140 8 83243 204 5012 282 27
100.000 integers 1724 11 9576 153 9865 392 20
’ floats 1792 14 215870 418 11004 767 55

Table 1. Execution times, in milliseconds, for YapTab and DBTAB

duration is augmented with generation time; (iii) when using tries, YapTab and
DBTAB spend the same amount of time browsing them.

As expected, most of DBTAB’s execution time is spent in data transactions
(export and import). Long atomic terms (floats) present the most interesting
case. For storage purposes, the single table approach is clearly preferable. Due
to the extra search and insertion on auxiliary tables in the multiple table ap-
proach, the export time of long atomic terms (floats) when compared with their
short counter-part (integers) increases as the number of answers also increases.
For 10,000 answers the difference is about 10 times more, while for 1000,000 the
difference increases to 20 times more. On the other hand, the single table ap-
proach seems not to improve the import time, since it is, on average, the double
of the time spent by the multiple table approach. Nevertheless, the use of LEFT
JOIN clauses in the retrieval SELECT statement (as seen in Fig. 4) may become
a heavy weight when dealing with larger data-sets. Further experiments with
larger tables are required to provide a better insight on this issue.

Three interesting facts emerge from the table. First, the browsing times for
tries and record-sets are relatively similar, with the later requiring, on average,
the double of time to be completely scanned. Secondly, when the answer trie
becomes very large, re-computation requires more time, almost the double, than
the fetching (import plus browse) of its relational representation. DBTAB may
thus become an interesting approach when the complexity of re-calculating the
answer trie largely exceeds the amount of time required to fetch the entire answer
record-set. Third, an important side-effect of DBTAB is the attained gain in
memory consumption. Recall that trie nodes possess four fields each, of which
only one is used to hold a symbol, the others being used to hold the addresses
of parent, child and sibling nodes (please refer to section 2). Since the relational
representation dispenses the three pointers and focus on the symbol storage, the
size of the memory block required to hold the answer trie can be reduced by a
factor of four. This is the worst possible scenario, in which all stored terms are
integers or atoms. For floating-point numbers the reducing factor raises to eight
because, although this type requires four trie nodes to be stored, one floating-
point requires most often the size of two integers. For long integer terms, memory
gains go up to twelve times, since three nodes are used to store them in the trie.



5 Conclusions and Further Work

In this work, we have introduced the DBTAB model. DBTAB was designed to
be used as an alternative approach to the problem of recovering space when
the tabling system runs out of memory. By storing tables externally instead of
deleting them, DBTAB avoids standard tabled re-computation when subsequent
calls to those tables appear. Another important aspect of DBTAB is the possible
gain in memory consumption when representing answers for floating-point and
long integer terms. Our preliminary results show that DBTAB may become an
interesting approach when the cost of recalculating a table largely exceeds the
amount of time required to fetch the entire answer record-set from the database.
As further work we plan to investigate the impact of applying DBTAB to a more
representative set of programs. We also plan to cover all possibilities for tabling
presented by YapTab and extend DBTAB to support lists and application terms.
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